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ABSTRACT

The object of this project was to define the p roblem of the assimilation
of remote sensing data into mathematical models of atmospheric pollutant
s,-,cies. An object of remote sensing of the atmosphere is to enable recon-
st-uction of the concentration distribution of trace species over a region

based on the data available from the instrument. The data assimilation prob-
lem is posed in terms of the matching of spatially integrated species burden

measurements to the predicted three-dimensional concentration fields from
atmospheric diffusion models. General conditions have been derived for the

reconstructability of atmospheric concentration distributions from data typi-
cal of remote sensing applications, and a computationa; algorithm (filter)
for the processing of remote sensing data has been developed.
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RECONSTRUCTION OF ATMOSPHERIC POLLUTANT

CONCENTRATIONS FROM REMOTE SENSING DATA -

AN APPLICATION OF DISTRIBUTED PARAMETER OBSERVER THEORYT

	 1

Masato Koda* and John H. Seinfeld

Department of Chemical Engineering
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ABSTRACT

The reconstruction of a concentration distribution from spatially-aver-

aged and noise-corrupted data is a central problem in processing atmospheric

remote sensing data. Distributed parameter observer theory is used to de-

velop reconstructibility conditions for distributed parameter systems having

measurements typical of those in remote sensing. The relation of the recon-

structibility condition to the stability of the distributed parameter obser-

ver is demonstrated. The theory is applied to a variety of remote sensing

situations, and it is found that those in which concentrations are measured

as a function of altitude satisfy the conditions of distributed state

reconstructibility.

*Permanent address: Department of Aeronautics, University of Tokyo, Hongo,

Bunkyo-ku, Tokyo 113, Japan
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I.	 INTRODUCTION

In the remote sensing of tropospheric species, a ground-, aircraft-,or

satellite-based platform performs an instantaneous scan of a region of the

atmosphere and measures the species burden within the field of view. With air-

craft or satellite remote sensing the platform is in motion and the fiela of

view is constantly changing. An object of remote sensing of the atmosphere

is to enable reconstruction of the concentration distribution of trace species

over an entire region based on the data available from the instrument.

The reconstruction of a concentration d i stribution from spatially-aver-

aged and possibly noise-corrupted data is a central problem in processing

remote sensing data. In the absence of a mathematical model describing the

spatial and temporal concentration distributions, the reconstruction can be

carried out by standard data interpolation methods. However, when a mathema-

tical model exists,the problem becomes one of matching the remote sensing data

to the model solution in such a way that the incomplete data can be used in

conjunction with the model to produce an estimate of the region-wide concen-

tration distribution. This problem of the matching or assimilation of remote

sensing data into mathematical models for atmospheric constituents is the

subject of this paper.

There exist a few recent stidies that assess the capabilities of remote

sensing for monitcring regional air pollution episodes. For example, Barnes

et al. [1] conducted a comparative analysis of satellite visible channel ima-

gery in ground-based aerosol measurements. For three cases, each of which

represented a significant pollution episode based on low surface visibility

and high sulfate levels, the results show that the extent and transport of

the haze pattern can be monitored from satellite data. The study demonstra-

ted the potential of the satellite to monitor both magnitude and aerial extent

7
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of pollution episodes. In a related study, Lyons, et al. [21 reported on a

demonstration project showing that currently available synchronous satellite

data can detect the aerial extent of large scale hazy air masses associated

with sulfate and ozone episodes.

A study related to that of the present work was reported by Diamonte, et

al. [3] in which they considered the comparison of remote and in situ data on

pollutant concentrations from point sources. They considered typical remote

sensing geometries to provide insight on estimation of plume properties from

these measurements. In a study alsi related to the present, Kibbler and

Suttles [4] considered the estimation of unknown parameters in a pollutant

dispersion model by comparing model predictions with remotely sensed air quality

data. A ground-based sensor provided relative pollutant concentration measure-

ments as a function of space and time. The measured data were compared with

the dispersion model output through a numerical estimation procedure to yield

parameter estimates that best fit the data.

The object of this paper is to define the problem of the assimilation of

atmospheric remote sensing data into mathematical models of pollutant behavior.

Since the atmosphere is a three-dimensional system, models of pollutant behavior

are of the distributed parameter type [5]. Remote sensing data represent spa-

tial averages of concentrations, so that the assimilation problem is, in es-

sense, one of distributed parameter state estimation.

First, the concept of distributed state reconstructibility is developed

for the class of problems of interest. That is, the first question to be

faced is - can the desired spatial-temporal concentration distribution infor-

mation be recovered from the measurements in the absence of noise. The deri-

vation of general conditions that allow one to answer this question is the
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subject of Section II. In Section III a variety of common remote sensing

measurement configurations and atmospheric models are tested for reconstructi-

bility. We conclude in Section IV with general observations concerning the

inherent potential of remote sensing data in analyzing regional air pollution.
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II. RECONSTRUCTIBILITY AND OBSERVERS FOR DISTRIBUTED PARAMETER SYSTEMS

Atmospheric pollutant models consist of partial differential equations,

linear in the case in which the species does not react chemically or in which

it is produced or destroyed by a first-order reaction of the form A ;. This

case represents a wide class of important situations and is the one to which

we direct our attention here. Nonlinear distributed models must be handled

by linearization and therefore also fall within the present framework.

Our interest in this section is to derive distributed parameter observers

for systems described by linear partial differential equations with inhomo-

geneous boundary conditions characteristic of atmospheric models. An observer

is an algorithm that processes measurements of the state of a system to yield

an estimate of the entire system state. 	 An observer is most frequently

employed when not all of the states of a system are accessible for measure-

ment.	 In the present application, we will be generally interested in only a

single state variable, the measurements of which have limited spatial resolu-

tiun. The observer is stable if its estimated state converges to the true

state after a sufficiently long time. The concept of state reconstructibility

is useful as a condition for the stability of the observer. Thus, if a meas-

urement strategy satisfies the condition of state reconstructibility, then

the corresponding observer is stable, and, the state (i.e. the concentrations)

can, in principle, be estimated from the measurements. The condition that

allows the reconstruction of the system state on the entire field is called

distributed state reconstructibility. Associated with distributed state re-

constructibility, the concept of uniform n-mode reconstructibility can be
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developed. Both conditions, n-mode and distributed state reconstructibility,

will be applied, in Section III, to typical remote sensing measurement

configurations.

There exists some previous work on observer theory for distributed param-

eter systems [6-8]. Kitamura et al. [6] formally extended the lumped param-

eter observer to the distributed parameter case. Gressang and Lamont [7]

developed a more complete theory of the distributed parameter observer, includ-

ing reduced order observers. An application of distributed parameter observer

theory has been presented by Kohne [9]. The most complete treatment of observer

theory is that of Dolecki and Russell [8].	 In the current work, distributed

parameter observers are derived in a form appropriate for application to the

class of systems representing atmospheric species behavior. 	 In addition, a

result of the present work is an explicit relation between distributed parameter

reconstructibility and the stability of the observer. Observer stability is

demonstrated using a technique of Hale [10] in which Lyapunov stability theory

is extended to function spaces.

We consider the linear distributed parameter system,

au(X,t = L x u(x,t) + B(x,t)r(x,t)	 (1)

defined for t > 0, x - D. The domain D is a connected subset of a d-dimensional

Euclidean space E d with boundary surface ^D. The d-dimensional spatial coordi-

nate vector is denoted by x. The state u(x,t) is a scalar function and Lx

is a linear partial differential operator with respect to x. It is assumed

that the operator L x is well-posLd. The input .-'(x,t) is a known scalar

function and B(x,t) is a known coefficient.

A
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the boundary condition on (1) is

6 x u(x,t) = h(x,t)	 x c 2D	 (2)

where 
B  

is a linear, spatial differential operator of suitable order over

aD and h(x,t) is a known function. The initial condition is assumed to be

unknown or incompletely known.

We are interested in considering three types of measurements:

Case 1: Spatially-Independent Integral Measurements

The measurement takes the form

w(t) = f H(x,t)u(x,t)dx	 (3)
D

where H(x,t) is a spatial weighting function.

Case 2: Spatially-Continuous Measurements

w(x,t) = C(x,t)u(x,t)
	

(4)

where C(x,t)	 is	 a square-integrable	 fui,ction,	 i.e.,	 C . L2.

Case 3:	 S patiall y - Discrete measurements

w i (t) = H i (t)u(x i ,t)	 i = 1.2,... k	 (5)

where w i (t) denotes a measurement at the ith measurement location x i . By

taking the limit to small volumes of integration in (3), we can represent

a systen, such as (5) by choosii,y H(x,t) = H i (t)d(x-x i ), i = 1,2,..., X.

n
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For the moment let us restrict the problem to one spatial dimension, i.e.,

0 < x < 1. Accordingly, boundary conditicn (2) can be expressed as

^0u(x,t) = h 0 (t)	 x = 0
(6)

6 1 u(x,t) = h 1 (t)	 x = 1

Then the solution of (1) and (6) with initial condition u(x,0) = u 0 (x) can be

expressed in the form*

-1	 ^t

	u(x,t) = i	 4* (r,0;x,t)u0 (r)dr +	 ^* (r,T;x,t)B(r,T)f(r,T)dr&

	

U	 10 0

ff
t l

+
	

^r	 (r,T;x,t)g(r,-)drd-

0 0

where

g(x,t) = 2h 1 (t)6(x-1) - 2 h 0 (t) b (x)	 (8)

*
The adjoint Green's function	 (x,t;y,T) is governed by

	

a4 ( x at;yl-) + LXV^*(x,t;y,T) = 0	 (9)

with the terminal condition

* (x,t;y,t) =	 6(x-y)	 (10)

*The explicit form of operators L x , t; 0 , and F. are assumed as follows:

L x (•) = a 2 (x.t) `^^ + al(x,t) I(
x

+ a0(x,t)(•)

ax

BO ( • ) = a 2 
(0,t) 

a	
+ e

0 
(t)(-)

s
1
(•) = a2(l,t) a
	

+ 61(t)(•)
ax

(7)
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60 1	 = 0

6 1 C	 = 0

The operators L x , E0 , and 6 1 are the adjoints of the operators Lx,

respectively.

The extension of the adjoint Green's functions to higher spatiE

sions is straightforward.	 In higher dimensions, (9) and (10) remaii

same with the general boundary conditions

Ex 1 	( x ,t; y ,-) = 0	 x r ^D

where E x is the adjoint of the operator 6x . In general, we note that 4) is

related to the Green's function C associated with the system (1) with

homogeneous boundary conditions by the relationship 4^(x,t;y,T) _ 	 (y j ;x,t).

The adjoint Green's function for wEll-posed distributed parameter sys-

tems can be constructed in a variety of ways	 Expansion in spatial eigenfunc-

tions and construction of the adjoint Green's function from eigenvalues and

eigenfunctions is a powerful method f )r linear systems. Let us assume that

L x has an infinite series of discrete elgenvalues {a i }, i = 1,2,....	 Using

standard methods, the adjoint Green's function that satisfies (9)-(12) is

found to be [11]

4 ( x ,t;Y,T) _	 (^n(x)dn(Y)e	 (13)
n=1

where the eigenfunctions {m i }, i = 1,2,..., are the solution of the equation,

L x0 i	
^`i4i, satisfying the boundary conditions (11) or (12).



r`

-9-

ORIGINAL PAGE i3

OF POOR QUALITY

II.1 Reconstructibility Conditions

Ttie objective of an observer is to reconstruct the system state when

the measurements are incomplete. To be able to reconstruct the state the

observer must be asymptotically stable.

An identity or non-reduced observer for the system (1) with measure-

ments (4) takes the form

au a t = L x u(x,t) + B(x,t)°(x,t)

+ G(w(x,t) - C(x,t)u(x,t))	 (14)

where u(x,t) is the observer output and G is a suitably chosen integral opera-

tor with the kernel G(x,y,t).

Before presenting a derivation of the observer, we will establish the

conditions under which the system (1) and (4) is reconstructible. We define

the reconstructibility kernel function by

t

Q(x,y,t) = ff 4*(x,t;r,z)C2(r,T)1,*(y,t;r,-)drdT 	 (15)

D

It will be shown later that the observer (14) is stable if Q(x,y,t) has a so-

called generalized inverse, i.e., if there exists P(x,y,t) such that

fp (x,r,t)Q(r,y,t)dr  = 6(x-y) 	 06)
D

By formal differentiation of (15) with respect to time and use of the

properties of the adjoint Green's function (9) - (12), it is found that

Q(x,y,t) satisfies the following Lyapunov equation,



-10-	 ORIGINAL PAGE !3

OF POUR QUAUTf

aQ( x, i,, t ) = - L xQ( x ,Y, t ) - Q( x ,Y, t ) Ly + C 2 (x,t)6(x-Y)	 (17)

with the initial condition

Q(x,Y, O ) = 0	 (''-B)

and boundary conditions

ExQ = 0,	 Q6  = 0
	 (19)

where L 
y 
Q = QLy . Although Q(x,y,t) is formally defined by (15), it is impor-

tant to note that Q(x,y,t) may b p computed from (17)-(19) witnout using the

adjoint Green's function.

By using the identity

aP (X, ,t) _ -I r P(x , r ,t) 2 d t s,t) P ( s ,Y,t)dsd r	(20)
at ID 

D

P(x,y,t) can be shown to obey the following Riccati equation,*

aP x	 t

at	
= L x P(x,Y,t) + P(x,Y,t)L

Y

-
J 

P(x,r,t) O 2 (r,t)P(r,y,t)dr	 (21)

D

with boundary conditions

e x  = 0,	 Pey = 0	 (22)

f'(x,y,t) may be considered as the kernel of the integral o perator P defined as

The impact of observation error on the design of an observer can be assessed

from (21) by comparin g P to that from the corresponding distributed param-

eter filter.
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Pf( X ) = J P(x,y,t)f(y)dy	 (23)

D

for f E; L2.

A linear distributed parameter system (1) and (2) with measurement (4)

is said to be distributed state reconstructible if and only if Q(x,y,t) de-

fined by (15) has a bounded generalized inverse P(x,y,t) for t > 0. It may

be shown that Q(x,y,t) has a bounded generalized inversE when Q(x,y,t) is

bounded and positive-definite for t > 0 (111 * . The system (1), (2), and (4)

will be defined to be uni form 	 n-► ,ode reconstruCtible if there exists posi-

tive constants M 1 , M2 , and a such that

MI - ff On(X)Q"(X,y,t)q)n(y) dxdy < M9	 (24)

D D

*
for all t > 0, where ^

n
(x) is the eigenfunction of L x and the modified re-

constructibility kernel Q"(x,y,t) is definea by

ft
Q,7 (X,y,t) = 

	 f	
(x,t;r,T)C 2(r,T)1t*(y,t;r,T) drdT	 (25)

t-c D

	f	 The system is distributed state •econstructible if (24) is satisfied for each

of the eigenfunctions. The uniform n-mode reconstructibility test (24) is

useful when P(x,y,t) cannot be found airectly from Q(x,y,t). Since it is

straightforward to extend the concept of di-tributed state reconstructibility

to measurement Cases 1 and 3, detailed discussion is omitted here.

*
Positive-definiteness of the kernel Q imp l ies that

fil `(X)Q(X,y,t)f (y) dxdy > 0

DD

for all t > 0 and	 - L2.
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II.2 Minimum Variance Observers

II.2.1 Observer for Case 1

For the system described by (1) and (3), we define the reconstructi-

bility kernel function by

t

Q(x,y,t) =ff 	(x,t;r,z)H (r,t)dr f H(s,T),^ * (y,t ;s,T)dsdT	 (26)

0 D	 D

where Q(x,y,t) obeys

aQ(XtY't) _ - 
L xQ(x,Y	 Q(x,Y,t)Ly + H (x,t)H(Y,t)	 (27)

with initial and boundary conditions given by k i.8) and (19). Assuming that the

	

system is distributed 	 state reconstructible, the existence of the general-

ized inverse P(x,y,t) of Q(x,y,t), that satisfies

"aP(X, ,t) = L xP(x,y,t) + P(x,Y,t)LY

	

-r P(x,r,t)H (r,t)dr J H(s,t)P(s,y,t)ds	 (28)
J

	

D	 D

will establish the observer for the system (1), (2) and (3).

Following Meditch [ 12 ], we define the cost functional associated with

the observer as
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J 0 = 2 J [u(x,0) - u0 (x)] Ax [u(y,0) - u0(Y)]dx

D

tr	 2r+ 2	 w(t) - J H(x,t)u(x,t)dx	 dt	 (29)

 )
0	 D

where t  is an arbitrary final time, u 0 (x) is an initial estimate of u(x,0),

and

-1
A 
x	

f P0 (x,y) f dy]C
D

P0 (x,y) is a bounded, symmetric, and positive-definite weighting func-

tion. The observer is found by selecting u(x,t) so as to minimize (29) sub-

ject to (1) and (2).	 By minimizing the augmented functional,

ftfrJ = J0+ 	r x(x,t)1 24tx,t) 
	
Lu(x,t) - B(x,t);(x,t)] dxdt	 (31)

0 J	 L
0 0	

J

the result is the Euler-Lagrange equation,

L *a (x,t) - H( x , t )C w(t) - f H(Y,t)U(Y,t)dy1 	 (32)

D

with the transversality conditions,

a(x,0) = A x [u(Y,0) - u0(Y)]

(33)

'.(x,t f ) = 0

Equations (32) and (33) constitute a two-point boundary value problem

that may be solved by the sweep method. We assume the following Riccati

transformation for u(x,t),

(30)

,f
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u(x,t) _f P(x, Y, t ) x (Y, t ) dY + P( x ,t)	 (34)

D

where the kernel P(x,y,t) and p(x,t) have to be determined.

Substitution of (34) into (1), (32) and (33) yields

a 
at 

t = L xP( x , t ) + B(x,t);'(x,t)

+ J P(x,r,t)H (r,t)dr [W(t) - J H(s,t)p(s,t)dS]	 (35)

D	 D

p(x,0) = u0 (x)	 (36)

6 xp(x,t) = h(x,t)	 x - 3D	 (37)

^P(x ,t) = L x p ( x ,Y, t ) + P(x,Y,t)Ly

- J P(x,r,t)H (r,t)dr J H(s,t)P(s,y,t)ds	 (38)

D	 D

P (x,Y, O ) = PO ( x ,Y)	 (39)

6 xP(x,y,t) = 0,	 P(x,y,t)EY = 0	 x,y E aD	 (40)

Equations (33) and (34) imply that p(x,t f ) = u(x,t f ) is the state esti-

mate at an arbitrary final time t f . It is important to note that (38) is

identical to (28). Thus we may conclude that the symmetric, positive-definite

kernel P(x,y,t) completely characterizes the minimum variance observer.

Equation (35) can be rewritten as

^Utx,t) = L x6(x,t) + B(x,t)"(x,t)

+ K(x,t) w(t) - J H (Y, t ) u (Y, t ) dY
J
	(41)

C D

.in

.e
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where a time-varying observer gain K(x,t) is defined by

K(x,t) = J P(x,y,t) H(y,t)dy	 (42)

D

The structure of the observer is identical to that of the distributed param-

eter filter (13].

We introduce the reconstruction or observer error e(x,t) = u(x,t) - U(x,t).

Then we obtain the following equation for e(x,t),

2e(X,t) = 
L xe(x,t) - K(x,t) J H(y,t)e(y,t)dy	 (43)

D

with initial and boundary conditions, e(x,0) = u 0 (x) - u(x,0), and ^ xe(x,t) = 0.

if the initial state is ki.own exactly and the observer is initialized such

that u(x,0) = u(x,0), then the observer will reconstruct the state exactly.

It is riot reasonable, however, to expect that the initial state will be known

exactly. It is, therefore, important to insure that if errors are present in

the initial conditions applied to the observer that the estimate will converge

to the true value of the state, i.e., the reconstruction error e(x,t) must

have the property limjje(x,t)jj = 0, for all e(x,0).
t^

Asymptotic stability of the observer can be demonstrated by using (16),

(26). (27), and (43). We will consider a Lyapunov function defined by

v(e,t) = f 
1	

e(x,t)Q(x,y,t)e(y,t)dydx 	 (44)

D D

It is first necessary to note that Q(x,y,t) is positive-definite and bounded

from below. Then the time derivative of the Lyapunov function is calculated

using (27) and (43).	 The result is

-15-

A



-16-

ORIGINAL PAO= U"',

OF POOR QUALITY

dt V(e,t) _ - ff e(x,t) H(x,t)H(y,t)e(y,t)dydx 	 (45)

0 D

which is a negative-semidefinite quadratic form. This is sufficient tc show

that (43) is stable in the sense of Lyapunov [10].

II.2.2 Observer for Case 2

In a similar manner to that of Case 1, we can obtain the minimum vari-

ance observer for Case 2, i.e., for spatially-continuous measurements (4).

The observer dynamics are described by

aU(X't)= Lxu(x,t) + B(x,,t)f(x,t)

+ f G(x,y,t)[w(y,t) - C( y ,t) û( y ,t)ldy	(46)

D

with initial and boundary conditions

u(x,t) = u0(x)
	

(47)

Sx u(x,t) = h(x,t),	 x r-  3D	 (48)

where the optimal gain kernel G(x,y,t) is defined by

G( x , y , t ) = P(x, y ,t) C(y,t)•
	 (49)

The Riccati equation for P(x,y,t) in (49) is identical to (21) with boundary

conditions given by (22). The reconstruction error e(x,t) = u(x,t) - u(x,t)

satisfies

fie( t)	 = F e(x,t)
	

(50)
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where the integro-differential operator F is defined by

F e(x,t) = L x e(x,t) - J G(x,y,t)C(y,t)e(y,t)dy	 (51)

D

We can demonstrate the stability of the observer by using the reconstructi-

bility kernel Q(x,y,t) defined by (15) and the Lyapunov function (44).

Under the reconstructibility assumption, the derivative of the Lyapunov func-

tion becomes

dt V(e,t) _ - J e(x,t)C 2 (x,t)e(x,t)dx	 (52)

D

which is a negative-semidefinite quadratic form.

1I.2.3 Observer fo r Ca se 3

For the spatially-discrete measurements (5), i.e., Case 3, the observer

is given by the following system:

auat,t	 = L x u(x,t) + 6(x,t).,"(x,t)

^
C

+	 Gi(x,t)lwi(t) - H i (t)u(x i ,t)]	 (53)

1=1

where

Gi(x,t) = P(x,xi,t)Hi(t)
	

(54)

and

t	 3P X'
	 t = L x P ( x ,Y, t ) + P(x,y,t)LY

l	 -	 P(x,xi,t)Hi(t)Hi(t)P(xi,y,t)	 (55)

i=1

l
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with initial and boundary conditions given by (47), (48), (39), and (40).

Under the distributed state reconstructibility assumption, the stability of

the observer can be demonstrated.

II.3 Comments

The relationship has been established between distributed state recon-

structibility and the existence of an observer. Distributed state reconstruc-

tibility is defined through the existence of the generalized inverse to the

recunstructibility kernel. The kernel associated with the observer gain

satisfies the same Riccati equation as does the generalized inverse of the

reconstructibility kernel.

III. REMOTE SENSING MEASUREMENTS AND ATMOSPHERIC MODELS

In this section we will test both the n-mode and state reconstructibility

of common remote sensing measurements with models of atmospheric pollutant

behavior. By far the predominant mode of remote sensing is to measure the inte-

grated quantity (burden) of material between the ground and some known altitude.

Thus, both cases we consider here involve vertically integrated data. Various

assumptions concerning the horizontal characteristics of the measurements will

be tested. Three-dimensional models of pollutant behavior are generally based

on the atmospheric diffusion equation [51 that describes the flow and diffu-

sion of species. The object of this section is to ascertain if the customary

remote sensing measurements allow one, in principle, to reconstruct the detailed

concentration distribution. The distributed parameter reconstructibility con-

dition derived in Section II will therefore be tested in each case.



K az =	 h o (t) z = 0

K az
= 0 z	 =	 1

where h o is a given flux at the ground (z = 0) and K

coefficient.

The adjoint Green's function for the system (5E

Co

(z,t;z',T) = 1 + 2 E cos(n7z)ccs(n7z')e(n7)
n=1

State reconstructibility is then to be assessed by c

modified reconstructibility ker,iel (25).

We consider each of th(,wasuroment types '3),

for uniform n-mode reconstructibility is (24), whi&

n = 0, 1,2,...,	 as

(1 .:

0 < M 1 < J	 cos(n7z)Q°(z,z',t)cos(
0 0

For each of the three types of measurement, the intE
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III.1 Measurements in a Layer with Horizontal Homogeneity

The vertical concentration distribution of a pollutant in a layer with

horizontal homogeneity can be described by the one-dimensional diffusion

equation,

au =	 aù

at K 3z 

subject to

(56)
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Case 1: Spa tially-Inde eenndent Integral Measurements

t1	 1
e2(nr)2K(t -T)1

J
t	 o

2
H(r,T)cos(nrr)dr)	 dT (61)

Case 2: Spatially Continuous Measurements

t
l 

e	
fi

2(n-)2K(t-T) 	 C(r,T)cos(nrr) 12 drdT

t	 o

Case 3: Spatially-Discrete Measurements

^	 c

f

e2(n7)2K(t-1)	
Hi(:)cos(nrzi)J2 dT

t	 1 i=1	 `

for n = 0. 1,2,... .

From (61)-(63), we see that uniform n-mode reconstructibility is com-

pletely dependent on the form of the measurement weighting functions, H(z,t),

C(z,t) and H i (t) and on the eigenfunction, cos(nrz).	 The condition (60)
1

implies that r H(z,t)cos(nrz)dz # 0. We may note that this inequalit y is

0
essentially equivalent to the observability condition derived by McGlothin

[141.	 Similarl y . (63) implies that the system state is reconstructible by

point sensors if the sensors are not located at the zeros of any of the eigen-

functions.

In the remote sensing problem, the measurement weighting functions are

often taken as H(z,t) = l or C(z,t) = 1. When H(z,t) = 1. the condition (60)

holds only for n = 0 implying that the spatially-independent integral

(62)

(63)

;i
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measurements do not allow reconstruction of the system state on entire

fields.	 This can be directly checked by computing the reconstructibility

kernel Q(z,z',t). The system with integral measurements cannot be distribu-

ted state reconstructible since the generalized inverse of Q(z,z',t) = t does

not exist, since Q is not an explicit function of z and z'.

When the measurements are spatially-continuous and C(z,t) = 1, the system

n

is distributed state reconstructible

P(x,y,t) in (15) and (16), we have

From the definitions of Q(x,y,t) and

Q(z,z',t) = t + 1 	 1 cos(nnz)cos(nnz') e
2(nn)

2
 Kt _ 1
	 (64)

TT 2 K n=1 n2

and

P(z,z',t) = t +4 r2 K	 n2 cos(nnz)cos(nnz') e2(nr,)2
	 -1
Kt _ 1
	 (65)

n=1

We may note that the integral equation (16) is satisfied when it is recognized

that

* A mode associated with the eigenfunction $ 0 = 1 (n = 0) can be reconstructible

and the appropriate observer is

2"	
1

^uu

of	
K 

2 
2
+ t	 rw(t)	 u(z ,t) dz'1

2 Z J	 J
0

Stability of the observer can be demonstrated by constructing the Lyapunov

function

ff
V(e,t) = 

	
e(z,t)te(z',t) dzdz'

0 0

.
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00

	

6(z-z') = 1 + 2 1 cos(nrz)cos(nnz') 	(66)
n=1

P(z,z',t) is bounded and oositive-definite, and for t ), 0, the series (65)

is uniformly convergent.

III.2 Measurements of a Steady State, Point Source Plume

The concentration distribution in a plume from a continuously emitting,

elevated point source can be described by

2	 2

at	
K a 2 + K z

 ^ 2	
(67)

y ay	 az

where t is the time an element of fluid spends in the plume from emission,

equal to downwind distance x divided by the wind speed. The source is of

strength q located at t = 0, y = 112, z = z H (0 < z  : 1). The boundary condi-

tions on (67) are

u(O,y,z) = q6(y - 112)6(z -zH) 	 (68)

^u 
= 0	 y = 0,1	 (69)

Kz 2z
	

ho	z = 0	 (70)

az	 0	
z = 1	 (71)

The adjoint Green's function for this system is

ro	 (n,T)2K (t-T)

a (y.z,t; y ' ,z ' ,T) =	 1 + 2	 cos(n-y)cos(n7y')e 	 y	 x

""

(mn) 2 K (t-T)

1 + 2	 Cos( nr z)cos( rrrz' )e	 z	 (72)
M=̂ J

.,
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Consider first a scanning measurement performed at a horizontal position

Y = Y*,

r1
w(t) = J	

J(z)u(t,y,,z)dz	 (73)

0

where the scanning data w(t) are taken on a coordinate that moves along the

t-axis.	 in (73) is the altitude-dependent weightiny `unction for the

measurements. When J = 1, the reconstructibiiity k o rncl function becomes

Q (t,Y,z;Y,,z') = t

(n7) 2 K t+ 2	 cos ( n7y,) 
cos (n,ry) + cos (nlry' )	 e	 H - 1

K  n = 1 07 ) 2	 )

+ 4
	

CD	 « cos(nry*)cos(m7y*)	
(n2+m2)n2KHt

K  n = 1 m= 1 ( n 2+m2 )n 2
— cos(nry)cos(m^y I ) e	 - 1	 (74)

The system is not distributed state reconstructible since the gene

inverse of Q(t,y,z;y',z') does not exist. Therefore, we conclude

the scanning measurement (73) cannot, in principle, allow reconstr

the system state.

The same results can be obtained for the following measuremer

1	 1

W (t) = 

fi
 u(t,y,z)dydz

U

1

w (t,Y) = J u(t,Y,z)dz

U

r1
w (t,z) = J u(t,Y,z)dY

0
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In these cas^s, the reconstructibil i ty kernel function Q(t,y,z;y',z') cannot

be written explicitly in terms of all the spatial variables y,z, and y',z'.

Thus, the generalized inverse P(t,y,z;y',z') does not exist, which allows

reconstruction of the system state on the whole domain. As i rule, if

Q(t,y,z;y',z') is	 expressible as	 an explicit function of all	 the spatial	 vari-

ables	 and	 if it	 satisfies	 t'? uniform	 n-mode reconstructibility test,	 then the

system is distributed state reconstructible.

Indeed, we can show that the system state is distributed state recon-

structible for the measurement

w(t,y,z) = u(t,y,z)
	

(78)

In this case, we have

CD	
2(nn) K t

Q (t, y ,z; y ' ,z') = t+K	 1 2 cos(n-y)cos(n^ry' ) e	 H- 1
H n=1 (nn)

2(nr)2K t
+ 1	 1 	 cos (nnz)cos(nnz') e	 - 1

K V n=1 (nrr)2

+ 2 
Cr	

cos nr cos(n rrz)cos(nTry '1cos n rz' ) e2i(nr)2KH+(m,r)2KV}t_ 1
(79)

n=1 ;n=1	 (nn)2KH+(mr,)2KV

The generalized inverse of (79) is given by

a
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p
I
0OR l^'

►! Al-1?'(

OD	 2(n1r)2KHt	 -1

	P(t,y,z,y'.z,) = t + ,KH I (nn)
2 cos(n7y)cos(n7y1 ) e	

- 1

n=1

CO	 2(nn)2K^t- 1^-1
+ 4K v	 (nr)2 cos(n^rz) cos (nnz') ^e 	 j

n=1

00	 w

	

8 1 S	 (n7 ) 2 KH + (mr, ) 2 K
V
 cos( n7y)cos( rmrz)cos(n7y')cos(:rrrrz' )

n= 1 m=:

2{(n-r)2KH+(rrr„)2K^''t	 -1
x e	 - 1

where (80) satisfies the Riccati equation associated with the measurement (78).

(80)
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!V. CONCLUSION

This paper has examitied the possibility of estimating atmospheric species

concentration distributions from remote sensing data. Atmospheric concentra-

tions can be modeled by partial differential equations of the diffusion type.

Remote sensing data generally represent spatial averages of the concentrations,

frequently in the vertical direction. The essential problem, therefore, is to

assess L-he possibility of estimating the state of a distributed parameter sys-

tem on the basis of spatially-averaged measurements. The theoretical basis

of the assessment is a condition for state reconstructibility of distributed

parameter systems. (The connection between state reconstructibility and the

stability of the distributed parameter observer has also been developed.)

A variety of remote sensing measurement configurations were tested for

reconstructibility. It was found, not unexpectedly, that those measurements

based on integration of the vertical concentration distribution over the

entire la yer do not lead to distributed state reconstructibility, i.e., there

does not exist a generalized inverse of the reconstructibility matrix kernel

and therefore do not afford the possibility of estimating the concentration

distribution over entire field. Those measurement configurations that, on

the other hand, enable sampling of the concentration at vertical positions

lead to distributes state reconstructibility.
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I INTRODUCT10%

A
NUMBER of important phNsical phenomena mas be
modeled as discrete-time dtstnbuted parameter sss-

ter_ U hen estimatiar, problems are encountered in such
systems the measurements are also frequentl\ discrete in
time .A treat deal of work has been tamed out or. estima-
tion., pr,,Hcfn< for com:nuous-time dtstnbuted parameter
sxsrerr . ;1' is' Tzafc>ta , 1`;. IP] and Nagaminc r a.' I-]
ha,c de:ncd optimal estimeton for discrete-time distnh-
utcd panmcter ssstems Tzafestas emplo%ed a Ba,esian
approach. where Nagaminc ei a.' considered onh, the filter-
ing problem ba yed on the U iener-Hopf theon Recenth.
Bencala and Scinfeld (?; ha,c dcn%ed the optimal filter for
con:muou,-time distributed parameter swernk uith dis.
crete-time obser\auons M the W iencr-H,.pf approach

The object of this paper is ro ufold First. we seek to
demc optima l filtering and smoothing algonihms for dt--
crete-time dtstnbuted parameter ssstems bs a unified
Ntener-Hod' approach Fixed-point fuzed-mtenal and
fixed I-.t smoo:hcrs arc considered Second. we wish to
P.-, pi% the results to the estimation of atmospheric sulfur
dioxide concentrations to he Tokushima prefect_rc of
lapar.

It DESCRIFT10% OF THE DisTitiBmD PAAAMF.ER

S) STEM
t

Let D be a bounded open domain of an r-dimensional
Euclidean space with smooth boundan aD The spatial
coordinate rector will he denoted bs it = ( x i . - x,) E D

Consider a linear distributed parameter system described
bs

ta(k+l. it) =Eaer(A.x)+G(k.x).(k.x). 	 ir ED

(1)

where te(k + 1, x) is an n-dimensional vector function of
the s,stem .l A, x ) is a vecto r -valued Gaussian process. E,
is a tinew spatial matrix differenual operator. and G(A. x)
is a known matrix function

The irutial and boundar-, conditions are given by

er(0. x ► = tro(x)	 (2)

F( 0k-1.f1=S(A + I. J).	 EE aD	 (3)

r_EI i = d"I 1- ( 1 — a(FUa[ j'on	 (a)

where n is an exienor normal tutor to the boundan aD at
a porn: ( E aD and of F i is a function of clas, c, on aD

sausfur,¢ b e m F i e f S(k - 1. j l denotes a source func-
tion al the boundan and is assumed to be knowr.

1111
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Galley No.
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OF POOR QUALITYAswmc that u„(.tl Is a Gaussian random function the

mean and covariance functions of which are given b%
E[u i,lil^ =0	 (SI

where E( J and the prime symbol denote the expectation
and transpose operators. respectively

i-et the observed data be taken at m points. r'.
A*' E D = D u aD and let an min-dimensional eclumn vec-
tor &,I k I be defined by

u„(k 1 = Col[irlA. r'L	 u(k..A-)l	 (^)
Let the observations he related to the states by

:(A1=H(A)u Ikl + e(kl. (Fit

w here :1 A I is a p-dimensional obsen_ations vector at .rie ^;
observation{ points r'. , r' E D Hi k I is a known
p_"irr matrix. and t(A I is a p-dtmenviona! vector-valued
unite Gaussian process Aswmc that the wilute Gaussian
proees, nrk a1 In (It and I ( k i In IS, are statisticalk

independent of each other and also independent of the

initial condition not it I Their mean and eosanance func-
tions are given by

El%(A.i1^=0.	 E[c1A1j = 0	 (91

El In	 a ).'ls. 1 1^ = Q(k, A. t )b.	 x. i E D

1101

f^clk It'Isl^ = Rlk Ib,,	 (111

where b„ Is the Krone:ker delta function and Qik_ a r i
and Ri k 1 are ssmmetnc positisc- semidefirute and positi%c
definite matrices. respectnel

III DESCRIPTIM OF THE ESTIM010 1, PROPLEW

The general problem con,idered here is to find an esti-
mete Li	 x A i of the state tat -..1 1 a' time - hayed on ihc
mcasuremcn. data 	 den.• ing a famil y of :i o i from
o = 0 ur to the present time k Spcofi:al!s for r > A we
h.ise the prediction problem for T = A the filtering prob.i
lem and for r < k the smoothing prohlem As in the i
Kalman-Bucv approach an estimate Li T. x k 1 of ut T. it i
Is sought through a linear operation on the past and
present observation values	 as follows

	

irlr.r'A1 = Ĉ fl r...1.aWei1	 (12)
.7t.

where fi -. v. o l is an nip mainx kernel function
To differentiate between the prediction filtering. and

smoothing problems. we replace ( 12) with different nota-
tion for each problem

1) Prediction 1 r > k 1
t

ii(r.a'A)=	 I A( T. it. e ):( a 1 (131
.mac

2 1 Filtering (r = k I

G(k.a/k)=	 F(r. it, e):(o1 (141
..o

3) Smoothing (r < k)
i

.,.,,	 irlr.a/k)=	 aC. B(T.k.A.vWa (13)
..o

The estimation ertor is denoted by ti(r, it/A!.
iil T•r'AI—ul-.r) — u( r -r 	 1) (IGI

The estimate ti( T. it	 A ) that m , nirruze•

1(4) = El	 Li-	 1	 k 1	 •1 (1^1

is said to be optimal. where I 	 • I	 denotes the	 Euclidian
norm

IEEE: SYST., MAN, CYEERH,
Vol.	 Issue
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Theorem l (Wiener-Hopf thorn i A necessan and
suffiornt condition for the estimate i t -..x 'k ) to be opti-
mal t> that the follo,stng 'tener-Hopf equation holds for
a=0. 1.	 kand x ED.

FI T .x.o1E^:(ol:'lal^ = E^ul*. x):•(al]
•=G

(IB)

Furthermore. (181 is equtxalent to
E[G(T.x!k):'(a)] =0	 (19)

for a=0. 1.	 A and aED
Proof Let F,(-.. .%. a i be an o f mains function &A

let i bt a scalar- . alued parameter The trace of the co%an-
ance of the estimate

i
6,(T.x/k)=	 (F(r-x.o)-cF,(T..x.o)) :(al

e=c

is green b\

!(u,) = E u(T.x)-ii(T.x!k)-rte F,t(r.x.o):(o)
.=o

ff	 i

= E[ 417. x A I =^ - 2rEl u'(T. x 'k l C Fx( T. x. 0 ):( o l^

f	

11 l

	

e=r

- r . EI	 F,1 r, it. o 1:( o)

A necessan and sufL;tent condition for iilr.x!k) to be
optimal is that

a.n c, )
=0.

that i,

for an.• .x,,- matrix F.(T. x o i l sing the relation between
the trace and inner product yields

Ef ul T .x AI C Fj1 T. A.a l:lol
l	 e`r

ffff
= trlElulT.A,kl r:'(0)Fl(T•x.0)

`` 11	 •moo

tr I El u( T. x "A ):'( a 	 Fll T. x. o
e='

Setting Fri r. A. A i = Elu(r, x%k):'(o)( in the abo\e equa-
tion. it follows that (19) is a necessan condition for
iii -. ; k 1 to be optima: Sufficienc_s of ( 19 1 also follows
from the abo\e equation 	 Q.E.D

CoroVan / (Orthogonal protection lemma) The follow-
ing orthogonahtx condition holds.

Eliit T. x 11. )6 q. ) . ,, A )] = 0,	 x. ►  E D	 (20)

where $ is am time instant for example. t < k. j = A or
j > k.
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Proo' A1lultirlsmg each side oft Ior bs its.). at and
summing from r = 0 to o = A %telds

	

£Itil+. s At	 :'fei	 i. 1.01^ = 0

Suhttituting i I: i into the above equation veld 1201
Q. E D

Then the followtng lemma an he prosed
L.rm-w L (Uniqueness of the optima l kerneU Let

t( , . %. e t and At . s o 1 - \(,, t. o) be optimal maim
kernel function s satisf%inF the N tener- Hopf equation i 161
Then it follows that

	

A I T. 3. 0 1 E 0.	 a = 0 1.	 A and I E F. (21 )

and the optimal niatm kernel function i t +, s. o ) is unique
P,w , From i IFi %e ha—

^' (f~Ir.a.el • 1►'(..a.ellL(I:IrI: (all

Thus.

r \ t+. t.oIL(:lol: (a)j = h

AfuLir'•ri: ca,r side of the ahrse equation b% N (+, a, al
and summing from a = U to a = A sicWs

r \I+.^ nlii:loLlolj \ 1+ I a1=0
.-o.^t

On the other hand from (Si and 111 i ur hast

F;:(nl: test) = HirlL^o • irtt,_tes t )Hial	 RIME•,

Thcii it folio-As that

C C \i- I rlHirl£(t. • l0ln- t a 11Hlal\It.s.aI

r \I, t rlHirlRlriHtol \ I+.s o1 =0
.`I

Since hoth terms on the nghi side of the &hose equation
arc posit se-semidehnur beuuu of the poswU c-deflmtcness
of At r i a necesvn ana sufficient condition lot the chose
equation t, , hold is \• I r v t< 0 o= 0 I	 . A and I E
D Thus the proof of the lenimii is complete	 QED

In otdct to fa.iluate the dcnsation of the optimal esti
marots tie reunte i IF, to term, of the following cotollan

Cevv.'wn : The W inner Hor' equation (IFi is rr%nnen
for the prediction fdtenng and smoothing problems as
Issl l,^u s

I i Prediction t • > A t

C Al*. t.o)f(:Irl:'Ink) _ £(t+l +.rl:'lalj.

• 	 (221

for a=0.1	 A and iED
2 1 Fdtenng 1 + = A I

r fl A . a.e IF[ :lol: (al) _ £(ulA.al:la)j121

fora =U 1.	 .A and AED
31 Smocithing t •	 A t

a
;, L1 • .A a,elE(:lel: lalj = £(rl*. alol)
..c

1241

.,..	 for a = 0. 1	 . A and I E Lr
In %hat follo%s let us den ote the estimation rrtor eosan,
an,v mains function M Pt+ i. I A I

P(+. a I A t= E(ir( +. s Ali(,l+ I All	 (:51
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ORIGINAL PACES C

OF POOR QJALIV
III DERi%ATIO-,Or THI OPTIM41 PREDICTOR

In this section wir deme the optimal prediction estima.
for hs using the Wiener - Hopi theon In the prev-ious
section

Thearem : The optima] predicuon estimator is given by

	

Y(A+I.x/A)=t,Y(A.x /A1 	(26)

	

1 7r0( A+ 1,J/A1 = S( A+ 1.O•	 (EaD. (27)

Proof From (22) and (I 1 we have
I

	

Atk+ 1. x.a)EI:(o):'(a)]=E	 k. it	 (o ► )

since %14. x I is independent of :(a I. a = 0. I 	 A From
the Wiener - Hopi equation ( 2 31 for the optimal filleting
problem vc have

S (A(k+l.x.o)-E,F(A.x.ol)E^aol:'(a ► ^=0.
.=e

Defining N ( k. X, o) b%

lt lk	 I.x.vI= Ali -I.x.o) - E,F(A.x.al.

it is clear that A(k - 1. it a I - Kilk { 1. x. a 1 also satin
fie, the Nkiener - Hopf equation (22) From the uniqueness
of At  - I. A. a ) by Lemma I it follow: that .t(k -
1. x, o) = 0. that is.

A(k-I.x.o1 = E,F(k.x.A1.	 (28;

Thus. from (131 and ( 141 vice halve

CIA-1.t/k) =E, 	F(o.A.oWoI=E,ii(k.x/k).

Since the form , of TI and Si A - 1. ( I are known. the
predicted e,umate u( A - 1. ( A 1 also sau+fic• the same
houndan condition as (31. r, Li A - I. ( 'A I = S( A - 1. ( I

( c c!' Thu, the proof of the theorem i , complete Q E D
The.-e,,: ; The optimal prediction error co,ariance ma

trn ' .unction Pt A - 1. x. % A 1 is given M

	

PIA- 1. x..1 A)=E, P 1 A.x.I A	 0(A.X.1 ► .

(29)

rt P(A+1. f. )/k1 = 0.	 (EaD	 (30)
a here

Q(A.x.iI=GIA.x IQ( 4.x.3)G'(A.r)	 (71)
Prop! From 111. (161. and (261 it follows that

GIA - I. x %n l = l,u(k.x/k	 C( k. A I%(A..1
(32)

and from ( 31. (161. and (27).

rt u(k - 1, E/k'=0.	 ( EaD	 (33)

Then we have from (3) ( P(k - 1. x, I lk) = E(0(k -
1. 2 . 4 Id 14 - I. .1/4  )) = , P(A. X. ) /k IL; + Q( A. X. ) )
and from (33) E(rt u(A + 1. 1'k )C*(A + I. 

'
t 1k)) =

f i P1 A - I. J. ti /A I = 0 Thu, the proof of the theorem is
complete	 Q, E-

IV DERIvATIO-1 Of THI OPTIMA!. FUTEP

Let us denve the opts -ial filter bN using the Ween r- Hopf
theorem for the filtenng problem From (231 it follows that

FIA - I.x.k ^ I)E^:(k+ 11:'lal^

-	 F( A + 1. x.v)E[:(a1:'w]

= E[W(k + 1, x ):'(o)] 	 (341

(of a=0.1	 .A - I

1-- •.--
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From ( I 1 and the independence of : f '' and %I A - 	 1. t ). ORIGINAL FACE IS
it	 follows	 that	 EIwk -	 I	 t):•(a)) = c,ElWk.1):•(a))

OF POOR QUALITY
Appl%ing the W'iene- - Hop' equation (23) to the right side
of the shoe equation yields

E[u(A - 1.2):'W] = E.	 f(k. x.a)E[:(aW(a)]
• ` 0 IEEE. SYST., L*.AN, CY:figN.

(35) Vol.	
1".

Furthermore. from ( g ) and the whiteness of elk + 1) we  /t 	 ^`
L^ha%c

E[:(k + I): y al] = H(A — IIEju„(k — I):'(a)].
s

Galley No.	 E

Let us introduce c ,1 ) and 	 )-; as follows.

(36)
0	 ^.-„ J

and

Then from ( 11 and (71 it follows that
u„(A —	 1!=E	 u„(kl—..,(A)	 (M)

w„IA I = Col[G(4. %')M(A.x').. 	 .

AG(A. x"h,(k. x")].	 (391

Then we hase for o < k — 1. E):14 — 1):'(a)) = H(k —
11_,E)u,.tk 1:'(a)j 	 Apph)ng the Nkienv-Hopf equation
1231 ) to the nght side of the ah, %c equation %)olds

Lj:(k —	 1): (all

= H(k — I)., r f^(k.olE^:(a1:Ya1^

(40)

w here

(flk .x.oll
F„tA	 ol= (41)

1F(A. %-.al

Sut• sutuung 1351 and i4fii into (341 yields

s	 t;lA.x.a)Ej:(a): • (all = 0	 a = 0, 1.	 k
.=t

w here

N(4.i.o1=F(	 1.A.A- I)HIA+IK	 F(4.a) (c k

— L,FIA.x.aI — F(A-	 I.A .a)

Since it is clea • teat	 ft A. x. o) — A;i k. x, a I also satisfies
the Wlencr-Hopi equation (23)• it follows from Lemm. 1
that %,t:	 t c ) = 0 Thus we ha%e the following lemma

L.rmoic :	 The optimal matm% Aerricl function Ft k. x, a)
of the fi1te- is g)ten h\

F(A + I.x.ol = L,F(k,x.ol

— Flk+ 1.x.k+ 1)H(k+ I)t.f (k.o).

o = 0. 1,	 k.	 (42)

Theorem 4 The optimal filtering estimate 4(1. xjk) is
Eisen hs
ilk- I,x /A 	 1)=[,04.x4

+f1A + 1. X. k - I ► .(k -	 11
(431

.( k - 1)= r(k +1)—H(A-	 I ► E,u„(A'k)
(441

G(0. x!0) = 0	 (4-`)
ft ulA —	 1.f	 A - I) = St 	 -	 1.(1	 ( E aU	 (461

w here

u„(k , A1= Coll ii(A.A	 ,A).	 6(k.x"/A)]	 14')



n

v4"11,11.

Propt Using 114) and (421 yield,

to( A-1.t/k- I)=F(4-1.X.k-1):(k+I)

+c,	 Fl A. 0):(0)
.-u

-F(A+I.x,k+I)H(A- 1)i.

r f (k.e):(o)
.-c

Again from (14) we have
Y(A - 1. x/k - 1) = LY(A. x/k )

-f(k + I. A. k - 1)v(A - I).

Since Ac hate no information at the initial time. it is
suitable to assume an initial talue of it(k - I. )k, A - I I as
6(0 + '01 = EIuo(a )I = 0 Furthermore. since we ►now the
exact forms of F t and S(A - I. ( i the boundarn talue
ri(A - I (-k - 1) also satisfies the same boundan condi-
tion as u(A - 1. ( i Thus. we hate r is k - 1. ( A + 1) =
S(A - 1. (). (jaD. and the proof the of the theorem is
complete	 QED

Note that r(A - I  defined bt (44) is rewritten b% using

the prediction talue of t:b) as follows

v(A - 1)=:(A+I)-F(A- 1)^.(k* I/k)(4111

or

v(A -1)=H(A-1)u„(k-1/AI	 r(k-11(49)

where

ii IA-I A1= Coll oA-I,%IIk1.

	

ri(A - 1. r^^'k I^	 (50)

and

	ti,1 A - 1 k i = Y„(A - 1) _ ii^l A - 1 A)	 (51 I
v(k - i i is termed the mnotauon process IF] 19I

In order to find the optimal mains kernel function.
Fi A - 1. i. A - 1 i for the f.ltenn, pr,.hlem we introduce
the foll•,wmg notation.

	

p,lr.x k1=[plr. x. x' %k),	 p( T. 1.a',AI,

(521

and

P( -r, x' A 1

per, . l r s l =

p(r, x` A 1

p( T. x'. x' A )•	 p( r. x', x '/A )

pf T. X . . x i /k	 0(r, )I', x"/A 1

(5?)

!rote from the definitions of p„(+. x /k ) and p(r%k) that

p„I r, a; A l = F[ i( T. x k )i.( -r k  	 (54)

and

p..(+ A 1 = F[G.(+'k 14:(+/k	 (55)

Furthermore. we define the cmanance matrix of the in-
not aeon process v(A - I ) h} F( A + 1 /k ).

F(A - 1/k I = E[.(A - 1)v'(k - 1	 (561

Then from 149i it follows that
r(A-	 4)=Hlk+I)p..(k-1/k)

H'(k - 11 + R(A - II	 (57)

Then the folloring theorem holds

ORIGINAL
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Thea.r,, i The optimal filtering pin matna function
i a- I s A- I t i. Ers en Im

f14 • I.A.A	 11 = P.IA- LA AI

•Nik - 111 '(A - I/A)(56I

14 - I.A,A » I) = P-IA - I.x'A)

t((A+1/A)HI A - I ► R'' ( A 	II

(59)

here

4(4 » I/A)= (I- A(A+ I)P-- (A.+1/A) ) -'1601

id

Itl4 - ))= H14	 11R '(A - IIHIA - I)	 (61)

P,00f From the W icriv Hopf equation 1.?1 it fol-
w> that

FIA	 1. A. A - IIEj:(A + I l:'(A + 1))

+ C Ft 	 1. a.tIE[:(ol:'(A- 1))

ihs • twung 14-'1 into the&hose equanon weld,

F(A • I, a, A - III	
l

£11:14 - 1) - H(A - 01 .

F-IA a1:1e1^:'lA - IIII
.-c	 I	 f

I	 a	 l
E?u(4- I.al-i	 FIA.a.ol:loll:'(A• III

ibsntuung , 14, into the right side of the &hose equation
,' using i`e, and the orthopitalz condition of (20)
rld>	

ll
EI•', ulA-I. it 	 FIA. it. ol:t el l :'tA•I)

= El fit 1	 I. A A 1:1 A • 11]

_ £[ iii A- 1. it A i i,_( 4- 11) H t 4- I I

=P„IA - 1.a AIWA - II

L sing the orthogonalm condition of (2W pser

to	 lid = H(4 - 11£ r„t4	 1 l

A - II^H IA - II - RIA - it
= Hi 	 - IIf._fA - I A i

N (A - I) - At  - 11
= t14 - 1 4)	 (62)

then tie ha,c

FIA- 1 t, A + IIT'I 4 	 1 41
=P.(A-I.a'AIN(A-II

(6?1
This Mi is drnsed In order to shoo the eyuisalence
between 151, and (591, we use the following mama tin•
verso, lemma.

PH (HPH - A) - '  = PI I - N R 'HP

(64)

From (S p , and 1Mi wr hasr

F(A • I.,.A - 11 =p. 1 A + I.x l)

.14	 1 AIH'(A - I)R 'fA - II

Tern 1591 is denied and the prmf of the theorem is
complete	 QLD

The equation for the optimal (tltennf err,'! eosanance
mains funcuoa PIA - 1, a i A - I i no,. must he de-
nser

ORIGINAL ml?.E 13
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A

Theorems 6 The optimal filirT:ng e-ror eo%anancc matns

	

function p(A - 1, A. t 'A + I I n V%cn hN	 ORIGINAL PAGE 13

	

+I)=P(A - 1.]. . /A)	 OF POUR QUALITY
-p-(A + l,a'AW(A - 1)

r - I (k+ I/k)H(A+ 1)

-P:( k +l,) /k) 	(65)

or
IEEE: SYST., Mi%N, CYBEitN.

	

k + 1. a. r/k + I) = P(k -r 1. x. y/A) 	
Vol _	 Mau0

k	 — F.(A+ 1.1jA ) lk(k- Ilk )	 Aix	 L'i4", r3
Oalls l y No.	 -ft—R(A + I)p_(k + I. r/k)	 7

(66)

w here

	

P(0, X. Y/0) = Pu (a. Y)	 (67)
and

rip1A - 1. (	 ri + 11 = 0,	 j E aD	 (661

Proo! From (1) and 11 31 we ha%c

sAIA- l,x/A- II=i(A • I,a/k)
].A. A • I to-(A - 1)

(69)

and from (31 and (4461
ri ii(A - 1.j-k- 1)=U.	 jEaD	 (-10)

Using the independence properi% between v(k + I 1 and
it( A - 1. x , - A ) or u( A - I, i 'A 1 viclds from 1691.

X. 1 %A	 I I = E^ GI A- 1. x A- I 1

Pik

-F(k - 1. .%.A IEI,(A - 1)

•r'(A - Iljf IA - 1. 1 A - 1)
-F(A+ 1. ].A - IIH(A - 1)

E)i:.lk-I A)i(A-i.l'All

H 	 - 1)Flk - 1. 1. A+ II

Using Mi and (63) it follows that

p1 A- 1. a.11 /A + II = p(A - 1.].3ikI
-p„(k-I.] A)H'IA - II
FIk - I. 1. A - 1)

= P( A + 1. X. Y/A I

-P- fA - 1. 'A IH IA - 1 l -I

i - 1 A)HtA - I)p„(A - 1.3 /kl
Thu, (651 is dented The equi%alence between ( 651 and
(66) Is asll% shown b^ using (t4 ) Since the Initial value
iiW. ] 10 of L, A - I x,'A - l i is zero from i45 1 . n Is clear

	

that )s10. z. s %0) = E)u(O, s,/0)) = fd ], t ) Mulnphing	 I	 r
each side of (70) b% d'(A + I, ) /A + 1) and u►ing the

	

expo. in tion vields ri /( A + 1. E. y; k + 1) = 0. j E aD	 f c
	Thu- the proof of the theorem is complete 	 Q ED

Corollan ° si to - 1 'k - I; and f lA - 1.a/k + i)
satisk the following relations.

o.(A - I A	 1)

= r.lA + I/k1 + F.(A - 1.A + 1)r(A- 1)
(711

F(A- 1.A+1)

= p,,.(k + 1/A)i(A	 1/k)H'(A + Oft "'IA - 1)

(72)

or

F.1 A+ I.A+IIsP..(k+11k+11

•H'(A - IIR '(A	 1) (73 ►
P,.tA -i A-11=p..(A-I AI - P-jk+IrA)

J(A - 1/A)A(A - Ilp_.Ik + 1/A) (74)



ORIGINAL PAGE !I3'
OF POOR QUALITY

or

p_ •)A-I A+I1=P_. 1 A-1'klvlA+liA^.

(7^1

Proof From the definition% 141 1 and (50) of F-(  A
I A- I I and ^„t 4- I A i it Is clear that 1 7 11. (7i , , and
(74) hold From (60) and ( 74) it follows that

	

P..(k- Ilk - I)= p._(A-I	 ;q,(&	 I/*)

= F. 	 - I /A W A + I lk)

(I + af(A- I)P-.(k + I!k)

-Ali - I)P..(A + 1 /k))
= p_ - (A - I A )W(A .. Ilk )

Thus. (751 Is denied and 03) is clear from 172) and (751
QED

The present result corresponds t0 that of Santis et at

11 7 1 which is an nbwact form of the filter

Dtiii%AT10% Of TNT Eol ATIO%S FOR THI
OPTIMAL SMOOTNI%O ESTIMATOR

In this se.iwn we dense the basic equa'Ions for the
optimal smoothing estimator b% using the N%icn er -Hopf
theorx

Lrrimic ? The optimal matrix kernel function Bi T. k -
1. x. o i of the smoothing estimator is tu%cn b.
BI 	 - 1.1.01 = B(-.A.A.0)

-B( T .A - 1. A. A - IIH(A - 1)L.f (A. e ► .

o = 0.1.	 .A	 (76)

Peoor From the M'aener - Hopi equation I:dt we hale

a-

B(T.k - I. A.01£[:(a): (0)) = EJu(T.x):ya)).

0=0	 k - I

ai d

a	 ,
BI T. A.x.ol£^:tol:'Ialj = f^ulT.xl:'(al).

V•a

o=0	 k

Subtracting the latter equation from the former wields
BiT.A - l.x.A - lif t,:(A - 1): in 1]

rGatl

a; S^'sT., IAAN, CYBEF1N.

 Issue

y No

1a

A
+	 IBi*.A- I.x.el
V•c

-B( T. k. A, V ))El:(a w(a)) = 0

From iRi and (.'-I we We
1): Ial l = Hl  - 1)t J["_(AI: w]

= H(k - 1)L, r 1_1A_0l

Ek I a WW]

Then It follows trot

•.0

•'}left

A(T.4.X o)= All T.A- 1.x.01-BI r . A. a. a)

-BIT.A - I.x.A-IIH(A- IIi.f1A.a1.

Since it is eastls Bern that BI T A. x s l + NI T. A x. e I
also satnfie, the W ienei- Hopf equation (241. frorrt Lemm:,
I we ha,e k I * A. x. e i = L. and the proof of the lemma u
complete	 Q E D

TAeaee-	 The optimal smoothing estimate itt T. a ; A +
I1 is psrn M

61T x A-11=LIT.a'kI-BI- A-I.x.A- II
VIA-11	 (171

1 1 N+4A-11 = SIT I) . rIEaD	 1781

A = T.r+ I.



Proof Fran ( 151 it ((A1oM % that

iilT.,	 k -	 11	 =	 BIT.A	 •	 I. ,.A	 -	 II:IA	 +	 1)
A ORIGINAL PAGE e '

-7 a(T.w+ l.t.e ► :le) OF POOR QUALITY	 l
Suh%wu:mg (7(.i into the above equation yield,

it( r, t/ A +	 1) AN, CYCERN.
B( -r. k +	 I, t, k +	 1)

r(A + 1) - H(A - I)i.	 F(k.•):(e) )

LIEEEEL^SYZT,

o
..J^

+	 B(T.k.a.e):(e).
••0

Subv1itu8np (I4) and (151 into the above equation yields

a( T. A	 A +	 11 - u( -r . a 1 )
+ BI r. A	 +	 I. X. A -	 1 )r(A	 +	 11

Since	 we	 have	 nr,	 additional	 triformation	 about	 the
boundary value of ul T. a I. except for S( T. ( I and the exact
form r,. we have r; Y( T . G /A - I i = S( T. f 1. ( E dD. and
the proof of the theorem is complete	 Q E D

Theorem A The optimal smoottung gain matnx function
BI T. A •	 1. A. A -	 11 is `i.cn b%
B(T.k+	 I.a.A	 11= L.( T.a/k):'

A	 llr	 A • IA	 (79)

or

Bi	 .A-I.t.k +11= !(T.a/k+II

H - (A +	 I)R - i(A + l)	 (80)
M here

li-Rt(.-	 11r..dA- trkl)-i

(811

L.IT.a	 A1 = ^LIT.a.a	 Al.	 LI *.2,, w 'A1^

(8=1

and

LI T .a.li	 ,'AIOU.1'AI1	 (831
Proof From the Wicncr-Hopf equation (24) it fol-

IoM s that
81  - 1.2 i IIE[:(k - 11:'IA » I1]

r Jill T.A+ I.it. o)Ej:(o):'Ik + 11]
.•i

= E[W(T.tl:'(k	 II^
Suboitutir (76) into the above equation sulds

Bt	 k-1.X.A-I)E[ ►(A+1):'(k+I)]

= E[ii(T, t/A ):'(k + Id

On the other hand. from W i and (491 we have

E^atA - il:'IA	 11^ = E^ ► (A ' 111 ► (A - I)

+H(k ; 1)i.(k - 1 /&))'j

E[r(A + Iwo - 1))

=r(A + Ilk )	 (841

From (81 and the independence of elk - 11 and
ill T, t A I we have

E^ii(T.A/A):'IA- 1)^

= Eft.(,. a/k 16.(A - 1 r A jH'(k - I)

But from (2(, 1 and Mi it folloss .nat
it.( A - 1 ik I _ [.r. A a 1 - ^.( k 1	 (85)

Then at have

=L.(.. a /A K, H(k+ 1)



u , nt^ the W.Uii% tn%etsl. ,n ten;rtL It*t1 11w1 UIC pnK , 1 „1
thr thcswem n .orrsrielr Q.E.D

Let u, now den,r the equation lot L(,. X. 1' /A + 11
sing the onhog„nalns condulon (201 slelds

L1+ I. I,A° I) = El Yt T. t) Y( A ^ I.1 jA 4 I)]

1, uhstnuting (641 ini, , the ahm •e equation scalds

1+ it.) / A+ 1) = Ll T .X. r/A) ;

„1 r. x,^k )t ;f1 l A • I )F •(4 + 1, }. k + !!. (96)

F. ,t	 end (7g) 11 follows that 1 t ut +.1 %A + 1) = 0.1 E
! • Mule ,king each side bs G'(A - 1, )-/A + 1) +nd ta1-
Inb , ...yecut.or •. Meld,

	

r,L( +.1• s/ A + 1) = 0.	 1 E 8D	 (871

Thrn the following theorem holds
TAeorr-• a .II	 r A	 1)1n I8u1 is g1sen b\

JI *.A A - 1) = AT. A.A)C.j(A - I'A) (981

J(T.x,r)= P_(+•A'+) 	 (891

Prw. • From IBM and (5 y 1 it f,illoas that
L„1+ t o	 1 I= L_(+. A K.

(1 - A(4 - 114'(4 - ( A I r_., IA - I. A )1.

But Me ha%e

At/ - 01 1 P= A(1- rAI-1

((1 - PAIR ' - P)

((1- PAIR' 1(

1

= 1 /-API -

Thu,

!,( • 1 A - I  = 1,1-. s)_.

(1- R(A - I)p.,,,(4 - 1 A))

Thercf,,,c from (B11 a follow, that

	

J1- A A - 11= 1,I,.A 4- 11	 (911

and I,;m 1B I, Ac ha,e

J( T. A 4 - 11 = J( I . A 4 1..

(/ - A(4 - I)r--( A - 1'A))-1

Then a lollov,, that
JI T.A ,)= L„I T it f)= p^I, .x e)

Sins (9I) 1s clear from (9 1 1 and l o ll. the prwf of the
theorem 1. complelr	 QED

Let u, now deme the equation for the optimal sma,th
mg enar cosananrr maim function pt +. A, 1 A 1 defined
bs

	PI +. A. 1 /A) = El1i(,, x ;N ► J(,, , A	 (w)

From ("1 and 1781 it follows that

	+ I. 	 + 1)

(9: )

	r,a(+.1'A - l I = 0	 t E aP	 (941

T'hen the lollowing theorem holds
T11ro •rrn 10 The optimal unathing error cosananu

matr, s function p(+, a. ► A	 I) is psen M

^(+ A 1 A	 Il = pl+. A. r;A)

L I+.s'A)f . Ht A 	I 1	 '

A , 1 A )H(A	 I1-.L.(+. 1 iA 1

1951

of

p1 .. 1.1 4- 1 ► = P( . . ,.1 Al

J(,.^1^

	

t A	 I A )R( A• IIJ t *. i A	 11

1^ I

r.PI7.1. 1 1A + t)-U	 EE an	 (971
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•,flat From M?r IT 1COLM7 that
pt - %. 1 A - I I = P (-. 1. t'/ A )

+BI T k + 1, a, k + I )E[ri k + 1 r^
^A -])]BIr.A+1..1 A	 I)

-B(-r. A + 1, 1, k + 1)E[rlk + 1)

• W( r. t 1k)] - El"(T, a/A )r'(k + 1)]
B'(r,k+ 1.^.k+ 1).

El ii(T. 1 'k )r'(k + 1)] = El f(T. a/k)iG^(A/k))

and

E[r(A - Hfili-. %,A)] = H(A + 1)E.L;(r, r!k).

ThuN we have
p(T.1, Y4-1)=p(T.s, 1'k)+B1,T,k+1,1,k+1)

r(A- I /A)B'( T.k- 1. %,k - 1)
-BI T . A + I_%. k + I)H(k+ 1)

E-L-f -, t 'k 1 - L_(T. 1,'A )

.E.H (k - I IB (T. k - 1. r. A - 1).

Substituting (791 inic , the aN we equation yields
p(+.1. r Ik- 1 )=pH.l.)1k)-L„(r.x'k'1_

A --1 )r- III A - 1 'k )H(A - 1),L , I T. c;'k).

In order to derne (961+ note that from (811.

L-(-. 1 A I	 = J(r. l A - 1) i '( A - 1.1k)

and from the mat-:% msersion lemma (641.

H - HFH -R -'H=(I-HR-'HPI-'H'R-tH-

Then w e has e

H (4 	 l lr ',A -  1, A )H(A - I)

= til A -I AIRIA-11

and

p(c.l.t A - 11=p1-.X.I,^A1-J(T.1/k- 11

•4"'(k - Ij)A(A + 1)J'(T,)/k+ 11.

Muhip!sing each side of (901 It% ulr.) Ik - 11 and talung
the expeciatior yield , r ( pl T. J. ) 'k + 1) = 0. Q E dD

Thu, the proof of the theorem is complete 	 Q.E D
Coroh,;,, I AT- 1 A 1 satisfte^ the following relations

	

J(-..% 4-11=A1- 1)J..(T+1/k-11	 (98)

and
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J(T+ 1.11k)=D(T.1)J„(-/k) 	 (99)

where

A.F.:11k)

J(r'A1=	 (100)

JI r. s'/k 1

A(r.l)=p_(*.1 /+)E:p:.'(r +1/T)	 (101)
i

D( T. x) = p.,(T + 1.:/r)^vw.(r/,)E;^" 00:1

Prot.' ! ettina C k - 1) be given b5 e(k + 1) _
E.(l - A(A - 1),r--(A + Ilk 1) - '. from (88) and (89) it
follows that J(T.l,k+ 1)= p„(T.lir4( ,r + 1)0(7+
2?	 mt A - 1i and J.(-r-  I 'A + 11 = p^-(T - I 'r+
I CT ' 2) • • . CA + I I From the above equations and
(751 wt have

J(r.l'k- il= p„(r. x /r)Ol++ I)

From (961 and (99) it follows that Ji- - 1 1 A I =
p. I T - 1. 1 ,- - I lot T - 24	 ti k i and J.i T A i =
p_.i--)*1T-1 * r-2)	 0(A I. Thus wt hale from
the ahm e eouan.+m



,.____- '.,--•-^--ter	 -^+.

JI • '	 I.a	 AI=P^1T-	 I.l'+ » 	I1^1'	 I)l T+ 	 1)

where the follouinj eauahrs denied from (t)( • 1 has been
used.

P„I T + 1. a, + + I 1 = p.(+ + 1. a "r) IEEE SYST, MAN, CY4EAN.
(/	 RI T ♦ 	 Ilr„_(+ »	I /T)^	 1 .	 (1031 VOL hsua

ooThus the proof of the coro	 slla	 Is complete	 QED
ALL  7^

7hrwr-i 11	 The optimal smoothing estimator Is `lxen Galley No. ^F f
hx

N(,, 1 'A) =11(T, a 	•I+	 ^	 J(T,A t1 )1 (I)
lam•-1

..^	 (1041

rt ri( • 	('A) = SIT.E1	 fE an 	 (105)

,&-here

:111 = H'(IIR"'(!h(ll	 0001

Furthermore the optimal smo.ahing cirot co%anancc ma-
Iris fu nction pi T. a. I	 A 1 is En en hs ORIvINAL PAGE

p(,. 1.	 A I	 = p(T. a.	 1	 : ► -	 JI +..T '^	 :	 ' OF POOR QUALITY

(/	 f-	 I hot I1!1	 .c'1)	 (10'1
rt pI -r	 A ► =0.	 (EaD	 (10F)

Pros. , 	 From 1 '1 and ( goi	 01CM	 car he dircctls oh
tamed and from t act (10') is clear. Thus the pr.x,f of the
theorem t^ complete 	 QED

I	 St NxlxM) 111 THI OP11%141 S MoOTHI%G

A	 F:xr•I A-	 Sm,ti • : hr • 	 = hut.:	 A = r -	 1. T -
_	 1

Thr—r, :: The optima' fixed-mint smoothing exuma
tor is F"rr l`^

rl,.x A-• 11=u(T. a A I ♦ JIT,a A+IVIA • 11
(INN

AT ., A 	 11 = J(T.1 AI_.:IA - I AI	 (1101

	

:I A' I A 1= (! » Rl A	 I Ip,,,,l A	 111 i 1111 1

	

J(T., +1=p^Ir,a;T)	 Ili:l

	

r,ri(T,(A-1)=SIT.().	 (E an	 (111)

rt J(( a A - 1) = 0.	 ( E M	 (1141
Furthermore the optima! fixed-point smooth:ng error co
xaname matrix function PIT, A. ► A - 1) Is gnen M

rl T . it. .1 A » 11=rIT.i.x '4I-J(T.a A» 1'^

	

(A » I A IRIA	 I1J 1+. I A » l l	 (1151

rsfl + .(.Y;A+1 1 =0 .	 (Fan	 (1101	
.a

B fixed lowen4i Smoothing Estimator to = ftaed. + = A

From Thcvrem I I n follows that

1

` J(r + 1. it Il ► (!i	 (117)

and

r( T -1. s.1 A1=p(+'I.A.I -r

11+ + I.l 1w -i (t 1- 11

Rl l!I-' l I '1)	 I11F1

Then the follo%ing theorem holds



rhnoem I i The optimal flaed-Inlena] sm.vthung esu
mator I. Ten h%

	

4i( I, 	1.,!k)= ti(r. I,A/t+ 1)

+A(r+ 1.a)[i„I ► +2/A)-0„(r+2/r- 01 (114)

	

rro( r - 1,1 4 ) = s( r+ ).E).	 Etn	 (120)

Furthermore, the optimal fixed tnlemal smoothing error
co%anance main% fun.uo: t% glen h5

p(r+ I . A • 1 A ) =p ( * + I. s. ► /t +l)

- A(r+ 1.1)(p..(r- 1'A ►

(1:11

	r t pl+* 1.	 'A	 0.	 EEaD	 (1:.I

prno! From Mi and (1171 me ha%e

But from Theorem 11.
Y(^-2.A	 2. x'r-2)

- r !(r - :,A I)flIl

and frorr IJ }I and 15u1

-Y1 • - _ 1 , • II

Ihu. re hs%c

11her, me ha%r

From i QS! and i I I
p(, • I. A.1 A1= ('(.-1.1.1'1 -II

-A1r • 1.11 ^ J,1++2 ,1 `

Al r - I.^1

From Theorem 11.

!Ir -2.,^1 ►^ '(I/f-1)R(1)J(r-2.);1)
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and from 1(6I.
p(T - 2.x. r/T+ 21 =p(T+ 2.x. )'/T- I)

—p.(T-2.x,,t- 00-r- 2;T+ 1)

A(T 4 2)pw( T+2.)/T+ I).

Taking into consideration that. from( 1031. AT + 2. x/T +
21=p.,(T- 2.x T -1)v(T- 2, 7- ]land

J„(T+2;!)y-'(f//- I)R(I)!;,(*+2/!),

we ha%e p(-r	 Lx.I , 1kl = p(T- 1. x. t ,/,r	 ll-A(T

- 1.x1(( ,.IT-2/A)-pt+-2/T- 1))A'(T- 1.1').
Since tLe boundar% conditions (1201 and (]_2) are clear

from ( 105) and (1081. respecuvel .̂ . the proof of the theorem
is complete	 Q.E.D

C Fixed-lac Smoothnic Esumaror (T = k - 1. k = k - 1
-J.J= (lied i

From Theorem I I we have

ulk - 1.xJ- I - JI = 0(k - 1.xj+ 1)

x'!Ir(/1112 3)

.p(k-1.x.y'k-1-JI
=p(k-1.x.14-11

-	 il k - 1-1 , -1 ^ - .

IlI IR( I1jrk + 1. 1.

(1=a1

)F POOR	 ; Y.
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Then thr folto•1ng theorem holds
Thnvem 14 The optimal fhud-lag smooching esurnator

is g1%en by

r(A+I.z'A+1+!)

C.i(A.ziA+Alt C(x.k + 1.a1
F(A+1 + e/A+I-A)P(4- I -*A)

1*Q.(A. x P.«I A,k)C:)

(ijk,4 + S) - ijk/k )1	 (125)

	

rt ii( A - 1. 4 k + 1 - .%) = SI A - I . ( ).	 ( E aD
(1:61

w here

C( A. A + 1. Al = A(k - 1. %)A„(k * 1).

	

A„(A + 1)	 (1:7)

and

Ali. z'1

A„IA1=
A`. x")

Furthermore. the optimal filed-lag smoothing error cosan-
an,c mains funcuor pl A - 1. i i A - I - AI is pscn
bs

rl A - 1. x.

F.( A - I -	 'A - 1 - IH1 A	 1	 91

r,_1l-1-^ A-^ICYr.A»LEI-D(k.x)

^r.._ 1A A I -P^. IA A	 DIA. r1	 (t:81

((:vl

Proe l From 1431 and (59) Ac hest

From 112 3  and i:,e shosc equation it fotlous that
i.l 4 - 1.x/A + 1 +A) = C.04.x141

r JI A - I.x'Ali•(I1

+J( A+ 1.x'1	 1-A)i(k+1+^1
From (RF 1 it follows that
JIA- l.x'A- 1+DI=r.(A- I.x/A+1)

E a;(A » 2,A* 1)

.ti(k +2 +A /A+I+D).

IECE. SYST., MAN, CYdERV.
Vol.	 1"uv
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Substituting ('5t into the right side yields

Jlk`I.x-k+1-JI

= P.1 A + 1. x/k + I^[;p;,(A + 2/A + 1)

-C:04+2+A /k+1+A)

Repeating the same procedure and using (101) yields

Jlk - l.x /A+ I+ A)

=A(k-1.x)A.(k-2)•• A„(k+A)

P.. (A+1 -	 +^).
Thus we hase

AA•I.x'A+I+p)
;(k- 1 - A1=C(x.k	 1.A)P...(k- 1+1.1A+1+pl.

11?('I

From 1991 it follow s that

A - %

	Jl k - I.xjll^If) = 	 P.(k+1.x/Ai
/c1-I	 r•A - I

(p,,,(k/A)c;)-tJ,,IA'I)t`(f)

But from ( 291 we hase
p.(A + 1. w,/A- I = c, p, (k. x : rk ):: + Q.(k . x I

From OF  and (991 we ha%e

J(k.x !1

	

= P.	 1.: P.. ( 	1'	 J 1 k .'f .

Then it follows that
A-	 1-^

r JIA- 1.x /)i111 = C, 	J(k. x'I) (I

-Q^(k.xl	 (p, .1k Ali:) tJ„(k'II;(I
r-A-i

-? j

J^

ORiG'NAL F'NG = 11
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and

silA+ I.r^k+1+D)
=t.,si(A.r'A+A ► -C(A.A+ 1.A)

F(A - I-9'k+l-.1)r( A +I-A)

+^j^(k.a)^p..lk^k)C:) i L J.(k'1)jll)
r. r-

But from Theorem 1 I we ha%r

.•s
w„IA'A+^I-G^(k^k)= ^ J„(k.Nlr(11

Thus we halve 11251 From (65) and 0241 it (ollcus that
p(A- 1,a.)'A-^Ji=p(k- I,r. ►'/AI-J,-J.	 14

where

J'(A

J.=J(A+ I.r'k+ 1 - %)4 -t (A - I+A-k+.11

R(A - I - J IJ (A + 1. r1k - I - J 1

From (751 and 11301 we hs%c
J_ = C(A. A 	I.Jlr._(k+IT6I	 I+d)

A.Ik - I - JIr,,,,lA- I+^'A ^JI
Cli.k - I.JI

=C(s.k	 1.JIF( A+1-J A- 1+J)

H(A - I - J ),r.,-( & - 1 - A'k + 91

Sub.titi nng (QQ into J, yield,

J, = D(A.	 I	 J.I A 11^ -'(/ I - 11

Rll1l1( /)DIk tl

But from Theorem 11 we ha%c
p(A.A.I k-JI-p1 A.x.i AI

- J( 4. s -11t: " i ll'/- I)RII)J'(k, }/1)
r.. • i

and

r J„(A'IN 'II I- I)R(1)J„(A'I).
r•i-i

Then we hase

p(A-1,x.)A-1+	 )
= fl k - I.a.Y ,/AI-CIA.k- 1.A)

F.(k+ 1 4 A I + I+JIH(k+ 1+S1
p._(k+ 1+0/k+I)C'(^.A+ 1.A)-D(A.x)

I p.-(V'k ) -p..(A/k 4 A)]D(A,)).
Since eht boundan cond Cons (1261 and (1291 are cleAr
from ( 1051 and (10l,t. respectisel5, the proof of the theorem
is complete	 Q E D

Kel p and Anderson 1191 proved that the foied-lag
smoothing ugonihm of Theorem U ma\ be unstahle but
Chirarattananor. and Anderson 1191 densed a stable Ver-
sion of the algonthm It is possible to den\- a con,parrhle
version here. althouEh siabiht.\ problems shca , ld not anse
in our use of thr alponihm of Theorem to as lonk as it
used over a firuic tame internal
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IX. A►►LIC'kTIO% TO EmmAnoN of AIR
POLLLTIO%

Dlstnbuted parameter rsumauon theon has recenth
been applied to simu!ated air pollution data to demon-
strate the capabihq of estimating stmosphenc concentn-
uon levels frc n routine monitonng data 110). Jill A
problem idenufied in these# earh studie% was how to
specify the statistical properties of the assumed system and
observation noise In this section we expand upon the pnor
studle\ in two respects First, wt consider actual monitor-
ing data for sulfur dioxide (SO2 k m particular those mea-
sured each hour dunng the penod December 1-31. 1975 at
four locations in Tokoshima Prefecture Japan (see Fig 1)
Second we appl\ the method of Sage and Huss 112) to
estimate the unknown noise oovananees in the system

	

equation and measurements	 Fig I
Hourl\ sulfur dioxide data are available at the four

locations shown in Fig I for the penod December 1-31.
1975 The data for da\ it at location i ma\ be denoted b\
e,( x'. it It is useful to avenge the data for December
1-30 to produce

I	 s0
(e(x'.r ► ' = ^ ^ rs(x'.r)	 (131)

where wY will consider December 31 as a da y_ to test the
alsonthm,

11 it can be assumed that the wind flows are such that
there are no north-south \anauons of concentration and
that \enlcal mixing is rapid enough to ehnunate vanations
of concentration with altitude then the region can be
considered to be one-dimensional alorg the cast-west coor-
dinate The S0. concentration at aa\ particular time can
be assumed to he dewnbed by the atmosphen, diffusion
equation 1131

a^	 ar
	=o Q—̀ -Sl.t.rl	 (1321

w here i is the wind sekxitv a is a diffusion coefficient
and S is the rate of enussion of SO- as a function of
location and time

	

Equation 0 rl i holds at am instant of time but we
	 xt /

desire an egavion go\erning the month)\ mean concen
tration (c` Although no such equation exists. we can
formdll} sserage 0321 o%cr the 30 reahanom (dais) to
produce

a ),/	 =/aa-r^ s	 (1331dr	 `
;8r

ax	 1 a,.
e

-

One o:yeci will be to estinute the diffusion parameter a
Thi\ parameter will in general vary with location and time
of da\ although for simphcit\ we seek a constant value for
the mono. Thus. the first term on .he nght side of (133)
becomes a a = i r jinx - U'e can form the residuals. u _ c -
(r) and : = r - (r /'. B\ subtracting (133) from (132) we
obtain

au	 ar	 ac	 a-"

T,"' ax - ;a.1	
air=	 (13;1

Since wind data are not available with which to "caste
the second and third terms on the kit side of 034 1 let us
rewnte (134) as

ai. = o a-y + w ( x . r)	 (135)
ar	 a:'

w here at x. r I includes those unknown features assoiaated
with the veloot\ terms

The boundan concituons on (132) are

	

ac = 0.	
a = 0.1	 (136)

T

expressing the assumption that there is no diffusi%c flux of
SO- mte or out of the report at the boundanes After
a\rrapng and forming the residual ( 1301 become,

	

a^ 
= o.	 x = 0.1	 (137)

ax
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The problem is now to estimate u( t. i) based on the
data.

	

A(t.r	 r,(,I.	 ,=1.2.3.4	 (136)

Since hourlN data are &%actable. (135) an be cut Into the
d screte-ame form ( 1)

m(k+1.x1=I:,r(k.a)+r'(x.r) 	 (139)

with c = I +ad r 2x 2 Obxervation ertor is estimated
from the mean square error of predicted values and ob-
served data

^.
PA(i) = ^^	 (:,(AI—:,(k'k— 1))', 	 i= 1,2.3.1

..i

(140)

An index of overall estimation error is

J = F PA(t)	 (141)
0.1

To appl% discrete-time distributed param-ter estimation
theon to predict air pollution le,cls we must consider
thine problems The first problem is now to simulate the
dismhuted paramete , sy stem The second is how to de-
termine the cosananccs of sssiem and obsenation noise
The last is how to determine the diffusion coefficient n For
the first problem we use the Founer expansion method and
approvmate the onginal distributed parameter s y stem bx a
finite-dimensional system For the second problem. we
appi) the algonthm of Saee and Husa 1121 that necessitates
the simultaneous application of the optimal filienng and
smoothing algonthms For the third problem we app!% the
maximum bkelihcxA approach in the smoothing form 1141
We now consider these problems in mote derail

Fourier Expans,or. Method It is well-known that the
stair u,A. tl of the distributed parameter s y stem (I?9^
w-ith boundan condition ( I?'t can be represented b\,  using
the eigenfunctions p , ti 1 a., follows.

	

u(A.x1=;U,lA)O,Ix)	 (142)

when r	 +
C,o . lAI kolt ► .	 xE,(0.1)	 U

a

	

aj	 0.	 E =0.1

and	 (143)

J , oIx lip, lx)ti, = a,.
i^

A , is the eigemalur of i, corresponding to #,(x 1 In thus
use. it is toils seen that the ngenfunction #,(x) and the
rigensa!ue	 are g,sen bs

	

o i f x l = I.	 0.1	 ,2 Cos r.a,	 i = 2x..

ORIGINAL PAGE" iS
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and

Then d(+. x A I. p( +. >^ / A ). and Al r. x) can be rep-
resented as follows

tilr.x'k	 b„(r /k)0,(xl

A( *.x) = ac. aif')#,(x).	 (145)	 =
Al



Let us approximate thc.e infinite expansions bs the first A
terms and define the following matrices and sectors. ORIGINAL PAWS L%;)

io( +; A) = Col	 i,,(+/k )•	 st„f r	 A)]. OF POOR QUALITY
A(+) = Col

A = di&S	 A,.	 A„ I

Cn( +/k ).	 . D A s (+/k ) IEEL SYST., MAN, CYBERN.

P (+%k ) = VOL	 fssua

Dot(•/k),....0.^(+/k) Air-	 CT! "-t tv

9nik ► ,...,Qt^(k) GaRey No.

Q(A)=
9stlA ► ....,4^s1A)

and

m=

where q„ IA I denotes	 the (t. 11th	 Fourier ctvfflctent	 of
QIA. x.	 rl

Then. from Theorems 3-5 we have
G(A+ Ilk -I)=Au(A,'A	 -F(A-1)r(A-I)

F(A-1I=P(A+I/A)0'H'(A-I)

[H(A - I)OP(A - 1 ' A )4'

A-	 1)	 Rik - 1)]

PI A - I ,'A ) _ A Pf A 'k 1A' + Q(A ).

Pik - 1/4	 11 = (1 - F(A - I)H(k - 14

.P i k • t, k)	 (146)

FL,thermotc from Theorem 12 we haic f j
til* - i	 Al= ul: - 1A II - A tr - I10(u(+ -2 . 41 2/

A(+-11=PI--I.'+-11.1P ' t(c-I • Im ^.

Pt+ - 1 A1= PI+-I'++ii

-A(+- Ilm(P(+- 1/k)

-P(+- I /+l)mA'( + - 1)

Nate inai the fixed-interval smoothing estimator does not
depend on the matrix m which reflects the effect of sensor
location

liete•munauon o f the Aotse Cotonancei In order to
deternune the unlnoun cosanance maincts of the &stem
and obscrsanon noises. we adopt Sage and Husa's alga
nthm 1121 giver. M

QIAt= I
 ^(L(1/k)- AkO-1/k))
t.i

(6(1/k)-Au(/-1/k))'	 (148)

and

A(A1=	 (x(11 -HO)Ok(1/k))

(:(!) - H(J)md()/k))'	 (149)

	

where QI A t and 1)t A i denoter the estimated values of 	 L-

	

Qt A 1 and Rt A I. respecusek Note that in these idenufiea-	 -tc.
uon algorithm the fixed tntmal smoothing estimate u( / 'k )
is used

	

1JentAconon of the ynAno.'n Pa,omeie• o To detertrune	
UCAf

the unlnoun parametFT o ue use the maximum h ►elihood
approach in smck thing form 14; The log-hlehhocd fine•
uon v(A a t is given from 1141 h)

I
Y(A.a) = Tlls,.-lr l	(1501

l•

t



rherc

AT In (:-I -	 In det =,11.'1 - 1: a 1

,
y • - -	 {r'(r.a1R '0(1.0)	 (till'A. +)

- G(1- I k.all'Q - '
Y( i - I A. a))

I al= FlrlI.aW(l:aI].
rherc p is the dimensio . of :(A 1, and iii i A - 1. a i
denote- 4 , w - I i under the condnror. that the unAnoun
raram0ter a assumed io I,•e

To maxinure ytk. al uc use the foll, o rinj Stadieni
method

a—	 a -G(iIYL.a.
?,(k at

ya lA.a,l =	da(ISIr
u••

where Grit is a suitsMe maim Therefore ssc adopt tht
fo t lormF recursise algonthn, to idcntifs the unknown
r.i • ameters Q. R. and a

I t Mate an initial Sues, a, of a
:1 Comrutc	 ^ and R. d , r Ps wing 1 1451 and t la°I
?r Comrctc 4 tv% usin j t Ibi
4, com%le C' 1 an, At  1 M using 110 , and 14°,
'i Rvurk thr:e M changmF i to i - 1 and repeat until

the,c salue• do not change

^id-ie • ,oa. Relw'i- 11c use the oPsersed data from Dc.
cem`: • 1-i' ide- '• the unkn,Mn r^-jmcte- a and
noi,r eosanan.c , Q ah.i R Jkfte- four iterauom the al li -
rithn for drtermininF:.omergc,'. u- the salue d = GWI
The Fouric, exran,wr hr Peer. trunated at \ = 4 The
e,rmatrd dtirrial element , of none sasarian.c mairi,c.
arc

Q.. = t ^	 R. = fi =°

To eonvde • the effect o' the nurrtr and location of
m.nr1 !ing station, Ac a , %umc that re hate data at onk
one mo miorrnF srai -. Ir that case from the prest. I L-
re.uli, of Kumat and Seinfeld 115] and Omatu e1` a/ lit
s,e expert that the ortimal sensor locatioe is closest to the
hounds-\ Thus co her a' or a' is the optimal single sensor
L.,dinor anon; the four mon tcmni; stations i ' 1 - i	 t'
In TaNc I ur iho%s the salue, of P.4iiI and I for useral

montionnS station, N e see that Aizum, or klrtsush,Fc is
optima' for the one-pint sensor location case Sirrular
conclusion • hold for two or three monitonng stations
Finals re illustrate the actual oP,r-\atwn data and one-
hour ahead predicted salues for De:emPer 31 in Fig, 2- 5
for Auumi Iutajillma Karauch. and Matsustugc. resra-
tisel\

Con pa^nn^ wit ► Othe- .I pp ,oachr , It is o' intereti to
eomrare 1`06111 of the present filiennF and smooftri j
sppfoaches with others asailaRle for air pollutior estima
tior At consider theref , o-e the Lame SO. estimation
rr Plem M the follnrin(; methods 11 AR-model :i per.
si.ten:c and )i weighted en,emMe

The 4R-mode method is bawd oh the follouing AX p i

modr'

1 = 1.2.3.4	 (IS21
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where the v; s are the concentration levels at time 4 and
at mnn , ^onng stab; n s . a, a. an are the cone
spon0eng AR•parameurn and thr r • s are re • li:ual , %%c
usiri the Levinson algonthm todetermine the Ali .

rarametcrs •hilt the opumal order p (d the AR-pracess is
determined M using the minimum Akalkc's information
enterlor. i AIC I 126, Then the one-hour ahead predicted
concentration a Eisen by

	

= 01114'11
t 	

'aru,-i	
(151

and the prediction error variance Is

	

j i Z4 .C. (u.	 ui a 1 h	 ( 1541
I l	 awl	 1

Table Il shows the AR-parameter , and minimum AI(
value a: each monu,nng station

The persistence method consists mereh of using the
oh.ena;Inn dal. v,"., a , the one-hour ahead predlcn,n
value id

The Mc • ehtcd ensemble method use , the mean of the
past obsenatint. data al each time 4 wcighied h'. a hnear
fun,tlo c e! the sours strength as the prediction value a:
time 4 Based or. the number o! enusston source, the
weighting function, are assumed here to he 0 15. 0 41 0 :6
and 0 16 at .t'. c ". . s I A n . respecti%ek Tablt 111 show s the
performance criiena of the four methodv From Table 111
we an sec chat the preen. meth,,d posse•se, almo,! the
same accuse% as the A.R-model method B, mulupking
ea.h elgenfunction coeffi.ieni by the corresponding ngco-

fun.!:,r, and summirg them howc,r. the present method
enable us tv estimate concentration , o,er the enure rc
p r; Therefore the rresent method is more powerful thar.
the AR-mode: method

C•: Co%C Lt stow

( t-' -,., r::mators for dlscrete•imr dismbuied paramr
ter sv v!cm , have beer dcn. e: heed on 'Ik loner- Hop!
the;rs A noti"Ir ro;ni M the prevent wort w that the

i estlmat •r• hoc beer. dcroed bs the same ap
proact a- the filter thu , prnvid;ng a ur-:feed aprroa.h for
th , cis , • of do—huted raramrtcr evt;maiion pr,birm,
The e,timarlon algmnthm• ha,e hccn arrllcd to the pi,•h
lem of prAicting atmosrhenc sul!ut dioslde leteis In the
Tokuvhinla prefe:cure cif Jrpur

REFEtII %CEs

I I	 R r C u •:. r ' A w •, e, of mf r - down...V... Lltmn! S14 t!
Ar .,.• 1 • n. ? rp " 1 -4 1. I•
1 sr. arat.. T Soda and S Omar "MO&Lnii OUmabef. and
T)" • Alrl„uIM. foe O„Int.tued ►uamele • S,.1em.' m L#  1
%. 'e ,e (1.,' •n an.! /11,e1•,.w— S	 e1 1 1	 F.P. 1 Mk
Sr---.c lo'$

jt A E br ,a. and) H Sr.nfel; "[ht:nnulee puametr • Guenoa
tx,.ndJ n „ K W d..:1e1t erKmaLC.n •' /e' / S IIrwU S,. .r.

la' ) S Mr: ar. "A sum p n! du• ut o ikni fe1 L•nru and nemLnra•
d ,na	 • ,•loin•` anneun.0 .e' V b 	 pr 151 -1t. la'•

•	 Sl 7e.'r,v "b,e.utn ar•rrM:r to d•I•,ruttdru/amr:r•hllr•
,n( tin .Itr.ntanq' In: 1 C'wu •e o. I! w• : Pr
I!

IF,	 -Oo orumai dulnnuled lowwwIr filleno( and Cued
mtem a:'mmihnlj lo • cnlMre near' 1[Il 7 ,m Ao„w C one,

H o-aram,or S Omit!., and ` Srwd. "The ori.ma' hilena(
ptc,w, Ic e a d—we tune di.rrtt •utti rwamew, ',stew. ` ter J

laj T ka.Wh 'M anoo, auor appraaa. w ko , squ r, esumauM.
Par 1 Linear fitlmn( to add.i ,e ah. tt rom,c I[[I T•a1u

ar'oru. C,.	 .rl AC 11 I6 t pr w-f” Iw;
le) T k& Ise, and P f Im ' Ar mno, sum arrroact+ Ir III puale

eu ma* M Pa' 11 Lmcw amn,twisi, m add 'I ,e oolttr lens
Illl7w; 4r,I	 Con-- vl AC 11 t., t rr ! r ^- M' fur.

Ito A A Dr.&;.. L A "Id N: r C Srh-rrr,r Ehloam. bums
4C•r r' 4:1 Poliu!,rt /ill Iran. 4r,o.••. Coe' . w. AC 11.
or t M ltd-el( Ia-a

III: at k..04 ant ) H Srinfr,d	 ► ! pellul.nn
4wo,ow ua L-K14-i wr 4 )	 S/; S55"111f

Table 111

Au .ol '! and pp -



;I: 	 A / late W r, M Mw `Adarrtt lobenng •vh anrt.n pnor
trat •, c•	 Jai t	 rt	 'b • itt	 I4., P" W ISORIGINALtlt	 I	 M sirm ,0e	 4 • P	 .	 Po r	 and i arwn.d lr,^duw,rr„e^

`t r. ,^,l	 „t{„a. M .1	 lD, OF POOR QUALITY.	 rwe	 6.r,r.and Cleft(I4,	 F	 !	 %,,I w• • ,. ^	 D^nrrw,,	 Sl rr

%, )11 	 H '	Io•1
Irl,	 f Kumar and 1	 M Se. Mew "Ort. ma' lmaben of mewurernrnt.

Mr dovolt- red paratrttte, ntmat M.' ILLL rra,u	 Arn.w,,,r C,wn•

tot AC :? nr 4 pr !M•-fY.	 10•1

(IS;	 S Omits. S Amdt and T Smda "Opt,ntal arnlwr lmar en gwr*
Ierr hr a Lnta• dial-urrd par.mr,rr, ttltrm' 	 I. e !	 Truax	 4.1••
w..r faw •• 	1	 #.0 :i ne 4 pr br1-r'1	 WO

II',	 F	 a '	 rt Sao •	 R	 Sa• L	 and 1	 1 Tuna	 tan, opurnal .stuns
•	

IEEE: SYST., MAN, CYDERN.
ben W .rrorn. p ,oNeni: .n Klrtn, .per	 Nrr1 S„	 The 	 I: µu

110 	 C *% Kel l • W B D 0 Ander-ri • On the mab-lit, of 6ted ly
1n.trtmatF alFnn;Am	 J Aaw. ne l v	 in: :o, nr 4. pr AU:
14",

ile	 S Chra,artananot and M h 0 Andrr.en 'The (nrd lag -m—th,• Gery No
a• a -tat- pc f tuoe •4 ,non nonji' linear Neer.. ' AYm.Wt...	 to:	 pt

R	 A Mc6,e ane D C. LauneUl S.w	 Ise• 	 A/ran;r

-:'a •a• t av Sr.o r •	!.e. 1 on	 Auderm.	 iu- r 	r;	 -bl

%um'v: el
4anlll'

Inanotr •	 Sr•t•w, lrtclt^rlr.	 J
I	 Arum.,	 )^

Aa. a a.r,	 4e 3
Mn.Ytb{r ^ '1	 lo t

.	 !r

4I +t . .

.' s it ? a

.r-	 ,r	 t

G -	 -4r'a	 -411
- G ,	 01•	 00;'

Pt,	 — ctrl-•
..	 6tIr	 01"

-Wit
.. old-

C-014 
6v^

k	 Cur.em	 I,0.	 : r ):	 4:	 11.1IGr,
All	 01w	 : )r	 4111	 ]!l I	 10

M; is -	 rt

.	 emv •,, -
	

It	 t ''	 K at	 540 	 24 446

I,# 	Mar e' To►uaA.ma hrlrcture	 14rar	 The four a, r WluUn
ft 11, 1 "11181 tn. A~ are kea'rd a• Inbe..	 r	 Aaum
I-;,A..aucA	 i s	 mv,w• 	{r	 Sown, e' aullm d,oa.dr
Iutr bee• lompee a.Ymd'•n& Ir W We. tgaYrrat We, and,,A-Cd P1 the
gaper circlet	 - x	 SU m' t	 IU• k, r' t	 IP c	 b

Fµ :	 Meuu.re W mrsometee wllur d,o%)& cnecenuaurom gam rhe
amnrt )I	 141 .4 at Alum ga.ar..toen4 .tatwo is 1

F.4	 )	 Mralured W nistwe, w"u • d,ra.dr ,nn gentrauous un Dr
cemnel 1, If'! 4, 1- , $ ma n.,fts mar

1,$ 4	 Mcmumd W 4+ematrt wllu • d,m,dr COl..raVammis gae Dr
Amer I	 ". It Aa•arcn eunkt—mg; .,suty - r'

Fit	 '	 Meawree And 4tt.ma'rd wlfw dlea.dr w. rr.traurlp oo Ur
.:mAr • 	 IV' 0 1 MA—lig-rr gau..:ter:ty.ut-	 t I .',



bell I
bow of 1"I \ 1 rhla IN oom 6, no, Lc1(.r1n,1 „a it I

(11: hall LAacu ,r

T,RI 111
49 1• .hwlna,. • o 1.4111111 r 41( 1alr1C1

TANLt 111

l 1 1rr •aly l ♦ O, TUB I (k a \ l, 114 ,n, .1 TNI Ilk a \fo%llelal,(•
5111, n1a k,%I Hot a ANI at , Pal D1l I  I , % U l 1 , plow it Iln.

La g oa Sut .am

.4fl10 (M1a1u ,. 41 bom In Lh'ehr )&ran on Itr.emht" It hide He
rr.r,e: the ItI depre m rir•in, al enl net-in, 	 nern, Inm aun of
[h nn %, u,a:n, jar 3 . P IW, and the \I I an; p t  h dtltn , In
rlr, mal.. • en( nec^n4 It, •n the l'roltrull of U.ua Prele,furr Oda\,
1 a11n In W', all., , .'a et.pe.1,rl1

Fwm , IV'a tv III" he ra, a Re tar:h a...\gAle IInr11 19"1 N• IVMI he
ra a Lt.'Itnr NC .^n.l lu.. hr ha • hem an ^.r3utt Pfi'[n ,• of
Inl.•rmv,v SL •emt an: S,.Iem , Iall neennl a the Lm,rt.n of
I, u,hM. T .vu.h.IT. "( Jarar flow \alrmhr lu., t, • fehruan
' uii' he ra, ( Iinl k.e sir -n l hrm..a l Lnl nnnnl aI the Cahlonu.
In.vwlt of le,hnol•,p , pa,aden, H1, Ivnrn' Imrn,n ut in the ra,m.
hnr the, e' IS onhulnd ratamne , —1cm , and image data ItIMT—na
t.rr.ul l remote wn. ^. 1 d— ani.a.

D. Umal, r a re— .,. r r the %%.Cl. r1 Imtrurnenl and ( Muo'
IJy nre • • In urar the 14 , lute E,r.ln,. liq re— o )ara •• and Ihr
}. P 1% for Indu.tna: ono 4rrl,rd'1119 1 hemal„• He Me led the arard A
the w. 'C' , oI In.Irumenl and ( omrol trig"", .,f loran m I0, He hu
cnaulh+rel' f 1r h—L it Jarant,e and 1 AW • m Ln$hlh

John It	 a, horn I n Elm . a %I on kola- ' Ira' He mv,,ed
Ih. IT . Jr,	 n ,hem 4 ens nternl 1, -n lhr ( n ,r, , •" R.. h, it
It-hr,te '•• In 1*4 W IM Pt V doper 1n Chem,.al rnpnxer.nl
(r,. •• 1'• •.	 ..	 ._•, t••„ p rn.twn \) to IW'

I,,	 Iry L, un• o' the (al lorm, In.l lutr of leAnotol,
rhr, he I. twrem„ Lou , t N OW PI••Ie..o• and

[..	 r I" . hr ,-T	 Ina nrr"'- M r eKa'.- nwr . j • all P

dr .. ...	 ,melt• .Doan • . and c.nnu^ .•, anJ m.lhtrw tt^.a tlydfl na
o' a r

r ,. y	 r6t,t: th, tu- Ih •nad r Loma. ..a• .'	 th,
Aimcr .a, .	 u.. • ... ,nn.• (vu •,..' In, 1 10'r Vw, 1, a olhalr 11x1
r th, 1^ •	In	 _	 ' (h,m,. I • -. nrel , the 'u - t .u ,•	 M

M. (••., A	 A. _	 ' In• kw , . v t, rn lo • Lnl nrr'mr [,1,
.at..•^ a	 \1%'k 1 1 ul , . Stnnr .I,J.

Manu.,r r me ,t: f rhrva" 1 19. n, •r,l lulu „ 1 1% T1u•
r...1 ra`.Jro-1	 h, NAS A, Rr.ral,h(lran \ 4 l 1 1 `I

5 Um.,, rr r Ir IT, . rlrtwv men, " 1 nrnn.61 LAI rrnno Cal
I"m a Inn IWt o' I.nn. ^i, , ra•Wrn. 1 4k on ka,t port the Iwran
mrn . d Informs on 4%, me and S.ttem, 1Jtlptiernnl L'm.hr.a1 of
1,4.1k ,111 loLm funla Japan
t M Srmfrld -• r IT th, [Irranmrn • of Chem,,i Int'"111nl ( al

fom.a In•: wit of Tr.h- 	 t Paud.ml C 84 uI I:•

ORIGINAL PA%.' C,?,
OF POOR QUALIFY

IEEE: SYST., MAN, CYDERN.

Vol	 lasua

Au.

Gandy No

1
t

LI qurn m phll-"



a^LQ

ELCI

cNC

.B.<.
I-

O
R

IG
IN

A
L P

.11- to
O

F
 P

O
O

R
 Q

U
A

L
IT

Y



A

NNOc
owlq-

c
r

N
N

 
0
 
v

L
S
C
^

0W4N0

O
R

IG
IN

A
L P

 C
^:

O
F P

O
O

R
 Q

U
A

LITY

N

K

i

_

__

1_

_I

KI

s

w
 1

q
, N

 
0
 
c
o
 
w

N
Ild

2
^
l 3 0N

O
D

 zO
S



O
R

IG
IN

A
L

O
F

 P
O

O
R

 Q
U

A
L

t n
k

'

1;:r

0C
\j

O
D

C
o

K
T

re)

S
-

C
\j
0

 
5
1

a
:
 

L
-

CC)

(DqC
\j

0

u
i u

i
Ix

<

<L
i
 (n

2
 u

i
Y
	

0

0
 
C

D
 w

 
I
q

 
N

 0
 

C
D

 W
C

\i qdd "N
O

liV81N
3:)N

0:) ZO
S



p
 
c
o
 
c
D

 
^
 
N

 
O

 
c
o

N
 q

d
d
 'N

011`d61N
3:)N

0:) O
S

T
^

x

K

O
R

IG
IN

AL 4 'R
L

- 7
O

F P
O

O
R

 Q
';'A

'-'TY
xIx

x

x

x

°
°

I

wc
r
FQ

x

U
)
CL
_

Q

K
L

u
i

K

x
C

X

K

A

x

iN
V
N
U

0;VO
D

N

n

LN
^z
 ^.

O
I
^

i

c
o

WVNO



r

O
k

► '.^
^
N

^
i ^

A
;.M

O
F

 P
O

O
R

 Q
U

A
L

IT
Y

,

0
	

C
D
 
(
D
 
'
I
T
	
N
 
O
 
C
D

N
 
—

qdd ` N
0liV

6iN
30N

O
3 z0S

t
D
 
O (D4
T

N
 
^T
 
_
C

OWN W qTNNNON
1

c
o



to appear in IEEE Transactions on Geoscience and Remote Sensin

ORIGINAL PAGZ IS

OF POOR QUALITY

ESTIMATION OF ATMOSPHERIC SPECIES CONCENTRATIONS

FROM REMOTE SENSING DATA

Siqeru Omatu and John H. Seinfeld
Department of Chemical Engineering

California Institute of Technology

Pasadena, California 91125

ABSTRACT

A basic probleT in the inter p retation of atmos p heric remote sensin q data

is to estimate species concentration distributions. Typical remote sensinq

data involve a field of vies: that moves across the reg ion and represent inte-

g rated species burdens from the qround to the altitude of the instrument.

The estimation problem arisin g from this special measurement confi g uration is

solved based on the partial differential equation for atmospheric diffusion

and Wiener-Hopf theory. The estimation of the concentration distribution

dow%,, ind of a hypothetical continuous, ground-level source of pollutants is

studied numerically.
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I.	 Introduction

In the remote sensing of atmospheric species, a ground-, aircraft-, or

satellite-based platform scans a region of the atmosphere and measures the

species burden within the fiCid of view. An object of atmospheric remote sen-

sing is to reconstruct species concentration distributions over a region based

on the data available from the instrument.

There exist two recent studies that assess the capabilities of remote

sensin q for monitoring regional air pollution episdoes [1,2).	 Diamonte et al.

[3) developed theoretical results for the estimation of point source plume dis-

persion parameters from remote sensin q 'ta. In a similar vein, Kibbler and

Suttles [4) studied the estimation of unknown parameters in a pollutant disper-

sion model by comparing model predictions with remotely sensed data. No results

have yet been reported in which actual remote sensino data have been used to

estimate species concentration distributions.

Tne present paper deals with the theoretical foundation of estimating atmo-

spheric concentration distributions fror • remote sensing data. Since the atmosphere

is a three- dirensional system, mathematical models of pollutant behavior- are of the

distributed parameter- ty pe 151. Remote sensing data usually represent spatial

avera ges of concentrations, so that the estimation problem concerns a distribu-

ted parameter syste r with spatiall y inte g rated, scannin g data. Although dis-

tributed parameter state estimation has been considered extensively (see, for

example, [6) and [7);, such problems with scannin g and spatially integrated

measurements have not been considered previously. The purpose of the present

paper is to derive the required optimal estimators for the scanninq and spatially

integrated measurement case by a unified method based on the Wiener-Hopf theory.
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In Section II, we define the remote sensing data analysis problem mathema-

tically. Sections III-VI are devoted to derivation of the optimal prediction,

filtering and smoothing algorithms for the problem by Weiner-Hopf theory. Fi-

nally, in Section VII we present a detailed numerical example of estimating the

concentration distribution downwind of a continuous, ground-level line source to

illustrate the application of the thoery.

II. Problem Statement

We consider a single atmospheric species (nonreactive), the mean concen-

tration u(t,x l ,x 2 ,x 3 ) of which over a certain region is described by the follow-

*
ing form of the atmospheric diffusion equation [51,

au +
	 -u + V aU =	 F; (x ) 

au	
, , , )	 (1)?t	 1 

^x1	
2 ?x 2	 C.	 v 3 2x3, 

+ w(tx 
1 
x x
2 3

where V l and '; 2 are the mean velocities in the x l - and x 2 -directions, respec-

tively, Kv (x 3 1 is the vert i cal turbulent eddy diffusivity, and w(t,x l ,x 2' x 3 ) is

a randor- disturbance accountin g for inaccuracies inherent in the basic model.

The initial condition for (1) is u(t o ,x l$ x 2 ,x 3 ) = u 0 (x l ,x 2 ,x 3 ), and typical

boundary conditions are

- Kv(x3)	
9x	

= S(t,x l9 x 2 ),	 x3 = 0

	

3	 (2)

_ x	 = 0,	 x3 = h

'3

where S(t,x l ,x 2 ) is the ground-level species source emission rate, presumably

a known function, and h denotes the upper vertical boundary of the pollutant-

containinc regior, for example, the base of an inversion (stable) layer. For

convenience, we denote the coordinate vector by x and let

	

l x [-1 = - V1 a	
- V2 ?

11 
+ 2z3 (K

v (x 3 ) ^Xl--ll

1

In this fora of the atmospheric diffusion equation, turbulent diffusion in the
horizontal direction is neclected relative to transport by the mean flow, a
common assumption in treating atmospheric diffusion problems [5].
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Assume that the concentration of a species over a fixed spatial domain D

with its boundary aD is of interest. Let us define the operator I',, C : aD

as follows,

e	 - Y v (x 3 ) ax.)	
x3 = 0

3

ax3	
x3 - h.

Let S(t,7,) be

S(t,xI'x2),	 x3 = 0

S(t,E) _

0	 x3 = h.

1
i

Thus, (1) can be re p resented as

i,u

ax 'x	 = L
x u(t,x) + w(t,x)	 (3)

and (2) can be written as

7 U(t,r) = S(t,`),	 _ ^D.	 (4)

We assuME that the initial condition u o (x) can be represented as a Gaussian

process with statistics,

ti -.I

Efu0(x))

E[Cuo(x)

anc the random disturban

a white Gaussian process

uo(x)

u o (xC u0 (y) - u 0 ( y ))) = P o ( x ,y)	 (5)

ce w(t,x) is stochastically independent of u0 (x) and is

with statistics,
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E[w(t,x)w(s,y)) = Q(t,x,y)`(t-s).

We assume that the remote sensing measurements are taken at time t  over

a view volume D(k) consistinq of M pixels, as shown in Fig. 1. Since the sens-

ing platform may be in motion, the field of view, in general, moves with time

across the entire spatial dor'.ain D. We assume that the shape and extent of the

field of view D(k) remain fixed and only the location of the centroid of each

pixel changes with time. The ground-level location of the centroid of each

pi>.el of D(k' is denoted as (xl (k) , x20 `) ,0), m = 1,2,..., M

We are interested in considering the vertically integrated measurement

giver by

Z	 (t ,n) = f h  J	 (x Mt ,xm(k),xm(k),x ) dx
m(k)	 k	 m(k) 3	 k 1	 2	 3	 3

+ v(tk9xI	 ,x2 (k)
,h n )	 (7)

m = 1,2,..., M,	 n = 1,2,..., N, h 1 < h 2 < ... < h 

k = 1,2,...

where Jm(k) (x 3 )is an altitude-dependent instrument weightingfur.-tion,and h n is the

vertical position of the ^cannina sensor. 	 Physically, Zm(k) (t k ,n) represents

the vertically-integrated species concentrations within each of the M pixels,

indicated by m(k), at each time, t k , from an altitude of h n . v(t k , xl(k),x2(k}9

h n ) represents measurement errors.



Some comments concerning the measurement configuration shown in Fig. I

are in order. Ordinarily remote sensing from an airborne platform would be

carried out at a singl y altitude.	 In such a case, it is not possible to esti-

mate the concentration distribution between the platform and the ground based

onl y on the intearal of the concentration. Sakawa [81 and Koda and Seinfeld

[91 have shown that in problems of this nature it is impossible to estimate 	 1a
the state uniquely based on inte g rated measurements from only a single sensor

position since the required distributed parameter observability condition does

not hold. Therefore, the estimation of species concentration distributions

necessitates traverses over the region at different altitudes. From a practi-

cal point of view this requirement restricts this type o f monitoring to air-

craft platforms, which, for purposes of measurin g air pollution, are the most

useful. Considerinz that atmospheric concentration distributions change gradu-

ally and that airplane speeds are fast, the confi g uration sketched in Fi4. I

implies that repeate H measurements at several altitudes are possible using only

one airborne platform.

ti
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In order to represen t. (7) more compactly we introduce the following

notation:

x(m(k)) _ (xl (k) , x2(k))

n	
Jnm(k)(x3),	

x3 < hn

Jm(k) =
0	 x3 > h 

nJ l (k) (x 3 ) ... G

Jn(tk,x3)
n0	 Jlr,(k)(x3)J

u(t k , x(l( k )), x 3 ) I

u(t k , x(2(k)), x3)

u t (x 3 ) _

k

L
u(tk, x(M;k)),x3)

F J1 (tk,x3)

J(t k' x 3 ) =I

LiNktk,x3)

2l(k)(tk.n)

2(t k ,n) =

L
2M(k)(tk'n)

2( t k ,l )

2(t k ) _	
I^

Z(tk,N) J
Fv(tk t  x(l(k)), hn) 1

v(tk,n)

v(tk, x( M ( k )), hn)

and

• . a

W

ORIGINAL PA;.' ._ 1'
OF POOR QUALITY

I^
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v(tk.l)

v(tk)

v(tk.N)

Then (7) can be represented compactly as

Z(t k ) = J J ( t k .x J ) u t 
(x 3 )dx 3 + v(t k )•	 (8)

U	 k

We assume that v(t V ) is independent of w(t,x) and u o (x) and is a white Gaussian

process with statistics, E(v(t k )) = 0 and E(v^t k )v"(td il = R(t k )5W where

denoces th y- transpose operator and R(t k ) is an MNxMN positive-definite matrix.

The probler, considered here is to estimate u(t,x) over D on the basis of

the measurement Z(t
C,
), c = 0, 1..... k. The novel aspect of this problem from

the point of view o f dist r ibuted [,ara^eter estimation arises because of the

scanninG and vertically integrated nature of the measurements. In what fol-

lows, we use k instead of t k as long as there is no ambiguity.

W

11 -0



k

'j(-,x/k) _	 F(t ,x,^ )	 ).
o=C

T	 ~c Z r to
(10)	 I

i

_^.

'So- . 
r.Vo"tr 1,

-8-

ORIGINAL P, C37 f ^'

OF POOR QUALITY

III. Estimation Problems and Wiener-Hopf Theory

Let us denote the estimate of u(t T ,x) based on the observation data

Z(ta ), c, = 0,1,..., k by u(t T ,x/t k ) which is given by the following linear

transformation of Z(t a ), a = 0,1,..., k,

u(t k ) 	 F(tT,x,ta)Z(t_)

C=0

where F(t
T	 ^
,x,t, ) is an unknown MN-dimensional row vector called the estimation

kernel function. When there is no ambiguity, we write (9) compactly as

(9)
1

Furthermore, we denote the estimation error and error covariance functions by

u(t T .x/t k ) and r,'t_,x,y;tk), respectively, where u(t T ,x/t k ) = u(tT ,x) - u(tT,x/tk)

and P(t T ,x,y/t k ) = F.[u(t T x/tk )u(tT ,y/tk )].	 The estimate u(t T ,x/t k ) that mini-

mizes J(u) = E;u(t T ,x/t k ) 2 ] i s said to be optimal.	 Note that by using

P(t - ,x,yit k ),J(u) can be rewritten as J(u) = P(tT,x,x/tk).

To clarify the differences between the prediction, filtering, and smooth-

inq problems, vie express F(t 
T
,x,tj differently for each problem as follows: I

(i)	 Prediction (t > tk)

k

	

u(t,x /t k ) 	 Y, A(t,x,ta )Z(tC7	(11)

C=0
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k

u(t k ,x/t k ) _	 F(tk9x,t:1Mt J). 	 (12)
=0

rl;

	 (iii)	 Smouthing (t_ < tk)

k
	

a

u(t_,x/t k ) 	 B(tT,tk,x,tc Mt U). 	 (13)

Here we use three temporal arguments t T , t  and to for the smoothing kernel

B(tT ,t k ,x,t_) since these parameters should be changed according to the --asure-

ment data acquisition time. Then the follov, , ing theorem can be proved similarly

to that of [6] for the continuous-Lime observation case.

[Theorem 1] (Wiener-Hopf Theorem)

A necessary and sufficient condition for the estimate u(tT ,x/tk ) to be optimal

is that the followin g Wiener-Hopf equation holds for 	 = 0,1,..., k and

x - D = D _ 2D,

k

Y, F(t T ,x,t )E[Z(t`)Z'(ty)] = E[u(tT,X)Z'(t^)], 	 (14)

C=O

or equivalently, for ; = 0,1,..., k and x - D,

E[u(tT,x/tk)Z'(t,)] = 0.	 (15)

[Corollary 1] (Orthogonal p rojection lemma)

The orthogonality condition, E[u(t_,x/tk )u(tn ,y / t k )] = 0, x,y c ^, holds where

t; is any time instant such as t < t k , tr = t k , or tr > tk.
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[Proof] Multiplying each side of (15) by F'(tn,y,t-) and summing from

= 0 toy=kyields

k

E[U(t.,,x/tk)	 Z-(t,)F'(t ,Y,t,)] = 0.

=0	 y	
o	 ^

Using (9 )', in the above equation yields the desired relation completing the

proof of the corollar y . Q.E.D.

[Lemma 1]	 (Uniqueness of the optimal kernel)

Let F(t - ,x,t ) be the optimal kernel function satisfying the Wiener-Hopf
c

equation (14) and let F(t,,x,t ` ) + F,(tT,x,t^) be also the optimal kernel func-

tion satisfying the Wiener-Hopf eouation (14). Then it follows that F,\(ti,x,to)= 0,

k and x- D, i.e. the optimal kernel function is unique.

In orde r to consider the prediction, filtering,and smoothing problems,

separately, we rewrite (14) using the notation of (li) - (13).

[Corollary 21 The Wiener-Hopf equation (14) is rewritten for the prediction,

filtering, and smoothing problems as follows:

(i) Prediction (t , tk)

k

M(t,x,t^)E[z(t^)z'(ty)] = E[u(t,x)z'(ty)]	 (16)

e=0

for -- = 0,1 , ... , k and x- C'.

(ii) Filtering (t- = tk)

k

F(tk,x,t^)E[Z(t^)Z'(t,)] = E[u(tk,y)Z"(ty)]	 (17)

=0

in



ORIGINAL FA0E 13

for	 0.1..... k and	 OF POOR QU ALITY

(iii)	 timoothir.^7 (t^ ^ t^)

Cit . .t h .>.t )E(Zkt,1Z'(t.)l = Elu(tt.X)Z*(t.)]	 (1C)

for ' = 0,11 .... k and x • D.
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IV. Derivation of the Optimal Prediction Estimator

In this section we derive the optimal prediction estimator by using the

Wiener-Hopf theory in the previous section.

[Theorer-. 2] The optimal prediction estimator is given by

au(t,x/tk)

at	
= Lxu(t,x/tk),

^^u(t,r/tk) = S(t,r),

t N t 	 (19)

E - aD.	 (20)

[Proof] Differentiating (16) with respect to t and substituting (3) yields

k	 aA(t,x,t_)

.0
at	 E[Z(t_)Z"(t_)] = LXE[u(t,x)Z'(t,)]

where the independence of w(t,x) and Z(t - ) is used. Substituting (16) into

the above equation yields

k

F,(t,x,t(7)E[Z(to)Z'(t_)] = 0

where

aA(t,x,t )

FG (t,x,tC, =	 at	 -LxA(t,x,t0

From Lemma 1 we have

aA(t,x,t)̂

at	
LxA(t,x,te)•	 (21)
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s
Differentiating (11) with respect to t and substituting (21) yields (19).

F	 Since the forms of ;^ and S(t,y) are known, the predicted estimate u(t,x/tk)

also satisfies the same boundary condition (4). Q.E.D.

[Theorer* 3] The optimal prediction error covariance function P(t,x,y/t k ) is

governed by

3P (t,L,Y/t ka) 
_ (Lx	

y+ L )P(t,x,Y/tk) + Q(t, x , y ),	 (22)

r_P(t,'r,Y/tk) = 0 1	- aD.	 (23)

[Proof] Fror (3), and (19) we have

^D(t,x/t,)
^ t	 k	 = L x u(t,x,'t k ) + w(t,x)	 (24)

f

and frorr (4), and (20,

'_u(t,_/tk) = 0,	 (25)

Differentiatinc the definition of P with respect to t and using (24) yields

aP(t,x,y/t k)

^t	 = (L x + L v )P(t,x,Y/tk ) + 7(t,x,Y)

where

f	 :(t,x,Y) = E[w(t,x)u(t,Y/t k )I + E[D(t,x/tk)w(t,Y)]•

Let the fundamental solution of L x	cbe G(t,,x,y), where

-A
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aG (t, a , x ,Y)	
= txG(t,c,x,Y),

aD

G ( = ,", x ,Y) = 6(x-y).

Then u(t,x/t k ) of (24) can be represented in terms of G(t,o,x,y) as follows,

t
u(t,x/t k ) = f G(t,t k ,x,a)u(t k ,a/t k )d-. + J f G(t,c,x,a)w(,,a)dado.	 (26)

D	 t  D

Substituting (26) into :(t,x,y) and using (6) yields -7 (t,x,y) = Q(t,x,v).

Multiplvinc each side of (25) by u(t,y/t k ) and taking the expectation yields

(23).	 Q.E.D.

[Lorollary 3] The optimal prediction estimate u(t,x/t k ) and prediction error

covariance function, P(t,x,y/t k ) can be represented as

u(t,x/t k ) = f G^t,t k ,x,a)u(tk ,a/t k )da	 (27)

D

and

P ( t , x , y / t k ) = ff G(t,t k ,x,a) P (t k ,a,6/t k ) G ( t , t k ,Y, F ) dad

DD

t

+ f ff  G(t,o,x,a)Q(o,a9c)G(t,e9y96) dad6dc.	 (28)

t k D C

[Proof] It is clear that (19) and (22) possess unique solutions. 	 Differen-

tiating (27) and (28) with respect to t yields (19) and (22),

respectively. Since (19) and (22) have unique solutions, (27) and (28) are

those solutions.	 Q.E.D.

A

.W
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V.	 Derivation of the Optimal Filter

In order to derive the optimal filter by using the Wiener-Hopf theorem

for the filtering problem, we represent the solution of (3) in terms of the

fundamental solution G(t,c,x,y) as

u(tk+I ,x) = f G(tk+l ,t k ,x,a)u(t k ,a) do,

D

tk+1

	

+ tf	 JD G(t k+l ,n,x,a)w(n,a) dadri	 (29)

k

and

u 
	 (x3) = J GM (t k+l ,t k ,x 3 9a)u(t k ,a) du
k+1	 D

	

k ^ l

+J

	

f GM (tk+l" n ' x 3a) w (n " a) dadat 

k

where

1(k+l) 1(k+l)
G(t k+1 ,n, x 	

,x2	
,x3,a)

GM (tk+l ,', x 1 ,a)	 _

M(k+1)	 M(k+l)

G(tk+l'r" x 	 ,x2	 ,x3,a)

From (17) we have

F(tk+1,)K,tk+1)E(Z(tk+1)Z'(t-)]

k

+ 1: F(tk+l,x,t`)EIZ(t,-)Z'(t_)] = E(u(tk+l,x)Z'(ts)]

C=O

for	 = 0,1,..., k+1.

(30)

(31)

(32)
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	From (29) and the independence of Z(t^), 	 = 0,1,..., k and w(r,x),

t  < r ` tk+1 it follows that

E[u(tk+1,x)Z'(t,)] = ,1 G(t k+l ,t k , x ,a)E[ u (t k ,a)Z'(t t )] da.
D

Using the Wiener-Hopf equation (17), we have

r	
k

E[u(tk+1,x)Z'(t^)l = J G(t k+l ,t k , x ,a) E F(t k ,a,te )E[Z(t0 )Z 1 (t C H.	 (33)

On the other hand, from (8) and the whiteness of v(t k+1 ), we have, for

t < t^	 k,

h

E[Z(tk+1)Z"It_)] = f 
J(tk+l,x3)E[utk+1(x3 

W (t,)] dx3.

Substituting (30) into the above equation and usin g the independence of

Z( t -), t L < t. k end w(-,=1), t k < n < t k+1 yields

h

E[ Z(tk.,_1)Z'(t_)] = f J(t k+ ,,x 3 ) f GM (tk+l ,t k ,x 3 ,a)E[u(t k ,a)Z , (t^)] dadx3.

Again, we use the Wiener-Hopf equation (17) in the above equation and

h	 k
E[Z(tk+1)Z"(tr)] = f J(t k+1 ,x 3 ) f GM (t k+l ,t k ,x 3 ,OL ^F(tk,a,to)

-	 u	 D	 a=0

E[Z(t.)Z"(t.)] dadx 3 .	 (34)

Substituting (33) and (34) in (32) yields



won

-17-	 ORIGINAL PAGE 15
OF POOR QUALITY

k

E FG (t k ,x,te )E Z(ta W (t4 ) = 0

where

h

F^(t k ,x,tC7 = F(t^+1,x,tk+l) f J(t k+1
,x

3 )fDGM (t k+l ,t k ,x 3 ,cx ) F (tk ,a,t ` ) dadx3

+ F (t k1l , x ,t C, - f G(t k+l ,t k , x ,a)F(t k ,a,tQ ) da.

D

Then from Lemma 1 we have F.(tk,x,tC,) = 0, and we have the following lemma.

[Lemma 21 The optimal Kernel function F(t k+l ,x,to ) of the filter is given by

F (t k+l , x ,to ) = f G(t k+l ,t k 9X,a) F (t k , a ,tc ) 6
0

h

- F(t k+1 ,X,t k+1 ) or J(t k+1 , x 3 ) D GM (t k+l ,t k 9x 3 ,a)F(t k ,a,ta ) dadx 3 .	 (35)

[Theorer 4] The optimal filtering estimate 6(t k+1 ,x/t k+1 ) is given by

U(tk+1 , x / tk+1 ) = u(tk+l ,x/t k ) + F(tk+l,x,tk+1Mt k-' 	 (36)

h

v(t k+1 ) = Z(t k+1 ) - f J(tk+1,x3)Utk+l(x3/tk) dx
3 ,	 (37)

u(t ` 9 X/ to) = U 0 ( X ),
	 (38)

"_u(tk+1,^/tk+1) = S(t k+1 ,'),	 C	 aD	 (39)

where
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+1	 +
u(tk+l,x1 k,x2 

k 
1),x3/tk)

u	 (x /t)	 =
tk+1	 3 k	 M(k+l)	 M(k+1)

u(tk+1,x1	
'x2	 'x3/tk J

[Proof]	 Using (12) and (35) yields

u(t k+1 ,x/t k+1
) = F(tk+l,x,tk+1)Z(tk+1)

k

+ J G(tk+l,tk,x,a) 
0 

F(t k ,a,tQ Mto ) do

	

h	 k

- F(t k+l ,x.t k+1 ) f J(tk+1 ,x 3 ) f GM (t k+l ,t k Ix 3 9a) 1, F(t k ,a,t0 )2(t
CT
) dadx3.

Then from (12) and (27) we have

u(t k+1 ,x/t k+1 1 = r G(t k+1 ,t k1 x,a)u(t k9 a/ t k ) &L

D

h

+ F(tk+l,xItk+1)(Z(tk+l) - f Jftk+1 ,x 3 ) f GM(tk+1,tk9x310)0tk9a/tk) dadx3

= u(tk+1,x/t ) + F(tk+l ,x,t k+1 Mt k+1).

Since the initial and boundary conditions are clear, the proof of the theorem	 I
is complete.	 Q.E.D.

To determine the optimal kernel function F(t k+l ,x,t k+1 ), we introduce

the following notaticn,

PM (t_,x,v J /t k ) = (P(tr,x,y1(k)/tk),..., P ( t T ,x, yM(k) /t k ))	 (40)

and
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P(tT,xl(kY3/tk}

PMM (t7 ,x 3 ,Y 3/t k ) =

P(tT,xM(k),y3/tk)

P(tT,x1^k),5'1(k)/tk),	 P(tT,x	 Y1(k),M(k)/tk)

_ (41)

P ( t T , xM ^ k) ,Y 1(k) / t k ),	 P(tT,xM(k),YM(k)/tk)

m(k)	 m(k)	 m(k)	 m(k)	 m(k)	 m(k)
where x	 = (x 1	x2	 x3) and y	 = (y 1	 yI	 y3), m = 1,2,..., M.

From the definitions of P M (t_,x,y 3/t k ) and PMM(tI,XV Y 3 /t k ) it follows that

PM (t7 % x ,Y 3 / t k ) = E[u(t -I X/t k )u t (Y 3/t k )]	 (42)
T

and

PMh(tT'x3,y3/tk) = E[u t, (x 3 /t k )u t (y 3/t k )]	 (43)T 

where

u t (x 3/t k ) = u t (x 3 ) - u 	 (x 3 /t k )	 (44)

T	 1T

and

u(t_,xl(k)/tk)

u 
	 ('`3/tk) _	 (45)

T	 u(t- ,xM(k)/tk)

Furthermore, we define the covariance mat r ix of the innovation process )(t k+1)

b y T(tk+1 /t k ) = E[:(tk+1)v"(tk+1)]. 	 Then from (37) we have

fh/t) = 	 J o d(tk+l'x3)PMM(tk+1,x3,Y3/tk W (tk+1,Y3) dx3dY3

+ R(tk+1)	 (46)

•i
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[Theorem 5) The optimal filtering gain function F(t k+l ,x,t k+1 ) is

given by

h

F(tk+l .x,t k+l ) = f PM (t
k+1'

x,y
3
/t k W %I t k+l ,y 3 )dy 3 r -1 (t k+ :/t k ) .	(47)

U

[ D roof	 From the Wiener-Hopf equation (17) we have

F(tk+l,x,tk+1)E[Z(tk+1)Z'(tk+l))

k

+ 	 F(tk+l,x,to)E[Z(tI-)Z-(tk+l)) = E[u(tk+1,x)Z'(tk+1)).

Sutstituting (35) into the above equation yields

h

Fk't k , l , x ,t k+l )E[(Z(tk+l ) - f J(tk+1•x3)ut	 (x 3
/t k )dx 3 W (tk+l)]

C)	 k+1

= E[(u(tk+l,x) - u(tk+l•x/tk))Z'(tk+l)]•

Using (8) ano the orthogonality condition of Corollary 1 yields

h

E[u(t k+1 ,x/tk)Z'(tk+l)] = I E[u(tk+1 ,x/t k )ui k+1 (x 3 ))J'(t k+1 ,x 3 ) dx3

h

PM (t
k+1' x,x 3

/ t k )J'(t k+1 , x 3 ) dx3

0

and

h h

E[-v(t k+1 )Z'lt k+l )] = I I J^tk+l'x3)PMM(tk+1•x3,y3/tk)J'(tk+l,y3) dx3dy3
+ R (t k+l ) = r(tk+l /t k ).	 (48)
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h

F(tk
+l,x,t,,,)r(tk+1/tk) = f P

M (t
k+l •x,x 3

/t k )J"(t k+1 , x 3 ) dx3

u

and the proof of the theorem is complete. Q.E.D.

[Theorerr, 61 The op timal filtering error covar i ance function P(tk+l,x,y/tk+1)

is given by

P(tk+1,Y,Y/tk+1) = P(tk+1,x'Y/tk)

h	 h

	

- J	 f PM (t k+l ,x,x 3 / t k )J ltk , 1 ,x 3 1 --1 (t k+1 /t k )J(t k+1 ,Y 3 ) PM(t k+1 ,.v, y 3 / t k ) dx3dy3

	

C) 	 o

(49)

Pit o , x ,Y/to ) = P0 (x,v)	 (50)

'_P(t k+1 , ,Y/tk) = 0.	 E	 ^D.	 (51)

[Proof] From (3) and (36) we have

u(t k-, l , x / t k+1 ) 	 a(tk+l , x .t k ) - F(tkyl •x+t k+1 )V̂ tk+1 )	(52)

and from (4; and (39),

"_u(tk+1,k+1} = G,	 = a0.	 (53)

Using the independence of v(t) and 6(t k+1 ,x/tk ) or U(t kjl ,.y/t k ) yield-,

P(t k+1 , x ,Y;tk+1 ) = E[u'(tk+1,x/tk+1)^(tk+1,Y/tk +1)]



-Z2-

OF POOR QUALMN

P(t k+1 ,x,Y/t k ) + F (t k+1
,
x ,t k+1 )E[ v (t k+l ) ̂(tk+l)]F'(tk+l,Y,tk+l)

h
F(t	 ) J	 ,x )E[u	 (x,/t )u(t	 ,y/t ); dxk+1 ,x,'.	 J(tk+l G	 k+1 3	 tk+1 ^ k	 k+1	 k	 3

-  h

jE[6(tk+1,x/tk)6tk+ 1(y3/tk)lJ-(tk+l,v3)dy3F^(tk+l,y,tk+l).

Using (40) and (47) yields

P(tk+1"" Y/tk+1 ) = P(tk+l,x,Y/tk)

- fhh r PM (t k-1 ,x,x 3 /t k )J
, (t k+l' x 3 ) 

-1(tk+1/tk)
0 G

J(t k+l , y 3 ) P'(t ^+1 ,Y, y 3 /t k ) dx3dy3.

Since the initial value u(t o ,x/to ) is equal to u 0 (x), it is clear that

P(to,x,y/t^) = P (x,y). Multiplyinq each side of (53) b y u(t k+l ,y/t k+1 ) and
0

taking the expectotion vields (51). 	 Q.E.D.

r

,.
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VI. Derivation of the Optimal Smoothing Estimator

In this section we derive the optimal smoothing estimator by using the

Wiener-Hopf theory.

[Lemma 31 The optimal kernel function B(t_,t k+l ,x,tC ) of the smoot^i ng estima-

tor is aiven by

B(t_ I t k+l ,x,ta ) = B(tT,tk,x,to)

n
- B(t7 ,t k+l ,x,t k+I ) f J(t k+1 ,x 3 ) J GM (t k+l ,tk ,x 3 ,a)F(t ^ ,a,t^) dadx 3'	(54)

[Proof] From the Wiener-Hopf equation (18) for the smoothing problem we have

k+1

B(t.Itky,,x,t_)E[Z(t`)Z'(t_)] = E[u(t,r,x)Z'(t-)],	 (55)
=u	 '

= 0,1,..., k+l

and

F:

B(t.,,tk,x,t_)E[Z(t^ )Z"( t - )] = E[u(t`,x)Z'(ts)l,	 (56)

k.

Subtracting (56) from (55) yields

B(t-,tk+l,x,tk+1)E[Z(tk+1)Z"(t^)]

k

+ 2 (B(tT,tk+l,x,t`) - B(t T ,t k , x ,t_))E[L(tQ W (t^)] = 0.
c=0

From (8) and (17) we have

0
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A(t

r

E[Z(t k+l )Z'(t)J =	 k+l,x3)J C 1
(tk+l ,t k,x 3 a)E[u(t k ,OL )Z ' (t^)J dadx3

h	 I	 k
= of J(t k+1 ,x 3 ) J GM (t k+l ,t k 1x 3 900	 OF(t k 9a,tQ )E[Z(ta )Z ' ( t^)l dadx3.

Then it follows that

k

Fc (t ` ,t k ,x,ta )E[Z(to )Z'(t-)J = 0

-=0

where

F`(tTItk,x,t`) = B(t T .t k+l ,x,to ) - B(tT,tk,x,tr)

h

+ B(t..,tk^l,x,tk+i) J J ( t k + 1 ,x 3 ) I GM(tk+1'tk'x3'c`)F(tk'OL'tC7
Since it is clear that B(t TI t k ,x,t` ) + F^(tT'tk,x,t^) also satisfies the Wiener-

Hopf equation (18), from Lemma 1 F,(t TI t k ,x,to ) E 0, o = U,1,..., k.	 Thus,

the proof of the lemma is complete. Q.E.D.

[Theorem 11 The optimal smoothing estimate u(tT ,x/tk+1 ) is given by

u(tT
,x/t

k+1 ) = u(t T ,x/t k ) + B(tT,tk+1'x'tk+1)v(tk+1)	 (57)

r^u(tT,^/t	 aD	 (58)k+1 ) = S( T , y ),	 7 c	 . 

[Proof] From (13) it follows that

u(t T , x /t k+1 ) = 
B(t9 tk

+1'x'tk+1)Z(tk+1)

k

+ I B(tT,tk*1,x,t,)Z(ta).

C=0
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Substituting (54) into the above equation yields

6(t ,9 x/t k+1 ) = B(t7,tk+l,x,tk+l)v(tk+1)

k

+	 B(t^,tk,x,t`)Z(t^)
Ie=0

and substituting (13) into the above equation yields (57). Since we have no

additional information about the boundary value of u(t7 ,x) except for S(tT

we have (58). Thus, the proof of the theorem is complete. Q.E.D.

[Theorec- 8] The optimal smoothinc qain function B(t - ,t k -.x,t k+1 ) is given by

h
B(t79tk+1.x.tk+1) = r 

N(tT,x,x3!tk+l W (tk+l,x3)dx3 -1
(t k+l /t k )	 (59)

where

N(tT,x, x3!tk+1) = f M ( t T , x , ylt k ) GM k+1
,t k ,x 3 ,y) dy	 (60)

and

M^t_,x,y /tk) = E[u(t`,x/tk)u(tk,Y/tk)]• 	 (61)

[Proof] From the Wiener-Hopf equation (18) we have

B(t-.t-(tk+1)]

k

+ I B(tT ,t k+1 " ,tc)E[Z(t7)Z'(tk+1)] = E[u(t I x)Z'(tk+1)]-

^=0
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Substituting (54) into the above equation yields

6(t,,tk+1,x,tk+1)E(v(tk+1 W ( t k+l )] = E[u(t T , x /t k W (t k+l )]•	 (62)

On the other hand, from (27) and (29)

u(tk+1,>:/tk) = J G(tk,l,tk,x,y)u(tk,Y/tk) dy

D

t

f

k+1J G(tk+1,-,x,y)w(,),y) dydr,.

	

t 
	 D

Then we have

h
E(u(t_'X!tk)z'(t	 ))k;l	 = J r f.' t .x,v' t k )G'( t k+l . t k , x 3 . y ) dy d'(t k+1 .x 3 ) dx3

o D

h
r N ( t_'x' x 3

/t
k+1 )j'( t k+1 , x 3 ) dx3.

0

Substitutin g (48) and the above equation into (62) yields (59). Thus, the

proof of the theorem, is complete. Q.E.D.

Let us now derive the equation for M(t.,,x,y/tk+l). Using the orthogonality

condition of Corollary 1 yields

Mgt.x,y'tk+l } = E[u(t-,x)u(tk+l,y/tk+1)). 	 (63)

Substituting (52) into the above equation yields

M(t T9 x,v/t k+1 ) = J G(tk+l•tk•Y,O,)M(tT,x'A/tk) da
0

h
- r N(t,,x,x3 / tk+1 W ( t k+1 , x 3 ) dx 3 F_

 
(tk+1,Y,tk+1)

0
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From (4) and (58) we have

k+1

Multiplying	

= 0,	 s = aD.	 (64)

Multiplying each side of the above equatior by 6(t k+1 ,y/t k+1 ) and taking the

ex pectation yields 7 M(t T , ,y/t k+1 ) = 0,	 aD. Thus, the following theorem

holds.

[Theorem 91 M(t_,x,y /t k+^) is given by

M(t-,x,Y/tk+1) = J 0(tk+l,tk,Y,=Y)M(t_,x,a/tk) do,

.	 D

h
N;t T ,,x 3/tk+l )J - (t k+1 ,x 3 ) dx 3 F-(tk+^,.Y,tk+1),	 (65)
f>c.
U

M, t - ,x,Y/t-) = P(tT,x,V/t_), 	
(66)

^L1(tT,^,Y/tk+1) = 0, 	 c ?D	 (67). 
7

It remains to derive the equation for the optimal smoothing error covariance

function P(t,,x,v/tk+1).	 From (57) we have

6(t_,x/tk+1) = u(t T ,x/t k ) - B(t ` ,t k+l ,x,t k+l ) v (tk+l )•	 (68)

[Theorem 101 The optimal smoothing error covariance function P(t`,x,y/tk+1)

is given by

P(tT,x,Y/tk+1) = P(t`,x,Y/tk)

h h
- J J N(tT,x,x3/tk+1)1"(tk+l,x3)r-1(tk+1/tk)J(tk+1,Y3)

G 0

N(t-,Y,Y3/tk+1) d x 3 d 5v 3	 (69)
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k + l ) = 0 ,	 = DD.	 (70)

[Proof] From (68) we have

P (t T , x ,Y/t k+l ) = E[u(t_,x/tk+1MtT,Y/tk+l)]

= P(t ,x,y/t k ) + B(t_Itk+1,x,tk+l Mtk+l/tk)B'(tT,tk+l,Y't1,+l)

B(tT,tk+l,x,tk+l)E['^^(tk+l)u(tTty/tk))

E[u(t T ,x/t k W(t k+l )IB'(t, , t k+1 ,Y, tk+l )	 (71)

But we have

h

E[u;tT,x/tk)': - ( tk+1)] =	 I
D
 
"(tk+l,tk,x3,c1)M(tT,x,OL/tk)

J"(t k+1 ,x 3 ) dAdx3

and

r
h-

E[,,,(tk+1)u(t'rx/tk)] = 1 1, J(tk+l'x3)OE(tk+lItk'x39a)M(tT,x,a) dadx3'

Substituting the above equations and (47) into (71) yields (69).	 Multiplying

each side of (64) b y 6(t_,y/tk+1) and taking the expectation Yields (70). Q.E.D.

[Theorem 11] The optimal smoothing estimator is given by

k

u(t - ,x /t k ) = u(t_,x/t,) +

	

	 B(t^,ti,x,t^Yv(t^) 	 (72)
J=_+l
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and the optimal smoothing error covariance function P(t T ,x,y/t k ) is given by

P(t-,x,Y/tk) = P(tT,x,Y/t-)

k	 h h

II N(tT,x,x3/t,)J'(tz+x3)r-1(t^/t^-1)
-+1 0 0

J(tCy 3 ) N (t1 9Y,Y 3/t^) dx3dy3•
	

(73)

a

OF POOR QUALITY
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VII. Estimation of the Concentration Distribution Downwind of a Continuous,

Ground-Level Line Source

There has been inuch recent interest in the airborne measurement of pollu-

tant concentrations downwind of sources [9 J - [111. Here we wish to consider

a hypothetical, but realistic, situation in which an aircraft with a downward-

looking instrument, such as for example the JPL Laser Absorption Spectrometer

[121, is flown at different altitudes downwind of the source, and total species

burdens are measured at a series of downwind distances.

The steady-state concentration of a species downwind of a continuously

emitted ground-level line source (e.g. a hi g hway) situated normal to the

direction of the wind flow is governed by the following form of the atmospheric

diffusion equation [5].

v1 "X
	

^x	 Kv(x3) oX ^; w(x
1 ,x 3 )	 (74)

I	 3	 3

u(O,x 3 ) = uo (x 3 )	 (75)

- Kv(0) 
^+x 

= ^^(x 1 ) 	 x 3 = 0	 (76)
3

aX = 0,	 x3 = h	 (77)

3

where ; is the constant rate of release. For convenience we will take K v = 1,

since vertical variations of this constant are not essential to the estimation

problem we will consider.	 If we let t = x 1 A 1 and x = x 3 , (74)-(77) become

L

ax

u(O,x) = u0 (x)	 (79)

.A

:2

AN

L
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ax
	 x = 0	 (80)

2u

^ x 	 0'	
x = h.	 (81)

In this case the measurements Z(t k ) are related to the concentration

u(t k , x ) by (8),

h
Z(t k ) = f J r (t k ,x)u(tk ,x) dx + v(t k )	 (82)

u

where the instrument kernel function will be taken to have the form,

1
1 x < h

— n

J n (t k IX) =	 n = 1,2,..., N	 (83)

0	 x > h
n

The theor y developed in the prior sections can be applied directly to this

proble	 and the optimal filter and smoother are g iven in Table 1. The pre-

diction, filtering and smoothing algorithms were applied to hypothetical data

generated by solvin g (74)-(77) and forming Z(t k ) from (82), using noise

processes w(t,x) and v(t k ) with prescribed propertiES. The algorithms were

applied to estimite the concentration distribution u(t k ,x) as a function of

hEight x at several downwind distances, t i , t 2 ,... based on measurements taken

at one to four elevations.	 It is of interest to study the behavior of the

estimates as a function of downwind distance and o f the number of elevations

at which data are simultaneously taken. Values of a'1 parameters used in the

calculation are given in Table 2.
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Figs. 2-4 show selected results of the application of the filtering and

smoothin g algorithms to the synthetic data of this example. Fig. 2 shows a

comparison of the true concentraLion distribution u(t l ,x) and the filter esti-

mates, u(t l ,x/t 1 ) based on two and four measurement elevations (t I = 0.0002).

As expected, the profile estimated on the basis of four measurement elevations

is superior to that based only on two altitudes. 	 Fig. 3 shows similar results

at t8 = 0.0082. The filter estimate based on n = 4 virtually coincides with

the actual concentration distribution. The performance of the smoothing algo-

rithm is illustrated in Fig. 4, in which the true concentration u(t_,x) is com-

pared with the filter estimate, u(t_,x/tT), and the smoothed estimates,

u(t_,x/t2), and u(t',x/t4), with t = 0.0002, t 2 = 0.0012, and t 4 = 0.0032.

Table 3 Qives the trace of the filte r in g error covariance matrix, P(t,x,x/t),

for the four measurement configurations at three downwind distances t. As expec-

ted, the trace decreases as the number of measurement elevations is increased

from I to 4.

VIII.	 Conclusions

Filtering and smoothing algorithms for the processing of remote sensing

data on atmospheric species concentrations have been derived using Wiener-Hopf

theory. The algorithms were applied successfully to estimate concentration

distributions fron• a hypothetical ground- level line source of material (e.g. a

highway) based on remote sensing data taken from several elevations at a number

of points downwind from the source. Although there has been increasing interest

in the remote sensing of airborne concentrations, a data set sufficient for a p -

plication of the theory developed in this pa per does not yet appear to exist.

Nevertheless, it is hoped that the availability of the algorithms developed here

will facilitate processing of remote sensin g data in conjunction with mathematical

models of air pollutant behavior.
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Table 2. Parameter Values Used in Line Source Estimation
Example

Truncation number N = 5

Measurement time t k+1 = t  + 0.001, k = 1,2,3,•,-

where t l = 0.0002

Fixed-point time for smoothing t
z
 = 0.0002

Constant rate of release ^ = 	 0.3

	

Measjrement points h  = n/4, n = 1.	 3,4

In i tial values and noise covariances

N

E [ u 0 ( x )] = u 0 ( x ) =	 j	 uiti(x)
i=1

N

Cov[u 0 ( x ),u 0 (Y)l = PO ( x ,Y) _	 poi= i(x)C (y)

i=1

Cov[w;t,x),W(s,Y)l = Q(t,x,v):(t-s),	 Cov[v(t k ),v(t n )] = 
R(tk)skn

N

Q(t, x ,v) _	 qii=i(x).i(Y),	 R(tk) = diag[rl,r,,r31r41
i=1

I1	 i = 1

^ i ( x ) =	 1

l w^ cos(i-1)-x	 i > 2

_ - (i-1) 2- `	i - 1
i	 —

I	 i I	 1	 I	 2
I

3	 I	 4 5

u°	 3.0	 1	 1.0 0.03 0.003 0.0003

p ii	 I	 1	 0.12 0.012 0.0012 0.00012

aii
1	 0.5 C.252 0.1252

I
0.06252

r i 0.12	 0.072

l	

0.05 2 I	 0.032
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Table 3. Trace of the Filtering Error Covariance Matrix P(t,x,x/t)

Measurements	 t = 0.0002	 t = 0.0032	 t = 0.0062

4 point

(h ]9 h 2' h 3' h 4 ) 0.2405x10-1 0.1189x10-1 0.9616x10

3	 point

(h i ,h 2 5h 3 ) 0.3441x10-1 0.1577x10 
1

0.1335x10-1

2	 point

(h l ,h 2 ) 0.1678 0.1195 0.1137

1	 point

(h 1 ) 0.6700 0.2914 0.2338

W



Figure Captions

Fig. I.	 Remote Sensing Measurement Configuration Considered in This
Work.

Fig.	 2. Comparison of True Concentration 6(t 1 ,x)	 and	 the	 Filter	 Esti-

mates	 u(t l ,x/t 1 )	 based	 on	 2 and 4 Measurement Elevations.

t 1	=	 0.0002.

Fig.	 3. Comparison of True Concentration u(t8 ,x)	 and	 the	 Filter

Estimates	 u(t8 ,x/t8 )	 based on 2 and 4 Measurement Elevations.

t8	= 0.0082.

Fig.	 4. Comparison of True Concentration u(tT ,x),	 the	 Filter	 Estimate

u(tT ,x/t T )	 and	 the Fixed Point Smoothing Estimates	 u(tT,x;t2)

and	 6(t T ,x/t 4 ).	 t = 0.000-1 ,	 t 2 =	 0.0012,	 t 4	=	 0.0032.
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SUMMARY AND CONCLUSIONS

The object of this research grant was to initiate an evaluation of the

analysis of remote sensing data on pollutant concentrations in the troposphere.

Remote sensing measurements of pollutant concentrations are becoming increas-

ingly important in understanding the transport and transformation of pollutants

over moderate to long distances in the atmosphere. Traditionally such data

have not been analyzed beyond the point of constructing mass fluxes and total

budgets over a region. The question studied in this research grant w s that

of the further analysis of such data, particularly when one has a mathematical

model available. The specific problem then is to see how typical remote sens-

ing data can be used in conjunction with a mathematical model to extract addi-

tional information about the pollutant behavior in the region being studied.

The essential problem is one of estimation, that is, of using the typical

remote sensing data to determine full concentration distributions. Once full

concentration distributions are available, one can then assess the mechanisms

of the process through the mathematical model. The first step in the research

was to look theoretically at the question of the minimum amount of data needed

to reconstruct a concentration distribution from finite data typical of those

collected in remote sensing. Chapter I of this report presents a development

and derivation of a condition of reconstructability, namely rigorous conditions

that can be applied to a data sampling program to determine whether it will be

possible to estimate a species concentration distribution from such measure-

ments. Chapters II and III of this report are then devoted to the development

of a numerical algorithm that will process the data to produce concentration

distriouLion estimates in the cases when the data are a priori reconstructable.

the most important result of this study is the indication of the

urement strategies one should follow in remote sensing programs.



In particular, it appears that the best measurement strategy is to attempt to

obtain pollutant burdens at a certain location at a number of elevations at

t-'mes as close as possible. This strategy is recommended because the vertical

distribution of pollutant concentrations in the first 1,000 meters of the atmo-

sphere is a crucial element of a mathematical model of such species. The 	 1

theory and numerical techniques developed in this study will tell one when

devising a measurement program and monitoring strategy the number of vertical

levels at which one should make measurements to be able to estimate relativel•i

accurately the complete vertical concentration profile of the soecies of intEr-

est.	 It is anticipated that these results will be of value to those contem-

plating remote sensing measurement programs of tropospheric species that involve

measurements at several vertical levels.
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