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1. INTRODUCTION

The behavior of fault-tolerant computing systems car be modeled

as continuous-rime Marlcov processes on large state spaces. Calculation

of reliability is equivalent to computing transient probabilities of

states of the Marlcov process .corresponding to system failure. The state

I
spaces are often very large, and thus efficient computational methods 	 9

are required in order to calculate state probabilities. The CARE III 	 t

approach has been developed to solve this problem; it is presented by

Stiffler, Bryant, and Guccione [8] and further discussed by Trivedi and 	 y

Geist [9]. The "randomization" technique is an alternate approach which

is of considr -ble interest in its own right and which will be useful. in

validating the CART? III approach for systems with moderate state spaces.

The randomization modeling and computational technique will be

illustrated on a simplified model of a fault-tolurant system consisting 	 6

y
of three components similar to one presented by Trivedi and Geist [9]. 	 a

j
Figure l shows the behavior of a single component. Initially the component
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The randomization technique for computing transient probabilities
of Markov processes is presented. The technique is applied to a Markov
process model of a simplified fault-tolerant computer system for illus-
trative purposes. It is applicable to much larger and more complex
models. Transient state probabilities are computed, from which reli-
abilities are derived. A new accelerated version of the randomization
algorithm is developed which exploits "stiffness" of the models to gain
increased efficiency. A great advantage of the randomizaton approach
is that it easily allows probabilities and reliabilities to be computed
to any predetermined accuracy.
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P	 (1-q)Y
0	 > A	 > E	 r r

a R	 d	 eY

B	 D

0 : component OK

A : active fault

B : benign fault

D : detected (and reconfigured)

E : error

F : failure (error propagated)

Figure 1,--Single component reliability
model: state space,
transitions, and rates.

L.1

is fault-free, but after an exponential holding time with rate a an

"active" fault occurs. From the active state the fault may become "be-

nign" and later become active and continue alternating between active

and 'benign. From the active state the fault may be "detected" (by diag-

nostics) or generate an "error." This error may lead to detection of-

the fault and system reconfiguration or to "failure" of the system.

Figure 1 shows the six states of a component, the possible transitions,

ane the rates at which they occur. We shall apply the randomization

procedure to a system consisting of three independent components. The

state space of the three-component" system is shown in Figure 2; also

shown are the possible transitions of Lhe Markov process and their rates.

The mode], has 18 states and 31 transitions. The set {F, AA, AE, BF, FD,'

XXA} is defined as "system failure," and the goal is to compute the

- 1) -
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3A	 P	 (1-q)Y
0	 > A	 > S ^ F	 \

	

a R 2a	 \2X

A
B	 AA	 AB

7

za RR

BA	 P a BE (1-q)Y BF
I	 \
I

K 2 	 d	 qY

I	 J V	 \\

I

BB	 BD	 \

\\	 RI a
\\	 ^ t P	 \ (1-q)Y

	

\ \	 AD	 y- ED 	 FD

^	 I

XXA	
\ \	 d	 qY

\	 I
\\	 V

\	 DD

^
	 -.I

1

Figure 2.--A three-component system reliability model:
state space, transitions, and rates.

probability of absorption of the process in this set at time t ry	 the

mission completion time. Note that this model is similar to one pre-

sented by Trivedi and Geist [9, p. 46]. It has a small state space, but

it serves well as an illustrative example. The randomization technique

- 3 -
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can be efficiently applied to models with much larger state spaces. It

should be useful in analyses of two fault-tolerant computing systems

developed under NASA sponsorship: SIFT (10] and PTMP (S].

The paper is structured as follows. Section 2 contains the stan-

dard randomization algorithm for computing transient probabilities of

Markov processes. In Section 3 a new accelerated version of the random-

ization procedure is developed; it exploits the fact that models of many

fault-tolerant computing systems are "stiff," i.e., the model has very

fast and very slow transition rates. Section 4 gives computational re-

sults for the standard and accelerated algorithms applied to ten differ-

ent versions of the three-component model of Figure 2. Section 5 con-

tains summary comments and a brief discussion of other approaches. Two

appendices contain listings of FORTRAN programs of the two algorithms.

Additional information on the randomization technique may be found in

Gross and Miller [3].

2. THE STANDARD RANDOMIZATION ALGORITHM

Let {X(t), t	 O} be a continuous-time Markov process on a

finite state space S = {1,2,...,m} . The state probability vector at

time t is denoted 7r(t) _ (Irl ( t), 7r 2 (t), ..., 7rm(t')) , where irs(t)

PCX(t) = sD , s,e S	 Two different characterizations of the stochastic

nature of {X(t), t	 O} are useful: (i) the infinitesimal generator

and (ii) a randomized Markov chain.

All Markov processes can be characterized by an initial distribu-

tion Ir(0) and an infinitesimal generator

r'

{

i

i
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-ql	 q12	 q13	 "'	 qlm

q 21	 -q 2	 q23	 " '	 q 2

Q=
q31	 q32	 -q3	 .'	 q 3

q ml	 qm2	 qm3	
...
	 -qm

F

where

i # j
qij = lim P(X(t+6t)QeI

At
At-FO

and

qi	
qijj ai

The	 g ij 's	 are the transition rates which are depicted in Figures 1 and

:i
2.	 The infinitesimal generator 	 Q	 seems to be the most natural way to

describe the stochastic nature of the Markov models of fault-tolerant

computing systems.

Any Markov process on a finite state space can be represented as

ja discrete time Markov chain "randomized" by a Poisson process.	 Define

A = max q i	(2.1)
ies

and

P = Q/A + 1	 (2.2),

where	 1	 is the identity matrix;	 P	 is a stochastic matrix.	 Let
K

G {Y	 n = 0,1,2,...}	 be n Markov chain on	 s	 with transition matrix 	 P
n,

and initial. distribution	 7r(0)	 .	 Let	 {N(t),	 t	 0}	 be a Poisson pro-

cess with rate	 A	 which is independent of	 {Yn, 
n = 0,1,2,...;	 Then

{YN(t)'	 t	 0}	 is a Markov process with generator 	 Q	 and initial dis-
{

tribution	 7r(0)	 and hence is probabilistically identical to	 -'x(t),	 t	 0'	 .
f.

_ 5

t,

L
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(The relationship between sample paths of {Y as n - 0,1,2,...}

{N(t), t > 0} , and 
{Y N(t), 

t > 0} is shown in Figure 3.) This con-

struction makes it possible to compute transient probabilities of a

Markov process with generator Q from transient probabilities of a

Markov chain Y with transition matrix P and a Poisson process N

with rate A . The transient probabilA^ies of Y are denoted j(n)

&1 (n), ^ 2 (n), ..., r m (n)) , where ^,% n) = P('Yn = s) , s e S	 The

randomization formula is

w
PCX ( t) = s) =	 E PCX(t) = s I N(t) = n) PCN(t) = n)

n=0

_

	

	 P(Yn = s) PCN(t) = n)
n=0

or equivalently,

W	 -At	 n

?r(t) 	 $(n) a	 (At)	 (2.3)
n=0

See Gross and Miller [3) for additional discussion and details. (Equa-

tion (2.3) can also be found in pinlar [1, p. 259].)

The infinite series in Equation (2.3) must be truncated for com-

putational purposes. Let	

1	 ff	 C	 [	 l
T(e,t) = min k: PCN(t) > lc) 	 el = min k: G e-At 	 > 1 - el	 (2.4)

111	 11	 n=0	 J

where a equals the acceptable error (specified by the user). The com-

put.:,'ional version of Equation (2.3) is

e	 T(`pp't)	 c At 0011
it ( t ) _	 L	 ^(n)	 t[,	 (2.5)

n=0

Truncation of the infinite series involves a probability loss of at most
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0
1	 2	 3	 4	 5	 6	 7	 8

n

8	 ~-

7	 F-

6

N(t)	 4

3

2	 ^-
1	 -
0	 - - -

t

3

2

x(t)

YN(t)	 1

0
t

Figure 3.--Example of randomization: Markov chain Y n , Poisson process
N(t), and randomized chain x(t).

e , thus all probabilities (of: states or subsets of states) will have an

error. between -e and 0. Note that the randomization formula (2.5)

reduces the calculation of transient probabilities of a Markov process

{

- 
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to those of a Markov chain and underlying Poisson process, both of which

are more amenable to exact numerical evaluation.

The O's are computed recursively using the relation from stan-

dard Markov chain theory:

^(0) _ 'a(0)

(2.6)

	

0(n + 1) _ ^(n)P ,	 n	 0 .

(Note that Equation (2.6) involves only nonnegative numbers, a fact

that contributes to numerical stability of the algorithm.) The matrix

P is usually sparse and thus the above matrix multiplication should be

performed by an appropriate algorithm. Such a multiplication algorithm

is described by Gross and Miller (3]. The number of operations in this

algorithm is proportional to the sum of the number of states and the

number of transitions, e.g., 49 for the system of Figure 2. The programs

in the appendices use this multiplication algorithm.

In short, the standard randomization computational algorithm com-

putes A and P from the generator Q using (2.1) and (2.2), respec-

tively. It computes the truncation point- T(e,t) from (2,4), then the

W)'s using (2.6) recursively, accumulating in Equation (2.5) to give

ae (t)	 This algorithm was applied to ten versions of the model in Fig-

ure 2. The results are summarized in Section 4.

3. AN ACCE'LERATE'D ALCORITI@1 USING SELECTIVE RANDOMIZATION

A close investigation of the standard randomization algorithm

and the model of the three-component system in Figure 2 suggests a way

to speed up the algorithm for this kind of model. In the three-component

model states 0 , D	 and DD have very long mean holding times because

ORIGINAL PX22 M
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the component failure rate X is very small. All othrr nonabsorbing

states have much shorter holding times. The absorbing states have infi-

nite holding times. The process {X(t), t >. 0} spends most of its time

in the states with long holding times. The Narkov chain {y n , n - 0,1,,,,}

tends to sit in these states for many occurrences of t^^e underlying Poisson

process {N(t), t Z 0} , making a null transition at each occurrence.

By eliminating the computation involved in these null transitions for

the states with the longest holding times, the speed of the algorithm

can be increased.

Consider a modification of the model for the three-component system

of Figure 2. The states AD , BD , ED , DD , FD , and DDA are each

split into two states in order to distinguish whether or not the first

fault is detected before the second fault occurs. The modified model is

shown in Figure 4; it has 26 states and 42 transitions. This modification

reveals (in Figure 5) a special. block tree structure which can be ex-

ploited in an accelerated randomization algorithm. The structure con-

sists of the process alternating between states with long holding times

(S i , S3 , S 5 , and S 9 in Figure 5) and short holding times (S 2 and S4),

not returning to any subset after leaving it, and finally being absorbed

into a terminal set of states (S 61 S 7' Sg , S 10). Larger, more realistic

models of many f'aulL•-tolerant systems will tend to have this same struc-

ture. Such a model is depicted in Figure 6. States with no undetected

faults will have long holding times while those with undetected faults

will be short. (Systems that contain processes with significantly dif-

ferent time scales are called "stiff" in the literature on differential

equations.)

- '

- 9 -
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	BD'	 \	 DD'

	

^ a^'R	
d	 DIY

i
a

	

D	 XXA'

Z6 fnY

0, 3;'	 n— E	 f l-^) Y	 ^► F

a(1R2 Xa

B	 AA	 AE

R ^R

	

BA At BE	 \l-Q)Y r BF

a(^ZR 6	 ^9Y
 WWWW

BB	 BD	 ` X	 XXA

\ \	 All p > ED I (^+ FD

\ ` \6 <] 9Y

DD X P DDA

Figure 4.— Three-component system reliability
model: modified state space with
tree structure.

I

' „+ I

W

The accelerated randomization algorithm is based on a semi-Markov

process representation of the Markov process {X(t), t 	 0} . (Ross

[7] presents Markov processes as a special case of semi-Markov processes.)

This representation is also an extension of an idea called "selective

randomization" by Mclamud and Yadin [6]. Selective randomization is

- 10 -
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S7

S5

S6

S8

S 

S 9 I DD	 t DDA j Slo

Figure 5.--Block structure of modified state space of
three-component- system reliability model.

similar to randomization except that the Markov chain is randomized by a

Poisson process only while it is in a subset 
Sit 

of the state space S

The Markov chain is given arbitrary exponential holding times for the

set S* = S - Sit of exceptional, states. (In the model of Figures 4 and

5, SR = S  V S1 .) Let

- 11 -
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System
Failure

All Vaults
Detected

Undetected
Vaults

I

li

T-469

Figure 6.--Trceµlilte state space and transitions for a general model of
fault—tolerant computers. (The initial state and states with
all faults detected have very long mean holding times. States
with undetected faults have very short mean holding times.
System failure states have infinite holding times.)

A = max q = max q	 (3.1)
scSlt 

S	
S£$ 6

'a

and define a SubStoChaSL"ic transition matrix P>'

qn. _h sL,9
	

i £ Slt

P'( I	 <<,:1 .I. 5L	qi > 0, 1 £ S	 (3.2)
I 1	,:1

0	 q,	 0, i£S*

— 12 —
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Then
	
[X(t) 	 3 0}	 can be characterized as a semi-Markov),	 process with

a transition matrix	 P*	 and exponential holding times with rates 	 {ri,

i e S} , where	 ri = A	 for	 i E SR 	and	 ri 	qi 	for i e S*	 (Thus

the process is uniquely determined by 	 tr(0)	 , P* , A , and	 {q i , i E get}	 ,)

Let	 [Z 
n

,
 
n = 0,1,...}	 be the embedded Markov chain with substochasLic

z

i transition matrix	 P* , and let	 N*(L• )	 equal the number of transitions of

Z in	 [O,t] , noting that 	 Z	 may make transitions	 i + i	 for	 i E SR 	but

not for	 i E S*	 Denote the transient probability vectors for 	 Z	 by

s 0(n)	 ,	 i.e.,	 J(n)	 = &l (n),	 ..., ^rn (n))	 > where	 Qis (n)	 = P(Zn = s)

The processes	 Z	 and	 N*	 are dependent.	 The selective randomization

r
formula is

PCX(t) = s) =	 L	 PCX(L) = s, N*(t) = n)

n=0
_ mm

=	 E	 PCZtt = s, N''°(t) = n)
n=0

(3.3)

L P (Zn = s) P (N* ( t ) = n I Zn = s)

n=0

W

= E v)s (n) P CN* (t) = n I Z  = S)
n=0

The accelerated randomization algorithm is based on Equation (3.3). The

re's can be competed recursively,

,'(0 ) _ 2-r(0)

(3.4)
(n H 1) = Qi(n)P *

In addition the qu.uttilies PCN*(t) = n I Z 	 s) must be computed, o id
tt

the infinite series in Equation (3.3) must be trruncnted to achieve the

desired numerical accuracy.

- 13 -
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We note, for each subset S i of S in Figure 5, that

PCN*(t) = n I Z  = s) , s e Si , takes a constant value; for

i = 1,2,...,10 ,

Ain (
t) = P(N*(t)	 n I Zn = s) ,	 s e Si

a

for n and s such that P(Zn = s) # 0	 Thus to use Equation (3,3

it suffices to compute A i,n (t)	 i = 1,2,...,10 . As an example, cc

sider A4,n (t)  ; this also equals the probability of {N*(t) = n} gi

{X(t) a S4 } occurs. A typical sample path depicting this situation

shown in Figure 7. In order to compute the probability of n occurr

in (0,t) we revert to the standard randomization construction: the

holding time in state 0 has an exponential distribution with rate 3a

In the standard randomization, 
p
0 0 - 1 - (3),/A) _ (A - 3a)/A and

PO,A 3a/A, and the transition to A will e,:cur on the (i + 1)st

occurrence of the underlying Poisson process with probability

(3a/A)((A - 3X) /AD ' , i = 0,1,2,... . Similarly the holding time in

state D has an exponential distribution with rate 21 and the process

will leave D after being there for exactly j occurrences of the un-

derlying Poisson process with probability (2X/A)((A - 2a)/A) j ,

j = 0,1,2,... . Consequently ;:here are many ways that {N*(t) = n}

can occur, depending on the number of occurrences of {N(t), t 	 0}

that happen while {X(t), t % 0} is holding in 0 or D. Combining all

these facts gives

0

4

`1
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iD

S2

0

S4

Holding in	 Poisson	 Holding in	 Poisson

	

State 0,	 Process	 State D,	 Process
TO	(rate A)	 TD	 (rate A)

Figure 7.--A typical sample path of process on modified
state space for three-component system.

CĈ ^CC 3X ( A-3X )' 2A JA-2X 1

	

A4 11 ( t ) 
= G G A( A) A	 A j P {N ( t ) = n+i+ji

i=0 =0

	

m 3a A-3a	 2^ `A-2X j e At(At)n+i+j

i=0 j=0

	

6a	 A n-1	 2kt	 -At n 1 [(A-2,A)t]k

	

A (A-21) Le	 - e k=0	 b!

_	 A n-l r gat	 -At n^1 [(A-3 .N) l
(A-3A^	 Le	 - 

e	
k=0	 3.	 ] J

Then analysis of A i 1 (L• ) for other sets is based on the same principle.

These quanL'itics are:

t
I

- 15 -
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Al,n(t) = e- 31 , n	 0

A2 n ( t ) ^ a3 f3 (n)	 n	 1	 r

A3
r 
11 (C) 3a3 l f

2 
(n) - 3a3-1 f

3 
(n),	 n 3 2

A4 n (t) A A3 n(t)	
n	 2

A5,n
( t ) = 3a n-2

 
2fl (n) - 6a3 2 f 2 (n) + 3a3-2 f3 (n),	 n % 3

 (3.5)

A6 n (t) = f
0
 (n) - 3a3 2 f2(n) + 2a3 2 f 3 (n)>	

n 3 3 >

A
7 n (t) = f

0
 (n) - 3a n-3 f

1
 (n)+ 3a2 3 f 2 (n)- a3-3 f 3

 (n),	 n % =	 ,

AS n ( t ) = f0 (n) - a3 l f
3 
(n)>	 n	 2

A
9

n (t) = 2 al l f l( n) _ 2 a3 1 f 3 (n)	 n	 2

A10 ,11(t)
- f0(n) 2 al 

2 
f1 (n) + 2 a 3

-2 
f 3 (n)	 n	 3	 ,

where, for	 i = 0,1,2,3

f.(n )
= e ikt - n c1 ^ at [(A-ia)t]!t

L	 k !y
k=0

A
ai - AA-ia .

These equations provide the required probabilities for Equation. (3.3).

To complete the specification of the accelerated randomization

algorithm it is necessary to give a truncation rule for the infinite

series in Equation (3.3). Note that

- 16 -
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P, 10

PCN*(t)	 E	 E PCg(t) g Si , N*(L) e nD
n=0 i=1

pRp 10

G	 Z P(Zn s Si) Ai n(t)
n=0 i=1	 '

R	 ].0

E	 E A	 (t)	 V)s (n)
n=0 i=1 i,n	 sesi 

and define

T*(E,t) = min (k: P(N*(t) 4 R) 3 1 — e
J
	(3.7)	 j

fill	
'	 3

Thus, to summarize the accelerated randomization algorithm: the 4)'s	 14

are computed recursively using Equation (3.4) and the A's are computed
{

using (3.5) with the products being accumulated in Equations (3.3) and 	
3

i

(3.6) until the truncation point T* of Equation (3.7) is met, at which

point the algorithm terminates, yielding probabilities which are accurate

to within E of the exact values.

The accelerated randomization algorithm was programmed (see the
i

appendix for FORTRAN .listing) for the model of Figure 4 and executed for

the same ten versions of the system as the standard algorithm. Results

	

	 {

i
are summarized in Section 4.

4. COMPUTATIONAL RESULTS 	 a

The standard randomization algorithm and the accelerated randomi-

zation. algorithm have been programmed in FORTRAN for the system depicted

in Figures 2 and 4, respoctivO.y. L:isLings of the programs appear in

the appendix. Ten cases were run with different sets of parameter values.

The input values for the di.rfaMIL cases are given in Tab Le I. (No La
i

:

that cases 3 and 4 and cases 5 and 6 are iden.L• ical except for the user

— 17 -
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CASES COMPUTED

Parameters
Case

a R	 d	 y p q	
t 

C

1	 10 
3	

10 1	 10	 100 100 .99	 1 10 9

2	 10-3	 10 1	 10	 100 •.100 .99	 10 10-9

3	 10x3
	

10 10	 10	 100 100 .99	 1 10 9

4	 10 3	 10 10	 10	 100 100 .99	 1 10 7

5	 10 
3	

10 10	 10	 100 100 .99	 10 10 I
6	 10 

3	
10 10	 10	 100 100 .99	 10 10 7

7	 10 
3	

100 100	 100	 104 104 .99	 1 10 9

S	 10 3	 100 100	 100	 104 104 .99	 10 10-9

9	 10-3	 104 104	 104	 104 104 .99	 1 10 9

10	 10-4	 100 100	 100	 104 104 .99	 1 109

specified error bound, E .)	 The programs were run on The George Nash-

8
ington University's IBM 370/4341.

j
f The execution times of these randomization programs are proper -

II tional to the product of the truncation points (T or T-) and the sum of rJ

the number of states plus the number of transitions. The accelerated

fversion requires more CPU time for each term in the randomization Cor-

mula (3.7) because the weights	 Ai	, i =1 (t) 1,2,...,10 require more

computation time.	 However, for systems with large state spaces this

will be insignificant• compared to the calculation In Equation	 (3.4).

Thus performance is more accurately predicted by the number of terms

-iB-
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multiplied by 18 + 31 = 49 for the standard algorithm and 26 + 42 = 68

for the accelerated algorithm. The number of terms (truncation point)

and CPU times in seconds are summarized in Table II. In most cases the

accelerated algorithm appears to be far superior. 	 `	
I

The actual probabilities computed are presented in Table III.

The probabilities listed are for the accelerated modification. The

probabilities from the standard algorithm agree completely with these

i"	 numbers and may be recovered from Table III by summing the procabilities
1

for the split states, e.g., P(AD) + P(AD') .
i

G	 l

1

i

TABLE II

PERFORMANCE OF RANDOMIZATION ALGORITIDIS:
NUMBER OF TERMS REQUIRED AND CPU TIME

Standard Algorithm	 Accelerated Aleorith=

No. Terms CPU Seconds No. Terms CPU Second's

1 194 3.20 159 6.50

2 1424 19.54 1233 48.81

3 204 3.12 130 5.40

4 193 3.06 95 4.05

5 1522 20.02 206 8.39

6 1492 20.23 143 5.79

7 1522 20.01 174 7.16

8 13656 174.51 208 8.40

9 4383 56.43 95 4.03

10 1522 19.59 143 5.86

- 19 -
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5. CONCLUSIONS
OF POOR QUALIV

Randomization appears to be a good way to compute reliabilities

for Markovian fault-tolerant computing systems with state spaces of mod-

crate size. Gross and Miller [4] have solved Markov processes with

20,000 states and 200,000 transitions using the standard randomization

procedure. It is certainly feasible to use the approach on Markovian

models of fault-tolerant systems of comparable ' or even larger size.

The accelerated randomization algorithm gives a significant • sav-

ings in CPU time for most examples. There should be an even greater

savings for larger systems. Furthermore, this accelerated implementation

is applicable to any passage time problem, the exceptional set S* being

the target states (with holding times set to infinity). This has appli-

cation in computing fau1L--recovery-time distributions for fault-tolerant

systems.

The randomization algorithm is quite easy to implement. The main

difficulty encountered in larger systems would be generation of the Q

matrix. It is necessary to have an automatic way for the computer to

generate Q or a sparse representation of it. Fortunately, the SERI

methodology (see Gross and Miller [31) can be applied to models of

fault-tolerant systems to overcome this difficulty.

The usual approach to computing transient probabilities for

Markov processes is solution of the holmogorov forward equation

Tr' (t) = L(t)Q ,	 t	 0

This is an initial value system with Tr(0) given. There are two general

approaches: (i) numerical integration techniques such as Runge-Kutta,

predictor-corrector, etc., and (ii) exponentiation [Tr(t) = 7r(0)e Qt ] by

computing the spectrum, computing the Taylor series, or other means.

_22-
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The randomization technique has a distinct advantage over these ap-

proaches in that a bound on the global error can be set by the user,

and it is achieved with certainty. Furthermore, Grassmann [2] has shown

randomization to be more efficient for some queuing systems.

Another advantage of the randomization approach is that it is a

'"computational probability" technique. Computational probability is an

emerging discipline concerned with numerical solution of applied prob-

ability problems. The probabilistic structure of the model is exploited

to obtain efficient numerical algorithms and to evaluate the performance

of algorithms. In this particular application, probabilistic reasoning

led to the accelerated algorithm. Another benefit of the probabilistic

analysis is that Equation (2.3) just involves nonnegative numbers,

creating numerical stability. Finally, the probabilistic point of

view leads to efficient numerical algorithms for computing other quanti-

ties of interest, for example, occupancy time distributions and expecta-

tions which can be used in a performability analysis.

Over all, it appears that the randomization technique is a very

promising methodology for calculating reliabilities and related quan-

tities for Markovian fault-tolerant• computing systems.

I	 S

`	 i
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C	 TI•IIS PROGRAM IS SPE-CIALIZED FOR A PARTICULAR
C	 MARKOV PROCESS WITH :
C	 18 STATES , 32 TRANSITIONS , 6 ABSORBING STATES
C	 AND ONE INITIAL STATE ( E.G. S'T'ATE NO.1 )
C	 THE ADSORBING STATES ARE : STATES NO. 6,7,8,'13, ",18
C -------------------------------------------- 	 _---------•--
r.

INTEGER TSTAR(50)
DOUBLE PRECISION RSTA R('50),PSTAR(50)
DOUBLE PRECISION FHTOLD(257,1='HJ:NhW(2t'r),FIiO(2'3),RLOF'I'td(2.=i)
DOUBLE PRECISION RLAMDA,ALPHA,BETA,DELTA,RHO,GUE,EF'S:ILCI
DOUBLE PRECISION ERROR,T0,L1',TERM,TF(S1JM,Pr^LT,liLAMAX,R1(,COUI1

C
C------------------------------------------------------------------------
C
C	 READIN INPUT PARAMETERS
C

READ, RLAMI)A,ALPHA,BETA,DELTA, RHO, GUEYEPSILO
PRINT, ' LAMDA : ',RLAMDA
PRINT, ' ALPHA : ',ALPHA
PRINT, ' BETA	 ',BETA	 I
PRINT,	 DELTA	 ',DEL'T'A
PRINT,	 RHO	 ',RHO
PRINT,	 L71JE	 ',0UE
PRINT,	 EPSILON :',EPSILO
READ, TO
READ, ERROR
PRINT, ' ERROR : '',ERROR
READ(5,7)	 (TSTAR(I),1:=•1,30)

7	 FORMAT(15I4/15I4/1514/514)
NN = 18

C
C	 CONSTRUCT THE R13TAR VECTOR
C

RSTAR(1) = - 3 ': RLAMDA
RSTAR(2) = .3 :+: RLAMDA
RSTAR(3)"'	 ( Ai-,PH,= +'Rl-l0't' •DELTA, 	2 +:--R1-AMDA')'
RSTAR(4) = ALPHA
RSTAR(5) = RHO
RSTAR(6) = DELTA
RSTAR(7) = 2 a: RLAMDA
RSTAR(8) = - ( BETA + t :+: RLAMDA )
RSTAR(9)	 D E T A

RSTAR(10) = 2 :+: RLAMDA
RSTAR(11) = - ( EPSILO •F 2 +: RLAMDA )
RSTAR(12) = GUE :+: E.PSILO
RSTAR(13) = ( 1.0 - (WE ) :+: FF'SILO
RSTAR ( 14) == 2 +: RLAMDA
RSTAR(15)	 - 2 a RLAM(IA
RSTAR(16) _ 2 - 1: RLAMDA
RSTAR(17)	 0.0

RSTAR(18) = 0.0
RSTAR(19) = 0.0



T-469

r

`	 ORIGINAL PAGE it; RSTAR(20) = -	 (	 BETA +F ALPHA + RHO +	
DELTA
	 4• RLAMDA	 )

OF POOR QUALITY RSTAR(21) = BETA
RSTAR'(22) =	 ALPIIA
RSTAR(23) w RHO
RSTAR(24) = DELTA
RSTAR(25) = RLAMDA
RSTAR(26) = •-	 (	 2 * BETA	 +	 RLAMDA	 )
RSTAR(27) =	 2	 qo	 BETA
RSTAR(28) = RLANDA
RSTAR(29) =	 -	 (	 BETA* +•	 EFSII_0	 +	 RLAMDA	 )
RSTAR(30) = BETA
RSTAR(31) =	 OUF.	 '41 	 EPSILO
RSTAR(32) ==	 (	 1.0	 ••	 0 U E-	 )	 'R	 Ii PS ILO
RSTAR(33) = RLAMDA
RSTAR(34) _ -	 (	 BETA + RLAMDA	 )
RSTAR(35) = BETA
RSTAR(36) RLAMDA
RSTAR(37) = 0.0
RSTAR(38) _	 -	 (	 ALPHA + RHO + DELTA	 RLAMDA	 )
RSTAR(39) = ALPHA
RSTAR(40) = RHO
RSTAR(41) = DELTA
RSTAR(42) = RLAMDA
RSTAR(43) _ •-	 (	 EPSILO	 + RLAMDA	 )
RSTAR(44) =	 OUE	 r•	 EPSILO
RS •TAR(45) =	 (1.0	 -	 CIUE	 )	 a:	 EI'SILO
RSTAR(46) =	 RLAMDA
RSTAR(47) = - RLAMDA
RSTAR(48) = PLAMDA
RSTAR(4v) = 0.0
RSTAR(50) =	 0.0

C
I.

DO	 '18	 1=1 ,NM
-- i8 PiiiOL%iCD = 0.0

C
PHIOLD(1) I.0

O
C

COMPUTE RLAMAX

RLAMAX	 = RS •TAR('1 )
DO	 19	 1=2,50
IF	 (	 Rs'fAR(I)	 .LI=.	 RLAMAX	 >	 RLAMAX	 =	 RSTAR(l)

19 L'ONTINIJE
RLAMAX = •-	 RLAMAX
PRINT, RLAMAX	 ',RLAMAX

C
COUN -	 DLOO( RLAMAX	 r•	 TO	 )

e9
L ;.

f
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C C'ONSTRUCT'ION	 OF	 'I'I-IE	 PSTAR	 VECTOR
C

DO	 20	 I=1,50
20 PSTAR(I)	 =	 RSTAR(I)/RLAMAX

DO	 21	 I=1,50
IF	 (	 PSTAR(I)	 .GT.	 0.0	 )	 GO	 TO	 21
F'STAR(I)	 =	 1.0	 +	 PSTAR(I)

21
C

CONTINUE

C 1
H	 = 0
LT	 = —	 RLAMAX	 *	 1'0 1
IF	 (	 LT	 .GT.	 — 120	 )	 THEN	 DO
TERM = DEXPI	 LT
ELSE LO
TERM	 =	 0.0
END	 IF d
TRSUM = TERM

V

DO	 27	 I=1,NN
27 PRO(I)	 =	 PHIOLD(I)	 a:	 TERM

IF	 (	 TRSUM	 .GT.	 (	 1.0	 •—	 ERROR	 )	 )	 GO	 TO	 100
29 CONTINUE

PRLT = LT
I(	 =	 Y	 +	 1
R 1(	 =	 1(
CALL	 TRi INC(COIJF1,RI•(,1'RI..T,L'I','TERM)
CALL.	 EVAL( MR, PHI OLD, PSTAR,'TSTAR,PH3: NEW )
DO	 33	 1=1,NN
PHIOLD(I)	 =	 PHIMEW(I)

33 PRO(I)	 -	 PRO(I)	 +	 F'HINEW(I)	 *	 TERM
TRSUM	 =	 TRSIJi9	 +	 TERM
IF	 (	 TRSUM	 .GL".	 (	 1.0	 —	 ERROR	 )	 )	 GO	 TO	 100
GO	 TO 29

100 CONTINUE
DO	 110	 I =1 ,NN
RLOPRO(I)	 =	 DLOG10(PRO(I))

—1-10 C O Il
i
 T i ^4 iJ r

W RITE (6,130)
130 FORMAT('	 ,//'	 ' y5Y,-'	 TS TAR	 ',20X,'	 RSTAR	 ',30X,'	 FSTAR

DO	 135	 I=1,50
URITE(6,'140)	 TSTi)Rl7),RSTAR(1),PSTAFI(I)

140 FORMAT( 	 ',7X,I4,7X,F28.23,6X,F2£I.23)
135 C0MTINIJE

WRITE(6,150)	 X
150 FORMAT('	 '//'	 ','	 NUHBER	 OF	 1'I=R MS	 1; U M ME It	 ,I1: )

WR1,TE(6,160)	 TO
160 FORMAT('	 '//'	 ','	 TIME	 OF	 INTERI-,,91'	 :',F10.6)

WRITE(6,162)
162 FORMAT('	 '////'	 ',•1X,'	 THE	 LOGARI'T'HM	 (IF	 THE	 PRODAFSIL.ITIES	 IS	 ')

DO	 165	 1=1,H11 !
WRITE(6,170)	 :I,RLUF'RO(I),PRO(I)

29 _
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170	 FORMAT(' '//' ',SXy' LOOPRO(',I3,' ) _ ',F30.2615X,F30.26)
165 CONTINUE

STOP
END

(.

SUBROUTINE EVAL(PN,PHIOLD,PSTARyTSTARyPHINEW)
DOUBLE PRECISII]P F'HIOLD(25),PSTAR(S0),P ♦ IINEW(20)
INTEGER TSTAR(50)
DOUBLE PRECISION PHIJ
DO 33 J=1yNN
PHINEW(J) = 0.0
	

1
33 CONTINUE

I = 0
DO 2 Jml,NN
I = I + 1
PHIJ = PHIOL;D(.J)
PHINEW) = PHIJ * PBTAR(I) + PHINEW(J)
HJ = TSTAR(I)
IF ( NJ .EQ. 0 ) 00 TO 2
DO 1 K=1,MJ
I = I + 1
LJK m TSTARW

1	 PHINEW(LJK) = FHINEW(LJK) + PHIJ 5 PSTAR(I)
2	 CONTINUE

RETURN
END

C
C ............................................ 	 ......................
C

SUBROUTINE. TRUNC(COUP,RKyPRLT,LT,TERM)
DOUBLE PRECISION COUMyRK,PRLT,LT,TERM
LT = PRL.T + COUP - DLOG( RK )
IF ( LT .GT. -120 ) THEN DO
TERM = DEXP( LT )

TERM = 0.0
END IF
RETURN
END

C
C ......................... END OF PROGRAM1 LK ...........................

- 30-
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C THIS	 PROGRAM	 IS SPECIALIZED FOR A PARTICULAR
G MARROV PROCESS WITH
C 26	 STATES	 ,	 42 TRANSITIONS	 ,	 lO ABSORBING SPATES
r.

IMPLICIT	 REAL*8(A-11,	 0-Z),	 INTEGER(I-N)
INTEGER TSTAR(68)
DIMENSIONRSTAR(68),PSTAR(68)
DIMENSION	 P)IIOLD(26),1-'H:I:NIFIJ(26),I--'R0(26),I:LOP1^0(26)
DIMENSION	 PII((10)rPSI(10),DLA(4)
DIMENSION	 COUN(4),ST(4),PRST(4),PRI.l'(4)
DOUBLE	 PRECISION	 LT(4)
DOUBLE	 PRECISION	 ALG(3),FI(A)	 j
DATA	 XL /1.00D-62/	 i

G ^' C ----------------------------------------- 	 -^---	 _^-	 --------------------	 ---	
I

C READIN	 INPUT	 PARAMETERS
L'

READ,	 RLAMDA, ALPHA , BETA ,DELTA	 RHO rOUErEI''SIJ.O
PRINT,	 '	 LAMBA	 :',RLAMBA
PRINT,	 ALPHA	 :',ALPHA
PRINT,	 '	 BETA	 :',DETA
PRINT ? 	DELTA	 :',1)ELTAf
PRINT,	 RHO	 .RHO
PRINT ?	OUE	 :',C1UE	 i

a PRINT,	 EPSTLON:',EPS:lLO
REA11r	 TO
REAB,	 ERROR
PRINT,	 '	 ERROR	 :',ERROR
READ,	 NN
REA))(5,1)	 (TS'rmcr)tI:-1,6£i)

L
C
C

THE	 DLA	 PARAMETER VECTOR

DLA(1)	 =	 3	 *	 RLAMDA
DLA(2)	 =	 2	 *	 RI-AMDA
DLA(3)	 =	 RLAMI'A

O
DLA(4)	 0.0

BXP'I	 =	 I i EXP(	 f	 OLA('I)	 m	 TO) )
PR1,NT,	 "'	 DXPl	 :',BXPI
BXP2	 =	 AEXP(	 -	 (	 11LA(2)	 TO) )
PRINT,	 '	 DXP 2 	:''?DXP2
DXP3	 =	 DEXP(	 -	 (	 BLA(;i)	 a:	 TO))

' PRINT,	 '	 DXP3	 .',DXP3
C

i :.

C

(=.

CONSTRUCT	 'I'IIE	 RSTAri	 VIiC'I'0Ii

RsTAR(1)	 =	 0.0
k RST1R(2)	 =	 0.0

RSrAR(3)	 :.	 (	 ALI''Hri	 F	 RHU	 DIcLTA	 +	 2	 1:	 RLAMBA	 )
RSTAR(4)	 =	 ALPHA

k -32-
r
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RSTAR(5) = RHO
RSTAR(6) = DELTA
RSTAR(7) = 2 :+: RLAMDA
RSTARlS) = - t BETA + 2 & RLAMDA )
RSTAR(9) = BETA
RSTAR(10) = 2 + RLAMDA
RSTAR(11) = - ( EPSILO + 2 + RLAMDA )
RSTAR(12) = RUE * EPSILO
R8TAR(13) = ( 1.0 - CLUE ) + EPSILO
RSTAR(14) = 2 r• RLAMDA
RSTAR(15) = - ( ALPHA + BETA + RHO + BELTA + RLAMDA )
RSTAR(16) = ALPHA
RSTAR(17) = RHO
RSTAR(18)	 DELTA
RSTAR(19) = BETA
RSTAR(20) = RLAMDA
RSTAR(21) = - ( 2 * BETA •+• RLAMDA )
RSTAR (22) = 2 :r. BETA
RSTAR(23) = RLAMDA
RSTAR(24) _ , ( BETA + EPSILO + RLAMDA )
RSTAR(25) = UUE * EPSILO
RSTAR(26) = BETA
RSTAR(27) = ( 1.0 - RUE ) + EPSILO
RSTAR(21) - RLAMDA
RSTAR(29) = - ( BETA + RLAMDA )
RSTAR(30) = BETA
RSTAR(31) = RLAMDA
RSTAR(32) = •- ( ALPHA •+• RHO •+• DELTA + IRLAMDA )
RSTAR(33) = ALPHA

- RSIAR(34)"='RHO
RSTAR(35)	 RLAMDA
RSTAR(36) = DELTA
RSTAR(37)	 - ( EPSILO + RLAMDA )
RSTAR(38)	 ( 1.0 - RUE ) + EPSILO
RSTAR M ) = RLAMDA
RSTAR(40) = RUE x EPSIL.O
RSTAR(41) = 0.0
RSTAR(42)	 0.0
RSTAR(43) =	 ( ALPHA •+• RHO + DELTA	 RLAMDA )
RSTAR(44) = ALPHA
RSTAR(45) = RHO
RSTAR(46) = DELTA
RSTAR(47) = RLAMDA
IRSTAR(48) •• •- ( BETA + RLAMDA )
RSTAR(49) = BETA
RSTAR(50)	 RLAMDA
RSTAR(51) = • ( TPSILO + RL.ANDA )
RSTAR(52) :: RUE * EPSILO
RS •1AR(53) = ( 1.0	 OUE 7 :+: EPSILO
RSTAR(54) = RLAMDA
RSTAR(5S) = 0.0
RSTAR(56) = 0.0

i
i

I .d

1
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R S T A R (57)	 =	 0.0
RSTAR(58)	 - 0.0
RSTAR(59)	 =	 0.0
RSTAR(60)	 m	 0.0
RSTAR(61)	 = 0.0
RSTAR(62)	 =	 0.0
RSTAR(63)	 =	 0.0
RSTAR(64)	 m 0.0
RSTAR(65)	 =	 0.0
RSTAR(66)	 =	 0.0
RSTAR(67)	 = 0.0
RSTAR(68)	 w	 0.0

C
C

DO	 5	 I=1 ,26
PHIOLW I.)	 = 0.0

5 CONTINUE

C
PHIOLD(1)	 =	 1.0

C COMPUTE	 WAMAX
C

RLAMAX	 =	 RSTAR(1)
DO	 11	 I=2,68
IF	 (	 RSTAR(I)	 .LE.	 RLAMAX	 )	 RLAMAX	 +=	 RSTAR(T)

11 CONTINUE
RLAMAX =	 - RLAMAX

C
PRINT,	 RLAMAX	 :',RLAMAX

C
CONSTRUCTION O	 -THE  PS T AR VECTOR

DO	 17	 I=1,68
17 PSTAR(I)	 =	 RSTAR(I)/RLAMAX

DO	 21	 1=1,68
IP	 (	 PSTAR(I)	 AT.	 0.0	 )	 00	 TO	 21
PSTAR(I)	 =	 1.0	 +	 PSTAR(I)

21 CONTINUE
PSTAR(1)	 =	 0.0
PSTAR(41)	 =	 0.0
PSTAR(55)	 m 0.0
PSTAR(57)	 =	 0.0
PS1AR(58)	 =	 0.0
PSTAR(59)	 =	 0.0
PSTAR(60)	 =	 0.0
PSTAR(61)	 m	 0.0
PSTAR(62)	 =	 0.0
PSTAR(63)	 =	 0.0
PSTAR(64)	 "	 0.0
PsrAR(65)	 =	 0.0
PSTAR(66)	 ::	 0.0

(:
PSTAR(68)	 =	 0.0

- 34 -
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C
ALG(1)	 =	 RLAMAX /	 (	 RLAMAX	 - DLA(1)	 )
ALO(2)	 =	 RLAMAX	 /	 (	 RLAMAX	 -	 III-A(2)	 )

!€
C

ALG(3)	 = RLAMAX	 /	 (	 RLAMAX - DLA(3)	 )

C....................... START	 CALCULATIONS	 K	 =	 0	 ...........,.......

x	 C
K 
=0TRSUM = 0.0

LO	 24	 I=1,26

PROM = 0.0
24 CONTINUE

FROG)	 =	 DEXF(	 -	 (	 DLA(1	 TO	 ))	 '
TRSUM	 =	 FROf1)
IF	 (	 TRSUM	 .GE.	 (	 1.0	 •-	 ERROR	 ))	 GO	 TO	 333

C-------------------------------------------•-'-------°----"-----------
DO	 26	 I=1,4
ST(I)	 =	 0.0
PRST(I)	 --	 0.0
LT(I)	 =	 0.0
PRLT(I)	 =	 0.0
FI(I)	 =	 0.0	 _1

26 COUN(I)	 =	 I'LOG((RLAMAX	 -	 Di..A(i))	 *	 TO)	 j
C ----------•------------------------...-•--•----•--.. - --------------------------	 i

r
i

)(
' 25 CONTINUE

DO	 27	 I=1,10
27 PIN(l)	 =	 0.0

CALL	 EUAL(NN,F'HIOLDS,PSTAIi,TSTAR.F'I•IINEW)

........ CAI..CULAT'E	 THE	 STU:,TO,lO	 OUmn - I'1'IF S	 .......................
C

IF	 (	 K	 .GT.	 1	 )	 G0	 TO	 31
DO	 29	 I=114
LT(I)	 _	 - RLAMAX	 *	 TO
IF	 (	 Lr(I)	 .(3T.	 -120	 )	 THEN	 OO
S'F(I)	 =	 DEXP(	 LT(I)
ELSE DO
ST(I)	 =	 0.0
END	 IF

29 CONTINUE
PRINT,	 ST(•1 JO, 1)
PRINT,	 ST(2,T0j1)	 :',ST(2)

• PRINT,	 '	 ST(3,TO,1)	 :',S'T(3)

I
PRINT,	 '	 ST(4,TO,1)	 .'',ST'(4)
^^o	 TO	 33

31 CONTINUE
RK	 •-	 K
T	 =	 1
CA1.1- 9UM(1:,RE, PRST,F R. I_ T,C0UN,TERM,LT,S'1')

t I	 _	 2
1 R1(	 =	 RK	 +	 1 .0

CALi.	 "u I1MtT,FIt,F'RST,F'IiLT,C0UN,71iRlI,I_T,ST')

)r -35-
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R)!=R{{+ 1.0
CALL SUN (I,RK,PRST,PRL'r,000N,'rERPI,L'r,ST)
I = 4
R  = R  + 1.0
CALL SUPT(I,RK,PRST,I :'RL1`,COUN,'rE) N,LT,ST)

33 CONTINUE

FI(1) = DXP1 - S'r(1)
FI(2) DXP2 - ST(")
FI(3) = DXP3 - S'r(3)
FI(4) = i.0 - S'r(.4)

....CALCULATE 'rNl3 I II< ` S ......................................
PIK(l) = 0.0
CALL TWO (DLA,RLANAX,ALG,K,FI,XXX)
PIK(2) = XXX
CALL THREE(AL(3,i,FI,XXX)
PIK(3) = XXX
CALL FOUR(DLA,RLAPIAX,F'IK,XXX)
PI)((4) = XXX
CALL FIVE (ALG,K,FI,XXX)
PIX(S) = XXX
CALL SIX(FI,AL6,K,XXX)
PIK(6) = XXX
CALL SCV17N(FI,AL(32K,XXX)
FIRM = XXX
CALL EIGNT(FI,AL(1,K,XXX)
PII!(4) = XXX
CALL NINE(AL(',K,1-I,XXX)
PII((9) = XXX
CALL TENlI I,AI..G,K,XXX)
FIK(10) = XXX

C

C..	 EVALUATE THE CURRENT PROBABIL11'IES	 ..............
C _-..--____`•-----..------------------------------ --------••-•--•--•---
C

DO 34 I=1,10
IF ( PI)((1) .LE. XL ) THEN D0
PI11'(I) = 0.0
ELSE: Do
PI{((.I) = PI(((T)
END IF

34 CONTINUE
Do 35
IF ( I"HIN13U(I) .LI-. XI_ ) '1'111"N DO
(''IMIEU(I) = 0.0
ELSE I)U
PHINEU(T) = I''PI1NIcU(I)
END IF

35 COTINUE

.	
7

i

- 36 -



I

ORIGINAL PAGE IS
OF POOR QUALITY T-469

r
PRO( I)	 = PRO( I)	 + P III NEW( 1 PI1%(1)
DO	 30 I=2,10
PROM = PROM + PHINI?W(I)	 ++ PII1(2)

38 CONTINUE
PRO(11)	 - PROM) +	 PHINEW(11) ++ t	 FM(3)
1:+0	 39	 I=1:,14
PROM = PROM + PHINEW(T)	 + Pl:)((4)

39 CONTINUE
PROM) = PRO(15) i	 PNINI_W(15) ++	 PIY,(5)
IIO	 40	 I=16,17
PRO(I)	 = PROM + PHINEW(I)	 a; PII((6)

40 CONTINUE
PRO(18)	 = PRO(18) +	 PHINEW(18) +"•PI)((7)
DO	 41	 1=19,24
FRO(I)	 = PRU(I)	 a• PHINEW(I)	 m IIMM)

41 CONTINUE
PROM) = PROM) +	 PHINEW(23) i+: PIRM
PRO(26)	 = PRO(26) +	 PHINEU(26) i+ : 	 I°II{(10)

y

4ir , tr

Cc-------------------------------•--•----•-- ---- -•-----•-•-------- - - ---
C ----------------- CHECK IF YOU ACIEVED - THE TRUNCATION POINT-------
C -----------------------	 --------------------- --------------'------

DO 44 I=1,10
44	 PSI(I) = 0.0

PSI(1) = PHINEW(1)
DO 45 1=21,10

45	 PSI(2) = PSI(2) + PHINEW(I)
PSI(3) = PHINEW(lT)
DO 46 1=12,1.1

46 PSI(4)	 PSI(4) + PHINEU(l)
PSI(5) = PHINF.W(15)
DO 47 I='16,17

47	 PSI(6) = PSI (6) + 1-1H:I:NEU(I)
PSI(7)	 PHI(IEU(18)
110 40 1=19,24

48	 PSI(0) = PSI(8) +• 1'HI:N15W(I)
PSI(9) = PHINEW(25)
PSI(10) = PHINEW(26)

C
C

DO 50 1=1 , 1 0
50 TRSUH = TIMM + PSI(I) :r. PIN(l)

IF ( TR13UH .OE. ( 1 .0 - ERROR )) DO TO 3:33

DO 51 I=1 ,4
PRSTO:)	 ST+I)
PRI-T(I) = LT(I)

51	 CONT:(NUL
DO 55 1=1 ,NN

55	 PHI OLD (I)	 1-*11*1NFW(I)
00 TO 25

333 CINTMUE

-37 -
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SUMMA = 0.0
DO	 73	 1=1 INN
SUMMA	 =	 SUMMA	 •+• PRO(I)

73 RLOPRO(I)	 =	 DLOG10(PRO(I))
PRINT,	 '	 SUM OF PROBABILITIES	 ',SUMMA
WRITE(61130)

130 FORMAT('	 '//'	 ' 1 5X,'	 TSTAR	 ' ? ;?OX ? ' PSTAR	 ' &OX ? '	 PSTAR	 ',//)
DO	 135	 I =1,68
WRITE(6 t 140)	 TSTAR(I),RSTAR(I),PSTAR(I)

140 FORMAT( •'	 'y7Xj14,7XyF'2e.2O?6XjF2S.2O)
135 CONTINUE

URITE(6,150)	 K
150 FORMAT('	 '//'	 ','	 NUMPEIR	 OF	 TISRNS	 SUMMED	 ;'?I7)

URITE(6,160)	 TO
160 FORMAT('	 '//'	 ','	 TIME	 OF	 INTEREST	 :'?F10.6)

WRITE(6 1 162) i
162 FORMAT('	 '////'	 1 1 0,'	 THE	 LOOARIT'HM OF	 THE	 PROX3AIiI1_ITIES	 ):8 ')

DO 165 WINN a
WRITE(6 1 170) 	 I,RLOPRO(I),PRO(I)

170 FORMAT('	 '//'	 ',5X,'	 LOSPRO(',I3.'	 )	 _	 ' ? F30.26,5X?F30.26)
165 CONTINUE

STOP I

END
C

`_	 _	 y	
TSUkFiu	 IfdE LVAL(NN,PHIOL.Ioyl START, AR,FHINEW)

DOUBLE PRECISION PHIOLD(26),PSTAR(68)yPMIMEW(26)
INTEGER TSTAR(68)
DOUBLE PRECISION PHIJ
DATA XI(/1 .00E-62/
DO 77 J=1,NN
PHINEW(J) = 0.0

77 CONTINUE
I	 0
DO 01 J=11NN
I = I + 1
PHIJ = PHTOLD(,J)
PHINEU(J) = PHI.J * PSTAR(l) + PHIN W(J)
M,J = TSTAR(I)
IF ( MJ .EQ. 0) 00 TO 81
DO 79 F(I(=1 ,1iJ 	 V	 •
I = I + 1
LJK 4= TSTARCT)
IF ( PHIJ .LE. XK .OR. PSTAR(I) .LE. XK ) THEN DO
PHINEU(I_JK) = PHINEW(LJK)
ELSE DO
PHINEW(I_.JK) y PHINEW(LJK) + PHIJ t P9TAR(I)
END IF

79 CONTINUE
O1
	

CONTINUE
RETURN
	

I
ENO
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SUBROUTINE TWO(DLA,RLAMAX,ALG,f(,FI,XXX)
DOUBLE PRECISION DLA(4),ALG(3),FI(4)
DOUBLE PRECISION RLAMAX,XXX
XXX = AL6(I)a::':K
XXX	 XXX * DLA(1) :I: FI(1) / RLAPIAX
RETURN
END

C
C-----------------•------ _	 ---------------------------

SUBROUTINE TNREE(ALG,K,FI,XXX)
DOUBLE PRECISIONALG(3),FI(4)
DOUBLE" PRECISION XXX
XXX = ( ALG(2):r•:r•( i( — 1)) :{: 3 * FI(2)
XXX = XXX — ( ( ALG	 K — 1 )) s 3 it: 17I(1)
RETURN
END

C

r.
SUBROUTINE FOUR(DLA,RLAMAX,PIK,XXX)

--	 DOUI+LE PRECISIO' 11LA(Ai)yPIK(10)
DOUBLE PRECISION RLAMAX,XXX
XXX = DLA(2) :i: PIRG) / RLAMAX
RETUR14
ENii

C

C
SUBROUTINE FIVE(ALG,K,FI,XXX)
DOUBLE PRECISIONAI..G(3),FI(4) .
DOUBLE PRECISION XXX
IF ( K .(iT. 1 ) (30 TO 1007)
XXX = 0.0
00 1'0 1006

1005 XXX = ( )L0(:3):l:*(f(--2)) * 3 $ F):(3)
XXX = XXX — ( ( AL.G(2)*w(I.-2)) :r 6 * FI(2) )
XXX = XXX + ( ( AI_G(1)11::+:(f(-2)) * 3 * I'I(1) )

1006 CONTINUE
R E T U R M
END

SUBROUTINE SI)((FT,ALO,K,XXX)
DOUBLr PRECISION F:((4),0iLG(3)
DOUBLE. PRECISION XXX
IF ( K .G1'. 1 ) G0 TO 1011

39 —
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XXX = 0.0
RETURN

1011 XXX = FTM - { ( ALG(2):I:,%(l,'-2) ) a 3 if: 1- 1(2) )
XXX = XXX + ( ( A1.6(1);I:*(K-2) ) ,1 2 * FI(L) )
RETURN
EN11

C
SUBROUTINE SFVEN(FI ALB I( XXX)
DOUBLE I}RECISIUN FI(4),AI:G(3)
DOUBLE PRECISION XXX
IF ( K AT. 2 ) GU TO 1021
XXX = 0.0
RETURN

1021 XXX = FI(4) '- ( ( ALG(3)*,';(K-,3) ) : I: 3 * FI(3) )
XXX = XXX + ( ( ALB(2):v,M,-3) ) , h 3 :u F;I(:) )
XXX .. XXX - ( f ALG(1) :I::+tlt-3) ) ib F:((1) )

RETURN
EN0

(.

C
SUBROUTINE FIG11'r(1--I,ALG,It.XXX)
DIOUBLL'-F• RECISIG'N MA),ALt,('s).
DOUBLE PRECISION xxx
XXX	 FI(4) - ( ( ALG(I)*w(1(•-1) ) :I: FI(I	 )
RE'ruRN
E N..B

C

L'
SUI+ROUTINE NINE(ALG,K.,FI,XXX)
))OUPIA rIMCISION ALG(3),F:1(4)
DOUBLE PRECISION xxx
XXX	 (	 (	 )	 :I: :i : I: F:I:(3)
XXX = XXX - ( ( A L 0 ( 1 }:I::rtK-1) ) I: 3 '+ I'I { 1 > ) / 2

	
I

RETURN
END

l:
Cl ---------------------------------- ._,__.__.»_:__

C
SUPROUTINE 'rEN(FI,ALG,1(,XXX)
I)OUIJLE F'RrCISION FI(-1 1) ;(3
I100111.5 PRECISION XXX
IF ( I( .61'. 1 ) 60 To	 1031
XXX = 0.0
RETURN	 1

`	
1031 XX X	F101)	 F:1(:3) ) ! 2

XXX.	 XXX P ( ( ALU(1	 1'-2	 FI(1) ) / L'
{RETURN
r:NII

-40-
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SUBROUTINE	 SUM(I,Rh,PRST,PRLT,000N,TFRM, LT, BT)
DOUBLE	 P'REC'ISION	 PCis'P(4),PRLT(4),CI1UN(4),L'I'(4),S'i'(4) I
DOUBLE	 PRECISION	 RI(,TERM
RI(	 = RK	 —	 1.0
CALL	 1'Rt4 (I, RI(, PRLT, COUN, LT, TFIiM) x
ST(I)	 =	 PRST(I1	 +	 TERM
RETURN
END 4

C

SUBROUTINE	 TRH (I I RK,PRLT,COLIN,I_ToTERM)
DOUBLE	 PRECISION	 P'RLT(4),COUN(4),LT(4)
DOUBLE	 PRECISION	 TERM,RI( ILT(:O	 =	 PRI_T(I)	 +	 COUN(I)	 ...	 TsLOG(RR'
IF	 (LT(I)	 .01'.	 —	 50.0	 )	 GO	 TO	 500
TERM	 =	 0.0
RETURN a

500	 TERM	 =	 DEXP (	 L't' (I)	 )
RETURN

—	 END

— 41 —
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