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SECTION 1
SUMMARY

|
X 1.1 BACKGROUND

| General Electric, under NASA contract, has been conducting a rrogram to

3 explore and define the operating charazteristics of large diameter rolling~element
' bearings, in the ultra-high speed regimes expected in the engines for advanced,
high performance aircraft. This final report deals with a portion of Task III

and all of Task IV of the subject program. Earlier tasks, as well as a portion
of Task III, have been documented in various reports issued during the life-span
of this contract (1-9)%, Coa

1.2 TASK III - HIGH TEMPERATURE, HIGH SPEED L. BRICANT PERFORMANCE TESTS 3

This portion of Task III was designed to evaluate the effect of a develop-
- mental high temperature lubricant on the operating characteristics of rolling-
element bearings at speeds to 3 million DN. In earlier, similar high speed
bearing tests (7, 8 and 9), a commercial Type II synthetic lubricant was used.

Following the procedure used in these earlier tests, a parametric study
was conducted using 120 mm bore, split inner ring AISI M-50 bearings and a -
polymeric perfluorinated fluid, marketed by DuPont under the trade name, :
Krytox 143 AC.

During the first series of parametric tests witi the Krytox fluid, the inner
race speed was held constant at 25,000 rpm (3.0 x 10 DN), the thrust load was
22,240 Newtons (5,000 1bs.) and the oil inlet temperature was maintaired at
166°C (330°F). The bearings were lubricated through passages at the inner ring
¢ split, and the exterior bearing surfaces were cooled with an independently s
i adjustable oil flow. Bearing ring temperatures and power demand were measured
for a variety of lubricant and cooling oil flows.

In the second series of tests, the lubricant and cooling oil flows were ;
’ held constant at values which produced the most favorable bearing performance A
| during the first series of tests. With the 21l inlet temperature adjusted to
achieve 288°C (550°F), inner and outer ring temperatures, speeds and loads were
varied from 12,000 (1l.44 x 10 DN) to 25,000 rpm (3 x 106 DN) and from 6,672 to s
22,240 Newtons (1,500 to 5,000 lbs.), respectively.

R A

The results can be summarized as follows: '!

° Practical limits were established for the range of lubricant flow to
the test bearings. Low flow rates produced bearing temperatures beyond
the upper, acceptable limit. High flow rates increased the bearing power
Jdemand beyond the capacity of the test rig drive motor.

*# Numbers in parentheses refer to references.




® Bearing race temperatures, temperature gradients across the bearings and
; power losses could be tuned and varied with load, with speed and witi both i
f lubricant flow rate into the bearings and cooling flow to the inner races.

° Cooling oil flow to the outer races affected the outer race temperatures
- significantly, but h..l only a small effect on the inner race temperatures.
| The power losses due to changes in coling oil flow to the outer race
were insignificant.

‘ ° Compared with the results of tests using a type II oil, the high density
Krytox lubricant had a significant effect on the power requirements.
b ,
t ° Short bearing life was obtained in bearing tests with the Krytox 143 AC .
' in an air atmospliere. The primary mode of failure was corrosive surface
: fatigue occasioned by pitting on the bearing raceway surfaces.

§ 1.3 TASK IV - CBS 600 BEARING TESTS

This task was intended as a preliminary evalustion of the ability of a
carburized bearing to sustain the high tangential stresses of high DN bearings
without experiencing the catastrophic failure mode observed earlier (9) with
VIM-VAR* M50.

To accomplish this, inner races were manufactured using a case-carburizing
alloy (CBS 600) and assembled into 120 mm bore split-inner-ring ball bearings.
The outer rings were VIM-VAR M50. The bearings were installed in the high
speed, high temperature fatigue tester and were run at 25,000 rpm (3 x 10 DN) |
with a thrust load of 22,240 Newtons (5,000 lbs.). A bearing race temperature ]
of 216°C (420°F) was maintained. These test conditions were identical to
those used in the previous tests with the AISI M50 bearings.

In the .racture demonstration tests, an artificial defect was introduced
in the CBS 600 inner race. Again, these tests were conducted under identical
conditions as those reported in (9). The results of the current tests indicated
that an inner race, manufactured of a case carburized material, can withstand .
continued operation without fracturing after a fatigue spall failure has
developed in its raceway at high speeds and under high loads.

However, during subsequent life-tests of CBS 600 inner races, extremely
short lives of less than 4 hours were encountered. Thus, while the material
g demonstrated its potential resistance to fracture, the results are somewhat
clouded by apparent processing defects resulting from the carburizing/heat-treat
cycle. The test results must therefore be viewed in this context.

1
|
]
g
|

* Vacuum Tnduction Melted - Vacuum Arc Melted :
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SECTION 2
INTRODUCTION

Rolling-element bearings for advanced technology aircraft engines are ex-
pected to operate at speeds to 3 million DN (DN is the product of the bearing
bore in millimeters and the shaft speed in rpm). Current production engine
bearings operate at speeds less than 2.3 million DN. Additionally, bearing
temperatures for these advanced engines could go above the current 218°¢C (4250F)
maximum operating levels. Because compressor or turbine blade t’p speeds and
disk burst strengths begin to limit the maximum speed of rotati-g components,

a bearing speed of 3 million DN appears to be the practical limit of aircraft
engine operation.

General Electric, under NASA contract, has been conducting a long term
program to explore and define the operating characteristics of large diameter
rolling-element bearings in the ultra-high speed regimes expected in the engines
for advanced, high performance aircraft.

The prime objective of the program was to obtain design information relating
the effect of high rotational speeds, up to 25,000 rpm, 3 x 106 DN, on the
fatigue life, thermal behavior, lubrication characteristics, and operational
conditions, of main-engine size rolling-element bearings.

Comprehensive, controlled full-scale 120 mm bearing tests have been con-
ducted under conditions of load, temperature and environment typical of those
expected in advanced aircraft engines. Consequently, the data and information
being generated are directly applicable to the design of bearings for advanced
high speed aircraft gas turbine engines.

During the term of this contract, a number of modifications were made. These
resulted ‘vom a continuing effort between GE and NASA to achieve a maximum
yield and efficiency from the program. The generic program was divided into
the following tasks:

Task 1 - Bearing and Lubricart Procurement
Task II Test Rig Design and Fabrication
Task TII Fatiguc Tests

Task 1V - CBS 600 Bearing Tests

In Task III, Fatigue Tests, over 185,000 hours of 120 mm ball bearing tests
were accumulated, including more than 75,000 hours at 3 million DN. From this
activity, the ability to successfully operate large diameter bearings at ultra-
high DN values was demonstrated. In addition, ring {racture, a potentially
critical failure mode in high speed bearings, was identified and the effect of
it on bearing integrity was demonstrated in controlled tests.

L3




Because of the time span covered by this contract, the earlier test results
(Task I, II and portions of III) have been reported in the open literature
(Ref. 1-9). Consequently, this report deals only with the last portion of
Task III -High Temperature, High Speed Lubricant Performance Evaluation and
‘; Task IV - CBS 600 Bearing Tests.
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SECTION 3
TASK III - HiIGH SPEED, HIGH TEMPERATURE LUBRICANT PERFCRMANCE TESTS

3.1 INTRODUCTION

As reported in reference (9), over 150,000 bearing test hours were accumu-
lated with two groups of thirty =zach, 120 mm bore split-inner-ring ball bearings,
operating at 1.44 and 3.0 million DN at 221°C (430°F) and using a type II oil.
This fatigue test program was preceded by a parametric study reported in
reference (7). The effects of lubricant flow for various lubrication and
cooling techniques were investigated, resulting in essentia. information for
the successful operation of bearings at high speeds.

The data of the high-speed, high-temperature bearing performance tests
reported herein supplement those of the earlier parametric study since they
were collected on the same test apparatus and with the identical type test
bearings. Applying the lubrication techniques of the earlier program, bearing
performance was measured at temperatures to 288°C (550°F) with Krytox 143 AC.
Even though only short bearing lives were achieved, the test resv.cs are of con-
siderablz engineering value as they illustrate the significant eifects that a
lubricant has on the performance of high speed bearings.

3.2 EXPERIMENTAL DATA

3.2.1 High Speed Bearing Tester

The test machines used in this program are identical to those used for
the 1.44 x 10% DN and 3 x 106 DN tests used im earlier programs. Figures 1 and
2 are overall photographs of the high speed testers.

A schematic of the high speed, high temperature bearing tester is shown in
Figure 3. The tester consists of a shaft to which two test bearings are mounted.
Loading is applied through ten springs which give a thrust load to the bearings.
Dual flat belts are used to drive the test spindle from a 75 kW (100 hp) fixed
speed electric motor. Tne drive motor is mounted to an adjustable base so that
drive pulleys can be used for 12,000 to 25,000 rpm with the same drive belts.
The drive motor is controlled by a reduced voltage autotransformer starter which
permits a selection of the motor acceleration rate during startup. This control
protects the bearings from undesirable acceleration during startup.

The lubrication system delivers up to 473 cm3/sec. (7.5 gallons per minute)
to the test rig. There are two lubricant loops in the system. The oil flow
in each loop is adjusted by flow control valves and can be individually measured
by a flow rate meter without interrupting the machine operation, as shown in
Figure 4. The first loop supplies cooling oil to each bearing outer race and
is designated Cg. The secoud 1oop is divided by a lubricant manifold which
feeds individual annular grooves or channels at the shaft in*ernal diameter,
proportioning the amount of o0il which is to lubricate and/or coocl the inner
race. Lj designates the oil flow to the bearing through a plurality of radial
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passages at the inner-race split. Ci designates the lubricant supply to

the inner race land/cage interface. The lubricant system permits a selection
of various lubricant schemes. These include bearing lubrication through the
inner-race split, lubrication of the cage-race shoulder contact region, the
application of inner and/or outer-race cooling, and a selection of any desired
flow ratio for cooling and lubrication as well as the conventional lubrication
through jets.

By means of the system of valves and manifolds previously discussed, an
unlimited number of combination of o0il flows can be achieved to evaluate various
conditions. Consequently, values of Ly, C; and Cy can be controlled independent
of each other. A third lubricant loop adapted from an adjacent machire supplies

' an ester base type II oil to the slave bearing which supports the shaft; this
is not shown in Figures 3 and 4.

The instrumentation includes the standard protective circuits which shut
down a test when a bearing failure occurs, or when any of the test parameters
deviate from the programmed conditions. Measurements were made of bearing
inner and outer-race and lubricant temperatures, and machine vibration level.
Speed and spindle excursion measurements were made with proximity probes and
displayed by numerical read-out and oscilloscope, respectively. The oil flow
was established by a flowmeter, and bearing outer-race and lubricant inlet and
outlet temperatures were measured by thermocouples and continuously recorded on
a strip chart recorder. The inner-race temperature of the front test bearing
was measured with an infrared pyrometer.

3.2.2 Tester Modifications

Due to the known corrosive nature of the Krytox 143 AC lubricant at
operating temperatures, it was required to incorporate several modifications
to the high-speed bearing tester selected for testing with this lubricant.

The lubricant circuit was completely rebuilt with a new pump, valves, flow
meters, high capacity heat exchangers and oil filters. New external outer ring
cooling lines were installed to insure adequate drainage of the test bearing
chambers. All the new components were either constructed of stainless steel
or were electroless nickel plated. To facilitate machine startup with the
high viscosity Krytox as well as to maintain lube temperatures under all
operating conditions, a heater was added to the lube reservoir.

All test rig surfaces exposed to the lubricant were electroless nickel
plated to a thickness of 7.62 x 103 mm (.0003 inch) minimum. The support
bearing and its cavity remained unchanged. This bearing was lubricated with
type II oil from an adjacent machine. Contamination of the Krytox test fluid
with type II oil was prevented by adding a slinger to the shaft mid-section.
The intermediate section of the test rig, located between two labyrinth seals,
was continuously drained and any fluid leaking into this cavity was discarded.

A direct reading power meter was added to the electrical system to improve
the accuracy and efficiency of the drive power measurements.

9
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Certain features of the original machine were sacrificed. The probes used
to sense cage speed and radial spindle excursion have a temperature limit of
221°% (430°F). Therefore, spindle excursion was measured only near the support
bearing and cage speed measurement was eliminated. Spindle speed was measured
with a probe located near the support bearing.

3.2.3 Test Bearings

The test bearings were ABEC-5 grade, split-inner~race 120 mm bore ball
bearings. The inner and outer races, as well as the balls, were manufactured
from one heat of vacuum-induction melted, vacuum-arc remelted AISI M50 steel.
The chemical analysis of the specific VIM-VAR M50 heat is shown in Table I.

The nominal hardness of the balls and races was Rockwell C 63 at room temperature.
Each bearing contained 15 balls, each 2.0638 cm (13/16 in.) in diameter. The
bearings were assembled tc have a nominal 23° contact angle. The cage was a
one-piece inner-land riding type, made out of an iron base alloy, AMS 6415,
heat-treated to a Rockwell C hardness range of 28 to 35 and having a 0.005 cm
(0.002 in.) maximum thickness of electroless nickel plate per specification

AMS 2404. The cage balance was 3 gm-cm (0.042 oz-in.). The retained austenite
content of the ball and race material was less than 3 percent. The inner and
outer-race curvatures were 54 and 52 percent, respectively. All components
with the exception of Lhe cage were matched within + one Rockwell C point.
Surface finish of the balls was 2.5 ucm (1 micro in.) AA, and the imner and
outer raceways were held to a 5 ucm (2 micro in.) AA maximum surface finish.

An outline drawing of the test bearing is shown in Figure 5. The bearing
design permitted under-race lubrication by virtue of radial grooves machined
into the halves of the split inner races. Provision was also made for inner-
race land-to-cage lubrication by the incorporation of several small diameter
holes radiating from the bore of the inner race to the center of the inner-
race shoulder.

3.2.4 Test Lubricant

The oil used for the parametric studies 1s marketed by DuPont under the
trade name Krytox 143 AC. It is a polymeric perfluorinated fluid with an
average molecular weight approaching 7000.

The o0il is an odorless and colorless, completely fluorinated organic poly-
mer., It is quite resistant to heat, either alone or in the presence of oxygen,
and will slowly decompose above 399°C (750°F). The major properties of the oil
are presented in Table II and temperature-viscoslty curve is shown in Figure
6. This lubricant has been studied by several laboratories. The Air Force
Materials Laboratory, Wright~Patterson AFB, Ohio has conducted a series of
extensive investigations on this fluid (10 and 11). Because this lubricant had
been stored for some time at the General Electric Company, a sample was sent
to DuPont for an analysis verification. DuPont reported that the fluid met all
original chemical and physical property requirements.
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TABLE 1

Chemical Analysis of Vacuum Induction, Consumable-Electrode
Vacuum Remelted AISI M50 Bearing Steel

Composition of

Element Races and Balls, wt.Z%
¢t Carbon 0.83
i Manganese 0.29
& Phosphorus 0.007
o Sulfur 0.005
Silicon 0.25
Chromium 4,11
Mclybdenum 4,32
Vanadium 0.98
Iron Balance
TABLE 11

Typical Properties of Krytox 143 AC Polymeric Perfluorinated 0il

!

Viscosity, centistokes at -13% (0°F) 33,000
380C (100°F) 270

99°C (210°F) 26

204°C (400°F) 3.9

260°C (500°F) 2.1

Viscosity Index, ASTM D2270 134
Pour Point, °C ASTM D92 -34

)
Thermal Conductivity BTU/hr. (ft)~ (°F/ft)
149°C (300°F) 0.051
260°C (500°F) 0.051

Density, grams/ml at 9920 (2102F) 1.77
204°c (400°F) 1.59

Specific Heat, BTU/1b/°F at 99°C (210°F) .252
Volatility D972 Mod. wt %

loss, 6-1/2 hours at 2042C (400°F)
at 260°c (= 1°F)
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Prior to testing, the fluid was circulated through filters for over 30 hours.
A sample check after the filtration showed an acceptable count of contamination
particles.

The o0il used for the support bearing was a 5 centistoke neopentylpolyol
tetraester. This is a type II oil qualified to MIL-L-23699.

3.2.5 Test Procedures

The initial objective of the study was to rollect data on the performance
of ball bearings at speeds to three million DN with ring temperatures to 316°C
(600°F), using Krytox 143 AC as a lubricant. Following this, tests were to be
run for direct comparison with earlier tests run with a type II oil ,MIL-L-23699.

Additionally, tests were to be conducted to find the optimum operating
conditions at 25,000 rpm with 22,240 Newtons (5,000 lbs.) thrust load and 316°C
(600°F) test bearing operating temperature, followed by tests under the same
lube flow conditions at lower speeds and loads.

During the initial testing with maxlmum bearlng temperatures of 316°C (600°F)
and maximum oil inlet temperatures of 204°C (400 F), an increase in the
machine vibration and a "rough hand feel'" of the shaft suggested some deteriora-
tion of the test bearings. Inspection revealed that the raceways were severely
pitted. There were signs of corrosive attack and surface distress on the balls;
and severe wear was observed at the separator ball pockets and moderate wear
at the separator lands. To reduce these corrosive effects of the Krytox, it
was decided to modify the test conditionms.

Consequentiv, the parametric tests were rescheduled to operate at a maximum
ring temperature of 288°C (550°F) and a maximum oil inlet temperature of
166°C (330°F). The latter was necessary to stay within the power limitations
of the drive motor. A matrix of the test conditions is shown in Table III.

3.3 RESULTS AND DISCUSSION

3.3.1 Parametric Study

The effects of lubricant and cooling oil flow rates on bearing tempera-
tures and power requirements were determined, and the results are presented in
Tables IV and V. The data has been plotted to determine the consistency and
accuracy of the results and to show the major trends of bearing performance.

For correlaticn with the raw data presented in this report, all graphs
are illustrated in terms of total flow in the lubricant loops, i.e., '"Outer
Race Flow" and "0il Flow, Inner Race Path", representing total flow supplied
by the machine to both test bearings.

The tests in the parametric study are based on the following operating
conditions:

Speed - 25,000 rpm (3 x 10% DN)
Thrust load - 22,240 Newtons (5,000 1bs.)
Lube oil - Krytox 143 AC
Lube inlet temperature -  166°C (330°F)
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TABLE III
Matrix of Test Conditions for Parametric Study
gﬁgsrRzizg Ci + Li, Outer Ring Flow, cm3/sec (gpm)
Ci/Lq cm3/sec.
(gpm) 32 (0.5)] 63 (1.0) | 126(2.0)] 189 (3.0)| 221(3.5}
) -
0 189 (3.0) # v v
126 (2.0) ' #
63 (1.0) : ¢ # 1
189 (3.0) # v Y
126 (2.0) I A
1.33 63 (1.0) #
252 (4.0) # / / v
221 (3.5) 4 4 4 E
3.0 189 (3.0) # 4 v ¢
126 (2.0) # / 3
|
252 (4.0) # / v / :
221 (3.5) # 4 Y v/
189 (3.0) # / / '
4.0 126 (2.0) # Y
5‘,
J/ Successful test with
temperature data v

# Shut-down, temperature
limit reached

[] Unsafe area; did not
run

All flows indicate total
machine flow, i.e., for two
test bearings.
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Figures 7 through 10 show test bearing and oil outlet temperatures as a
function of the inner-ring-path oil flow for Lube/Cooling flow ratios of 1/4.0,
1/3.0, 1/1.33 and 1/0.

Referring to Figure 7 for the Li/Ci - 1/4 0 ratio, the inner ring tempera-
tures varied from 2520C to 272°C (485 F to 522°F) depending upon the inner ring
lube path flow (Ci + Li).

The outer ring temperatures ranged generally from 260°C (SOOOF) to 288°¢
(550°F) and were, as expected, affected by both the oil flow to the inner ring
and the amount of cooling oil supplied to this component.

The oil outlet temperatures generally paralleled the inner ring temperatures
from 243°C (470°F) to 264°C (507 F). Neither the inner race nor the oil
outlet temperatures were significantly influenced by the outer ring cooling
oil flow.

Figures 8, 9 and 10 show corresponding results for the other inner ring
flow ratios tested.

The results of the 1/3.0 flow ratio were similar, but the temperatures of
the inner race were slightly higher. Outer ring temperatures are generally
lower at the low inner ring path flow rates and slightly higher at the higher
flow rates.

Bearing temperatures in excess of 288°C (550°F) at low flow rates and
drive power limitations of the test machine at high flow rates limited the
number of tests with 1/1.33 and 1/0.0 lube flow ratios. For those tests
which were successfully completed, the resulting temperatures were somewhat
higher.

In Figures 11 through 14, bearing temperatures are plotted as functions
of the C /L ratio for oil3flows to the inner rings of 126 (2.0), 189 (3.0),
221 (3. 5) and 252 (4.0) cm”/sec @gpm), respectively. Flow ratios resulting in
minimum outer ring temperatures were discovered for an inner ring path flow
of 189 cm3/sec (3.0 gpm). Inner ring and oil out temperatures decreased with
increasing flow ratios. It is interesting to note that,for total flow rates
(Ci + Ly) of 189 (3.0) and 221 cm”/sec (3.5 gpm),practical flow ratios were
found for balanced bearing temperature operation. From the curves for 126
(2.0) and 252 cm 3/sec (4.0 gpm) total flow, ratios may be extrapolated to
find potential conditions for balanced bearing operation.

The small number of points on Figures 13 and 14 limit the conclusions that
can be drawn from this data.

Power as a function of oil flow to the inner rings is shown in Figures
15 through 18. As would be expected, the power demand increases markedly with
increasing inner ring path flow, but is not affected by outer ring cooling oil
flow. The power demand for the entire system ranged from 66 to 91 kilowatts.
If a 98% efficiency of the belt drive and a 2 kilowatt power demand by the
support bearing are assumed, the range of power per bearing was on the order
of 31 to 44 kilowatts.
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Figure 15. Bearing Power vs. Ianer Ring Path 0il Flow at a Lube-to~Coolant

Flow Ratio of 1/4.0.
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Figure 17. Bearing Power vs. Inner Ring Path 0il Flow at a Lube-to-Cocolant

Flow Ratio of 1/1.33.

34

e i hn D g

el TR e




Power, Kilowatts

N T T o T

ORIGINAL PAGE 1
OF POOR CUALITY

95 o
Li/ci = i/C (Jet #1)
® = 0/R Flow of 189 cm3/sec (3.0 GPM) &
90 - ] - O/R Flow of 126 cm3/sec (2.0 GPM) ®
85
80 -
75 -
70 <
65 -
Parametric Study-Krytox® 143 AC
Operating Conditions

60 Inner Ring Speed: 25,000 RPM

Thrust Load: 22,240 Newtons (5,000 lbs.)

Lube Inlet Temp.: 166°C (330°F)

Lube: Krytox® 143 AC
55 =
50 -
45 =

cm3/sec
v ¥ 1
50 100 150 200 250
0 1 2 3 GPM 4

0il Flow, I/R Path
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Flow Ratio of 1/0.
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As seen in Figures 15 and 16, the power demand curves for flow ratios of
1/4.0 and 1/3.0 are virtually identical. Though fewer data points are avail-
able, the power required for Li/Cj ratios of 1/1.33 and 1/0.0 is significantly
higher.

The power data was replotted in Figures 19 through 22 as functions of inner
ring flow ratio, C{/Li. A mlnimum power loss is suggested for total flows
(C{ + Li) of 126 (2.0) and 189 cm 3/sec (3.0 gpm) at a flow ratio Ci/Li of about
3.0.

3.3.2 Bearing Life Evaluation

The test bearings were from the same manufacturing lot and material heat
as those of the previous endurance test program described (9). With these
bearings, lives of 3,000 hours were achieved repeatedly using a type II oil.

In an earlier test program reported in (1,4 and 5), 120 mm ball bearings of
CEVM*M50 were tested at 1.4 million DN and 316°C (600 F) in a nitrogen atmos-
phrce using Krytox 143 AC as a lubricant. In that program, typical bearing
lives on the order of 100 to 500 hours were achieved.

After an initial 10 hours of testing to the original planned test condi-
tions, i.e., ring temperatures of 316°C (600°F), signs of bearing failures
were noticed. On both test bearings, the inner and outer races were severely
pitted at the load tracks. The outer race of the front bearing showed severe
corrosion or erosion pitting on either side of the load track. Signs of corro-
sive attack and surface distress were also evident on the balls, and the
separators showed heavy ball pocket wear and moderate wear at the lands.

These observations made it clear that, 51mllar to the parametrlc study,
high speed operation with ring temperatures at 316°C (600°F) would not be
feasible with an open, non-inerted system. The life test conditions were,
therefore, also modified for a maximum bearing temperature of 288°C (550°F).

Lowering the operaving temperature reduced the severity of corrosion damage
on the test bearings during subsequent tests. However, very short bearing life,
typically on the order of 5 to 15 hours, were still encountered throughout the
remainder of this program. A tabulation of bearing life is given in Table VI.
The Weibull analysis on these data is as follows:

B-10 Life: 4.02 hours
B-50 Life: 10.61 hours
Slope: 1.94
Fajilure Index: 17717

As mentioned earlier in a previous investigation (1), rolling-element
fatigue tests were conducted with 120 mm bore angular- contact ball bearings of
AISI M50 steel with the same Krytox fluid. Here at 316°¢C (600°F) under a low-
oxygen environment, the Krytox gave bearing lives approximately 3 times AFBMA **
Bearing failure was predominantly subsurface initiated, although some corrosion
pitting was observed. However, corrosion was not considered to be the primary
cause for spalling failure.

% Consumable Flectrode Vacuum Melted
*% Anti-Friction Bearing Manufacturers' Association
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Figure 19. Bearing Power vs. Inner Ring Flow Path Coolant-to-Lubricgnt Flow

Ratios for a Total Coolant plus Lube Flow Rate of 126 cm™ /sec.
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Figure 20. Bearing Power vs. Inner Ring Flow Path Coolant-to-Lubricant Flow

Ratios for a Total Coolant plus Lube Flow Rate of 189 en3/sec.
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Figure 21. Bearing Power vs. Inner Ring Flow Path Coolant-to- Lubrlcant Flow
Ratios for a Total Coolant plus Lube Flow Rate of 221 cm /sec
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Figure 22. Bearing Power vs. Inner Ring Flow Fath Coolant—to—Lubric%nt Flow
Ratios for a Total Coolant plus Lube Flow Rate of 252 cn”/sec.
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Summary of Bearing Tests, Test Life and Post-~Test Condition

Brg. S/N Test No. Position Test Hrs. Loading Brg. Condition After Test
' 11 . 17 "t 0/R | Light Corrosion/Pitting
a S/N 1/R on Raceways. Balls OK
100 I-7 . 14 S/N O/R New Balls. Raceways
- "'t 1/R Corroded. Balls OK
11-1 R 17 """ O/R Slight Corrosion on
= S/N 1/R Raceways. Balls OK
116
I-7 R 14 S/N O/R O/R Corroded. Fatigue
- et 1/R Spalls on 1/R and Balls
1-9 F 15 "T" 0/R Raceways Corroded
- S/N 1/R Balls Fair Shape
105
I-8 F 3 S/N O/R 0/R Corroded. 1/R OK
- "T" 1/R Balls Have Surface Distress.
Light Corrosion and a
109 1-8 R 3 " O/R ginzegéls Dents.
S/N 1/R
Corrosion on Raceways.
110 I-6 F 13 """ 0/R 1 Ball Has Small Debris
S/N 1/R Dent.
5 R 15 "' O/R Raceways Corroded. One
- S/N 1/R Ball Has Fatigue Spall.
66
-3 R 5 S/N O/R Possible Inclusion in O/R.
- "T'" 1/R One Ball with Fatigue Spall.
3 - 5 "T" 0/R Numerous Debris Dents
I- S/N 1/R in Raceway.
S/N O/R 3 Balls Have Pitting -
108 I-4 R 15 "t 1/R Replaced for I-5.
5 R 10 S/N 0O/R Raceways Corroded and
- S/N 1/R | Pitted. Spalls on Balls.
"T'" 0/R Raceways Corroded.
120 -6 R 13 S/N 1/R Balls Have Spalling.
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Summary of Bearing Tests, Test Life and Post-Test Condition

ORIGINAL PALL 13
OF POOR QUALITY

TABLE VI (CONT'D.)

W

Brg. S/N Test No. Position Test Hrs. Loading Brg. Condition After Test ;
I-4 F 15 "T" O/R Severe Raceway Corrosion
118 S/N 1/R All Balls Have Spalling
I-5 ¥ 10 S/N 0/R Raceways Mildly Corroded.
"T" 1/R Balls OK g
i
!
oM O /R Severe Pitting/Corrosion j
56 I-1 F 10 S/N 1/R on Raceways. Surface
i Distress/Corrosion on Balls. J
|
3
1
"T" 0/R Pitting/Corrosion on
1 -1 R 10 S/N 1/R Raceways and Balls.
42
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Figures 23 through 28 are provided to illustrate typical bearing failure
characteristics encountered in the most recent tests, operating with the Krytox
143 fluid in air. Raceway failures were limited to surface pitting (micro-
spalling). Examples of these are shown in Figures 23, 24 and 26. Ball failures
were more severe. These failures,which had the appearance of classical sub- s
surface fatigue spalling,were associated with little or no evidence of sur- -
face distress. Figure 28 shows this. Figurc 27 shows the wear on the ball
pockets.
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During one of the disassemblies to replace a failed bearing, a dark deposit
was noted on one of the machine surfaces. Samples of the deposit as well as
samples of the lubricant in the test machine were subjected to fluorescent
X~-ray analyses. A sample of unused Krytox was also analyzed for comparison.
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The results of the particulate analyses indicated substantial amount of iron, 4
l nickel and chrome. The analyses of the new and used lubricant showed essentially
identical compositions. From this, it was concluded that no major decomposi-
tion of the lubricant, per se, had taken place. The deposits were wear

particles from the rolling contact surfaces of the balls and races and the
separator plating.

3.3.3 Data Reliability and Ball Passing Frequency &

Throughout this test program, difficulties were experienced in collecting
consistent bearing performance data. Repeated runs of the same test often
produced different temperatures, particularly when the tests occurred near
the extremes of the test conditions. Therefore, the test results reported %
are a selection of data that was the most consistent and reliable of those
measured. There still remain, however, some temperature points that do not e
fit well with the rest of the data. Typical exagples are shown in Figures 9
through 11 (for Cy/Lj = 1.33; (Ciy + Li) = 126 cm<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>