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Abstract

The Jelinski-Moranda (JM) model for software reliability is

examined. We suggest that a major reason for the poor results

given by this model is the poor performance of the maximum likeli-

hood method (ML) of parameter estimation. A reparameterisation and

Bayesian analysis, involving a slight modelling change, are proposed.

It is shown that this new Bayesian-Jelinski-Moranda model (BJM)

is mathematically quite tractable, and several metrics of interest

to practitioners are obtained. A comparison of the BJM and JM

models was carried out using several sets of real software failure

data collected by Musa. In all cases the BJM model gave superior

reliability predictions.

We discuss ways in which the assumptions underlying both

models can be changed in order to represent the debugging process

more accurately.
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1. Introduction

The first software reliability growth models appeared more

than ten years ago [1,2], but they seem not to have gained

acceptance by practitioners. The reasons for this disappointing

performance have not been widely reported in the literature (perhaps

as a result of the unfortunate tendency of scientific journals to

concentrate on "positive" results). It seems clear, though, that

the need for software reliability measurement techniques is not

disputed, so perhaps we should look to the poor performance of

the models to explain the lack of acceptance.

In this paper we shall examine the Jelinski-Moranda (JM)

model [1], possibly the earliest and certainly one of the best-

known models. Although our remarks will be addressed to the JM

model, it should be borne in mind that other models are similar to,

or dependent upon, the JR1 model. Shooman's work, for example

[2,3], seems to have paralleled that of Jelinski and Moranda.

The model due to Musa [4] used the JM model as a basis, but

introduced many important refinements. These refinements make this

model particularly attractive to users, but its validity must

ultimately rest upon the validity of its JM foundation. Goel and

Okumoto [5] also generalise the JM model. Goel [6] casts the

JM model assumptions into a different probabilistic structure.

We believe that our remarks about the JM model also concern this

work.

OL

The JM model often gives misleading answers when the method of
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maximum likelihood (ML) is used to estimate the parameters. We

C
present a Bayesian modification to the model which overcomes a

major source of difficulty. In our conclusion we suggest how the

model might be further improved by changes to one of the basic

underlying assumptions; we hope to report on this new model in a

future paper.

1

r
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2.1 Model assumptions

The JM model, in common with most early models 1 '-7], treats

the program as a black box with special characteristics supposedly

representative of the special properties of software. N( account

is taken of the internal structure of the program. The oW y

input to the model is the sequence of execution times between

successive failures (see [4] for a cogent argument in favour of

execution time): t I , t 2 , ... . The objective is to estimate

current and future reliability on the basis of these past inter-

failure times. The problem, then, is one of estimating and

predicting reliability growth.

Assumptions made in the JM model are:

1. The random v,,riables T i (i = 1,2,...), representing successive

interfailure execution times, are independent, with exponential

distributions:

pdf(tilXi) = .X i e- ^i t i	 (1)

( X i	 a, t i > J)

2. At each failure, a fault is fixed instantaneously, with the

result that the failure rate improves. All such improvements are

of equal size so that

Ai = (N-i+l ),;	 (2)

Where	 N	 initial numbei* of faults in program

change (improvement) in failure
rate at each fix.

feu Figure 1.

C

_ AL
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C'7`1	 Readers familiar with hardware reliability growth literature

will notice that in these assumptions the repair rule is spelled

out precisely, in contrast to models based on Duane's empirical

postulate [8]. There, continuous reliability growth is allowed

via a non-homogeneous Poisson process.

A detailed analysis of these assumptions has been given by

one of us elsewhere [9]. Briefly, assumption #1 seems a

plausible way of modelling our uncertainty about the nature o ,• tie

input stream which the program must process. Assumption #2,

representing the effect of successive fixes, appears less plausible.

A stochastic process would seem to be a better way of representing

the sequence {a i r than the deterministic sequence, (2). After

all, even in those circumstances where we can guarantee to have

Ccarried out a successful fix, we shall be uncertain as to its

effect on the failure rate of the program (have we eliminated a

large fault or a small one?). This is a theme we shall return

to later in the paper.



2.2	 Difficulties associated with using the model

There seem to be three main areas of difficulty. They

concern the properties of the maximum likelihood estimates of

the parameters, and the quality of reliability predictions.

N, the ML estimator of N, is occasionally infinite.

«s	 Since N and 0 are obtained by a numerical optimisation of the

likelihood function, a user can easily interpret this effect as

non-convergence of the optimisation routine [10]. Littlewood

and Verrall D 1], however, show that in certain circumstances	
1

the unique true maximum of the likelihood function will be at

N	 0 (with finite, non-zero a = N^). A necessary and

sufficient condition for this is shown to be that the least

squares regression line of t i versus i has non-positive

slope. The condition is intuitively appealing: it suggests

that the JM model, being a reliability rg owth model, will give

nonsensical answers unless the data exhibits reliability growth.

it needs to be said, though, that even when we simulate data

from the JM model (finite N, non-zero y) there is a non-zero

probability that a particular data set will show no growth

according to this condition.

In real data sets, this problem does not often arise except

at early stages in debugging, i.e. when the sample size is small.

This is presumably because most data sets cume from programs

which are genuinely improving in reliability. We have, however,

encountered one set of real-life data, System 5 in Musa's collection
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P2], where the effect persists for the first 150 failures.

In order to handle situations of this kind, it would be necessary

to use a more general model which could estimate reliability

growth or reliability decay, for exa,,,ple that described by

Littlewood and Verrall (LV) [7,22].

2. A more serious problem is that often N is only slightly

larger than n, the sai.ple size (number of failures experienced,

number of faults fixed). Thus, estimatQs of N based on

increasing amounts of information usually increase with n.

This raises doubts about the consistency of the ML estimators,

but it is questionable whether such a ccncept has any meaning in

this context: the size of the "sample", n, is bounded above by

a parameter, N. Forman and Sinpurwalla [14] have shown that

CN and C can only be trusted near the end of debugging, i.e.

when almost all faults have been removed and the true value of

N is only slightly larger than n. This observation, however,

is of little pract i cal value since we would never know the end

of debugging was near. It is certainly not the case that N

takes values close to n only near the end of debugging.

E
At its most serious, this effect results in N = n

exactly for a range of values of n. Thus, the ML estimator

su,gests that the last fault has been removed and the program is

perfect even when this is far from being the case. Table 1

shows this in an analysis of Musa's System 3 data (121. From

failure number 25 onwards, successive estimates of N tell us

Fora— a

CL0.,^. 'CZti:L
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that the program is perfect; and earh time the program reveals

its imperfections by failing. A similar effect occurs in

Musa's System 40, where N = n between n - 76 and n = 99.

In these cases, it is ubvious that the model cannot give good

reliability predictions: it will estimate the reliability to be

1, the mttf to be infinite, the failure rate zero etc.

This bring us to the last, and perhaps most important, problem.

In almost every data set we have analysed, the model has produced

results which are too optimistic: it seems always to predict the

reliability to be greater than it really is. Clearly, this

5

effect will not be independent of the effect described in the

previous paragraph: if ML gives poor estimates of the parameters, 	
i

it seems likely that the resulting estimates c` reliability

oetrics will be poor. On the other hand, if the modelling assump-

tions are wrong, we shall obtain poor reliability prediction

however we make inference about the model parameters.

Our intention in what follows is to improve upon the results

which can be obtained by usirg ML on the JM model. Our

5ayesian approach to inference necessitates a slight change io

the model itself, but we believe this to be sufficiently minor

as to justify calling it a Bayesian Jelinski-Moranda model.
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3. The Bayesian Jelinski Moranda BJM Mode

We begin by reparameterisation to (X,o

C^

C

A =- Nm
	

(3)

the initial failure rate of the program. A formal motivatior;

for this parameterisation can be found in D1]	 and has already

been mentioned- even when the likelihood has its maximum at

infinity in N, a is finite and non- 7 0ro. An informal

justification comes from inspection of Figure 1. Our dati will

always concern the earlier stages of debugging, and the

statistical problem is one of fitting 
X  

as a linear function of

i (failure number). Since our data will concern the left of

this plot, it seems plausible that we can obtain food estimates

of the intercept on the vertical axis; namely, X. Estimation

of N, however, implies estimation of the intercept on the

horizontal axis. Such estimation will involve large errors as

a result of quite small errors in estimation of 0, the slope

of the line. Notice that this reasoning explains the observation

of Forman and Singpurwalla 114] that estimates of N can be

trusted only near the end of debugging. Although the argument

above is a plausible reason for the poor quality of ML estimates

of N, it does not explain why the estimates tend to be too small.

We shall discuss this point later.

We shall adopt a Bayesian approach to the inference, with

independent Gamma priors ror ^ and *,. Since X is no longer

constrained to be an integer multiple of ^, this involves a
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slight change to the model. Instead of assumptions 1 and 2 of

the JM model, the BJM model assumes:

The successive in':er-,`ailure execution times, T,, T z , T 31 ...

are independent randa,,n variables, exponentially distr;bited with

parameters a, a-0, A-?t,

.„	 The main effect of this is that the repair rule changes at

the last failure. Each fix except the last removes an amount

from the failure rate of the program. When the failure rate is

less than or equal to ^, the next fix makes the program

"perfect" (zero failure rate). It seems likely that, except for

programs with a very small number of faults, the UM and JM

models will be very similar.

We now let prior pdf of	 be

prior (a,^) = prior (X)	 prior ^^)	 (3)

where prior ( A)	 is Gamrna (a;b,c) and prior (,) is Gamma (P;f,g),

I	 i.e.

b b- ► e -c•{
r!	 prior (^) _	

a	 (a > 0)	 (a)

T(b)

and

9.
prior ( y ) 

= 9,re-
	 0 )	 (5)

r(f)

The hyperparameters b, c, f and y are to be chosen by

the user ac-,ording to his prier knuwlt;dye and subject to the

c_rstraints that all are positive and b i s an integer. This

last condition is for ,:fathematicai tractability alone, but is

E

f

I-
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probably not unduly constraining.	 Elicitation of prior

knowledge in order to give values to the hyperparameters is not

easy.	 Iz our awn work we have used "ignorance pri gs" for	 a

and	 0:	 non-informative (improper) uniform distributions obtained

by letting	 c, g -► 0	 and	 f = b = 1.	 We shall proceed in the main

body of the text to adopt this simplification. 	 The more general

results using the full gamma priors are relegated to the

appendix.
E

We shall assume, then, that

prior (a,O) a 1,	 (X, 0 > 0) (6)

and that we have observed	 t l , t 2 ,	 ..., t n .	 We have

F	 posterior (a,f)	 = p(a, Olt i ,	 ...	
t 

= C.p(t l ,	 ...,	 tn lX ' O)	 prior (7)

by Gayes theorem, where

C-1	 =
	 ffp(tlll
	

...	 tn J X ,O)	 prior (8)

and the likelihood function is
r1

pith	 ...^	 tn i^,	 )	 =	 a(a-0	 ... (a-jn-1] 0)

exp {-at, -	 ( X-0t2- ... -(X-[n-l]O)td

if	 a >	 (n-1)o (9)

0 otherwise.

If we define	 n
n

11 (x+i)	 _	 ai, n 
xr^-i	 (10)

i=1	 i=0

a little analysis shows that the posterior distribution is
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P( a > 0It o ..., tn ) _

	

n^ l a.	 (-1)^mi^n-^ e ^Etj e- ^i(j - 1)tj

i=o i,n-1

n-1
(n - i).

ai,n-1

	

i=o	 n	 i+1 n
	 n-i+l

[ Z (n-

j 	 )t,Z t,^
for a > (n-1)¢ and zero otherwise.

This expression is much more tractable than might appear at

first glance. In the next section we shall obtain analytic

expressions for many of the reliability metrics which are of

practical interest. It is surprising, in fact, that the

computational difficulties associated with the BJM model are

considerably less than those associated with the numerical

optimisations required by ML estimation in the JM model.

The coefficients defined in (10) are closely related to

Stirling numbers of the first kind [15] , and are most

easily computed from the relation

i,n	 i-1,n-1	 i,n-1

noting that ao,l = 1, a l
 
'l = 1, ao,n = 1 V n.

C.

(12)

,A
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4. Using the BJM model

In this section we show how the BJM model can be used to

calculate metrics of practical value. We begin with measures

of current reliability which will be used in the next section

to compare the performance of this model with the JM model.

4.1 Current reliability

Having observed n failures, and carried out n fixes,

the simplest question we can ask is: how reliable is the program

now? The various ways in which this question can be answered

all involve statements about the random variable 
Tn+1' 

the

time of failure-free execution until the next failure of the

program. Consider the reliability function

Rn+l(tl" ) = P(Tn+1 > tIa +0)	 (13)

= e-(a-no)t if A > no	 (14)

1	 if (n-1)^ < a < no

remembering that T 	 is not observed if a < (n-1)^.

In our comparison between JM and BJM we shall use the

posterior mean of this:

	

Rn+l(tltl, " " tn ) = P ( T n+l > t1t
l , ... S t n )	 (15)

- j J Rn+1(t^a,';)p(1,^^t1,...,tn)dad^

(16)

This can be interpreted as the reliability function calculated

rrom the posterior distribution of Tn+l'

j

I

`.7
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 \
Substituting for (14) and /l\ \ into (16) and

simplifying considerably, we obtain

n	 ^	 ^^-^1/ ^'
in`	 ~^	 ^

N ^ ^^|t	 vt.\ = C	 T^n+l` / 1"^` ' ^n '	^	 '
|	 n-1^=m	 +^	 ^+^
[	 /t+%t \	 /%^n '+l^t \^	 `	 .1 '	` `	 ^	 ^~j'

n-1 a	 i'(n-i^'

	

+ ?	 i n-I ^`	 ,,
^

i=o	 n i+^	 i+^/ct \ -
	

/C^n-'\t \` -j'	 ` `	 ^'^1'

	

n	 a	 i'^n-i^|
i n	 ``	 '

- ?	 /l7\

	

^	 `	 '
i=o	 n-i+\	 i+^ |

/1t \	 /%/n-'+l\t )	 |^ `j,	 ` `	 ^	 ' .
j '	 ~

_I
where

	

n- 1	a	 i'/n-i\'
i n-\	 '` 

	

Y	 (l8\

	

^	
i	 i	

^	 '

\n- +)(%(n_j)t` ..j '	 `	 `	 ' 

Ky differentiating /17\ it con be shown that the posterior

	

di'{ribution of T n+\	
is a m`,vture of Pnreto distributions.

The pooterior probxhility that the program is now "perfect",

i.e. that the last, error has been removed, is

n 	 i'/n-l\'
i	 n	 '`	 ''

\	 ----	 -

	

i^»	 n i+\	 i+\(`{ \ -
	

(^(n-j+l\t \` '^
j'	 ` `	 '`j'

	| - 	 ''-----'-----'--------------	 /l9\

»-^	 a	 i'(n-i\'
i »-/	 ,`	 '.

? - .-^^' ^	 n-i+^	 i+^
i n	 /`^t \	 (`/n-j\^ ) ` . ^

j'	 `-`	 '^j'

Le shall soc. in the case of Musx's \vstmn ] and SvStoo 40 data (see

that this expression gives much .more pluosihle

N&	 uns^crs than the JM muJo!.

W .
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Sane care has to be taken in calculating these expressions

(17-19) because the coefficients a i,n can be extremely large.

However, very little machine time is required. The authors have

a Fortran program which is available to readers on request.

An alternative to using the posterior mean of the conditional

reliability function, (13), is to set ourselves a reliability

target and then ask how strong is our posterior belief that this

target has been achieved. If we let the target reliability

be a pair of numbers (t,r) such that

P(T > t) > r	 (20)

it can be seen that our posterior probability that this has now

been achieved is

P{Rn+^(tjX,^)	 rltl,...,tn}

= P{Rn+ ^
	 or r < Rn+i(tI^`^^) < lltl,...,tn}

= Po + 1 - P(Rn+1 (tla,0) < rltl,...,tn}	 (21)

where

P{Rn+,(tja,^) < rltl,...,tn}

= P{N-n^ > _ 
log r ItI,—tn}

t

= C n

	
a i n i	

J	

(0xn-ie-xEtj 
dx

i=o (E(n -j +1)t.)i
+i 	 I

x= - logr	 Etj log r	 k

n	 a.	 i:(n-1):	 n-i a	
(_r.tjlogr)

C	 Et 
in	

t	
t

=	
i^o (:: 

( n - j +1)t _)i+i (-	 jlogr n-i+i

t	
k^o	 k:

J	 l	 1
(22)
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4.2 Current failure rate

The current failure rate of the program, when the nth fault

has been fixed, is given by

A = X - no	 if X-no>0	 (23)

0	 otherwise .

We can find the posterior pdf of A conditional on the

program not being perfect as follows:

Ff
!!`

	 P(A I A > 0, t i , t2 .. tn)

= p(A, A > 0 t i ,... tn)	
(24)

P(A >01t i ,., tn)

t

The denorinator has already been evaluated, (19). We can find

the numerator by transforming (11) from (a,^) to (A, 0) and

integrating out y. Then (24) becomes

	

B n a	
is	 An-i 

e
-A Et. >0	(25)

	

i=o	 '' n [E(n-j+1)tj)i+i
	 (	 )

where B is a normalising constant. This is a mixture of

Uamma (n; n,-i+l, st j ) densities.	 If our reliability target has

been formulated in terms of a target failure rate, k say, (19),

(23), (25) can be used to obtain the probability that the target

has been achieved, P(A <z). This calculation involves

evaluation of incomplete gamma integrals for which tables are

available.

A simpler procedure is to calculate the posterior expected

va, Le of A. This can he interpreted as the failure rate obtained

-_
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at the origin of the posterior distribution of Tn+i	 ±	 'C
lim F(O 

`Tn+1 ` 
6 1 t

n+1
	 tn)	

26(	 )
6 4 0 	 6

-d
_	

- t R
n+1 (t1t l ,... tn) (t=o

This is the "current posterior failure rate", and is given by

E(Alt 1 ,., tn)

= E(AJA > 0, t l ,,, tn )P(A>Olt l ,... tn)	 (27)

where	 P(A > Olt 1 ,,, tn)

n	 ai,n is (n-i)!

I
i=o 

(Et 
j)n-i+1 

(E(n-j +1) tj)i
+1

(	 n-1	 a	 is n-i '	 (28)

1=0
	

(Et 
j)n-i+l (E(n-j+i)tj)i+1

from (19). and	 E(AlA > 0, t l ,., tn )

na	 is (n-i):	 n-<+il,n
Et1 =0	

(Et i)n-i+1 (F(n-j+i)t^)i
+1

.

_	 (29)

n	
ai' n is (n-i):

^. 

1=0
	

(Et 
j)n-i+i (E(n-j+i)tj)i+1

_-A
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4,3 Paean time to failure

Since there is always a non-zero probability that the last fix

removed the last error, the distributions for Tn+1 ' Tn+2 '" '

conditional on t 1 I.. to are improper and their expectations do

not exist. It is, however, possible to find the posterior

distribution of 
Tn+k 

conditional on Tntk ` - (it is a mixture

of Paretos). These distributions, together with the probabilities

P(Tn+k < _), are useful, and we consider them next,

C
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FF	 4.4 Future reliability, number of faults remaining
-	

l

Let the random variable Kn denote the number of faults

remaining immediately after the removal of the nth fault

P(Kn =
 

kit 1 ,... tn)

P(Kn ^ k^t l ,.. tn ) -P(Kn k+1 It, ,., tn)

P(a (n+k- 1 	 t i ,... tn)

- P(a ^; (n+k)flt l ,.. tn)

Now

P(Kn 3 k+l It  ,.. tn)

cc
r

C J
	 f
	 P(a.0^t1 ,..,tn)dado

0=0 a=(n+k)o

- 21 -

C	 n	 bin (n - i): is
C (31)

i =o (Etj)n-i+l(E(n+k-j+l)tj)i+1

after some analysis. Here C -1 is given by (11) and the

coefficients bin , related to the ain coefficients, are given

by
n

b k ^i xn-i = II (x + ( k+j )f)	 (32)
i=o in	 j =1

It can be shown that

k _	 n-m	 i-m	 3)
bin	

m=o 
a mn (i-m) k	 (3'

Finally, substituting into (30), we get

P(Kn = kit l ,... tn)



= C	
i'(n-i):	

amn(n-r..	
(k-i)i-m

i =o (Etj )
n-i+i 

m=o (n-i):( i -m):	 (E(n+k-j)tj)i+i

ki-m	

, ] (34)
(E(n+k-j+l)tj)l+i

for k = 1 , 2 , ... and

P(Kn = Olt l ,... tn)

n	 ain is (n-i):

i=o (Etj)n-i+1(E(n-j+1)tj)1+i
(35)

which agrees with (19).

Expressions such as these can give us useful upper bounds on

the number of failures which can occur during the lifetime of the

program, assuming a fault-fixing strategy is adopted. They thus

give upper bounds on lifetime maintainance costs. However, since

the times between failures have distributions which are mixtures

of Pareto distributions, the time needed to uncover the last fault

may be very much larger than a realistic program lifetime. In

such cases we shall obtain pessimistic estimates of maintainance

costs by using (34), (35).

Consider now the random variable Tn+k' We shall observe this

random variable only if K 	 k. Then

P(T nYk ' t, ^n a kit ,..., tn}
i

f
P ( T n+k	 t	 ti ,.. ttl)u?d^



l

C

- 23 -	 ORIGINAL PA 
V

OF POOR QUALITY

n
	

i amn(n-m)!(k-1)i-m

i=o (t+Etj ) n 
i+i

(E(n+k-j)tj ) +	 m=i	 (i-m)!(n-i)!

after some analysis.	
(36)

The above expression suggests how we might answer the

important question :how much debugging is still needed before the

program will have achieved its target reliability? Consider a

target reliability expressed as a pair (t,r) such that

P(T > t) > r	 (37)

The target will be achieved in less than k failures if

P([Tn+k > t and Kn a k] or Kn < kIt l ,,,tn ) > r

that is	 (38)

P(Tn+k 
> t and Kn >, kit e ,.. t n ) + P(Kn <kit l ,...,tn )> r

(39)

The procedure then, is to calculate the L.H.S. of (39) for

k =1, 22,..., until the first value of k for which the condition

is satisfied. This is then an estimate of how many more fines

have to be carried out to achieve the reliability target.

L
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5. Comparison of BJM and JM analyses of software reliability data. r.
We shall concentrate in this section on analyses of some

software reaiability data sets published by Musa [12). It is a

source of amazement to us that there is so little good quality

software reliability data available in the open literature. There

are two reasons for this. Often data is collected in a manner

which renders it unsuitable for modelling purposes. More

commonly, when suitable data does exist, it is guarded jealously

by the producer organisation in the belief that its publication

would cause loss of confidence in their software products. We

think this belief is mistaken :reputations are more likely to

suffer from the suspicions which these secretive actions

engender.

Musa is to be congratulated on publishing seventeen sets of

data which were collected under carefully controlled conditions.

These data sets seen to be the only ones of reasonable quality

which are reauiiy available. Even this data, representing the

successive execution times between failures (tl,t.,,...tn,...),

occasionally gives rise to disquiet. Simple tE-sts of trend show

that only a few of the programs are exhibiting reliability growth

1131. In what follows, we have concentrated oil 	 (with the

exception of System 40, which is discussed later). There is some

evidence that the successive times are correlated. Of course,

this dots not necessarily imply criticism of the data collection,

but 'uccesSions of -,null ob-,ervations might suggest "poor fixes".

^ 14'P have not ittoi, ^ ted to el in+inate , ny of these effects in what

fe -i ews, >o as not to be open to c.haryes of massaging the elate,

L
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	 Our procedure for examining model performance is discussed in

detail in [161 and has also been used by other workers in the

reliability growth field [17, 181. Briefly, we shall compare

model predictions with actual observations with the ir.tention of

asking the same question as might be asked by a potential user of

two rival models. In what follows we shall concentrate on the

ability of the models to estimate current reliability; see [16]

for a discussion of the problem of examining the quality of

longer-term predictions of reliability.

Assume that (i-1) failures have been observed, so our data

set is t-A,t21... t i _ 1 , and we are interested in the current

reliability. This is a statement about the random variable Ti.

Consider the predictor cdf of T i , say F i (.). For the JM model

this is

C.	 Fi(t) = F i ( t ;h, ^)

Where N and	 are ML estimates of N,p based on t l ,.. ti-1.

For the BX. model we use

F i (t) = 1 -R i (tjt 1 ,,,, t i _ 1 )	 (41)

which is obtainable from (17) and (18). All statements about the

curre it tine to failure random variable involve F i (,), so it

seems plausible to base our examination of th ,7 quality of the

ino de 1 upon this.	 If F i (.) were the "true" distribution of Ti,

then

U 
	 = F i (T i )	 (42)

would be uniformly distributed on (0,1), and be at let!st asymptotically

l



4

ars:

0
- 25 -

independent for different i.

We shall consider their realisations

u i - P i (t i )

CF3ta N'AL a `` P a

OF P0OR QL - LI N

(43)

where t i is the realisation of Ti , i.e. it is the actual

observed time between the (i-i)th and i th failures. These

numbers thus form the basis of a compa.ison of our predictions

(based on tl,.. td -I ) and Mir actual t i . Our first tool will

be the quantil-:-quantile IQ-Q) plot: i.P. a plot of the ordered

set of m u i 's against i/m. The closeness of this to the line

of unit slope is an indication of the closeness of the u's to

uniformity, and so an indication of the quality of prediction of

the model. We shall refer to this as Procedure 1.

Braun and Paine 1171 suggest that the plot of u i (not

reordered)versus i should also be examined :it should look

"patternless" if the model is performing well. Presumably the

intention is to attempt to discover how well the model is

capturing the trend. We have found these plots quite difficult

to interpret, and have instead used the following informal

procedure. If the 
ui 

given by (43) really were realisations

of independent, identically distributed (iid) uniform random

variables then

xi = -log(1-u i )	 (44)

would be realisations of iid unit exponential random variables.

Thus a process with intereventtimes given by these x i 's would

be a realisation of a simple Poisson process. It is well known

1141 that if we take the time to the (m+l)th event in such a

process to be unity, the times of occurrence of the m events

.ire independently uniformly distributed over (0,1).	 In our case,
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if the model is pertor'ming well, this statement will be

l	
approximately true. Since the procedure is well known, in the

exact case, to be sensitive to trend [191, we might expect to be

able to detect when a model is not capturing the trend

(reliability growth) adequately. We proceed t plotting the

empirical cumulant distribution function of the numbers

i	 m

Y i =	 `^^ / F x^	 (45)

Again, gu.:d performance is indicated by closeness of this to the

line of unit slope through the origin. We shall refer to this

Procedure 2.

It is perhaps worth stating explicitly than in neither of

these two informal procedures is it our intention to carry out a

goodness-of-fit test. On the contrary, in the context of this

paper it is our contention that the JM and BJM models are

Cvirtually identical: thus if one performs notably better that, ,ne

othe r the reason will presumably be that the inference procedures

are performing differently. Our two informal procedures are

designed to emulate the behaviour of an actual user of a model,

who is interested primarily in whether he can trust the model

predictions. The general problem of examining the quality of

model predictions, as opposed to testing goodness-of-fit of models.

an interesting one which has received relatively little

d?	 nLlOrl.

Table 1 shows tn^ daw and calculat;ons on both models for

Miusa's `.,y;tem 3.	 As has been stated earlier, the JM model

perforoir hadly by ivinq N- n for sample sizes '25 through 38.

model gives probrbilities for such pertection, Po , which

altnaugh appreci is le, differ considerately from unity. Notice
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that the range of sample sizes for- which BJM gives 	 Po

significantly different from zero, sizes 25 through 38, is the

same as product..	 N = n	 for	 ;IM.	 The Q-Q plots of the two

models (Procedure 1) are shown in Plot 1, where it is obvious

that BJM gives considerable improvement over JM.	 The poor

behaviour of the JM model is almost entirely accounted for by

the cluster of values at zero corresponding to 	 i= 25,..38.	 It

is surprising that the worst results from the model come from4

the end of the data series: it might be expected that with larger

samples the estimation procedure would perform better. 	 If this

program is close to being bug-free, the results cast further doubt

on the practical usefulness of the observation of Forman and

Singpurwalla	 [141, that ML estimates of 	 N	 can be trusted at the

end of debugging.	 It is certainly not the case that a zero value

for N-n gives high confidence that the program is now perfect.

Plot 2 shows the result of applying Prccedure Z to this data

with the two models.	 The cluster of zero observations at the end

of testing for JM cause the poor performance, as might be expected.

However, the plot is reasonably linear, albeit with wrong slope:

this suggests that the trend is being captured fairly well in -he

earlier stages of testing. Although the BJM model is considerably

better, the concavity of the plot again suggests that the trend is

not being captured completely. In fact the BJM model is also

giving optimisti answers for n= 25 onwards, although not nearly

so optimistic as JP1.

Table 2, Plot, 3 and 4, sho p•, the results of analyses of

System 40 (12] data.	 The ,1 1M model, rising XL estimation, gives

'v_- ; for n -in through 99,	 This accounts for the large
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deviation at the origin of Plot 3, and the extreme departs

from the line of unit slope in Plot 4. BJM gives a better

Plot 3., but is still quite optimistic in its predictions, and

the Plot 4 behaviour is little better than JM. A closer

examination of the data set causes some disquiet, and may explain

the poor results. Simple trend tests ([191, p.47) were carried

jut on the whole data set, and the first and last halves separately.

These show significant growth overall, but not significant growth

in either half. The lack of growth in the first half of the data

is revealed in the many infinite estimates of N in the JM model,

see [111. There seems, therefore, to be evidence that this program

exhibited a quite sudden, perhaps discrete, improvement in

reliability half way through the collected data. This would explain

the overall reliability growth, but the absence of growth in each

half. Musa, however, does not recall any conditions in testing

which would have produced such an effect. Of course, it is

unreasonable to expect any reliability growth model to perform well

in a case like this :all models assume some homogeneity of growth

behaviour. This data set exhibits some of the pitfalls we have to

beware of when analysing software failure data. In many cases we

shall know when a discrete change of behaviour has occurred (change

in testing procedure, integration of more code): we cannot normally

expect models to perform well over such a discontinuity of behaviour.

Examination of the JM model Plot 4 reveals an extremely of

behaviour even for the first 20 or so plotted points :evidence of

larger variability in the x i 's than would be suggested if the model

were performing well. This is clear from the raw data, where these

appear to be more very large and very small observations than would
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be plausible under the exponential assumptions of JM (and BJM).

The BJM model handles this variability a little better than JM

(see, for example, the distances between steps 2 and 3 in Plot 4

for the two models, corresponding to the large 54th observation):

perhaps because of the long-tailed nature of the mixed Pareto

posterior time-to-next-failure distributions. Our suspicion is

that the data is contaminated in some way: it may be, for

example, that the small observations represent imperfect fixes

and ought to be excluded. Unfortunately, any filtering of the

data has to be carried out by the data-collector at the time of

collection, using criteria which are based on an analysis of the

actual circumstances of the failures. It does not seem possible

to base a data rejection procedure solely upon the data itself.

Accordingly, our analyses were performed on the data as published,

and we merely record our reservations.

Tables 1 and 2 are revealing about the general

untrustworthiness of estimates of N in JM. Advocates of the

JM model have argued that knowledge of N, or more precisely

N -n (the number of remaining faults) is of great practical

interest and can be provided by use of this model. One of us has

suggested elewhere [201 that reliability itself is the only metric

of interest. Tables 1 and 2, which are fairly typical of the

analyses we have seen of real data sets, show estimates of the

number of remaining faults fluctuating wildly between infinity

and zero. Our inability to obtain good estimates seems to us to

render- purely acader,ric any discussion of their utility.	 If only

the qualit y of' reiiability prediction is the issue, then models

trir., treat failure rate directly (7, 221 can be considered on an

oq , al tooti ng b! 1 t l '̀ Jul t-countl n(J

M

C
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Plots 5 and 6 relate to System 1 data [12]. Although this

data set does not produce zero or infinite estimates of the number

of remaining faults, the estimates of N are consistently

optimistic, being only slightly larger than the sample size.

Reliability estimation (Plot 5) for JM is here better than in the

two previous examples, although again optimistic. The BJM model

is slightly better, but also gives optimistic results.

Plot 6 is quite interesting. In the first place, there is

very little difference between BJM and JM on this plot, suggesting

that each model captures the trend with similar accuracy. Since

BJM is slightly better on Plot 5, this might suggest that the shape

of the distributions of time to failure is represented better by the

mixed Paretos than by exponentials. Of more interest, though, is

the shape of Plot 6. Until about observation 90, the plot is

reasonably linear (if we ignore the first four extremely small

observations on this plot). Both models seem to be performing well

between sample sizes 34 and 90, and only start to give very

optimistic reliability predictions from 90 onwards. This may again

suggest that some discrete change of behaviour has occurred. Musa,

who collected this data set personally, is not aware of any such

change, so the apparent effect may be spurious.

It is possible that, in cases such as these, better results

would be obtained by not using all the data for the later

predictions. We might choose to base eacn calculation only on the

last 50 observations, say, in order to rake the model fairly

responsive to discrete changes in behaviour. It would be very

difficult to justify a particular choice of "lag", though, and our

cwn feeling is that greater care should be taken to ensure



•	 - 32 -	
ORIGINA,- PAC 1:9

OF POOR QUALITY

homogeneity of behaviour during data collection.

Plots 7 and 8 concern Musa's System 2 data [12]. These

plots, like the previous ones, are typical of the results we have

found on other data sets: BJM is noticeably better than JM, but

still gives optimistic answers. In all the data sets we have

analysed, BJM is better than JM. However, the degree of

improvement obtained by using BJM varies considerably; it is

greatest when JM gives N =n for a substantial range of n.

In all cases the JM model errs on the side of optimism, as does

the BJM model but less markedly. We shall discuss this issue in

more detail in the next section.
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6. Conclusions and discussion of possible future work.

In our work so far, we have not found any data sets for which

JM performs better than BJM, and in several cases BJM is much

better. We therefore suggest that any practitioner who is

tempted to use the JM model should instead use the BJM model.

Since all important metrics for the BJM model are available in

closed form, use of this model brings an-important bonus of

computational simplicity.

The BJM model has certain conceptual advantages over the JM

model. Perhaps most important, it allows calculation of the

probability that the program is currently fault-free. It also

gives estimates in closed form of the remaining number of fixes

to be carried out to achieve target reliability, as well as the

number of faults remaining in the program. These metrics could be

of great value in estimating the extra development effort needed,

as well as providing information about maintenance costs,

We believe, then, that there are considerable potential

advantages to be gained in using the BJM rather than JM model.

Accordingly we recommend the new model to users, who can be

confident that they will at least obtain answers which are no

worse than would have been obtained by the old model.

Having said that, we think it is important that users of anX

software reliability model do riot simply assume that the metrics

are trustworthy. We suggest that whenever a data set is analysed,

the quality of the metrics on that data set should be examined.

This can easily be performed using our techniques or other

irfermal methods. This kind of analysis can never give assurance
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that the correct model has been applied, but it will usually be able to

detect the use of a grossly unsuitable model and/or inference procedure.

So far we have compared the two models and shown that BJM

never seems to be worse than JM. We now consider the fact that

BJM still seems to give optimistic predictions in most cases. The

degree of this optimism varies considerably from one program to

another, which reinforces our suggestion that in each application

it is advisable to investigate the quality of the predictions. It

is interesting that the model always seems to deviate in the same

direction: towards being too optimistic. We believe this is a

consequence of the basic assumption underlying both models, that

all faults contribute the same amount to the overall failure rate

of the program. In fact, it seems much more plausible that a

program starts life containing faults of different sizes, i.e.

faults which contribute different amounts to the program failure

rate. Since both models assume faults are uncovered randomly,

this would imply that the times to discovery of different faults

are differently (not identically) exponentially distributed. This

scenario seems to accord with experience: some program faults seem

"difficult to find" in the sense that, if they were left in the

program, they would manifest themselves in program failures very

infrequently. Others seem to be a '-.:ociated with high occurrence

rates. This effect is modelled via a Bayesian argument in a recent

paper [21J by one of us.

If the rates associated with the pool of faults initially in

the program really are different, and if fault discovery (failurt:

(ccurrence) occurs raneor.ly (as both J ' and bJ; i assume) , then it

A

C
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might be expected that early fixes cause greater improyement in

the failure rate of the program than later fixes, This "law of

diminishing returns" of debugging would be represented by a

failure rate, as a function of i (failure number), which is shown

in Fig 2. Using the JM or BJM model could then be seen as somehow

"best fitting" a linear function to this non-linear graph. Fig 2

shows how such an operation might be expected to give optimistic

estimates of the current failure rate. Confirmation of this

hypothesis comes from an examination of the behaviour of the ML

estimate of a =N¢, the initial failure rate, in the JM model.

This is the intercept on the vertical axis on Fig 2. If our

assertion were correct, we would expect that, as the sample size

increased, the "best-fitting" straight line on Fig 2 would have

r	

decreasing slope ^, and decreasing intercept X. This is

easily seen to be true for System 3 (and System 4 O,despite our

reservations about this data) by considering how IV x; changes

with n. It is also true for the other two data sets considered

here, and all other Musa data sets we have analysed. We are not

aware of any other explanation for such a consistent effect, and

it does not seem to have been noticed by other authors.

We hope to report shortly on some recent work using the new

model [21], with non-linear failure rate function. Preliminary

results show that it seems to perform notably better than JM or

BJP1. Our hypothesis that early fixes cause greater improvements than

later ones is supported by some recent empirical studies of Nagel and

S,.rivan [24[. This interesting work suggests that the differences

n size of different faults may be surprisingly large.

All
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The posterior distribution of (a,4) with proper

independent gamma priors is

P(a,mlt, 0 .... ,tn ) n

C*a(a-)..(a-(n-1])exp{-at,-...-(>-[n-1]^)tn)a 	 e	
4b-i-caf-i

e
-g4 

(Al)

for A a(n-1)® and zero otherwise, where C* is a normalising

constant.

If we transform to (x,m) where x n a-(n-1)o , we get

P(x - ^It, I... tn )	 a

n-1	 b-1	 -xzt. -oE(n-j)t

izo

e-c(x+(n-1)) ) 0 f-1 a-90

nl b^ a
	

b-1 (n-1 )b-j-1

i=o j=o	
i,n•1	 j

xn+j-i e-x[c+Etj 1 0 b+f+i - j - 2 e -^[g+c(n -1) +E(n-j)tj ]	 (A2)

Which is a finite mixture of distributions of the form

r(x;n+j-i+1,c+Etj ).r(0;b+f+i-j-I,g+c(n-1) + E(n-j)tj )	 (A3)

Denote by F the class of distributions which are finite

mixtures like (A3): i.e. finite mixtures of r(x;a,$).r(^;Y,a)

where n is integer. Since x can be thought of as "current

failure rate" (i.e. the failure rate of the program after the nth

failure but before the n th fix), the above result can be

generalised and given tK2 following interpretation. If we choose

our prior for current failure rate and G from F, then under the

L^
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BJM model our posterior for new current failure rate and i will

also be a member of F. This idea is similar to the concept of

"Nosed under sampling" (231, and we can think of the family F

a, being in some way a natural conjugate to the BJM model. The

prior we have used is clearly a member of F, and the above

observation gives some support to our choice; it can also be used

to support the particular form of "igrorance prior" used in the

body of the paper.

We want

Rn+i(tItl ,.. tn ) = P(Tn+1 > t t i ••• +tn)

jj Rn+t(t^x,^)P{x,^tl ,..,tn)dxdo

x to (n-1)m

whe re

Rn+t (tix,0) = e-(x-nt)t 	 if x > n

= 1	 if (r-1	 < x < no

So	 rn+ t (t t l ,.. tn)

m m
e-(;-tw)t 

P (x,^It t ,... tn)dxd^

®=o x=nq

N x {nW

The first integral in (A6) is

j
f- l t, - g C 	 e- (x-ns)t

(M)

(A 5)

(A6)

.a,

.

C
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Putv:: 1y x = A - n# this becomes

C* ^^-g#-g# ( n (x
+i#)e-(t + Et

j
)x e -B(n-j+l)tj0

=o	 x1=o	
i

(x + r«)b-i a -cx a-cn0 dxd;

4'	 m

=	

^

C* " 
f r-i e-9#	 n b-i a xn- 't i

o=0	 x=o '
o =o ^n

b-1	 j	 b-j-1 -x(t+Et•) - ^E(n-j +i)t. -cx	 cn#
x (no)	 a	 J e	 e	 e	 dxdO

-	 j

t
(Notice that it is at this stage that we need b to be an integer)

C* n b

-i 

a	
i nb-j-i

 in(
b-

1 0 J -0	 J

au	 w

_	 ob+f+i -j-2 a
-^ (g+nc+E(n-j+i)tj )	 xn-i+j e-x(c+t+Etj) dx d it

0 =o	 x=o

= C* n b-i a (b-)nb-j-i	 r(n-i+j+i)r(b+f+i-j- 0
•	 i=0 j=o ^ n J	 (c+t+£tt+J+i(g+nc+£(n-j+i)tj +f+ i -i -i

(A7)

The second integral in (0) can be e., pressed as a difference

of two integrals, of which one is

f
C* 
	

a(a-O)...(A-[n-1]p)exp(-Ati -...-(X-[n-1]O)tn}

p J=o X=nm

Ab-1 a-ca of-1 e-90 dado

Which is simply (A7) with t =0:

C"'	 b-i	 /b-i	 b-j-i	 r(n-i+j+i)r(b+f+i-j-i)

i=o jio a in ( j	 n	 c+rt, n-'+1+i +nc+£ r- W t, + +i-J-1(	 .. J )	 (9	 (	 J	 , J)

(A8)

1.

W



x 
b-i 

e 
-ca 

f 
f-1 

'e-0 dxdf

Put X-[n-110 x and to have

cc

f,

	 f n-1 - xrt
C*	 r (x+if)•(x+[n-11o) b-1 e	 i

0=0 X=O
1=0

e
-oz(n-j)t

j
 e-c(x+[n-1]o) 0f-1 

e-0 dWo

OD	 Go n- i b-i
C I	 I a	 x 

n-i

1-0 j=o i9n-1	
i ( ,j )xi0=0 X=o

e- 
^Z(n-flt 

i(In-110) 
b-j-1 

e 
-xzt 

i 
e- c(x+[r.-1]¢) f-1 e-go dx do

-1 b-i
C*

n 	
a 

n-1 b-) (n-1) b-j-i
i I	 ji=o j=o

00
f b+f+i-j-2 e -^(g+C(n-1)+E(n-j)t 

j)
^ =o

x	 e
n+j-i	 X(C+Et

j ) dx do
fX=O

C 
* n 	 b 

a	
b-1)	 ) 

(C+Et j)

b-j-1 	 r(n-i+j+l)r(b+f+i-j-1)

	

I-V j=o i ,n-1 ( j (n-1	 —	
n-i+j+l(g+(n-l)c+z(n-j+l)t i ) DTT

-T-7-j --I

	

Finally, we have from (A6)	 (A 9)

R 
n+i 

(tjt 
1	

tn) = (AS) +(A7) -(A6)

and

c	 p	
(0 I t,	 L

11+1	 1	 n

(A



Po == Rn+i (-It, ,.. tn ) = (A9) - (A8)

n^i b^1

a	
b-1	 (n-

1
 
)b-j-1 

r(n-i+j +1)r(b+f+i-j-1)

=o ^,n-1 j	 n-i+j+1	 b+f+i-j-1
i=o J (c+Etj)	 (g+(n- 1)c+E(n-j+l)tj)

=1-

n^l b^l	 b_1	 nb-J-1 r(n-i+j+l)r(b+f+i-j-1)

J	 (	 J )i =o ' =o al ' n	 j	 c+Et. 
n-i+j+1(9 +nc+E (n +1 

t. b+f+i-j-i
J ) ^)

(Al 0)

These expressions do not present insuperable computational

difficulties. The main problem is one of eliciting the prior

information in the form of the numbers b(integer),c,f and g.

There are various ways in which, in principle, "your" prior

beliefs about, say, a could be elicited within the gamma

distribution framework. You could be asked to give your best

guess of the mean and variance of your beliefs about a. Such an

approach does not seem to represent how we "naturally" think about

uncertainty. An alternative approach would be to ask ". you" to fix

two percentiles of a, say the 25% and 751 points. From either of

these approaches it is a simple matter to calculate "your" b and

c. A more satisfactory approach might involve a certain amount of

feedback, with "you" being able to see the consequences of your

choices of b and c and modify them. This problem is one which is

central to Bayesian inference, and it is not appropriate to dwell

on it at length here.
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Captions

Table 1: Analysis of Musa System 3 data. Here n represents

number of observation, and samplt . size in ML calculations and

Bayesian analysis; to is n th inter-failure time measured in

seconds. N,i are ML estimates of N,p in JM model based on n

observations. Fn+l (t
n+i ) are the probability integral

transforms of t 	 using the predictor distributions based on

ti ,... to (see (40) for JM and (41) for BJM). P o represents

the probability that the program is perfect, i.e. the last fault

has been removed, for the BJM model.

Table 2: Same structure as Table 1, for Musa System 40 data.

Figure 1: Failure rate versus failure number for JM model:

X i = (N-i+1)o.

Figure 2: Dots represent failure rate versus failure number as

we suggest it ought to be: i.e, early fixes have greater effect

than later ones. Crosses represent "best fitting" JM linear

failure rate function.

Plot 1 Procedure 1 for Musa System 3 data, sample sizes here

range from 18 through 37; JM model is represented by crosses,

BJM by dots.

Plot 2 Procedure 2 for Musa System 3 data, same sample size range

as in Plot 1. Again JM represented by crosses, BJM by dots. For

clarity the actual step-function sample cdf's are shown.

Plot 3 As Plot 1, for Musa System 40 data; sample sizes 51 through

100.

Plot 4 As Plot 2, same data as for Plot 3.

WX

i

1

^a
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Plot 5 As Plot 1, for Musa System 1 data; sample sizes 30

through 129.

Plot 6 As Plot 2, same data as for Plot 5. Here BJM and JM

are extremely close and only JM is shown. The line with smallest

slope shows the closeness to linearity of points 34 through 90

(see text).

Plot 7 As Plot 1, for Musa System 2 data;-sample sizes 14 through

53.

Plot 8 As Plot 2, same data as for Plot 7.
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n
to

JM model BJM model

N	
Fn+i(tn+i) F

n+i (tn+i ) Po
1 115
2 0 0. .504 .250
3 83 0. .585 .246
4 17£ 5 .0034 .431 .342
5 194 6 .0026 .326 .314
6 136 8 .0017 .728 .200
7 1077 7 .0018 0. .007 .688
8 15 .8 .0014 0. .023 .289
9 15 12 .00070 .175 .204 .107

10 92 19 .00038 .156 .147 .049
11 50 55 .00011 .297 .237 .020
12 71 m 0. .097 .863 .009
13 606 22 .00033 .970 .868 .030
14 1189 15 .00059 .023 .050 .139
15 40 18 .00043 .634 .649 .058
16 788 18 .00043 .172 .243 .086
17 222 21 .00033 .089 .107 .048
i8 72 25 .00025 .655 .634 .021,
19 615 25 .00025 .638 .575 .025
20 589 25 .00025 .018 .023 .025
21 15 31 .00018 .501 .497 .010
22 390 33 .00016 .965 .904 .008
23 1863 26 .00024 .617 .636 .045
24 1337 26 .00024 .885 .804 .070

1	 2, 4506 25 .00026 0. .146 .316
26 834 26 .00024 0. .437 .238
27 3400 27 .00021 0. .001 .338
28 6 28 .00019 0. .498 .201
29 4561 29 .00017 0. .269 .329
30 3186 30 .00015 0. .441 .345
31 10571 31 .00013 0. .017 .623
32 563 32 .00012 0. .120 .465
33 2770 33 .00011 0. .038 .400
N 652 34 .000097 0. .305 .281
35 5593 :35 .000088 0. .390 .317
36 11696 :i6 .000079 0. .163 .479
37 6724 37 .000071 0. .069 .475
3b 2546 38 .000065 0. .381

f

N

S	 i

C_



n

^• 1
2
3
4
5
6
7
8

0
1
12
'3
14
15
16
17
18
19
?0
?1
?2
?3
?4
?5
?6
27
28
29
30
31
32
33
34
35
36
W
38
39
40
41
42
43
44
45
46
4'1
48

49

J̀ L

2 .13E-03
3 .77E-04

31 .51E-05
m 0.
7 .29E-04
7 .30E-04
8 .19E-04
9 .12E-04
10 .96E-05
12 .66E-05
14 .51E-05
20 .29E-05
31 .17E-05
57 .84E-06
m 0.cc

0.
co 0.
co 0.
OD 0.
00 0.
m 0.
m 0.

co 0.

m 0.

w 0.

Go 0.
co 0.
CD 0.
W 0.
CD 0.

0.
j	 m 0.

m 0.

m 0.
00 0.

132 .41E-06
170 .31E-06
357 .14E-06

9496 .51E-08
CD 0.

cc 0.
W 0.

0.
co 0.

no 0.

845 .60E-07

6312 .78E-08

m 0.

OD 0.
to 0.
OD 0.

BJM model

Fn+i (tn+d 	 Po

.002 .996

.106 .554

.348 .213

.706 .128

.537 .246

.612 .307

.143 .767

.001 .751

.021 .370

.300 .154

.035 .095

.146 .035

.244 .015

.117 .007

.243 .003

.405 .001

.353 0.

.189 0.

.238 0.

.248 0.

.134 0.

.898 0.

.511 0.

.079 0.

.220 0.

.934 0.

.631 0.

.647 0.

.ui^ 0.

.446 0.

.476 0.

.746 0.

.813 0.

.154 0.

.954 0.

.368 0.

.117 0.

.200 0.

.025 0.

.027 0.

.119 0.

.005 0.

.642 0.

.932 0.

.882 0.

.395 0.

.032 0.

.353 0.

.290 0.

.745 0.

.648 0.

s

JM model

Fn+k(tn*d

.800

.709

,.	 AV

iWitc L

to

320
14390
9000
2880
5700

21800
26800
113540
112137

660
2700
28793
2173
7263

10865
4230
8460

14805
11844
5361
6553
6499
3124

51323
17010
1890
5400

62312
24826
26335

363
13989
15058
32377
41632
4160

82040
13189
3426
5833
640
640

2880
110

22080
60654

52163
12546

784
10193

78'41
31305
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Table 2 continued
=GPM PAGE t
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53 24313 ft 0. .999 1. 0.
54 298890 78 .86E-06 .026 .028 0.
55 1280 85 .16E-06 .397 .407 0.
56 22099 89 .12E-06 .364 .372 0.

57 19150 94 .67E-06 .062 .065 0.
56 2611 104 .58E-06 .649 .643 0.
59 39170 104 .58E-06 .767 .754 0.

60 55794 99 .62E-06 .644 .641 0.
61 42632 99 .62E-06 .998 .992 0.
62 267600 76 .92E-06 X676 .677 0.
63 87074 76 .92E-06 .833 .811 0.
64 149606 74 .97E-06 .130 .140 0.001
65 14400 76 .92E-06 .296 .317 0.
66 34560 78 .88E-06 .342 .36" 0.
67 39600 80 .84E-06 .974 .9' 0.
66 334395 ; 75 .95E-06 .859 .316 0.003
69 296015 73 .10E-05 .511 .542 0.013
70 177355 74 .91E-06 .566 .552 0.018
71 214622 74 .98E-06 .367 .403 0.027
72 156400 75 .94E-06 .375 .398 0.030
75 166800 76 .91E-06 .028 .033 0.033
74 10800 77 .88E-06 .506 .553 0.021

!	 75 267000 78 .85E-06 .995 .911 0.033
76 2098633 76 .91E-06 0. .164 0.471
77 614080 77 .88E-06 0. .002 0.528
76 7680 78 .81E-06 0. .376 0.435

i	 79 2629667 79 .75E-06 0. .094 0.804
80 2948700 80 .68E-06 0. .002 0.937
81 187200 81 .63E-06 0. 0. 0.897
82 18000 82 .58E-06 0. .006 0.834
83 178200 83 .54E-06 0. .023 0.772
84 487800 84 .50E-06 0. .035 0.734
85 639200 85 .47E-06 0. .021 0.708
8n 334560 86 .44E-06 0. .092 0.653

i	 87 1458800 87 .41E-06 0. .005 0.700
58 86720 88 .39E-06 0. .016 0:620
59 199200 89 .31E-06 0. .022 0.551
90 215200 90 .35E-06 0. .011 0.485
91 86400 91 .33E-06 0. .015 0.409
92 88640 92 .32E-06 0. .249 0.340
93 1814400 93 .30E-06 0. .001 0.431
94 4160 94 .29E-06 0. (	 .001 0.354
95 3200 95 .28E-06 0. .042 0.284
^;0 199200 96 .27E-06 0. 1	 .082 0.237
97 356160 97 .26E-06 0. .123 0.207
Jo 515400 98 .25E-06 0. ,089 0.190
')9 345600 99 .24E-06 0. .009 0.164

100 31360 101 .22E-06 .056 .086 0.125
101 265600 1	 102 _216-06  .361 0.103

1l
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