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DEVELOPMENT OF MATHEMATICAL TECHNIQUES FOR THE ASSIMILATION OF
REMOTE SENSING DATA INTO ATMOSPHERIC MODELS

John H. Seinfeld, Principal Investigator
Caiifornia Institute of Technology
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ABSTRACT

The object of this project was to define the problem of the assimilation
of remote sensing data into mathematical models of atmospheric pollutant
Sy2cies. An object of remote sensing of the atmosphere is to enable recon-
struction of the concentration distribution of trace species over a region
based on the data available from the instrument. The data assimilation prob-
lem is posed in terms of the matching of spatially integrated species burden
measurements to the predicted three-dimensional concentration fields from
atmospheric diffusion models. General conditions have been derived for the
reconstructability of atmospheric concentration distributions from data typi-
cal of remote sensing applications, and a computational algorithm (filter)
for the processing of remote sensing data has been developed.
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RECONSTRUCTION OF ATMOSPHERIC POLLUTANT
CONCENTRATIONS FROM REMOTE SENSING DATA -
AN APPLICATION OF DISTRIBUTED PARAMETER OBSERVER THEORY

Masato Koda* and John H. Seinfeld

Department of Chemical Engineering
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Pasadena, California 91125

ABSTRACT

The reconstruction of a concentration distribution from spatially-aver-
aged and noise-corrupted data is a central problem in processing atmospheric
remote sensing data. Distributed parameter observer theory is used to de-
velop reconstructibility conditions for distributed parameter systems having
measurements typical of those in remote sensing. The relation of the recon-
structibility condition to the stability of the distributed parameter obser-
ver is demonstrated. The theory is applied to a variety of remote sensing
situations, and it is found that those in which concentrations are measured
as a function of altitude satisfy the conditions of distributed state

reconstructibility.
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I. INTRODUCTION

In the remote sensing of tropospheric species, a ground-, aircraft- or
satellite-based platform performs an instantaneous scan of a region of the
atmosphere and measures the species burden within the field of view. With air-
craft or satellite remote sensing the platform is in motion and the fiela of
view is constantly changing. An object of remote sensing of the atmosphere
is to enable reconstruction of the concentration distribution of trace species
over an entire region based on the data available from the instrument.

The reconstruction of a concentration d“stribution from spatially-aver-
aged and possibly noise-corrupted data is a central problem in processing
remote sensing data. In the absence of a mathematical model describing the
spatial and temporal concentration distributions, the reconstruction can be
carried out by standard data irterpolation methods. However, when a mathema-
tical model exists, the problem becomes one of matching the remote sensing data
to the model solution in such a way that the incomplete data can be used in
conjunction with the model to produce an estimate of the region-wide concen-
tration distribution. This problem of the matching or assimilation of remote
sensing data into mathematical models for atmospheric constituents is the
subject of this paper.

There exist a few recent studies that assess the capabilities of remote
sensing for monitcring regional air pollution episodes. For example, Bgrnes
et al. [1] conducted a comparative analysis of satellite visible channel ima-
gery in ground-based aerosol measurements. For three cases, each of which
represented a significant pollution episode based on low surface visibility
and high sulfate levels, the results show that the extent and transport of
the haze pattern can be monitored from satellite data. The study demonstra-

ted the potential of the satellite to monitor both magnitude and aerial extent
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of pollution episodes. In a related study, Lyons, et al. [2] reported on a
demonstration project showing that currently available synchronous satellite
data can detect the aerial extent of large scale hazy air masses associated
with sulfate and ozone episodes.

A study related to that of the present work was reported by Diamonte, et
al. [3] in which they considered the comparison of remote and in situ data on
pollutant concentrations from point sources. They considered typical remote
sensing geometries to provide insight on estimation of plume properties from
these measurements. In a study also related to the present, Kibbler and
Suttles [4] considered the estimation of unknown parameters in a pollutant
dispersion model by comparing model predictions with remotely sensed air quality
data. A ground-based sensor provided relative pollutant concentration measure-
ments as a function of space and time. The measured data were compared with
the dispersion model output through a numerical estimation procedure to yield
parameter estimates that best fit the data.

The object of this paper is to define the problem of the assimilation of
atmospheric remote sensing data into mathematical models of pollutant behavior.
Since the atmosphere is a three-dimensional system, models of pollutant behavior
are of the distributed parameter type [5]. Remote sensing data represent spa-
tial averages of concentrations, so that the assimilation problem is, in es-
sence, one of distributed parameter state estimation.

First, the concept of distributed state reconstructibility is developed
for the class of problems of interest. That is, the first question to be
faced is - can the desired spatial-temporal concentration distributicn infor-
mation be recovered from the measurements in the absence of noise. The deri-

vation of general conditions that allow one to answer this question is the
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subject of Section II. In Section III a variety of common remote sensing
measurement configurations and atmospheric models are tested for reconstructi-
bility. We conclude in Section IV with general observations concerning the

inherent potential of remote sensing data in analyzing regional air pollution.




II. RECONSTRUCTIBILITY AND OBSERVERS FCR DISTRIBUTED PARAMETER SYSTEMS

Atmospheric pollutant models consist of partial differential equations,
linear in the case in which the species does not react chemically or in which
it is produced or destroyed by a first-order reaction of the form A +. This
case represents a wide class of important situations and is the one to which
we direct our attention here. Nonlinear distributed models must be handled
by linearization and therefore also fall within the present framework.

Our interest in this section is to derive distributed parameter observers
for systems described by linear partial differential equations with inhomo-
geneous boundary conditions characteristic of atmospheric models. An observer
is an algorithm that processes measurements of the state of a system to yield
an estimate of the entire system state. An observer is most frequently
employed when not all of the states of a system are accessible for measure-
ment. In the present application, we will be generally interested in only a
single state variable, the measurements of which have Timited spatial resolu-
tion. The observer is stable if its estimated state converges to the true
state after a sufficiently long time. The concept of state reconstructibility
is useful as a condition for the stability of the observer. Thus, if a meas-
urement strategy satisfies the condition of state reconstructibility, then
the corresponding observer is stable, and, the state (i.e. the concentrations)
can, in principle, be estimated from the measurements. The condition that
allows the reconstruction of the system state on the entire field is called
distributed state reconstructibility. Associated with distributed state re-

constructibility, the concept of uniform n-mode reconstructibility can be




developed. Both conditions, n-mode and distributed state reconstructibility, ‘
will be applied, in Section III, to typical remote sensing measurement
configurations.

There exists some previous work on observer theory for distributed param-
eter systems [6-8]). Kitamura et al. [6] formally extended the lumped param-
eter observer to the distributed parameter case. Gressang and Lamont [7]
developed a more complete theory of the distributed parameter observer, includ-
ing reduced order observers. An application of distributed parameter observer
theory has been presented by Kohne [9]. The most complete treatment of observer
theory is that of Dolecki and Russell [8]. In the current work, distributed
parameter observers are derived in a form appropriate for application to the
class of systems representing atmospheric species behavior. In addition, a
result of the present work is an explicit relation between distributed parameter
reconstructibility and the stability of the observer. Observer stability is
demonstrated using a technique of Hale [10] in which Lyapunov stability theory
is extended to function spaces.

We consider the linear distributed parameter system,

WG = | u(x,t) + Blx,t)A(x,t) (1)

defined for t > 0, x = D. The domain D is a connected subset of a d-dimensional
Euclidean space Ed with boundary surface 3D. The d-dimensional spatial coordi-
nate vector is denoted by x. The state u(x,t) is a scalar function and Lx

is a linear partial differential operator with respect to x. It is assumed

that the operator L, is well-poscd. The input “(x,t) is a known scalar

function and B(x,t) is a known coefficient.
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The boundary condition on (1) is
B u(x,t) = h(x,t) x € 3D (2)

where Bx is a linear, spatial differential operator of suitable order over
oD and h(x,t) is a known function. The initial condition is assumed to be
unknown or incompletely known.

We are interested in considering three types of measurements:

Case 1: Spatially-Independent Integral Measurements

The measurement takes the form

w(t) =.£ H(x,t)u(x,t)dx (3)

where H(x,t) is a spatial weighting function.

Case 2: Spatiaily-Continuous Measurements

w(x,t) = C(x,t)u(x,t) (4)

where C(x,t) is a square-integrable fuiction, i.e., C= L2.

Case 3: Spatially-Discrete Measurements

wi(t) = Hi(t)u(xi,t) ) i [P [P | (5)

where wi(t) denotes a measurement at the ith measurement location x.. By
taking the limit to small volumes of integration in (3), we can represent

a system such as (5) by choosing H(x,t) = Hi(t)d(x-xi), 1% 12,0000 Bs
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For the moment let us restrict the problem to one spatial dimension, i.e.,

0 < x < 1. Accordingly, boundary conditicn (2) can be expressed as

L}
o

Bau(x,t) = h,(t) X

n
—

Blu(x,t) = hl(t) X

Then the solution of (1) and (6) with initial condition u(x,0) = uo(x) can be

expressed in the form*

=] t
u(x,t) =j ¢>* (r,O;x,t)uO(r)dr +ff 0* (ry13x,t)B(r,t)f(r,t)drdr
0 00
t.l
+ ff <b* (ryT3x,t)g(r,7)drdr (7)
0 O
where
g(x,t) = 2h1(t)6(x-1) - 2h0(t)6(x) . (8)

*
The adjoint Green's function ¢ (x,t;y,T) is governed by

*
90 (Xx,tsy,T

. L* * _ 5
at X¢ (x’t’.Y’T) = 0 ( )

with the terminal condition

¢*(x,t;y.t) = &(x-y) (10)

*The explicit form of operators Lx. 60, and 61 are assumed as follows:

L (+) = aplx,t) %&l +ag(at) 2+ o (x,t) ()

a,(0,t) al+) 6p(t)(+)

aX

ap(1,t) 2k 6 (1)(0)

Bo(*)
B (+)

PP T —
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and boundary conditions

* K
80¢) - 0
(11)
* %
B¢ = 0

The operators L;, BS. and B; are the adjoints of the operators Lx. BO’ and Bl’
respectively.

The extension of the adjoint Green's functions to higher spatial dimen-
sions is straightforward. In higher dimensions, (9) and (10) remain the

same with the general boundary conditions

* *
B0 (xyt3y,7) =0 x = aD (12)

* *
where Sx is the adjoint of the operator Bx. In general, we note that ¢ is
related to the Green's function ¢ associated with the system (1) with

*
homogeneous boundary conditions by the relationship ¢(x,t;y,T) = ¢ (y,T:;X,t).

The adjoint Green's function for well-posed distributed parameter sys-
tems can be constructed in a variety of ways. Expansion in spatial eigenfunc-
tions and construction of the adjoint Green's function from eigenvalues and
eigenfunctions is a powerful method for linear systems. Let us assume that
L: has an infinite series of discrete eigenvalues {Ai}. = 1.2,..x« Using
standard methods, the adjoint Green's function that satisfies (9)-(12) is
found to be [11]

-2, (t-1)

0" (x,tiy,1) = 21 6 (x), (y)e (13)
n

oo
=

where the eigenfunctions {¢i}, i=1,2,..., are the solution of the equation,
*

ani = X05s satisfying the boundary conditions (11) or (12).

R R R .



ORIGINAL PAGE I3
GF POOR QuALITY
I1.1 Reconstructibility Conditions
The objective of an observer is to reconstruct the system state when
the measurements are incomplete. To be able to reconstruct the state the
observer must be asymptotically stable.
An identity or non-reduced observer for the system (1) with measure-

ments (4) takes the form

a_a.g%ﬁ = Lx a(x’t) + B(X,t)f(xtt)

+ GIw(x,t) - COxt)u(x,t)) (14)

where a(x,t) is the observer output and G is a suitably chosen integral opera-
tor with the kernel G(x,y,t).

Before presenting a derivation of the observer, we will establish the
conditions under which the system (1) and (4) is reconstructible. We define

the reconstructibility kernel function by
t
* 2 *
Q(x,y,t) = [/® (x,tsr,1)C(r,1)e (y,tir,7)drdr (15)
J
D

It will be shown later that the observer (14) is stable if Q(x,y,t) has a so-

called generalized inverse, i.e., if there exists P(x,y,t) such that

/P(x.r.t)Q(r,y.t)dr = 6(x-y) (16)
D
By formal differentiation of (15) with respect to time and use of the
properties of the adjoint Green's function (9) - (12), it is found that

Q(x,y,t) satisfies the following Lyapunov equation,
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EQ%{LQ' _ L;Q(x.y.t) - Q(x.y.t)L; + Cz(x,t)c(x-y) (17)

with the initial condition

Q(x,y,0) = 0 (18)
and boundary conditions

B0=0, Q8 =0 (19)

where L;Q = OL;. Although Q(x,y,t) is formally defined by (15), it is impor-
tant to note that Q(x,y,t) may be computed from (17)-(19) without using the
adjoint Green's function.

By using the identity
= ;t & . './:/— P(x,r,t) agi%%élzl P(s,y,t)dsdr (20)
DD

P(x,y,t) can be shown to obey the following Riccati equationf

at X

PGYat) 2 | p(x,y,t) + P(xuyst)L
y

[ p(xur.t) C(rat)P(roy,t)dr (21)
D

with boundary conditions
g.P =0, PEy =0 (22)

P(x,y,t) may be considered as the kernel of the integral operator P defined as

*The impact of observation error on the design of an observer can be assessed
from (21) by comparing P to that from the corresponding distributed param-
eter filter.
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PF(x) =/ P(x,y,t)f(y)dy (23)
D

for 7 € Lz.

A linear distributed parameter system (1) and (2) with measurement (4)

is said to be distributed state reconstructible if and only if Q(x,y,t) de-

fined by (15) has a bounded generalized inverse P(x,y,t) for t > 0. It may
be shown that Q(x,y,t) has a bounded genzralized inverse when Q(x,y,t) is

bounded and positive-definite for t > 0 [11]*. The system (1), (2), and (4)
will be defined to be wniformly n-rode reconstructible if there exists posi-

tive constants Ml’ M2, and o such that

F | M1 5[[¢n(x)0°(x,y,t)¢n(y) dxdy < M, (24)
f DD

*
for all t > 0, where ¢n(x) is the eigenfunction of Lx and the modified re-

constructibility kernel Q°(x,y,t) is definea by

t

Q7 (x,y,t) = [ [¢*(x,t;r.r)Cz(r,r)fr*(y,t;rﬂ) drdt (25)
t-o D

The system is distributed state reconstructible if (24) ic satisfied for each
of the eigenfunctions. The uniform n-mode reconstructibility test (24) is
useful when P(x,y,t) cannot be found airectly from Q(x,y,t). Since it is
straightforward to extend the concept of di.tributed state reconstructibility

to measurcment Cases 1 and 3, detailed discussion is omitted here.

*Positive-definiteness of the kernel Q implies that

[f.’(X)Q(X,y,t)_“(y) dxdy > 0
DD

for all t >0 and 7 - LZ'

U
L
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11.2 Minimum Variance Observers

11.2.1 Observer for Case 1

For the system described by (1) and (3), we define the reconstructi-

bility kernel function by

Q(x,y,t) =f[ ¢*(x,t;r,T)H (r,T)dr[ H(s,r)¢* (y,ts;s,t)dsdr (26)
07D D

where Q(x,y,t) obeys

aQ(;t,x,tl - - L;Q(x,_y Gl = Q(x,y,t)L; +H (x,t)H(y,t) (27)

with initial and boundary conditions given by (.8) and (19). Assuming that the
system is distributed state reconstructible, the existence of the general-

ized inverse P(x,y,t) of Q(x,y,t), that satisfies

a—P%gm = LP(Gyst) + POyl

-fPUJJW(hﬂMjABJWBJJNS (28)
D D

will establish the observer for the system (1), (2) and (3).

Following Meditch [ 12 ], we define the cost functional associated with

the observer as
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j-IU(x,O) - ug(x)1 A [u(y,0) - up(y)1dx

D
L[ :
+3 {w(t) -[H(X,t)U(X,t)dX} dt (29)
0 D

where t¢ is an arbitrary final time, uo(x) is an initial estimate of u(x,0),

(=
]
N —

and

-1
A () =[[P0<x,y){-}dy] (30)

D

Po(x,y) is a bounded, symmetric, and positive-definite weighting func-
tion. The observer is found by selecting u(x,t) so as to minimize (29) sub-

ject to (1) and (2). By minimizing the augmented functional,
tf
J=dg+ b[ f x(x,t)[a—géﬁl - Lulx,t) - B(x,t)f(x,t)_-} dxdt  (31)
D

the result is the Euler-Lagrange equation,

Alx,t) _ _ L;X(x,t) = H(x,t)[y(t) -./ﬁH(Y.t)G(y,t)dYI (32)

ot
D J

with the transversality conditions,

A(X,O) = AX [U(Yoo) = UO(Y)]
(33)
X(x,tf) =0
Equations (32) and (33) constitute a two-point boundary value problem
that may be solved by the sweep method. We assume the following Riccati

transformation for U(x,t),
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u(x,t) =_[-P(x.y.t)k(y.t)dy + p(x,t) (34)
D

where the kernel P(x,y,t) and p(x,t) have to be determined.

Substitution of (34) into (1), (32) and (33) yields

Ma%:_tl = Lp(x,t) + B(x,t)7(x,t)

+[P(X,T‘,t)H (rﬁt)dr [W(t) 'j H(Sst)p(sst)ds] (35)
D

D
p(x,0) = uy(x) (36)
B, P(xst) = h(x,t) x = 3D (37)

P (x,y,t) - LXP(x,y,t) + P(x,y,t)Ly

at
-fP(x,r,t)H (r,t)dr‘j H(s,t)P(s,y,t)ds (38)

D D
P(x,y,0) = Py(x,y) (39)
8 P(x,y5t) =0, Plxy,tlg, =0 X,y € aD (40)

Equations (33) and (34) imply that p(x,tf) = u(x,tf) is the state esti-

mate at an arbitrary final time te. It is important to note that (38) is

identical to (28). Thus we may conclude that the symmetric, positive-definite

kernel P(x,y,t) completely characterizes the minimum variance observer.

Equation (35) can be rewritten as

é%%!;&l - Lxﬁ(x,t) + B(x,t)f(x,t)

+ K(x,t) [W(t) -{) H(y,t)a(y,t)dy:' (41)

-
’
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where a time-varying observer gain K(x,t) is defined by

K(x,t) =-I.P(x,y,t) H(y,t)dy (42)
D
The structure of the observer is identical to that of the distributed param-
eter filter (13].
We introduce the reconstruction or observer error e(x,t) = a(x,t) - u(x,t).

Then we obtain the following equation for e(x,t),
Je(x,t
—3(;’—1 = Le(x,t) - K(x,t) gH(y.t)e(y.t)dy (43)

with initial and boundary conditions, e(x,0) = uo(x) - u(x,0), and Sxe(x,t) = 0.
If the initial state is known exactly and the observer is initialized such
that G(x,o) = u(x,0), then the observer will reconstruct the state exactly.
It is not reasonable, however, to expect that the initial state will be known
exactly. It is, therefore, important to insure that if errors are present in
the initial conditions applied to the observer that the estimate will converge
to the true value of the state, i.e., the reconstruction error e(x,t) must
have the property lim|le(x,t)| = 0, for all e(x,0).

Asymptotic sta;;Tity of the observer can be demonstrated by using (16),

(26), (27), and (43). We will consider a Lyapunov function defined by

Vie,t) = 1![ e(x,t)Q(x,y,t)e(y,t)dydx . (44)
D

It is first necessary to note that Q(x,y,t) is positive-definite and bounded
from below. Then the time derivative of the Lyapunov function is calculated

using (27) and (43). The result is
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g—t V(e,t) = - ff e(x,t) H(x,t)H(y,t)e(y,t)dydx (45)
DD

which is a negative-semidefinite quadratic form. This is sufficient tc show

that (43) is stable in the sense of Lyapunov [10].

I1.2.2 Observer for Case 2

In a similar manner to that of Case 1, we can obtain the minimum vari-
ance observer for Case 2, i.e., for spatially-continuous measurements (4).

The observer dynamics are described by

~

ﬂ%ﬂ . Lxﬁ(x,t) + B(x,t)f(x,t)

+fG(x,y,t)IW(y,t) - Cly,t)uly,t)1dy (46)
D

with initial and boundary conditions

A

u(x,t) = uy(x) (47)

exﬁ(x,t) = h(x,t), x €3D (48)

where the optimal gain kernel G(x,y,t) is defined by

G(x,yst) = P(x,y,t) Cly,t). (49)

The Riccati equation for P(x,y,t) in (49) is identical to (21) with boundary
conditions given by (22). The reconstruction error e(x,t) = u(x,t) - u(x,t)

satisfies

de(x,t) . Fe(x,t) (50)

ot
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where the integro-differential operator F is defined by

Fe(x,t) =L e(x,t) -[G(X.y.t)c(y.t)e(y.t)dy (51)
D

We can demonstrate the stability of the observer by using the reconstructi-
bility kernel Q(x,y,t) defined by (15) and the Lyapunov function (44).
Under the reconstructibility assumption, the derivative of the Lyapunov func-

tion becomes

g—t- V(e,t) = -f e(x,t)Cz(x,t)e(x.t)dx (52)
D

which is a negative-semidefinite quadratic form.

11.2.3 Observer for Case 3

For the spatially-discrete measurements (5), i.e., Case 3, the observer

is given by the following system:

~

du(x,t) . Lx&(x,t) + B(x,t)F(x,t)

ot
4 A
+ 206,00ty (1) - Ho(E)u(xgat)] (53)
i=1
where
Gy (x,t) = P(x,x;,t)H,(t) (54)
and

RLOnt) = | p(x,y,t) + PlxystlLy

¢
P(x.xi.t)Hi(t)Hi(t)P(xi.y.t) (55)
i=1



-18-

with initial and boundary conditions given by (47), (48), (39), and (40).
Under the distributed state reconstructibility assumption, the stability of

the observer can be demonstrated.

I1.3 Comments

The relationship has been established between distributed state recon-
structibility and the existence of an observer. Distributed state reconstruc-
tibility is defined through the existence of the generalized inverse to the
reconstructibility kernel. The kernel associated with the observer gain
satisfies the same Riccati equation as does the generalized inverse of the

reconstructibility kernel.

IIT. REMOTE SENSING MEASUREMENTS AND ATMOSPHERIC MODELS

In this section we will test both the n-mode and state reconstructibility
of common remote sensing measurements with models of atmospheric pollutant
behavior. By far the predominant mode of remote sensing is to measure the inte-
grated quantity (burden) of material between the ground and some known altitude.
Thus, both cases we consider here involve vertically integrated data. Various
assumptions concerning the horizontal characteristics of the measurements will
be tested. Three-dimensional models of pollutant behavior are generally based
on the atmospheric diffusion equation [5] that describes the flow and diffu-
sion of species. The object of this section is to ascertain if the customary
remote sensing measurements allow one, in principle, to reconstruct the detailed
concentration distribution. The distributed parameter reconstructibility con-

dition derived in Section II will therefore be tested in each case.

T TR NSRS
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III.1 Measurements in a Layer with Horizontal Homogeneity
The vertical concentration distribution of a pollutant in a layer with

horizontal homogeneity can be described by the one-dimensional diffusion

equation,
ou a u
it
subject to
k&Y= h (1) z2=0 (57)
9z 0
ou " :
Kez=0 z=1 (58)

where h0 is a given flux at the ground (z=0) and K is the turbulent diffusion
coefficient.

The adjoint Green's function for the system (56)-(58) is

oo

2
¢*(z,t;z',r) =1+2 :E: cos(nnz)ccs(nnz')e("n) K(t-1) (59)
n=1

State reconstructibility is then to be assessed by condition (24) using the
modified reconstructibility keranel (25).

We consider each of the measurement types ‘3), (4) and (5). The condition
for uniform n-mode reconstructibility is (24), which is written for ¢, = cos(nmz),
n=0, 1,2,0005 Q&S

1 .1
p
0 <M< j cos (nz)Q%(z,2",t)cos(nnz' Mdzdz' < M, <= (60)
0

For each of the three types of measurement, the integral in (60) is:
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Case 1: Spatially-Independent Integral Measurements

¢ 2(nn)2K(t-T)l : 2
[ e l f H(r,t)cos(nmr)dr( dt (61)
-Q rd

Case 2: Spatially-Continuous Measurements

t 2 1 2
[ e2(nn) K(t-1) [ lc(r.r)cos(nnr)' drdrt (62)
t-o 0

Case 3: Spatially-Discrete Measurements

t {
2 2
f e2(nm) K(t-f){z Hi('z)cos(nﬂzi), dv (63)
i=1

t-o

forn=20, 1,2,... .

From (61)-(63), we see that uniform n-mode reconstructibility is com-
pletely dependent on the form of the measurement weighting functions, H(z,t),
C(z,t) and H; (t) and on the eigenfunction, cos(nmz). The condition (60)
implies that _[ H(z,t)cos(nmz)dz # 0. We may note that this inequality is
essentially equ1va1ent to the observability condition derived by McGlothin
(14). Similarly, (63) implies that the system state is reconstructible by
point sensors if the sensors are not located at the zeros of any of the eigen-
functions.

In the remote sensing problem, the measurement weighting functions are
often taken as H(z,t) = 1 or C(z,t) = 1. When H(z,t) = 1, the condition (60)

holds only for n = 0 implying that the spatially-independent integral
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measurements do not allow reconstruction of the system state on entire
fields.* This can be directly checked by computing the reconstructibility
kernel Q(z,z',t). The system with integral measurements cannot be distribu-
ted state reconstructible since the generalized inverse of Q(z,z',t) = t does
not exist, since Q is not an explicit function of z and z'.

When the measurements are spatially-continuous and C(z,t) = 1, the system
is distributed state reconstructible. From the definitions of Q(x,y,t) and

P(x,y,t) in (15) and (16), we have

[ ]

1 ‘ 2
Q(z,z',t) = t e —%-cos(nnz)cos(nnz'){:ez("") Kt _ {} (64)
m™K n=ln
and
12N 2 2(nm) 2Kt -1
P(z,z',t) = T4 4n°K ji n“ cos(nmz)cos(nmz')S e“ '\ -1 (65)
n=1

We may note that the integral equation (16) is satisfied when it is recognized

that

*
A mode associated with the eigenfunction ¢0 =1 (n = 0) can be reconstructible
and the appropriate observer is

- ~ 1
2
ou _ d l S [
ol b A% l:w(t) - f u(z',t) dz]
0

a9z

Stability of the observer can be demonstrated by constructing the Lyapunov
function

11
V(e,t) = [fe(z,t)te(z',t) dzdz'
0 "o
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§(z-2') =1+ 2 ZE cos(nnz)cos(nmz') (66)

n=1

P(z,z',t) is bounded and positive-definite, and for t > 0, the series (65)

is uniformly convergent.

I11.2 Measurements of a Steady State, Point Source Plume
The concentration distribution in a plume from a continuously emitting,

elevated point source can be described by

au 3 U 3 u
— = K + K (67)
A A

where t is the time an element of fluid spends in the plume from emission,
equal to downwind distance x divided by the wind speed. The source is of
strength q located at t = 0, y = 1/2, z = zH(O g8 1). The boundary condi-

tions on (67) are

u(0,y,2) = qé(y - 1/2)s(z-z,) (68)

u ) .

50 y = 0,1 (69)
ou _ -

KZ E = hO Z 0 (70)

M. z=1 (71)

3z

The adjoint Green's function for this system is

: (nm) 2K (t-1)
¢ (yoz,t; ¥y',2',1) ={1 +2 cos(nmy)cos(nmy')e Y }x

‘fk
n= .
© (mm)€K_(t-1)
1 +2 }E; cos(mmz)cos(mmz' e £ :} (72)
"F
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Consider first a scanning measurement performed at a horizontal position

Y = Yo

1
w(t) =f J(z)u(t,y.,z)dz (73)
0

where the scanning data w(t) are taken on a coordinate that moves along the
t-axis. u{z) in (73) is the altitude-dependent weightingi function for the

measurements. When J = 1, the reconstructibiiity kernel function becomes

Q (t,ys2i¥'s2') = ¢

o (nm) 2K, t
+ i— ‘21 cos (nry,) i ) cos(nmy) + cos(nny')}{e " - 1}
H n=

(nm)¢
4 & < cos(nmy,)cos(mmy,) ‘ (']24_"12)172KHt
" 2?1 N cos(nmy)cos(mmy' X e . (74)
Hn=l m=1 (n“+m")n

The system is not distributed state reconstructible since the ceneralized
inverse of Q(t,y,z;y',z') does not exist. Therefore, we conclude that
the scanning measurement (73) cannot, in principle, allow reconstruction of

the system state.

The same results can be obtained for the following measurement systems:

1 .l
w(t) = IO/U(t.y.z)dydz (75)
0

1
wit,y) = fu(t,y,z)dz (76)
0
1
w(t,z) = [u(t,y.z)dy (77)

0
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In these cas~s, the reconstructibility kernel function Q(t,y,z;y',2z') cannot
be written explicitly in terms of all the spatial variables y,z, and y',2"'.
Thus, the generalized inverse P(t,y,z;y',z') does not exist, which allows
reconstruction of the system state on the whole domain. As 3 rule, if
Q(t,y,z;y',2"') is expressible as an explicit function of all the spatial vari-
ables and if it satisfies t'e uniform n-mode reconstructibility test. then the »
system is distributed state reconstructible.
Indeed, we can show that the system state is distributed state recon-

structible for the measurement

w(t,y,z) = u(t,y,z) (78)

In this case, we have

% 2

2(nm)°K,t

Q [ty s2") = 2% %— z 1 3 cos(nﬂy)cos(mry'){e o 1}
H n=1 (nm)

2(nm) %K, t
)2 cos(nmz)cos(nnz') {; -1

oo o 2 2
+ 2 :E EE cos(nry)cosjnmz)cos(nnx')cos(mwz‘)[:eZ{("") KH+(m“) KV}t_ {] (79)
n=1 m=1 (nw)zKH'r(mn)zKV

+
Xlt—-

Ms
—

The generalized inverse of (79) is given by

SR o
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- 22Kt -1
P(t,y,z3y',2') = %+ 4KH 21 (mr)z cos(n*ny)cos(nny'){e KH - 1}
n= i
2(mm)2k it -1
+ 4K 2 (nm}2 cos(mrz)cos(mrz'){e "V 1}

n=1

w

+ 8 2 z {(mr)zKH + (mn)zl(v} cos(nny)cos(mz)cos(nny')cos(mnz')

=1 m=1

>

2 2
2{(n7)"K -1
x[e {(nm) H+(rrrrr) Kylt ) J o

where (80) satisfies the Riccati equation associated with the measurement (78),
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IV. CONCLUSION

This paper has examined the possibility of estimating atmospheric species
concentration distributions from remote sensing data. Atmospheric concentra-
tions can be modeled by partial differential equations of the diffusion type.
Remote sensing data generally represent spatial averages of the concentrations,
frequently in the vertical direction. The essential problem, therefore, is to
assess the possibility of estimating the state of a distributed parameter sys-
tem on the basis of spatially-averaged measurements. The theoretical basis
of the assessment is a condition for state reconstructibility of distributed
parameter systems. (The connection between state reconstructibility and the
stability of the distributed parameter observer has also been developed.)

A variety of remote sensing measurement configurations were tested for
reconstructibility. It was found, not unexpectedly, that those measurements
based on integration of the vertical concentration distribution over the
entire layer do not lead to distributed state reconstructibility, i.e., there
does not exist a generalized inverse of the reconstructibility matrix kernel
and therefore do not afford the possibility of estimating the concentration
distribution over entire field. Those measurement configurations that, on
the other hand, enable sampling of the concentration at vertical positicns

lead to distributed state reconstructibility.
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Filtering and Smoothing for Linear |

Discrete-Time

Distributed Parameter Systems Based on
Wiener-Hopf Theory with Application
to Estimation of Air Pollution

SIGERU OMATU. MEMBER, 1EEE. AND JOHN H. SEINFELD

Abstroct — Optimal fitering and smoothing algorithms for limear dis-
crete-ime distributed parameter 5\ stems are derived by 2 unified approach
based on the Wiener-Hopl theonn. The V¥ Hopl equation for the
esnmanon problems 1 derived using the k. L uares esumanon ervor
critenon L sing the basic equanon. three npes of the optimal smoothing
estimators are derived nameh . fived-point. fized-internal and fined-lag
smoothers. Finallv. the results obtained are applied 1o estimanon of atmo-
spheric sulfur diovide concentrations in the Tolusluma prefecture of
Japan

I. INTRODUCTION

A NUMBER of important physical phenomena may be
modeled as discrete-ume distnbuted parameter sys-
tems When esumauon problems are encountered 1n such
svstems. the measurements are also frequently discrete 1n
ume A great deal of work has been carned out on esuma-
uon problems for continuous-time distnbuted parameter
svstems [1]-14] Tzafestac [2). [€] and Nagamine er a/ |7
have derined opumal esumators for discrete-ume distnb-
uted parameter systems Tzafestas emploved a Bavesian
approach. where Nagamune e7 a/. considered onls the filter-
ing problem based on the Wiener-Hopf theonn Recently.
Bencala and Seinfeld [3] have denived the opumal filier for
continuous-uime distnbuted parameter systems with dis-
crete-ume observauons by the Wiener- Hopf approach

The object of this paper is twoiold. First. we seek to
derive optima! filtenng and smoothing algonthms for dis-
crete-ume distnbuted parameter systems by a umfied
Wiener- Hop! approach Fuxed-point. fixed-interval. and
fined l2z smoothers are considered Second. we wish to
arpiv the results 1o the esumauon of atmosphernic sulfur
dionide concentrations in the Tokushuma prefecture of
Japan

11 DESCRIPTION OF THE DISTRIBUTED PARAMETER
SySTEM

i
Let D be a bounded open domain of an r-dimensional
Euclidsan space with smooth boundary 9D. The spatial
coordinate vector will be denoted by x = (x,.---, x,) € D.
Consider a Linear distnibuted parameter system described

by
u(k+1,.x)=¢€u(k x)+G(k,x)wk,x). x€D
(1)

where u(k + 1, x) 15 an n-dimensional vector function of
the sysiem. wik. x) is a vector-valued Gaussian process. £,
is a Linear spaual matnx differenual operator, and G(k. x)
1s a known matnx functuon

The iniual and boundary conditions are given by

w(0. x) = uy(x) )
Teulhk = 1.§) = S(k=+ 1. §). ¢e€aD (3)
r_g[ j=a ]+ -al§)d] ]on (4

where m 1s an extenor normal vector 10 the boundan 3D at
2 point € € @D and a(§) 15 a funcuon of class ¢? on 3D
satushvng 0 < af§) < 1. S(4 = 1. {) denotes a source func-
uon a1 the boundan and 15 assumed to be known

A

»

2
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Assume that ug(x) 1 a Gaussian random function the
mean and covanance funcuons of which are given by

E[uo(x)] =0 ()
E[wo(x)ug(v)] = Po(x. ¥) (6)
where E[-] and the prime svmbol denote the expectation

and transpose operators, respectively.

Let the observed data be taken at m points. x',- -,
x™ € D= D U dD and let an mn-dimensional cclumn vec-
tor u, (A ) be defined by

wa(h) = Collulh. x")- - wlh. x™))] (7
Let the observauons be related to the states by
2(h) = H(Au (k)= c(k). (8)

where z(A) 1s a p-dimensional obsenations vector at ine m
observationf points. x'.---. x™ € D. H(k) is a known
pxmn matrix. and ¢(k) 1s a p-dimensional vector-valued
wiute Gaussian process Assume that the white Gaussian
process wik.x) in (1) and ¢(K) n (8) are stausucally
independent of each other and also independent of the
imual condinon wy(x) Their mean and covanance func-
uons are given by

E[w(k.x)]=0. E[c(k)]=0 9
E[u‘(k J)u'(s.l)]=0fk.x.\)6‘, x.yED

(10)

E[c(kic(s)] = R(K)S,,. (1)

where &, 15 the Kronecker delta function. and Q(A. a. 1)
and R(4A ) are symmetnc positne-sermdefimute and positine-
definite matrices. respectively

111 DESCRIPTION OF THE ESTIMATION PROBLEMS

The general problem considered here 15 1o find an esu-
mate 4(-. x A)of the state u( 7. 2) at ume = based on the
measurement data :' denoung a family of z(o) from

o = 0 up 10 the present ume 4 Specifically. for 7 > & we .

have the predicuon problem. for = k the filtenng prob-
lem and for r <4 the smoothing problem As in the
Kalman-Bucy approach. an esumate g@t7. x A)of u(7. x)
1s sought through a lLincar operauon on the past and
present observauon values z¢ as follows

L)
ilr.xh)= 3 Fr.x.0):(0) (12)

e=(

where Fi7.x.0)1s an nxp matnx kernel funcuion
To differenuate between the predicuon. filtenng. and
smoothing problems. we replace (12) with different nota-
uon for each problem
1) Predicuon (7 > k)
h
u(r.x/k)= 3 A(r.x,0):(0) (13)

e=0
2) Filtenng (v = k)
L]
G(hk.x/k)= 3 F(r.x.0)z(0) (14)
oe=0
3) Smoothung (* < k)
.
u(r.x/k)= 3 B(r.k.x.0):(0) (15)
e=0
The esumation error 1s denoted by @(7. x /k )\
G(r.x/k)=w(r.x)—ul(r.x7y) (16)
The esumate &( . x k) that minimizes
Ja) = E[ atr.x k)7 07

1s said 10 be opumal. where | - | denotes the Euclidian
norm

xr
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Theoren: | (Wiener-Hopf theors) A necessary and
sufficent condition for the estimate (7. x ‘A) 10 be opti-
mal 1s that the following Wiener-Hopf equation holds for
a=0.1--.kandx € D.

A
S Fir.x.0 )E[:(a):'(a)] = E[u('r. x):'(-)].
o=0

(18)

Furthermore. (18) is equivalent to
Ela(r.x/k):"(a)] =0 (19)
fora=0.1.--.kand x € D.
Proof Let Fy(7.x.0) be an nxp matnx funcuon aud

let ¢ be a scalar-valued parameter. The trace of the covan-
ance of the esumate.

i
i(r.x/k)= 3 (Flr.x.0)+ ¢F(1.x.0)):(0)

o=0

is given by

A
JG,) = E[ ulr.x)—a(r.x/k)—e¢ 3 F(r.x.0)z(0)?

e=(

A
= E[ alr.x 4)7] - Z(E[ﬂ‘(v.x *) 3 r,!f.x.o).-(o)]

=0

~'E

-
S Fir.x.0):l0) :]

e={

A necessany and sufficient condinon for &@(7. x /k) 1o be

optimal 1s that

aJ(a,)
de

=1

that 1s

[ i

Elit=.x A) S Flr.2.0):(0)| =0

l e

for ans nyp matnix Fy(7. 2 0) Using the relauon between
the trace and inner product vields

»

Elitr.x A1) X Flz.x.0):(0)

o=(

A
r E[&H..\,AI s :'(o)f;('r.x.a)]

=0

ll’[E[ﬁ’.?.A A l:’(o)]F_“lv.x.e)] =0

I}
0 A~

o=

Setting Fy(7. x. h) = E[i(+. x/k)z'(0)] in the above equa-
uon. 1t follows that (19) i1s a necessary condiuon for
u(r. x ’k) 10 be opumal Sufficiency of (19) also follows
from the above equation QED.

Corollan 1 (Orthogonal projection lemma). The follow-
ing orthogonalits condition holds.

Elu(r.x/k)i'(§.¥/k)] =0, x.y€D (20

where § 1s any ume nstant. for example, { <k.{ =k or
$>k.
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Proof Multiphing each side of (19) by £ v.a)and
sumnung from o = 0 10 0 = & wields

.
Ela(v. 2 &) : Sa)F(3.v.a)| =0
anl
Substituting (12) into the above equation wields (20)
QED

Then the following iemma can be proved

Lemma | (Umgueness of the opuma' kernel) Let
Fir.a.0) and A x.0) = N(1. x.0) be opumal matny
kerne) functions sausfying the Wiener- Hopf equation (18)
Then 1t follows that

Mr.x.0)=0. e=01- .kandx€D. (21)

and the optimal matna kernel funcuon £(r. 2. 0)1s umique
Proot From (18) we have

T Ar.s.0)E[:(0): (a)]

exy

= E[unv.l):‘la)]

A
= S (Frao)= Nroxoo))E[(z(0):(a)]

ex(

Thus

.
S Nirae)E[:(e):ta)] =0
ong
Muluphing each side of the above equation by A(r. 1. a)
and summing from a = 0 10 a = A wields

4 .
T I Nrae)i[e)z (@) N (T xa) =0
e=0anU

On the other hand from (8) and (11) we have
El:o):tal] = anlli:._tvn._ln‘]Hm\ = Rio)é¢,,

Then at follows that

t4-

‘.
S N- aelHieE|utolu(a)]H (a)N (7. 2. a)
[ A S LA
.
= S A v o lHioIR(0VH (eI N (1. x0) =0
L Ld |
Since both terms on the nght side of the above equanion
are positine-semidefinite because of the positve-definiteness
of Rie) a necessan and sufficient condition for the above
equationto hold s Vit 2 o) = 0.0 =01. . handx €
D Thus the proof of the lemma 1s complete QED
In order to facilitate the dernanon of the opumal esu-
mators we rewnte (18110 terms of the following corollan
Corollann 2 The Wiener-Hop! equauion (18) 1s rewntien
for the predicton. filtenng. and smoothing problems as
follows
1) Predicuon (+ > &)

.
: Al \.u)[[:(n):‘(a)] = E[u(v. 1):'(0)]A
e~{
(22)
fora=0.1 . handx €D
2) Filltenng (v = 4k)

‘.
S Fk. x.c)f[:(o): (n)l = E[u(k.x):'l-)](!!)
el
fora =01 kandx€D
3) Smoothing (+ < &)

4

S Bir.k.x.0)E[z(0):"(a)] = E[u(r. xl‘ul]
o=

(24)

fora=0.1 .Aand2€D
In what foliows. let us dennte the estimaton €rTor covan:
ance matny funcuon by Pir a0y A

Pir.x v k)= Elatr.ahdi(r v A)] (2%
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111.  DERIVATION OF THE OPTIMAL PREDICTOR

In this section. we denive the optimal prediction estima-
tor by using the Wiener-Hop/ theons in the previous

m;;::nm 2 The optimal prediction estimator is given by IEEE: SYST,, MAN, CYBERN. j :
a(k + 1. x/k) = €,a(k. x/k) (26) b o
Ta(k+1,6/k)=S(k+1.§). E€aD. (27) A et |
Proof From (22) and (1) we have Galley No. —i

4

T Atk =+ 1.x.0)E[z(0):"(a)] = £, E[u(k.x):"(a)]

o=y
since w(k. x)1s independent of 2(a).a = 0.1.-- - k. From |
the Wiener-Hop! equation (23) for the opumal filtenng J
problem we have

A

Y (A(k+1.x.0) = £,F(k.x.0))E[z(0):"(a)] = 0. - ; |
=0 »
Defining N(k. x. 0) by 2

Nhk+1l.x0)=Ak=+1l.x.0)— L F(k.x.0),

it is clear that Ak = 1. x.0)+ N(k + 1. x. 0) also satis-
fies the Wiener- Hopf equation (22). From the uniqueness
of A(k+ 1.x.0) by Lemma 1 nt follows that A(k +
1. x.0) = 0. that is.

Alk=1.x.0)=C Flk.x. k). (28}
Thus. from (13) and (14) we have

L
k= 1.x/k)=E, 3 Flo.x.0):(a) =, a(k. x/k).
e=0

Since the forms of T and Stk =+ 1. §) are known. the
predicied esumate @k = 1. § A) also sausfies the same
boundan condition as (3. Tack = 1. §7k) = Stk = 1. §).
§ € oD Thus. the proof of the theorem 1< complete Q.E.D.

Theoren: 3 The opuimal prediction error covariance ma-
trix ‘uncuon P(A = 1.x. v ks gnen by

Plh~1a. v k)=E P x. ) k) + O(k.x,¥).
(29)
T P(k+1.§.3/k)=0. ¢€aD (30)

where

Oihk.x.3)=Glh.x)Q(h. x. y)G(h.v) (21)
Proof From (1). (16). and (26) 1t follows that
(k=L x/ny=Ca(k.x/k)+ G(k. x)w(k,x)
(32)
and from (3). (16). and (27).
Tk =+ 1,€/k}=0, ¢€aD. (33)
Then we have from (31) P(k =+ L. x. v/k)= Ela(k +
Lox/kya'th + 1y/k)) = E, Pk x. y /k)C+ Quk.x, ¥)
and from (33) E[Tak + 1 §/k)a'(k + 1. y/k)) =
TPk + 1, € 1 /k) = 0. Thus. the proof of the theorem is
complete QED.

IV.  DerivamiON OF THE OPTIMAL FILTER

Let us derive the optimal filter by using the Wiener- Hopf
theorem for the filtenng problem From (23) 1t follows that

Flk+ 1 x. k+ 1)E[z(k+ 1):"(a))
4
+ 3 Flh+ 1.x.0)E[z(0):"(a))

=0
= E[u(k + 1. x):'(a)) (34)
fora=01.- k=1




et

From (1) and the independence of =4 *' and w(k = 1, x).
it follows that E|u(k + 1. x)z'(a)) = £, E[u(k. x):"(a)).
Apphing the Wiener-Hop! equation (23) to the right side
of the above equation yields

A
E[u(k +1.x):"(a)] =€, T F(k. x.o)E[:(o):'(a)]
=0

(35)

Furthermore. from (8) and the whiteness of v(k + 1) we
have

E[:(k + 1)z"(a)] = H(k = DE[u.(k = 1):"(a)].
Let us introduce £,(-) and [ )<, as follows.

£,0) 0
L ]= (36)
0 €]
and
e =(Lal]) (37)
Then from (1) and (7) 1t follows that
v (k=11 =Cou (k)= w (k) (38)
Wk )= Col[G(h.x" (k. x'). -,
8G(h. x" (k. x™)]. (39)

Then we have fora< { = 1. E[z2(h = 1):z'(a)) = H(k =
ieE|u,(k)z'(a)) Applying the Wiener-Hopl equation
(23) 10 the nght side of the above equation vields

E[:(k = 1):'(a)]

i
= Hik = 1), S F,(k.o)E[:(a):’(a)]
o=l

(40)
where

_[hk,\‘.ol

F.lh.oo)= = (a1)
[FM.: .0)

Subsututing (35) and (40) into (34) vields
S Afh.x.0)E[z(0):(a)] =0. a=0.1.--k
o=0
where
Nfh.ao)= n;" 1.x. k= 1)H(k = )i Fa(k.0)
-C,F(h.x.0)=+ F(k+1l.x.0)

Since 1t 1s clear that F(h.x.0) = Ny(k. x, 0) also sausfies
the Wiener- Hopf equauon (23), it follows from Lemma |
that \j(4. x.0) =0 Thus. we have the foliowing lemma
Lemma 2 The optimal matnx kernel function FiA. x.0)
of the filier 1s given by
Flk=1l.x.0)=¢L Flk.x.0)
=Flk+ 1L, x. k= 1H(k = 1) F (k. o).
o=0.1, .k (42)
Theorem 4 The opumal fillenng estimate &(k. x/k) is
given by
Uk + 1 x/k=+1)=E alk. x/k)
+F(h+ 1. x. k=+1)plk+1)

(43)
vk +1)=2(k=1)= H(k+ 1)E i (h/k)
(44)
@(0.2/0) =0 (4%)

Tath=1.¢k=1)=8h=1.¢§) (€D (46)
where

Uk k)= Colla(h.a'/k). - il x"/k)]. (47)

- r--ww—-w-wv—'—m
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Proof. Using (14) and (42) yields
Gh=+l.x/k=1)=Flk+1lLx. k+1):(k+1)

+£, i F(k.x.0)z(0)

=F(k+ 1, x, k+1)H(k+ 1),

A
- 3 F(k.0):(0).

o=0
Again from (14) we have
Uk + lox/k=+1)=¢ a(k.x/k)
+Fhk+l.x.k=+1)p(k=1).

Since we have no information at the nitial ume. 1t s
suitable 10 assume an imitial value of @k + 1. x,/k + 1) as
(0. x /0) = E|uy(x)] = 0. Furthermore. since we know the
exact forms of T, and S(k + 1. §). the boundan value
u(k = 1. §/k =+ 1) also sausfies the same boundan condi-
uon as (A = 1. §). Thus. we have Ta(h = 1. §/k+ 1) =
Stk = 1.§). £0D. and the proof the of the theorem is
complete QED

Note that #(k ~ 1) defined by (44) 1s rewritien by using
the predicuion value of (26) as follows

p(h= 1) =2(k+ 1) = P(k = 1)i (k+1/k) (48)
or
(k= 1) = H(k = )i (k + 1/k) = e(k+ 1) (49)
where
G (k=1 k)= Col[a(h = 1" /k). .
k=1 x"k)] (50)
and
U h=1 hi=u (h=1)=a, (h=1,k) (51)

v(h =~ 1118 termed the innovauon process (8] [9)

In order 10 find the opumal mawny kernel funcuion
Fik = 1.a k= 1 for the filienng problem. we introduce
the follawing notanon

Fol7.2 L)=[p1'r.z.x' A)oooople.x, x” 'L)]
(52)
and
plr.x' k)
Poalt )=

plr.x™ k)

plr.x'. x'/k).- - p(r. x', x™/k)

ple.x™ x'7k).- -, p(r,x™. x"/k)
(53)
Note from the defimtions of p (7. x/k) and p,, . (7/k ) that
Ptz x/k) = E[alr, x/k)in(1/k)] (54)
and
Prml 7/k) = E[id (7/k)ir(1/k)) (55)
Furthermore. we define the covanance matnx of the in-
novauon process »(h = 1) by I'(k + 1/k).
T(k=1/k)=E[s(k+1)r(k+1)] (56
Then from (49) 1t follows that
T(h='/k)=Hik+1)p.(k=1/k)
Hik=+1)+R(k=+1) (57)
Then the following theorem holds

'E 1S
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Theorem £ The optimal filtenng gain matny function
Fih* L x a= Ihsgnen by
Flk+ 1 ax k< 1)=p(h+1.x"h)
H (k= 1T YAk = 1/4)(58)
or
Flh=1l.a k+1)=p (hk=1.x/k)
Wk + 1k)H(k+ 1Rk +1)
(59)
where
Wk 17k) = (1% R(A+ 1)pan(h + 1/k)) "' (60)
and
Rk = 1) = H(k+ DR (k= 1H(K=1). (61)

Proof From the Wiener- Hopl equauon (23) nt fol-
lows that

Flh = Loack+ DE[2(k+ 1)2'(k + 1))

.
+ 3 Rk = L a BIE[z(0):(h = 1))

e=0
= E[ulh = 1x):'(h = 1))

Substituting (42) 1o the above equation wields

Flhk+1l.x.k+ ll([“:ll = 1)= H(k =+ ),

. Y
p AL ol:lo)i:(‘ - l)]’

e=(

( .
- z[;uu “Lx)=E73 ru...n.—m}:'(k + U]

\ =0

Substituting (14) into the night side of the above equanion
and using (2¢) and the orthogonality condinon of (20)
vields

E

‘ ]
wlh = 1= 0 S Rk oxez(e) sk - |l}

‘ |
= E[uth = 12 A)'(h=1)]
E[iih=1x Augfh = N]JH (A =1)
=p k=12 MM (A=)

Using the orthogonality condition of (20) pives
E[s(h = 1)z (h = 1)) = Hih + DE[a(h + 17k
A=1)]H (k= 1)=R(k=1)
= Hih = ook =17%)
‘H(A=1)+ R(k=1)
T(h+14) (62)

"

Then we have
Flh=1.x k= 1Ik=1%)
=ph+ 1. xh)H(h=1)
(63)
Thas (58) 1s demved In order 10 show the equivalence
between (58) and (59). we use the following matnx in-
versiou lemme
PH(HPH -~ R) = P(1 = HR 'HP) 'HR™'
(64)
From (58) and (64) we have
Flh=lx k=1)=p (h+124)
vk L AH A= DR (A=)
Then (59) 15 denved and the proof of the theorem 18
complete QED
The equation for the opumal filienng error covanance

matrin funcuon p(h + 1, 2. v A = 1) now must be de-
nved
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Theorem 6 The optimal filtering error covanance matnyx
function p(k < 1. x. v/k + 1) is pven by

plh=lx y/h+1)=plk+1.x v/k)
=po(h+ 1. x/k)H'(k + 1)
TWk+ 1/k)H(k +1)

Pulk + 1, y/k) (65)
or
Ta+ Lx,y/k+1)=plk+ L x, y/k)
=Pk + Vox/k)g(k = 1/k)
Rk + 1)po(k+ 1, y/k)
(66)
where
p(0. x, ¥/0) = po(x. ¥) (67)
and

Tplk=1.6 37 +1)=0. (€D (68)
Proof From (1) and (43) we have
k=l x/k=1)=alk=1 x/k)
=Flh~1L.x. k=+1plk=+1)
(69)
and from (3) and (46)
Ta(k=+1.¢k=1)=0. ¢(€dD (70)
Using the independence property between v(k + 1) and
Uk = 1 x/kyor @tk = 1, v/k) wvields from (69).
plh=Lx y/k=1)=E[lath=1xk=+1)
@k =104 =1)]
=plk=1.x.3/k)
~Flh=1Lx k=1E[r(k=~1)
wh=)]Fth= 1y k=1)
=Flh=+1.x h=1)Kk=1)
E (k=1 h)a'(h = 1.3 7k)]
—E[atk = V.ox ha (k= 1/k)]
Hh=1DF(hk=1,3.k=1)
Using (58) and (63) 1t follows that
plh=1l.x, y/k+1)=p(h=+1.x.3/k)
=p k= 1. x/k)H(k = 1)
Fhk=1.0.k=+1)
=plh+1.x y/k)
—potk = 1 /KKK < 1)
KX = 1K)V H(k + V)poth = 1. y/k).

Thus (65) 1s denved The equivalence between (65) and
(66) 15 easily shown by using (64) Since the imual value
W0, x/0)of ik = 1. x/k = 1)1s zero from {(45), 11 1s clear
that A0, x. 3 /0) = E[@(0. y /0)] = Po(x. ) Muluplying
cach side of (70) by é'(k+ 1, y/k+ 1) and uking the
expectation yields TPk + 1. & y/k+1)=0,§ € aD.
Thus. the proof of the theorem 1s complete QED

Corollan 3 i (k + 1/k+ 1) and p(h = L.x/k + i)
sausfy the following relations,

U (k= 1/k=1)

=d (k= 1/7k)+F(h=+1 k+ (k=1

m)

Flk=1.k=+1)
= Panlh = 1/k)g(h = 1/k)H (A + DR (k=)
(12)
or
Folh= 1L k=+1)=p (k+1/k+1)
Hk= DR "(k-1) (13)
Poulh = 0 k= 1= po(h+1/k)=poo(h=1/k)
Wk + iR )R(A + Vpadlk =+ 1/k) (74)
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or
Panl b= Lk + 1)=p (k= 17k)p(h+1/k).
(7%)
Proof From the definitions (41) and (50) of F_(Ak +

l.k=1)and i (A = 1/k) it s clear that (71). (72, and
(74) hold From (60) and (74) it follows that

Pamlk + 17k + 1) =p (k=174 ,4(k+ 1/k)
ANk 1/k) = R(k+1)

‘Pamlk + 17k))
= Pamlk + 17k )0 (A +1/k)
{1+ Rk + 1)k +17k)

=Rk = 1)panlk +1/k))

= ponlh = 1/k)plk +1/k).
Thus. (75) 1s denved and (73) is clear from {72) and (75)
QED

The present result corresponds 1o that of Sanus er al
[17) which 15 an abstract form of the filter

V. DERIVATION OF THE EQUATIONS FOR THE
OPTIMAL SMOOTHING ESTIMATOR

In this sectuion. we denve the basic equa'ions for the
optimal smoothing esumator by using the Wiener- Hop!
theon

Lemma 3 The optimal matnx kernel function Bir. k +
I. x. 01 of the smoothing esumator 1s given by

B(r h=1l.x.0)=B(r.k.x.0)
=Bir. k=~ 1l.x. k= 1HA= L F (ko)
o=0.1- .4 (76)
Proot From the Wiener-Hopf equation (24) we have

b=

S Blrh=l.a0)E[:(0):(a)] = E[u(1.x):"(a))].

o

ad
1

. '
S Birha0)E[:l0):(a)] = E[ulr.x):7(a)].
Py
a=0- .k
Subtracuing the latier equation from the former vields
Birh =12 k= E[z(k=1):"(a)]

O

ORIGINAL pAGE I8

OF POOR QuaLITY

IEEE: $YST., MAN, CYBERN.
Vol lssue

A ( 25:::, f'g.'
Galley No. L

+ S (Bir.b+1.x0)

oe=0
~B(r.k.x.0))E[:(9):"(a)] =0
From (8) and (23) we have
- E[z(h = 1):(a)] = Hik = DI E[u(k):'(a)]

]
=H(k=+ 1)L, 3 F.(k o)

o=
-E[:(v):’(a)]
Then 1t follows tnat
é .'C‘{v.k..\.ﬂ[[.'(u):‘(n)] =0
=0
where
Nir.h.x0)=Bi(r. k=1 x0)-Bir. k. x.0)
+B(r. k+l.x k=1 HA= ) Flk.o)
Since 1t 15 easilh seen that Bt k. x.0)+ Nir. k. x.0)

also sansfies the Wiener- Hop! equauor (24). from Lemma
| we have N(+. k. a.0) = (. and the proof of the lemma i

complete QED
Theorem 7 The opumal smoothing esumate é(r, x 'k +
1) 1s piven by
Ulr.xh=N=dlr.x’k)~Blr. k=) 2 h=1)
vih = 1) (7
Talr g7k =1)=S(r.§).§ €D (7%)
A=y 1+



Proof From (15) nt follows that
wr.x k= 1)=Blr. k=+l.x. k=+1):k=+1)

L)
< S B(r.k+1.x0)l0)

=0
Subsutuing (76) into the above equation vields
(. x/k=+1)
=B(rk+1lxk+1)

,
2(h+1)=HKk=+1), I F(k.o):(0)
=0

)
+ 2 B(r. k.x,0):(0).

=0
Substituting (14) and (15) into the above equation yields
alr.x/k+1)=dlr. x/k)
+B(r. k+1l.x. k= 1)k +1)

Since we have no addinonal informauon about the
boundan value of w( . x). except for S(7. {) and the exact
form T, we have Ia(r. §/k + 1) = S(+. ). { € 3D. and
the proof of the theorem 1s complete QED

Theorem & The opumal smoothing gain matnx funcuon
B(r. k=~ 1La k= 1)isgven by

Blr.hk+ 1 x h=1)=L_(r.x/k)C
k=14 (19

or
Bir. k=l.x k=+1)=J(r.x/k+1)
H(k= DR "(k=+1)  (80)
where
Jr.xh=1)=L (r.x/k)C,

I

(1= Rtk = 1)po(k=17k))
(81)
Lt7 x H=[L(f.x,x' k). .L('r.z.x"'L)]
(82)

and
Lit.x. v k)= E[alr.x/k)a'(h.y k)] (83)

Proof From the Wiener-Hop! equation (24) it fol-
lows that

B(r k= 1.x k= 1E[z(k=1):"(k=1)]
.
~ T Bl k=+ 1 x0)E[2(0):"(k +1)]

om0
= E[u(v.x):‘(k - l)]
Substituur (76) into the above equation yields
B(r. k=l x k= 1)E[s(k+1):(k+1))
= E[a(r, x/b)z'(k + 1))
On the other hand. from (48; and (49) we have
E[vihk = 1)z'(k = 1)) = E[»(k = 1)(»(k + 1)
+H(k + )i (k= 1/k))]
= E[v(k+ 1)k +1))
=T(k+1/k) (k4)

From (8) and the independence of o(k = |) and
Gtr. x k) we have

E[a(r.a/h)z'(h = 1))
= Elalr. x/k)i (k= 17k (H(k+1)
But from (26) and (3 n follows .nat
U lh = 1 /k)=Coli th/a) =i (k) (85)
Then we have
Bir. b=l x k= 1)T(k=1/k)
=L (v 2/h) H (k=)
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ULDE The MALNY NVErson lemma (041 Lhus We Pro v
the theorem 1s complete QED

Let us now denve the equation for L(r. x, v/A + 1)
Using the orthogonalitn condinon (20) vields

Liv.x. a k= 1) = Eluer, x)i'(k + Ly /k+ 1))
\ubstituting (69) inte the above equaton wields
fr x.3/k+1)=L(r.x.y/k)C;
P x K)EH(A+ )F(A+ 1,5, k+ 1) (86)
Fior  and (78) nt follows thay Tl r. §/k + N = 0.§ €

€ - Muluolving each side by @'(A + 1, y/k + 1) and tak-
ing . oapeclaton yields

T L(r & v/k=+1)=0. §€3D (87)

Then the following theorem holds
Theorem: © Jiv v’k # 1)1n (80) is given by

Jlroa k= 1)=J(r. ah)gplh = 17k) (88)
Jrxr)=p (v, x'7) (89)
[N g k=-11=0. (€D (90)
Proc' From (86) and (59) 1t follows that
L(r.a h -1)=L (v.2),

A= ROA+ (A + LK pan(h + 14D
But we have
I- R~ PRV 'P=RU~FR)'
((1+PR)R"'-P)
=((1-PRR') 'R

=(R(R '+ P)"

=(1=-RP)
Thus
Lo=.a h=N=1,01.2)5,

(7= R(A = Dpanth =2 &))"
Therefore. from (811 11 follows that
Jr.ax k=)=l (r.x h=1) (91)
and frem (B we have
J(r.a A= 1)=Jr.xRk),

(1 + Rk = D)panlh+14)) "
Then 1t follows that
Jr.xrv)= Lz afn)=p (7. x79)
Since (90) 1s clear from (87) and (91). the proof of the
theorem 1s complete QED
Let us now denve the equation for the opumal smooth-

Ing ertor covanance matny funcuon p(1. x, ¥ /A ) defined
by

ple.a v/ky = E[a(r. x/h)agr, y k)] (92)
From (77) and (78) 1t follows that
Ulr.x A= 1)=u(r.a/k)
=B(r. k4 Lx, k+ elk+1)
(95)
Ta(r. 67k + 1) =0. (€D (94)

Then the following theorem holds
Theorem: 10 The opuimal smoothing error covanance
matrx funcuon p(r, x, ) ‘A + 1)1s pven by

plra v k= ))=p(r. x, y/k)
=L (v.x k) H'(A =1
A+ 1ZA)HA = DLl (1. v /k)
(95)
or

plr.x. v A=1)=p(r.2.y k)
-J(vxl'lly'
e b+ L ARA= Nyt v /b= )
(9¢)
Lot §vA+1)=0 (€I (97
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Proof- From (931 it follows that
plr.x. v k=1)=p(r. x. y/k)
+B(r k= 1.x k+ DE[sik + 1
fh=1))B(rk+ 13 k+1)
=B(r. k+1,x. k+ 1)E[r(k+1)
@r. y/k)] = Efa(e x/k)o(k +1)]
B(rk+ 1y k+1)
E[a(r. x/k)r'(k + 1)] = E[a(r. x/k)iL(k/k))
EH(k+ 1)
=L (r.x/k)EH (k+1)

and
E[s(k = 1i'(z. v /k)] = H(k + D)EJL (7. y/k)
Thus. we have
plr.x. y/h=1)=plr.x.y/k)+ Blr. k+1L.x. k+1)
T(h=1/K)B (1. k+1.yv.k+1)
=B(r.k+1l.x.k+1)Hk=1)
Lololr.y/k) = L (r.x/k)
CoH(k=+1)B(r. k+1.y. k=1)
Subsutuung (79) into the above equation yields
plr.x. vk=1)=p(r.x. v/k) = L (7. x’k)E,
Ak = DT = 1A )H(K = DEJLL (7. v /k).

In order 1o denive (96). note that from (81).
Ltr.x k)g=0r.x'h= 1)y (k= 1/k)
and from the matnx inversion lemma (64).
HVHPH - R\"'H=(1- HR"'HP)"'"H'R"'H
Then we have
Hh= 1O A= 1,k)H(k=1)
=y(h~1 k)R(k=1)
and
plz.x. v h=N=ple.x. y/k) = Hr.x/k = 1)
Tk = 1 /k)RK + DI (. y/k + 1)

Muluphing each side of (94) by @(7. » 7k + 1) and taking

the expectation wields T;p(7.§ y/k =+ 1)=0.§£ € 3D.

Thus. the proof of the theorem 1s complete QED
Corolizry 4 Jir. x k) sausfies the following relanons

Jr.x h=1=Alr. x)]J (r+1/k=+1) (98)

and
J(r+ 1.x/k)=D(r.x)J (=/k) (9)
where
J(r.x'/k)
J(rk)= : (100)
J(r. x"/k)

Alr. x) = po(1, x/7)Epan(r+ 1/1) (101)
D(r.x)=p (741, x/v)(p,,_,('/?)f'.)-'. (102)

Proof Letung ®(k + 1) be given by ®(k+1)=
Coll = Rk =+ 1)puntk + 1/k})"", from (88) and (89) it
follows that J(r. x/k + 1) = p (1. x/1)®(1 + 1)®(7 +
2y -®k~+1)and J(r+1/k+1)=p (74 ]1/7+
1)®(r+ 2)--- ®(k + 1). From the above equations and
(75) we have
Jr.x/k=+1)=p (1. x/1)®(1+ 1)

poMr+1r+ 1) (14 17k +1)
=pr.x/r)Eulr+ 11" (v 4 1/1)
Pl /1)) (1= 1/k+ 1)
= Alr.x) v+ k= 1)

From (R&) and (89) it follows that J(r = 1. x k)=
Palt = Lxies &7+ 2 - ®k) and J (1 k)=
Puut® 1)1~ 1)®(r= 2) - ®(h) Thus. we have from
the above eguationt
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Jr+lak)=plr=1Laxr+1)1=R(r+1)
Paalt* L) puanlr v)Ea) Tl k)
=pir+lae) pols v)\:.ril_(v/&)

where the following equahty denved from (66) has been
used,

Pulr+ L x v+ 1)=p(r+ 1 x/7)
1+ R+ Dpa(r+1/m) " (o))

Thus. the proof of the corollary is complete QED
Theorem |1 The opumal smoothung estimator is given
by

.
wroah)=w(r.x v)=+ 2 Jra7hi(l)

Iwes)
(104)
Fatr £ k)= Sir. §) €D (108)
where
F(0) = HUR 'Well) (100)

Furthermore. the opumal smoothung error covanance ma-
tnx funcuon p(r. x. v A)as pven by

A
plra sy My=plrxvi)=- 3 lh,.t’l!y"l)
tmve —

(L= DR (. v 1) (107)
Tepte £y A)=0. § €D (108)

Proo’ From (77) and (R0). (104) can be directly ob-
tamned and from (9¢) (107) 1s clear. Thus. the proof of the
theorem 1s complete QED

VI SUsenmary OF THE OPTIMAL SMOOTHING
EstivaTORS

A Fixed Poim: Smoother (== fined A =rv= 1 1=
2 )
Theoren: !7 The opuma! fined-point smoothing esuima-
1or s giner by
Ulra k= )=adls.a A)+Xr.x k= 1)F(k=+1)
(109)
Jir.x A= D =J(s.x KA)igulh =1 4) (110}

Wik =1 hv= (7= R(h=Dpanth=1)0"" (1)

Jr.a 2)=p (2. x/7) (1)
Tu(r. § A= =S(+.§). ¢€aD (1)
FJ§ xhk+1)=0. (€D (14)

Furthermore. the optimal fixed-point smoothing error co-
vanance matnx funcuon pir. x. v 'k = 1) 1s piven by

plroxyk+)=p(r.x. v/ h)=Nr.x 'k + lo

Sk 1V MRA = D1y k=1) (NS
Lp(r. 6. p/k+1)=0. (€D (116)

B Fixed-Iniema! Smoothing Esumaior (k = fixed. v+ = A
-1 k=12 )

From Theorem 11 1t follows that

ur+ il xh)=u(r=+ 1l xvr=+1)

]
<~ 3 N4l xDE) (M)

Imee?

and
Plr=lx v h)=p(r+1lay r+1)
L)
- T s+ L=

IR
R(N(e=1 1) (118)
Then the following theorem holds
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Theorem 13 The optimal fixed-interval smoothung esu-
malor 1s given by

Sr+ Lx/k)=d(r+ L x/r+1)
+A(r+ Lx)[Balr+ 2/k) =@ (r+ 2/r+ 1)) (19)
Fea(r+ 1. 67k) = S(r+ 1.§). QD (120)
Furthermore. the optimal fixed-interval smoothing error
covanance matny funcuo: 1s given by
plr+ Lxy/k)=p(r+l.x,)/v+1)
—A(r+ Lx)(ponlr=1%)
=Paml T+ 1 /t))A (T4 1))
(121
Tip(r+ 16V /k)=0. (€D (122
Proof From (98) and (117) we have

r+lxk)=u@(r+ L x'r+1)

L)
+A(v= 1) T J(r=170E()

lwvel

But from Theorem 11,

Ur=2 a2 A)=g@(r=2. x'v+2)

L)
+ 3 Jr+2a ()

Imee?
and from (43) and (59,
Br+ 2 x v+ 2)=u(r= 2. xrv=+1])
“Flr= 2 x. v+ 2)w(r+2)
=g(r=2.8 v+ 1)
+Jir=2.ar= 2i(r+2)
Thus we have
U lr=2 A= l2=2 v=1])
‘

= S Lr=2100(0

-
Ive=?

Then we have

Wr=lak)=d(r+Lar=1)=+A(r+1.x)
Jiate = 2k =i (r+ 204 1))

From (98} and (11%)

plr=1la v h)l=plr+l xyr+ 1)

1)
-Alr+1.2) 3 J.(,-»jp
=zl

= DRI+ 21)

A(r+1.y)

From Theorem 11

plr=2 0.y A)=p(r+ 2 a,)/r+2)

L)
= T Jr+ 2 x0T = DRI (2,0 1)

IEEE )

€/
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and from (66)
plr+2x.y/r+2)=plr+2.x. y/1+ 1)
=p 1+ x/r=)y(r+2/741)
R(r+2po(r+2.y/r+1).
Taking into consideration that. from(103). J(* + 2. x /7 +
2)=p(r= 2. x/r+ I)pfr+2/r+ |)and
Pl T+ 2/k) = ponlt+2/241)=

A
= 3 (e 42707/ = DRI+ 2/1).

I=e=2
we have p(r+ Lx y/k)=p(r+ Lx y/r+1)— A7
+ L X Pl T+ 2/k) = Poalt+ 2/7+ DA (7= 1, y)
Since the boundan condiuons (120) and (122) are clear
from (105) and (108). respecuively. the proof of the theorem
1s complete. Q.ED.

C Fixed-lag Smoothing Esumator (1 =k + 1.k =k + ]
+A.A= fixed)
From Theorem 11 we have
k= lx/k+1=a)=ualk+Lxk=+1)
h-1-3
wiass + 3 Jhk=1.x/Ni(1)(123)

I=d=2
eplk+ 1. x. y’k=1+2)
=plh+l.x.v/k=1)

h=i-23
1=a=2

Q1= DRI = 120,
(124)

B C
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Then the following theorem holds
Theorem 14 The optimal fixed-lag smoothing estimator
15 given by
Uk+1.x7k+1+4)
=Lk x/k+4)+ C(x.k+1.4)
Fk+ 148K+ 1+3wkh~1+3)

+ 0k, x)( panlh k)E) ™"

(g (kb +A)=a(k/k)) (125)
Lak= 1. k+1+4)=5h~+1¢) (€D
(126)
where
Clx. k=1 A)=A(k+ 1. x)A_(k+1),
A k+d) (127)
and
A(k. x")
A (k)=
A(l. x")

Furthermore. the opumal fixed-lag smoothing error covan-
ance matnx function p(A = 1. x. v k= 1+ 4)1s given
by

PR+ x y/k+1+3)
=plh=l.x. yv/k)=Cla. k+1.3)
FARh=1=-3%hk+1+8)H(k+1 +4)
Poulbk+ 123k <=8)C(y. k+1.A2) = Dlk.x)
[Pamdh k) = ponlh k= 3)]D(h.¥) (128)
Teplh= 1§ vh+i=+2)=0. §€aD
(129)
Proof From (43) and (59) we have
Clh=l.x A=) =0k, x k)
+J(h+1.x/h=1)f(h = 1)
From (123) and ilic above equation 1t follows that
Uh =l x/k+1+2)=(uh x%%)
o)

< 3 Jh= 0 x k)i

==

+J(k+ La/l+1+A)e(k+1+4)
From (R8) 1t follows that
Jh=1xh=1+8)=p (k=1 x/k=1)
Ew(k =2 k=+1)
Eo¥(h+3/k+2):--
EW(k+2+48/k+1+4).
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Substituuing (75) into the right side yields
Jk+1.x/k+1+4)

=plk+ 1, x/k+ V)Epol(k+2/k+1)
Pk + 27k + 2)Ey(k +3/k +2)---
ok +2+2/k+1+4).

Repeating the same procedure and using (101) yields IEEE: SYST, MAN, CYBERN.
Jk+ 1. x/k+1+4) Vel lssue
=AMk~ 1'x)A(k+2) A (k+A) Au: C"/”’&./V
Pomlk + 1+ A7k +1+2). Galiey No. 7o~ [b-'.
Thus we have

Jk+ 1l x’k+1+4)
Fk=1=+2)=C(x.k+148)p,(k+1+A/k+1+4).

(130)
From (99) it follows that
h=2 h=3
S Hk=1x/i(l)= T pulk+1.x/k)
I=h=1 I=k=
(Pnlk 7k )EL) " Lk D&, o/

But from (29) we have
Pulk+ 1L x/k)=C p (k. x/k)lq 4+ Q. (k. x).
From (98) and (99) we have
J(k.x1)

= Ak )k = 10) = pol . x 7)ol Pamlh 7K)ES) " Sl 1),

Then 1t follows that
b= A=-3
S Jh=lxnith=c, 3 Jhk.x/Nill)
=4 =) I=4=|
A=3 =i
0. h.x) S (panlh K)EL) Ik DR

I=i=

nGE 13
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and
Uh+ )l xk+1+4)
=(a(hk.x/k+2)+Clx.k+1.4)
Flhk+1+A%k+1+Ak+1+1])

A=l
+ 0k, X ) panlkK)EL) " S Sk )R(D).

I=i=1
But from Theorem 11 we have
k+d
Gk h+8)=i (kk)y= T J (k1))
I=d=

Thus we have (125). From (65) and (124) it follows that
plh= 1. x vk *I.H=’(k‘ Lx.y/k)=J, =Jd,
where
A=23

Ji= 3 Jk+ Vxz) 1= V)R

I=h=)
A+ 1.07)
Jo=Jh+ L x/k+1+AN ""(k+1+48/k+24)
RA=1+2)(k+1.v/k=1+2)
From (75) and (130) we have
Jo=Clx.k+ 1.8)panlk+1+4k+1+4)
Rh+1+3)p (k=1+A%=+])
C'(r. k= 1.3)
=C(a. k=LA (k+1+A%k=+1+4)
HA=1=38)p(k=1=+2k=+2])
C{r.h=1.4)
Substititing (99) into J, wields
A=2
Jo=Dh.x) 3 J (kAW I=1)

=i
RUNVA DD (K. y)

But from Theorem 11 we have
plh.x. v A+A)=plh.x.y k)
A=2 .
== I Jkoany = DRI (K, y 21

I=d=]

and
Pumlh 'k =23) = p(k7k)
=3 .
== 3 JAANT = DRIk ).
I=d=|
Then we have

plhA=+1,x.p/k+1+43)

=ph=1l.x. vk)=C(x.k=+14)
Fk+1+A/k+1+8)H(k+1+4)
Pamlk+ 1+ 8/k+8)C(). k+1,4)~D(k.x)
| Pan(k k) = panlh/k + 8)]D(K. y).

Since th: boundany condit:ons (126) and (129) are clear
from (105) and (108). respectively, the proof of the theorem
1s complete QED

Kellv and Anderson (18] proved that the fixed-lag
smoothing aigonthm of Theorem 14 may be unstable. but
Churaratiananon and Anderson [19] denved a stable ver-
sion of the algonthm. It 1s possible 1o denve a comiparzble
version here. although stability problems should not anse
in our use of the algonthm of Theorem 14 as long as 1t 1s
used over a finite ume interval
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IX. APPLICATION TO ESTIMATION OF AIR
PoLLumion

Distributed parameter estimation theory has recently
been applied 10 simulated aur pollution data to demon-
strate the capability of esumating atmospheric concentra-
tion levels from routine monitoring data [10). [11]. A
problem identified in thesef early studies was how to
specify the stauistical properties of the assumed system and
observauon noise. In this section we expand upon the pnor
studies in two respects. First, we consider actual monitor-
ing data for sulfur dioxide (SO, ). in parucular those mea-
sured each hour dunng the period December 1-31, 1975 at
four locations in Tokoshuma Prefecture. Japan (see Fig 1)
Second. we apply the method of Sage and Husa [12) 10
estimate the unknown noise covariances in the system
equation and measurements

Hourly sulfur dioxide data are available a1 the four
locations shown in Fig 1 for the period December 1-31.
1975. The data for day k at location 1 may be denoted by
e,(x'.1). It is useful 10 average the data for December
1-30 1o produce

%

1
= 2 oelx'1) 131
ex.1)=55 T eilx (131)
where we will consider December 31 as a day to test the

algonthms
If 1t can be assumed that the wind flows are such that
there are no north-south vanauons of concentration and
that vertical mixing is rapid enough to eliminate vanatons
of concentraton with alutude. then the region can be
considered to be one-dimensional alorg the east-west coor-
dinate. The SO, concentration at any particular uime can
be assumed 1o be described by the aitmosphenc diffusion
equation [13)
ac dc _ g'c
i 53; = aﬁ + S(x.1)
where { 15 the wind veloainy. a 1s a diffusion coefficient.
and S 1s the rate of emussion of SO. as a funcuon of
location and ume
Equation 321 holds at any instant of ume. but we
desire an equation goverming the monthly mean concen-
traton (¢} Although no such equation exists. we can
formally average (132) over the 30 realizauons (days) to

produce
3 - / ﬁ = _.az( -
ar \‘ax>'<"a,=> A

One olyect will be 10 esumate the diffusion parameter a
Thus parameter will in general vary with locauon and tme
of da\. although for simplicity we seek a constant value for
the month. Thus. the first term on ihe right side of (133)
becomes a 8°(u) /dx? We can form the residuals. v = ¢ =
(c) and : = ¢ = (e). By subtracung (133) from (132) we
obtain

(132)

(133)

du [13 9\ _ 'w
gy (fa—‘)-aax,. (134)
Since wind daw are not available with which to evaluate
the second and third terms op the left side of (134) let us

rewnite (134) as
A _

ar

where w{(x. 1) includes those unknown features associated

with the velocity terms
The boundary condiuons on (132) are

ac

z =0.
expressing the assumpuion that there 15 no diffusive flux of
SO. inic or out of the regon at the boundanes After
averaging and formung the resdual. (136) becomes

du

-_= 0,

ox

a!
a;:'#w(x.l) (135)

x=0.1

(136)

x=0.1 (137)

Fig. 1

«/

Ry
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The problem is now 10 estimate w(x. 1) based on the
data.

Ax't)=w(x' 1)+ e (1) i=1,2134 (138)

Since hourly data are available. (135) can be cast into the
discrete-ume form (1).

wlk+ 1.x)=E u(k.x)+w(x.1) (139)
with £, = | + ad’/3x*. Observation error is estimated
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An index of overall estimation ervor is

4
J= 3 PAG:). (141)
=

To apply discrete-time distributed parameter estimation
theon 10 predict air pollution levels. we must consider
three problems. The first problem is now to simulate the ’ -
distributed parameter system The second is how 10 de- =
termune the covanances of system and observauon noise
The last 1s how to determine the diffusion coefficient a. For SLal
the first problem we use the Founer expansion method and
approximate the original distributed parameter system by a
finite-dimensional system. For the second problem. we
appis the algonthm of Sage and Husa [12] that necessitates
the simultaneous applicauon of the optimal filienng and
smoothing algonthms. For the third problem we apply the
maximum likelihood approach in the smoothing form [14]
We now consider these problems in more detail

Fourier Expansion Method It 1s well-known that the
state w(k.x) of the distnbuted parameter svstem (139)
with boundans condinon (137) can be represented by using
the eigenfuncuions ¢ (2 ) as follows,

=

ulk.x)= T u (k)¢ (x) (142)
=1
where |'

£olx)=Aeg(x). x&(0.1) (|

a -
o) Lo, ¢=0.1 —)

EY; P

and (143)

Au/Ed: placement of eq. no”
[letx)e(x)dr =8,
o

A, is the eigenvalue of £, corresponding 10 ¢,(x). In this
case. it is easily seen that the eigenfunction ¢,(x) and the
eigenvaiue A are given by

¢ (x)=1. 0,(x)=."2-cmc.n. 1=2,.

and

A=l-aei=1). =12, (W)
Then ﬁ(v.l/k).p(v.i/&). and A(7.x) can be rep- /g\ /
resented as follows.

-
a(r.x/k)= 3 &, (r/k)e,(x)

plr.x,y/k)= 32 p,(1/k)e(x)¢(y)

L=

atr.x)= 'S o(v)0(x) (145)

ls>
S




Let us approximate these infinite expansions by the first A
terms and define the following matnces and vectors.

a(r/k) = Col [@,(r/k). - d\(7/k)].
A(1) = Col[a,(7).---.ap(1)].
A=diag|A,. - A, ).
[ pule/k). - piala/k)
P(r/k) = : :
Prilr/k). -, pan(r/k)
i gulk). - quulk)
Q(k) =
ﬁm(k)-”'-ﬂm(k)
and

[ 6,(x"). . ou(x")

o(x").c o (x7)

where g, (k) denotes the (1. j)th Founer coefficient of
Ok, x. ¥)
Then. from Theorems 3-5 we have

Gk + 17k =+ 1) = Aa(k k) = F(k + 1)v(k = 1)
F(k+1)=P(hk+ 1/k)O°H'(k+1)

[H(A = 1)OP(K + 17k )oé'/
Th=D+Rk=+1)]",
Pk = 1/k)= AP(L/k)A + Q(k).
Plk=1/k=+1)=(I-Flk=1)H(k=+1)®)
Pk = 1/k) (146)
Furthermore. from Theorem 12 we have
r=1 k)=a(r=14=1)+Alr= D®(u(r+2/k)
—i(r=21=1)).
Alr+ 1)=Pl== 1t = DAP == 1/1)0" ",
Plr=+1k)=Plr+1/r+1i)
—A(r= 1®(P(r=1/k)
=P(r=1/7))0A(7~1) (w'))
Nute that the fixed-interval smoothung esumator does not
depend on the matrix @ which reflects the effect of sensor
Jocauon
Determnation of the Noise Covariances In order 10
determune the unknown covanance matnces of the system

and observation noises. we adopt Sage and Husa's algo-
nthm [12] piven by

4
O‘H=;' S (al k) = Aa( )= 17k))

=1
(k) = Aa(y = 1/k)) (148)

and
L
Rik) =1 S (2()) = H)®i(/k))
=1

~(2(y) = H(y)®a(/k)) (149)

where O(k) and R(k) denotef the estimated values of
Q(k) and R(k ). respectively. Note that in these idenufica-
uon algonthm the fixed-interval smoothung esumate i( ; /k )
15 used

Identification of the ynknown Parameter a To determune
the unknown parametr @ we use the maxumum likelihood
approach in smoothing form [14] The log-likelihood func-
uon y(4. a) s pven from [14] by

Y(k:8) = 3 (Yow * Ve (150)
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where

‘
You = —kpIn(2=) = T IndetS, (5~ 1. a)

L)
Yoo = = 2 (¥(1:@)R" W) 0) = (il k. )

-u(y=1.a))Q""
(i, h.a)=dil()=1/k.a)))
v(pa) =)= B =.a)
Stry=1l.a)= E[rt I‘ﬂh"(j'.d‘].

where p 1s the dimensic. of 2(k). and @) kA = 1. o)
denotes & 1k = 1) under the conditon that the unknown
parameter 1s assumed 10 Le @

To maumuze yih.a) we use the following gradient
method

a,.,=a = Glilk a)
aylh.a)

<
08 Lise i)

Ylk.a)=
where Gi/)as a suitable matny Therefore. we adopt the
following recursne algonthm 10 idenufs the unknown
parameters Q0. R.and ¢

1) Mahe an ininal guess @, of @

2y Compute (ic. 1and Ria v by using (145) and (149)

3) Compute & by using (150

4 compute (re 1 and Rié ) by using (148) and (149,

&) Returngthree by changing 1 10« = | and repeat unul
these values do not change

Numerical Resw/ic We use the observed data from De-
cembes -3 10 adert v the unhnown parameter ¢ and
noise conanances (* and R Afier four nerations the algo-
nthn for determining ¢ comerged 1o the value é = 00!
The Fourier expansior has beer truncated at \ = 4 The
estmated diagonal elements of poise Covariance matnices
are

0 =¢t& R =02
Q.. =14 R..=0¢]
Qn =57 R, =1%
Qu=368  R.=13

To consider the effect of the numgr and locanon of
monitoning stations we assume that we have data at only
one momitonng stauon  In this case from the previous
results of Kumar and Seinfeld [14] and Omatu er a/ [16]
we expect that the optimal sensor location is closest 1o the
boundan Thus. either x' or 2* 15 the optimal single sensor
location among the four monitonng stations. 2', x* x ' a*
In Table 1 we show the values of P4(:) and J for several
monitoring stations We see that Aizumu or Matsushuge 18
optimal for the one-prunt sensor location case Simular
conclusions hold for two or three monitonng stations
Finallv we illustrate the actual obsenanon data and one-
hour ahead predicied values for December 31 1n Figs 2-5
for Azum: Kiajfma Kawauch: and Matsushuge. respac-
uvely

Comparison with Other Approacher It 1s of interest 10
compare results of the present filienng and smoothing
approaches with others available for air pollution esuma-
nor  We consider. therefore. the same SO, esumauon
problem by the following methods 1) AR-model. 2) per.
sistence. and 1) weighted ensemble

The AR-model method 1s based on the folloving 4R( p)
maode!

v, =ow, _ , vaun .= +o,u,.,* e

1=12.34 (152)
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where the », s are the concentration levels at ume A and
al monvionng stavon x'.@,. a;. --.a, are the corre.
sponding AR-parameters. and the ¢, 's are reacuals We
used the Levinson algonithm io determine the AR-
rarameters. while the optimal order p of the AR-process 1s
determined by using the muimmum Akaike’s information
cnterion (AIC) [20] Then the one-hour ahead predicted
concentration 1s given by

8 manll, o raul » (153)

and the prediction error variance is

. 24
)= ;l.{z_“‘;'(a:"-u'.". .)’} (15%)

Table 11 shows the AR-parameters and mimmum AIC
value at each monitonng stauon

The persisience method consists merels of using the
obsenation data »,'' | as the one-hour ahead prediction
valuew,' , |

The weighted ensemble method uses the mean of the
past chservator, data at each uime A waighted by a hinear
funcnion of the source sirength as the predicuion value at
ume 4 Based on the number of emussion sources. the
weighting functions are assumed here 10 be 0 15, 041, 0.26.
and 018 at x', x*, x*. x*. respectively. Table 111 shows the
performance critena of the four methods From Table 111
we can see that the present method possesses almost the
same accuracy as the AR-model method By muluplving
each eigenfunction coefficient by the corresponding eigen-
function and summung them. however. the present method
enabics us 10 sumate concentrations over the enure re-
gron Therefore the present method 1 more powerful than
the AR-mode! method

[ Concrisions

Optimal esumators for discrete-tme distributed parame-
ter svstems have beer derned basved on Wiener- Hopf

’

theors A notatle point of the present work s that the
smocthing esumators have beer derned by the same ap-
proact as the filter. thus providing a unified approach for
this class of distnbuted parameter esimation problems
The esumation algonthms have been applied 10 the prob-
lem of prodicung atmosphenc sulfur dioxide levels in the
Tohushima prefecture of Japan
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ESTIMATION OF ATMOSPHERIC SPECIES CONCENTRATIONS
FROM REMOTE SENSING DATA

*
Sigeru Omatu and John H. Seinfeld
Department of Chemical Engineering
California Institute of Technology
Pasadena, California 91125

ABSTRAC

—

A basic problem in the interpretation of atmospheric remote sensing data
is to estimate species concentration distributions. Typical remote sensing
data involve a field of view that moves across the region and represent inte-
arated species burdens from the qround to the altitude of the instrument.

The estimation problem arising frow this special measurement configuration is
solved based on the partial differential equation for atmospheric diffusion
and Wiener-Hopf theory. The estimation of the concentration distribution
downwind of a hypothetical continuous, ground-level source of pollutants is

studied numerically.

*Research supported by NASA research grant NAGI-71.

*Permanent address: Department of Information Science and Systems Engineering
University of Tokushima
Tokushima, Japan
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I. Introduction

In the remote sensing of atmospheric species, a ground-, aircraft-, or
satellite-based platform scans a region of the atmosphere and measures the
species burden within the fieid of view. An object of atmospheric remote sen-
sing is to reconstruct species concentration distributions over a region based
on the data available from the instrument.

There exist two recent studies that assess the capabilities of remote
sensing for monitoring regional air pollution episdoes [1,2]. Diamonte et al.
[3]) developed theoretical results for the estimation of point source plume dis-
persion parameters from remote sensing "“ta. In a similar vein, Kibbler and
Suttles [4] studied the estimation of unknown parameters in a pollutant disper-
sion model by comparing model predictions with remotely sensed data. No results
have yet been reported in which actual remote sensing data have been used to
estimate species concentration distributions.

The present paper deals with the theoretical foundation of estimating atmo-
spheric concentration distributions from remote sensing data. Since the atmosphere
is a three-dimensional system, mathematical models of pollutant behavior are of the
distributed parameter type [5]). Remote sensing data usually represent spatial
averaces of concentrations, so that the estimation problem concerns a distribu-
ted parameter system with spatially integrated, scanning data. Although dis-
tributed parameter state estimation has been considered extensively (see, for
example, [6]) and [7]), such problems with scanning and spatially integrdted
measurements have not been considered previously. The purpose of the present
paper is to derive the required optimal estimators for the scanning and spatially

integrated measurement case by a unified method based on the Wiener-Hopf theory.
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In Section II, we define the remote sensing data analysis problem mathema-
tically. Sections III-VI are devoted to derivation of the optimal prediction,
filtering and smoothing algorithms for the problem by Weiner-Hopf theory. Fi-
nally, in Section VII we present a detailed numerical example of estimating the
concentration distribution downwind of a continuous, ground-level Tine source to
illustrate the application of the thoery.
II. Problem Statement
We consider a single atmospheric species (nonreactive), the mean concen-
tration u(t,xl,xz.x3) of which over a certain region is described by the follow-
ing form of the atmospheric diffusion equation [5]t

ElY v, U L ou
K + ul ) + \2 ?)( ~ (l'\v(x3) 3X3) * W(t,xl.xz,x3) (1)

where Vl and V, are the mean velocities in the Xq" and xz-directions, respec-
tively, Kv(x3§ is the vertical turbulent eddy diffusivity, and w(t.xl,xz,x3) is
a random disturbance accounting for inaccuracies inherent in the basic model.
The initial condition for (1) is u(to,xl,xz,xB) = uo(xl,xz,x3), and typical

boundary conditions are

\ 5u - c =
- KV(X3) T = S(t,Xl,Xz). X3 0
(2)
..u @ =
;O g = B

where §(t.x1,x2) is the ground-level species source emission rate, presumably
a known function, and h denotes the upper vertical boundary of the pollutant-
containing region, for example, the base of an inversion (stable) layer. For

convenience, we denote the coordinate vector by x and let

1=y 1y 38[], 3 a[]
Lx[ ] V1 ax] V2 sz * 3x3 Kv(x3) ax3

*

In this form of the atmospheric diffusion equation, turbulent diffusion in the
horizontal direction is nealected relative to transport by the mean flow, a
common assumption in treating atmospheric diffusion problems [5].

T e
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Assume that the concentration of a species over a fixed spatial domain D

with its boundary aD is of interest. Let us define the operator rﬁ. £ < 3D
as follows,
. 9] -
Kv(x3) 8x3 . X3 0
e TN g _
ax3 - x3 N
Let S(t.Z) be
S(tyxq9%,), x, = 0
S(t,) = < -
0 = X3 = h.
Thus, (1) can be represented as
- I A\
BB = ult,x) + w(tx) (3)
and (2) can be written as
r.u(t,g) = S(t,t), £ = aD. (4)

We assume that the initial condition uo(x) can be represented as a Gaussian

process with statistics,

Elu (x)] = UO(X)

E1{ug (%) = Gy () {u,(¥) = 5,(x))1 = P (x.y) (5)

and the random disturbance w(t,x) is stochastically independent of uo(x) and i

a8 white Gaussian process with statistics,
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Efw(t,x)w(s,y)] = Q(t,x,y)&(t-s).

We assume that the remote sensing measurements are taken at time tk over
a view volume D(k) consisting of M pixels, as shown in Fig. 1. Since the sens-
ing platform may be in motion, the field of view, in general, moves with time
across the entire spatial domain D. We assume that the shape and extent of the
field of view D(k) remain fixed and only the location of the centroid of each
pixel changes with time. The ground-level location of the centroid of each
pixel of D(k) is denoted as (xT(k), xg(k),o), m=1,2,..., M

We are interested in considering the vertically integrated measurement

given by

Z ot = [h”J (xpult, ,xMK) (MK ) ax

m(k)" "k’ s m(k)*"3 k*71 "2 73 3

m(k) m(k)
- v(tk.x1 o ,hn) (7)
m=1,2,..., M, neEl,2,...5 Ny h1 < h2 < ... < hN
k =1,2,...

where jm'k\(XB)is an altitude-dependent instrument weighting function, and hnis the

vertical position of the scanning sensor. Physically, Zm(k)(tk'") represents
the vertically-integrated species concentrations within each of the M pixels,
indicated by m(k), at each time, tk’ from an altitude of hn. v(tk.xT(k),xg(k),

hn) represents measurement errors.



I———

Some comments concerning the measurement configuration shown in Fig. 1
are in order. Ordinarily remote sensing from an airborne platform would be
carried out at a single altitude. In such a case, it is not possible to esti-
mate the concentration distribution between the platform and the ground based
only on the integral of the concentration. Sakawa [8] and Koda and Seinfeld
[9] have shown that in problems of this nature it is impossible to estimate
the state uniquely based on integrated measurements from only a single sensor
position since the required distributed parameter observability condition does
not hold. Therefore, the estimation of species concentration distributions
necessitates traverses over the region at different altitudes. From a practi-
cal point of view this requirement restricts this type of monitoring to air-
craft platforms, which, for purposes of measuring air pollution, are the most
useful. Considering that atmospheric concentration distributions change gradu-
ally and that airplane speeds are fast, the configuration sketched in Fig. 1
implies that repeated measurements at several altitudes are possible using only

one airborne platform.
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In order to represent (7) more compactly we introduce the following

notation:

Jm(k)

n
J (tk.x3)

vy (x3)

J(t, ,x,)

k'3

Z(tk,n)

and

x(m(k)) = (xT(k). xg(k))

5N
Jm(k)(x3)’ Ky = hn

0 . x3>hn
6 n
[t o
.n

ORIGINAL PACE ¥
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v(tk.l)
vit,) = .

vit .N)

k'

Then (7) can be represented compactly as
h
2(t.) = d[ J(tk.x3)utk(x3)dx3 + V(tk). (8)

We assume that v(t ) is independent of w(t,x) and uo(x) and is a white Gaussian

)
process with statistics, E[v(tk)] = 0 and E[v(tk)v’(tg)} = R(tk)skﬁ' where ~
dencces the transpose operator and R(tk) is an MNxMN positive-definite matrix.
The problem considered here is to estimate u(t,x) over D on the basis of
the measurement Z(tc). c=0,1,..., k. The novel aspect of this problem from
the point of view of distributed parameter estimation arises because of the

scanning and vertically integrated nature of the measurements. In what fol-

Tows, we use k instead of t, as long as there is no ambiguity.
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III. Estimation Problems and Wiener-Hopf Theory
Let us denote the estimate of u(tT.x) based on the observation data
2(t ), 0 = 0,1,..., k by ﬁ(tT,x/tk) which is given by the following linear

transformation of Z(t ), o = 0,1,..., k,

~

K
2, Flext)z(t) (9)

u(t_,x/t,)
r k &0

where ?(tr.x,t,) is an unknown MN-dimensional row vector called the estimation

kernel function. When there is no ambiguity, we write (9) compactly as

K
G- ,x/k) = ; Fit_ax.t_J2(t ). (10)
Furthermore, we denote the estimation error and error covariance functions by

ﬁ(t?.x/tk) and P(t_,x,y/t ), respectively, where ﬂ(tT,x/tk) - u(tT,x) - ﬁ(tT,x/tk)

k
and P(tT,x,y/tk) = E[u(th/tk)u(tT,y/tk)]. The estimate u(t_r,x/tk) that mini-
mizes J(u) = E(ﬁ(tT,x/tk)Z] is said to be cptimal. Note that by using
P(tT,x,y/’tk), J(u) can be rewritten as J(u) = P(tT,x,x/tk).

To clarify the differences between the prediction, filtering, and smooth-

ing problems, we express I:'(tT,x,t,) differently for each problem as follows:

(i) Prediction (t > tk)

k
G(t,x/tk) = 2 Alt,x,t )Z(t)). (11)

o0=0

(o}

o —
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K
Bty x/t) = ?:‘6 Ft .t )2(t). (12)
(ii1) Smoothing (t_L < tk)
k
W(t_x/t) = 2;5 B(t_,t, %t )2t ). (13)

Here we use three temporal arguments t_, t, and t_ for the smoothing kernel
B(tT,tk,x,t-) since these parameters should be changed according to the measure-
ment data acquisition time. Then the following theorem can be proved similarly

to that of [6] for the continuous-time observation case.

[Theorem 1] (Wiener-Hopf Theorem)
A necessary and sufficient condition for the estimate G(tT,x/tk) to be optimal
is that the followingc Wiener-Hopf eguation holds for ; = 0,1,..., k and

x=D=D _aD,

)1 = Elutx)27(¢,)], (14)

>
<

k
D F(t..xat)EZ(t)Z7(t
o=0 ‘ ; :
or equivalently, for ¢ = 0,1,..., k and x = D,
Efu(t_,x/t)Z2°(t )] = 0. (15)
[Corollary 1] (Orthogonal projection lemma)

The orthogonality condition, E[G(t,,x/tk)ﬁ(t“,y/tk)] =0, x,y = D, holds where

th is any time instant such as tn < tk’ tr = tk' or tn > tk.
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[Proof] Multiplying each side of (15) by ?‘(tn,y,t;) and summing from
£ =0tz =k yields

k
Ea(t_x/t,) 22% 2(t)F (¢, 1yt,)1 = 0.

Using (9) in the above equation yields the desired relation completing the

proof of the corollary. Q.E.D.

[Lemma 1) (Uniqueness of the optimal kernel)

Let ?(tt,x,tc) be the optimal kernel function satisfying the Wiener-Hopf
equation (14) and let ?(tt,x,tc) + ?L(tT,x,tc) be also the optimal kernel func-
tion satisfying the Wiener-Hopf eauation (14). Then it follows that FA(tT,x,tO)EIO,
- =0,1,..., k and x= D, i.e. the optimal kernel function is unique.

In order to consider the predictior, filtering,and smoothing problems,

separately, we rewrite (14) using the notation of (1) - (13).

[Corollary 2] The Wiener-Hopf equation (14) is rewritten for the prediction,

filtering, and smoothing problems as follows:

(i) Prediction (t > tk)
k
Y A(tx,t)E(Z(t)Z7(t)] = E[u(t,x)Z7(t )] (16)
0=0 S ‘ ¢ ¢
for z = 0,1,..., k and x = D.
(ii) Filtering (t_ = tk)
k
2 Pt t JEZ(t)Z7(t)) = Elu(t,)Z7(¢)] (17)

o=0
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(111) Smoothing (t < tk)
k
L Bt ot ot JELZ(E )27 ()] = Elu(t X)2°(t,))
\‘-0 \ \ . ™Y .

for - = 0.1..... k and x= D,

(18)
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IV. Derivation of the Optimal Prediction Estimator
In this section we derive the optimal prediction estimator by using the

Wiener-Hopf theory in the previous section.

[Theorem 2] The optimal prediction estimator is given by

aﬁ(t,x/tk) .
S = Lxu(t,x/tk), t > tk (19)
rEG(t.g/tk) = 5(t.£), £ < aD. (20)

[Proof] Differentiating (16) with respect to t and substituting (3) yields

Z aA(t,X.tC_) ) )
— At E[Z(t:_)z (ti)] = LXE[U(t.X)Z (tg)]

where the independence of w(t,x) and Z(t ) is used. Substituting (16) into
G

the above equation yields

k
Y FL(tat EIZ(E))27(t)] = 0

o=0
where
. BA(t,x,to)
F[_‘,(t,x’tc) = '_‘at—_'LxA(t,x,to).
From Lemma 1 we have
BA(t,x,tc)
-t = LXA(t,X,tU). (21)
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Differentiating (11) with respect to t and substituting (21) yields (19).
Since the forms of I and S(t,£) are known, the predicted estimate G(t,x/tk)

also satisfies the same boundary condition (4). Q.E.D.

[Theorem 3] The optimal prediction error covariance function P(t,x,y/tk) is

t governed by
|
BP(t,x,y/tk)
—r— = (L * LIP(EXY/E) + Qtxay), (22)
TP(tE,y/t) = 0, £ < aD. (23)

{ [Proof] From (3), and (1%) we have

30(t,x/tk)
T SR 1 /
5 Lxu(t,x,tk) + w(t,x) (24)
and from (4), and (20,
Tu(t,E/t) = 0, £ = 3aD. (25)

Differentiating the definition of P with respect to t and using (24) yields

3P(t,x,y/tk)

= = (Lx + Ly)P(t,X,y/tk) + f(t,XsY)

where
I(t,x,y) = E[W(t,X)D(t.y/tk)] + E[ﬁ(t.X/tk)W(t,y)]-

Let the fundamental solution of Lx be G(t,c,x,y), where
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&(Ls%’ilﬁ = LXG(t’c’x’y)’
FEG(t,O.E,y) = S(t,£), £ < 3D

G(o,o,x,y) = &(x-y).

Then G(t,x/tk) of (24) can be represented in terms of G(t,o,x,y) as follows,

B .[ t
u(t,x/tk) = D G(t, tk,X,a) u(t k,o./t )dx + _[ ]‘G(t,c,x,a)w(?,a)dado. (26)
tk D
Substituting (26) into I(t,x,y) and using (6) yields I(t,x,y) = Q(t,x,y).
Multiplying each side of (25) by G(t,y/tk) and taking the expectation yields
(£3). GQ.E.D.

[Corollary 3] The optimal prediction estimate G(t,x/tk) and prediction error

covariance function P(t,x,y/tk) can be represented as

ﬁ(t,x/tk) = g-G\t,tk,x,a)a(tk,a/tk)da (27)

and

P(t.x,y/tk) = éfg'G it %, »a)P( k,u,S/tk)G(t,tk,y,B) dadg

t
e [ [ 6itie.x0)0(000,8)6(tc,y,8) dadBdo. (28)
t DD

k

[Proof] It is clear that (19) and (22) possess unique solutions. Differen-
tiating (27) and (28) with respect to t yields (19) and (22),

respectively. Since (19) and (22) have unique solutions, (27) and (28) are

those solutions. Q.E.D.
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V. Derivation of the Optimal Filter
In order to derive the optimal filter by using the Wiener-Hopf theorem

for the filtering problem, we represent the solution of (3) in terms of the

fundamental solution G(t,o,x,y) as

u(tk+1,x) = J.G(tk+l,tk,x,a)u(tk,a) da

L+l
[
+ tf D G(tk+1m,X,0.)w(ﬂ,Q) do.d", (29)
k
and
u (x ) =]G (t at o X yﬁ)u(t aa) d':L
teop 3 M k+1*TK*3 k
L+
=+ J J GM(tk+1!'!’x30)w(r‘l)O.) d(ld-'] (30)
tk D
where
1(k+1) 1(k+1)
G(tk+l,n, X : »Xo ,x3,a)
Gy (t, 1 sNsXnqsa) - (31)
"o ’ G(t n xM(k+1) xM(k+1) X Q)
k+1 " M *72 *73?
From (17) we have
F(tk+1,x,tk+J)E[Z(tk+1)Z'(t;)]
k
* 2 Pty et JETZE)Z ()] = Elultyy )2 (2, ) (32)

for ¢ = 0.)seaes k¥,
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From (29) and the independence of Z(tc), z=0,1,..., k and w(n,x),

t, <n<t ., it follows that

k k+1

E[u(tk+1,x)2 (t ; .[ G(t k+l’ k,x,a)E[u( k,on)Z (t )] da.

Using the Wiener-Hopf equation (17), we have

k
E[u(tk+1,x)2’(tc)] = {DG(tk+l,tk.x,a = F(t k,a " - E[Z(t Y2t ) . (33)

On the other hand, from (8) and the whiteness of v(t we have, for

k1)

t, <t

h
EIZ(t,,1)2°(t )] U[ J(tk+1,x3)E[utk+1(x3)Z‘(tC)] dx,.

Substituting (30) into the above equation and using the independence of

Z(t.), t

r
o 4

<t &nd w(n,a), t, <n<t

k

h
E[Z(tk+1)2‘(t:)] - 6( J(tk+].x3).£ GM(tk+1,tk,x3,a)E[u(tk,a)Z'(tc)] dadx3.

Again, we use the Wiener-Hopf equation (17) in the above equation and

k

h .
E(z(t,,027(¢,)) = d[ I, q0%3) g.GM(tk+l’tk’x3’Q) QE%F(tk,a,tc)

E(Z{t_)Z°(t, )] dudx3.

Substituting (33) and (34) in (32) yields
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k
OZ,:O Foltox st )E 2(t)2(t,) =0

where

~

h
FA(tk'x’to) = F(tk+1’x’tk+1) d[ J(tk+1’x3)JLGM(tk+1’tk’x3’a)F(tk’°’tG) dudx3
+ F(tk+1.x,t0) - {G(tk+l’tk’x'a)F(tk’a'tc) da.

Then from Lemma 1 we have ?,(tk,x,tc) = 0, and we have the following lemma.

[Lemma 2] The optimel kernel function F(tk+1,x,tc) of the filter is given by
F(tk+1.x,t:) = % G(tk+1.tk.x,m)F(tk,o,to) dn
” /
- Flt,Xoty,) d[ Wtrg) | Byl tongaFltnnt) dadeg. (39)

[Theorem 4] The optimal filtering estimate ﬁ(tk+1.x/t ) is given by

k+1

| h
Vteay) F 2ty - 6[ Wpapoghiy | (x5t ) dxg, A3F!
u(t_.x/ty) = u (x), (38)
Feu(t 108/t eq) = S(t408), £ € 3D (39)

where
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- 1(kt1) 1(k¢l
Uty ony' : g Mgty

(x3/tk) L L
M(k+1) M(k+1)

at o
k+1 A
u(tk+1,x] sX, ,x3/tk)|

[Proof] Using (12) and (35) yields

ult X/t ) = Fltepp %ot 2(t )

k

+.£ 6ty 4qst, »xs0) g;% F(t,sant )Z(t,) dao

k
h .
= F(tk+1,x,tk+1) -[ J(tk+1,x3)‘£ GM(tk+l,tk,x3,a) 2;% F(tk,o,tc)Z(to) dadx3.

v

Then from (12) and (27) we have

~

u(tk+1'X/tk+l) =.£ G(tk+1,tk,x,a)u(tk,a/tk) da

h
Rt 0t (20 ) - U] Ity 4q0%3) gGM(tkﬂ,tk.x3.a)u(tk,a/tk) dodx,

~

= u(tk+1,x/t.) + F(tk+1,x,t Yu(t

k+1 k+1)'

Since the initial and boundary conditions are clear, the proof of the theorem
is complete. 0.E.D.
To determine the optimal kernel function F(tk+1’x'tk+l)’ we introduce

the following notation,

P'(tf.x,y3/tk) = [P(tT,x,yl(k)/tk),..., P(tT,x,yM(k)

and
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1(k)
P(tT.x: Wy/ty)
PMM(tT’x3’y3/tk) = r:1(k)
P(tT,x ,y3/tk)
M
P(tT,xl(t),y1<k)/tk), A P(tT.xl(?).y (k)/tk)
= . . (41)
M( k M M
P(tT,x ‘k),yl( )/tk), cees P(tT.x (k),y (k)/tk)
where xm(k) = (xT(k), xg(k), x3) and ym(k) = (yT(k), yg(k), y3). m=1,2,..., M.
From the definitions of PM(tT’X’y3/tk) and PMM(tT’x3'y3/tk) it follows that
Pyt sxsys/t, ) = E[a(tT.x/tk)DtT(y3/tk)1 (42)
and
where
Dt7(x3/tk) - ut_(x3) - “tT(XB/tk) (44)
and
ﬂ(tr,x}(k)/tk)
ﬁt (x3/tk) = . - (45)

Q(tt,xM(k)/tk)

Furthermore, we define the covariance matrix of the innovation process V(tk+1)

by T(tk+1/tk) = E[:(tk+])v‘(tk+l)]. Then from (37) we have

h ch
M/ = [ 3ty 03 P B 2093/ )9 (yag93) gy

+ R\tk+l)'
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[Theorem 5) The optimal filtering gain function F(tk+l’x'tk+1) is
given by

h
- -t -1
F(tk+1.x.tk+]) 3[ PM(tk‘l.x,y3/tk)J \tk*l.y3)dy3r (tk+l/tk)' (47)
[Proof] From the Wiener-Hopf equation (17) we have

k
}[% F(t o oXat JEIZ(E )27 (1)) = Elu(t, 1 X)2°(t,,q)).

o

Substituting (35) into the above equation yields

F\tk‘,.x tkﬂ)E[(Z k+l f J(t k+l'x )u . 1(x:‘)/t‘.k)dx:s)l'(tk”)]

= E[(u(tp 10x) = ult X/t )27 (L, 0)].
Using (8) and the orthogonality condition of Corollary 1 yields

h
EL0(t, , /827 (t )] = d[ £ty X/ )up | (3910 (G xg) g

h
. df Pl tyaq s XoXg/ 1 007(8 4 10x3) dxg
and

Elv(t,,)27(t )] = .[ .[ Ity 42 %3) P tay 2 X30Y 3/ 1 )07 (1 4 10Y3) dxgdy,

(48)
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h
F(tk+1,x,tb‘1)T(tk*1/tk) = 6{ PM(tk+1.x,x3/tk)J (tk+1’x3) dx3

and the proof of the theorem is complete. Q.E.D.

[Theorem 6] The ootimal filtering error covariance function P(tk+l.x.y/tk+l)

is given by
p(tk*l""\'//tk*l) = P(tk*l.x,y/tk)

hooh _
] 1 w=d -
- Uf of Pt o XoXg/ B0 T oxg) T () /)0t oy3) Pyl by oyaya/ ty ) dxgdyg

(49)
P(to,X.y/to) = Po(x.y5 (50)
TPt Eay/t ) = 0, £ « aD. (51)
[Proof] From (3) and (36) we have
Y = o o1l - {
“(tk*l’x/tk+1) = u(tk¢1,x,tk) F(tk+1’x'tk+l)v‘tk+l) (52)
and from (4) and (39),
ria(tk+l'£/tk+l) =0, £ < aD. (53)

. . - ‘ .
Using the independence of V(tk+1) and “(tk+l’x/tk‘ or ﬂ(tk+1.y/tk) yields

P(tk*l,x,y/tk+1) = E[a*tk+1’*"k+1)5(tk+1’y/tk+1)]
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PUty X/t )+ Pt axaty DBVt IV L IRt sty yg)

- Flt %% d[ J(tk+1’X3)E[utk+l(x3/tk)a(tk+1’y/tk)] dxg

d[ EL0 b /)8 (33010 (3 3)8gF (1 3oty

Using (40) and (47) yields
P(tyypsoo¥/tiyy) = Pt poxay/t))

-1

f [P l,x,x k)J'(tk+1,x3)T (tk+1/tk)

J(tk+1.y3)Ph',.(tk+1,y,y3/tk) dx3dy3.

Since the initial value G(to,x/to) is equal to Go(x), it is clear that

_ : y o ) N ‘
P(to.x,y/to) Po(x,y,. Multiplying each side of (53) by u(tk+1,_//t ) and

k+1
taking the expectation yields (51). Q.E.D.

R R - u

L gk o m d, _ag ad
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VI. Derivation of the Optimal Smoothing Estimator
In this section we derive the optimal smoothing estimator by using the

Wiener-Hopf theory.
[Lemma 3] The optimal kernel function B(tT,tk+],x,tG) of the smoothing estima-

tor is given by

B(t .t qs%5t ) = B(t,t .x,t)
h ]
- Bt ot ot y) oj Ity 410%3) D Gy (tysq oty X300 F(t 50, ) dadx,. (54)

[Proof] From the Wiener-Hopf equation (18) for the smoothing probiem we have

k+1
Bt st ,q %t JEIZ(t)Z7(¢,)] = EQu(t_,x)Z7(t,)], (55)

o=0

G =01y KL

and

N~

B(t.,t, Xt )EIZ( )2 (t,)] = EQult_X)2°(t)], (56)

k

g

1

=0

C

E = Uodyeees ke
Subtracting (56) from (55) yields

( -
Bt s tyyyoXoty JETZ(E,, )2 (2]

+
A~

(Blt,styyyoxsty) = Bt X t DE2(E)Z7(£)] = 0.

0

Q

From (8) and (17) we have




—
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h
El2(t,,))2°(t,)] = of J(tk+1,x3){ Gy (01X g)ETU(t o) 27 (8, )] dady
= ch(t X )fG (t t, 1 Xq,0) zF(t a,t JE[Z(t )Z7(t,)] dadx
G k+1°73'9 M k+1°7k*73° - k>0 o 4 3

Then it follows that

>

FL (1t ot DELZ(t)2°(2 )] =

=0

Q

where

F;(tT,tk,x,tc) = B(t_ 1%t ) - (tT,tk,x,tO)

Lt
h f
)
+ Bttty d[ J(tk+1,x3) D GM(tk+1,tk,x3,a)F(tk,a,tG).

Since it is clear that B(tT,tk,x,t~) + F At sXs st ) also satisfies the Wiener-
Hopf equation (18), from Lemma 1 FL(tT,tk,x,tc) =0,0-=0,1,..., k. Thus,

the proof of the lemma is complete, Q.E.D.

[Theorem 7] The optimal smoothing estimate ult ,x/tk+1) is given by
Ut X/t ) = ultx/t) + Bt Lt ot g )v(ty ) (57)
Tt/ ) = S(n.e), £ < aD. (58)

[Proof] From (13) it follows that

u(t_,x/t 1) = B(t .t %oty 2t 4)

k+1

k
;i B(t tk+1,x,tC)Z(t0).

Sy
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Substituting (54) into the above equation yields

Ut X/t ) = Bt .t oot o Ju(t, o)
k
+ D Bttt )2t)
o=0 -

and substituting (13) into the above equation yields (57). Since we have no
additional information about the boundary value of u(tT,x) except for S(tT,S),

we have (58). Thus, the proof of the theorem is complete. Q.E.D.

[Theorem 8] The optimal smoothing gain function B(tT,tki:,x.t ) is given by

k+l
i "
Bt t s X b)) = Of Nt oxaxg/t, 0070, L oxg)dxal Pt 4 /) (59)
where
N\tT,x,x3/tk+1) = g.M(tf.x,y/tk)GM(tk+1,tk,x3,y) dy (60)

and
Mit_.x,y/t) = E[D(tr’X/tk)u(tk’y/tk)]' (61)

[Proof] From the Wiener-dopf equation (18) we have

Bt 2t yyoXaty s EIZ(E )2 (ty)]

K
+ ;gg B(tT‘tk+l’x‘to)E[Z(t:)Z‘(tk+l)] = Efu(t . x)Z7(t, )]
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Substituting (54) into the above equation yields

B(thtk+1’x!tk+1)E[v(tk+1)z‘(tk+1)] = E[G(tT’X/tk)Z’(tk*l)]. (62)

On the other hand, from (27) and (29)
U(t, 0/t =_£ G(tk‘l.tk.x.y)ﬁ(tk,y/tk) dy

b1
- f D G(tk+1;'.X;y)w(“v.y) dydr“

t

Then we have

h

pil = g!-L MEE X3/ )G by otieoxgey) 8 37 (b pxg) &g

E[G{t . x/t )27 (t,,

h
- c! N(t.Xaxg/ by 1) [t axg) OX3e

Substitutina (48) and the above equation into (62) yields (59). Thus, the

proof of the theorem is complete. Q.E.D.

Let us now derive the equation for M(tT,x,y/tk+1). Using the orthogonality

condition of Corollary 1 yields

M{t oxy/t ) = E[u(tt,x)ﬁitk*l.y/tk+1)]. (63)

k+1

Substitutina (52) into the above equation yields
= ( O
M\tt.x,y/tk+1) ! G\tk+1,tk.y.a)M(tT.x, /tk) da

h
- [ Nit_vX~X3/tk+1)J’(tk+1vl3) dx3F‘(tk+19yvtk+l).
0 L

A8
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From (4) and (58) we have

rga(tr’a/tk+l) =0, £ < aD. (64)

Multiplying each side of the above equation by G(tk+1,y/tk+1) and taking the
expectation yields FEM(tT,a,y/tk+1) =0, £ = 3D. Thus, the following theorem

holds.

[Theorem 9] M(tT,x,y/tk+1) is given by
M(tt.x,y/tk+1) =<£ G(tk+1,tk,y,u)M(tT,x,u/tk) da

h
] 6[ Nt o/ Ty )9 (EaqXg) B3 F (G qn¥atin)s (65)

Mit_,x,y/t.) = P(t_,x,y/t_), (66)

TM(t .2yt yy) = 0 £ < aD. (67)

It remains to derive the eguation for the optimal smoothing error covariance

function P{t_,x,y/tk+1). From (57) we have
al = 0l -
U\t_yxlltk+1) U\t_:QX/tk) B(t_l,ytk+1’xstk+1)\)(tk+1)- (68)

[Theorem 10] The optimal smoothing error covariance function P(tT,x,y/tk+1)

is given by

P(tT,X,y/tk+1) = P(tr,x,y/tk)

h (h
» ,-'1
- o[ d[ Nt o/t D0 (g Xg) T (g /03 o)

N(tr,y,y3/tk+1) dx3dy3 .
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TEP(tT,S.y/tk+1) =0, g€ € aD. (70)
[Proof] From (68) we have
P(t x.y/t ) = ELU(t ’x/tk+1) u(t T'y/tk+1)]
= P(t_.x,y/t, ) + B(tr,tk+1,x,tk+l)r(tk+1/tk)B‘(tT,tk+l,y,tk+1)
- Bt sty g oXoty  JEDV tes) Ut Ly/t)]

- ELI(t o x/t v (8, )BTty oYatyy) (71)

But we have

E[D\t:,x/tk)c k+1 '[_L ((tears k,x3,a) (t AN )

J'(tk+1,x3) d:xdx3

and |

Elv(t,, it x/t,)] = OHD Ity Xg)B (tyyq oty Xgoa Mt x,0) dadxs.

k+1

Substituting the above equations and (47) into (71) yields (69). Multiplying

each side of (64) by G(t,,y/tk+1) and taking the expectation vields (70). Q.E.D.

[Theorem 11] The optimal smoothing estimator is given by

k

G(tr.x/tk) = ﬂ(tt,x/tt) - ;§;+IB(tT.ti.x,t£)v(tR) (72)
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and the optimal smoothing error covariance function P(tT,x,y/tk) is given by

P(tx.y/t,) = P(t ,x,y/t.)
k

h ch
- '1
" N(t_ XX/t )d7(t, s xo)T “(t,/t, )
;+16[0f T ¥ v 2°"3 2 -1

J(ti,y3)N(tT,y,y3/t2) dx3dy3. (73)

ORIGINAL 'r""“ ™
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VII. Estimation of the Concentration Distribution Downwind of a Continuous,

Ground-Level Line Source

There has been much recent interest in the airborne measurement of pollu-
tant concentrations downwind of sources [9 ] - [11]. Here we wish to consider
a hypothetical, but realistic, situation in which an aircraft with a downward-
looking instrument, such as for example the JPL Laser Absorption Spectrometer
[12], is flown at different altitudes downwind of the source, and total species
burdens are measured at a series of downwind distances.

The steady-state concentration of a species downwind of a continuously
emitted ground-level line source (e.g. a highway) situated normal to the
direction of the wind flow is governed by the following form of the atmospheric

diffusion equation [5].

u _ @ su_ |,
"l x4 B dxg ( Kv(x3) 5)u3)4 \Mxl'x3) (74)
u(O.x3) = uo(x3) (75)
: BU = A4 =
- K,(0) T ¢3(x;),  x3=0 (76)
U _ -

where ¢ is the constant rate of release. For convenience we will take Kv =1,
since vertical variations of this constant are not essential to the estimation

problem we will consider. If we let t = xl/v1 and x = X3s (74)-(77) become

82
= 44 wlty) (78)

3X

|l
lc

u(0,x) = uo(x) (79)
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- - #8(t), x =0 (80)
£ =0, x=h. (81)

In this case the measurements Z(tk) are related to the concentration

U(tk.X) by (8),

h
. UfJ“(tk.x)u(tk.x) dx + v(t,) (82)

where the instrument kernel function will be taken to have the form,

The theory developed in the prior sections can be applied directly to this
problem, and the optimal filter and smoother are given in Table 1. The pre-
diction, filtering and smoothing algorithms were applied to hypothetical data
generated by solving (74)-(77) and forming Z(tk) from (82), using noise
precesses w(t,x) and v(tk) with prescribed properties. The algorithms were
applied to estimate the concentration distribution u(tk,x) as a function of
height x at several downwind distances, tl, tz,... based on measurements taken
at one to four elevations. It is of interest to study the behavior of the
estimates as a function of downwind distance and of the number of elevations
at which data are simultaneously taken. Values of a'l parameters used in the

calculation are given in Table 2.
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Figs. 2-4 show selected results of the application of the filtering and
smoothing algorithms to the synthetic data of this example. Fig. 2 shows a
comparison of the true concentration distribution u(tl,x) and the filter esti-
mates, G(tl,x/tl) based on two and four measurement elevations (t1 = 0.0002).
As expected, the profile estimated on the basis of four measurement elevations
is superior to that based only on two altitudes. Fig. 3 shows similar results
at tg = 0.0082. The filter estimate based on n = 4 virtually coincides with
the actual concentration distribution. The performance of the smoothing algo-
rithm is illustrated in Fig. 4, in which the true concentration u(tT,x) is com-

pared with the filter estimate, G(t ’X/tr)’ and the smoothed estimates,

u(t_,x/t,), and u(t_,x/ty), with t_= 0.0002, t, = 0.0012, and t, = 0.0032.
Table 3 gives the trace of the filtering error covariance matrix, P(t,x,x/t),
for the four measurement configurations at three downwind distances t. As expec-

ted, the trace decreases as the number of measurement elevations is increased

from 1 to 4.

VIII. Conclusions

Filtering and smoothing algorithms for the processing of remote sensing
data on atmospheric species concentrations have been derived using Wiener-Hopf
theory. The algorithms were applied successfully to estimate concentration
distributions from a hypothetical ground-level line source of material (e.g. a
highway) based on remote sensing data taken from several elevations at a number
of points downwind from the source. Although there has been increasing interest
in the remote sensing of airborne concentrations, a data set sufficient for ap-
plication of the theory developed in this paper does not yet appear to exist.
Nevertheless, it is hoped that the availability ot the algorithms developed here
will facilitate processing of remote sensing data in conjunction with mathematical

models of air pollutant behavior.
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Table 1. Optimal Filter and smoother for Line Source Application (Continued)

Filter Smoother
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Table 2. Parameter Values Used in Line Source Estimation
Example

Truncation number N = 5

Measurement time tk+1
where t] = (.0002

=t +0.001, k = 1,2,3,""

Fixed-point time for smoothing tT = 0.0002
Constant rate of release ¢ = 0.3
Measurement points hn =n/4,n=1, 3,4
Initial values and noise covariances

L
Efug(x)] = up(x) = izl u3¢,(x)
N
Coviug(x),un(y)l = Polx,y) = _Z p?i:i(x)ci(Y)

Coviw(t,x),w(s,y)] = Q(t,x,y)é(t-s), Cov[v(t ),v(tn)] = R(tk)f.kn

k

N
( = P ~ ~ ) = 1
Q(t.x,y) A qii-i(x).i\y), R(tk, dwag[r].rz,r3.r4]
l] § =1
ci(x) - ]
V2 cos(i-1)=x i>2
1= - (1_])2_2 ]- N -l
'I -_
[ : i
| i | 1 2 3 4 5
oS | 3.0 l 1.0 0.03 0.003 0.0003
T
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1 e i
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Table 3. Trace of the Filtering Error Covariance Matrix P(t,x,x/t)

Measurements t = 0.0002 t = 0.0032 t = 0.0062
4 point

- - -
(h],hz,hB,h4) 0.2405x10 1 0.1189x10 L 0.9616x10 “
3 point
(hyshyshs) 0.3441x1071  0.1577x107)  0.1335x10"
2 point
(h],hz) 0.1678 0.1195 0.1137
1 point
(h]) 0.6700 0.2914 0.2338




Figure Captions

Fig.

Fig.

Fig.

Fig.

s

Remote Sensing Measurement Configuration Considered in This
Work.

Comparison of True Concentration G(t],x) and the Filter Esti-
mates u(t1,x/t]) based on 2 and 4 Measurement Elevations.

t, = 0.000z.

Comparison of True Concentration u(tg,x) and the Filter
Estimates G(t8,x/t8) based on 2 and 4 Measurement Elevations.
t8 = 0.0082.

Comparison of True Concentration u(tT,x), the Filter Estimate
u(t ,x/tT) and the Fixed Point Smoothing Estimates G(tT,x/tz)

-~
L

and u(tT.x/t4). t: =0.0002, t, = 0.0012, t, = 0.0032.
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SUMMARY AND CONCLUSIONS

The object of this research grant was to initiate an evaluation of the
analysis of remote sensing data on pollutant concentrations in the troposphere.
Remote sensing measurements of pollutant concentrations are becoming increas-
ingly important in understanding the transport and transforriation of pollutants
over moderate to long distances in the atmosphere. Traditionally such data
have not been analyzed beyond the point of constructing mass fluxes and total
budgets over a region. The question studied in this research grant w.s that
of the further analysis of such data, particularly when one has a mathematical
model available. The specific problem then is to see how typical remote sens-
ing data can be used in conjunction with a mathematical model to extract addi-
tional information about the pollutant behavior in the region being studied.

The essential problem is one of estimation, that is, of using the typical
remote sensing data to determine full concentration distributions. Once full
concentration distributions are available, one can then assess the mechanisms
of the process through the mathematical model. The first step in the research
was to look theoretically at the question of the minimum amount of data needed
to reconstruct a concentration distribution from finite data typical of those
collected in remote sensing. Chapter I of this report presents a development
and derivation of a condition of reconstructability, namely rigorous conditions
that can be applied to a data sampling program to determine whether it will be
possible to estimate a species concentration distribution from such measure-
ments. Chapters II and III of this report are then devoted to the development
of a numerical algorithm that will process the data to produce concentration
distrioution estimates in the cases when the data are a priori reconstructable.

Perhaps the most important result of this study is the indication of the

types of measurement strategies one should follow in remote sensing programs.



In particular, it appears that the best measurement strategy is to attempt to
obtain pollutant burdens at a certain location at a number of elevations at
t'mes as close as possible. This strategy is recommended because the vertical
distribution of pollutant concentrations in the first 1,000 meters of the atmo-
sphere is a crucial element of a mathematical model of such species. The
theory and numerical techniques developed in this study will tell one when
devising a measurement program and monitoring strategy the number of vertical
levels at which one should make measurements to be able to estimate relatively
accurately the complete vertical concentration profile of the species of inter-
est. It is anticipated that these results will be of value to those contem-
plating remote sensing measurement programs of tropospheric species that involve

measurements at several vertical levels.
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