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1. INTRODUCTION AND SUMMARY

For constructing confidence regions for a continuous cumulative

distribution function (cdf) F( • ) , based upon the empirical cdf Fn(•)

of sample size n , the Kolmogorov-Smirnov (K-S) distances have been

widely applied. One problem in applying the K-S distances is that the

constructed region has a constant band width for a given sample

size n and significance level (1-a) .

It is well known that by the definition of the empirical cdf,

for each x , nFn (x) is a binomial (n,F(x)) random variable. There-

fore the usual binomial confidence interval for F(x) , x fixed, can be

obtained. This confidence interval is valid at the single point x

only and not for all x simultaneously.

The goal of this paper is to give a compromise between these

two extremes. For the point x in either tail one can construct a

one-sided confidence region, either upper or lower, with a narrower
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band in the neighborhood of x ; that is, one has more confidence in the

one-tail probabilities at the expense of less confidence in the central

and other tail probabilities. Numerou statistics may be used to construct

such a confidence region, and these are discussed in Section 2.2.

In this paper the confidence region has one of the following

desirable forms:

F(x) < (d/n) + yFn(x) , V x , Y > 1, t > 0 (1.1)

F(x) < (d/n) + yFn (x) , V x , 0 < Y < 1, d > 0 (1.2)

F(x) >. -(d/n) + yFn (x), V x , y > 1, d > 0 (1.3)

F(x) > -(d/n) + yFn (x), V x , 0 < Y < 1, d > 0 (1.4)

The distribution of the generalized K-S statistics may be used to obtain

the significance level (1-a) of these desired confidence regions. Al-

though the closed form of a in terms of (Y,B,n) is available we have

shown that, due to computational difficulties and, moreover, the need for

extensive tables with three entries, a meaningful upper bound on the value

of a can easily and quickly be computed based on the Poisson process.

With this Poisson process approximation, a conservative confidence re-

gion of the desired shape is obtained. Moreover, it is shown that the

error committed by this approximation becomes monotonically smaller as

the sample size grows larger. In the following sections we provide the

relevant background leading to the use of the generalized K-S distances,

describe the difficulties involved in implementing such distances, and

prescribe the Poisson process approximation to overcome these difficul-

ties. Some areas of approximation are identified, and tables and graphs

provided, along with examples of how they are used.

s
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2. CONFIDENCE REGION WITH NONCONSTANT WIDTH

Let F(-) be a cumulative distribution function, contin-

uous on Ri . The ordered sample from this distribution function will

be denoted by 
Xl,n' " '' X

n,n ' and the related empirical cdf by F n(-) .

Let D denote a general "distance" between the two distribution func-

tions F(-) , Fn (-) (we use "distance" in a nonmathematical sense,

essentially different from the mathematical conception of "norm"). Then

D(F,Fn) is said to be distribution free in the family of continuous F

if and only if

	

P[D(F,Fn) < d] = P[D(Fn(F-1),U) 4 d] ,	 d e P.1 	(2.1)

where U(-) denotes the cdf of the uniform [0,1] random variable. In

the following subsections we explain how some distribution-free dis-

tances are used to construct a confidence region over F( , ) based on

Fn (-) . Most of the distances we used in our study are those which,

under a simple null hypothesis on the form of F(-) , F continuous,

become the usual statistics widely discussed and used in the goodness-

of-fit literature.

2.1 The Generalized K-S Distances

The generalized K-S distances are defined to be [see, for example,

Dempster (1959), Dwass (1959), or Pyke (1959)]

	

Dn (y ) = sup [yF ( x ) - Fn (x)]	 (2.2)
X

	

D+ (y ) ° sup [Fn (x) - yF ( x )]	 (2.3)
X

Arsham (1982) tabulated the right tail distribution of these distances

- 3 -
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for some values of n and y . Using D (Y) one can construct a

confidence region of the form F (x) < S/n + YFn(x) having a narrower

band over either the left (y > 1) or the right (0 < Y < 1) tail. Simi-

larly, a confidence region of the form F (x) > YFn (x) - d/n can be ob-

tained by utilizing the distribution of e(y) . The confidence region

becomes narrower over either the left (0 < Y < 1) or the right (y > 1)

tail. In the following we illustrate how such confidence regions can

be constructed.

Suppose one is interested in constructing a lower confidence

region that narrows over the right tail, F(x) ^ YF n (x) - d/n , V x

Y > 1 , S > 0 . The significance level can be obtained by noting that

PID+ [Y1
1 < nl = PIF(x) > YFn(x) - S/n, X]- 1 - a, Y > 1, d > 0

By the standard distribution-free argument, this probability can be

written as

P
 L

Dn 
liJ 

< a /ny = P LUn (x) < Y x + a /nY, 0 < x < 1' = Pn (Y ' d)
Y	 J	 JJ

where Un (-) is the empirical cdf of the uniform [0,1] random variate

and a = 1 - Pn (y,d) can be interpreted as a crossing probabilit;

Specifically,
E,

1 - Pn (Y,d) = P [Un N crosses Y(x) _ Y x + d/n J
The closed formula of Pn (y,d) in terms of (n,B,Y) is giver. by

(1959) and by Durbin (1973):

n2-n +d	
n

P (Y ' 6) = 1 - -^	 ^
	 [n) 

(nYj - d) 
j 2(n - nyj + b) n-j

n	 n2n	
j=[1+(6/nY)] 

J

for n2 (Y - 1) < d < n 2	and y > 1 where the notation [Z] stan

- 4 -
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the largest integer 4 z. In later sections we return to the generalized

K-S confidence region and establish an approximation to it based on the

Poisson process. In the last section of this paper we have graphically

displayed some confidence regions of the forms F(x) > YFn(x) - S/n and

F(x) < YFn(x) + S/n , V x, Y > 1, S 1 0 .

2.2 Other Nonconstant Width Confidence Regions

K-S Distance with a Particular Weight Function.. This distance is

defined by Anderson-Darling (1952) as

K	 =	 sup	 IF (x) - F(x) 1 0 W[F(x)]	 (2.6)
n,w 

x:0<F(x)<l 
n

where W[-] is a nonnegative weight function. When a suitable weight

function is chosen, many distribution-free distances are reduced to

Kn 
w	

For example, W(y) = 1 leads to the two-sided K-S distance.

With the weight function W[y] _ [y(1 - y)]
	

this distance can pro-

vide a two-sided confidence region discussed in Doksum (1977). Consider

the following normalized version of Kn w
s

1 F (x)-F(x)
D	 = ^ K	 = ^	 sup	

n	
(2.7)

n,w	 n,w	
x:0<F(x)<1 F(x)(1-F(x))

The two-sided confidence region using Dn w can be obtained by noting
,

that

P[Dn,w < d(a,n,w)] = 1 - a .

Following Doksum (1977), this can be written as:

P{(1 + a) -F2 (x) - [2Fn (x) + a] - F(x) + F2 (x) < 0, V x} = 1 - a

where a = (d2(n,a,w))/n , or equivalently

- 5 -
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2F (x) + a + A(^	 2F (x) + a - A(F

P 
n	

2(1+a) 
n	

a F(x) > 
n	

2(1+a) 
n	 . V x a l- a

(2.8)

where A[Fn (x)]	 4aFn (x) + 4aFn (x) + a2 .

Noe (1972) obtained a truncated power series which approximates

a for a given n and d . The inversion of d in terms of a for

the statistic in (2.7) is

d-2 = 2-la - 2-3 (3 - 5n 1 )a2 - 2-5 (14 - 132n 1 + 114n 2)a 3
i

s

- -7(151	
2	 3- 4035n 1 + 12981n - 9105n )a4

	

2 
	

(2.9)

Neither the general term nor a general truncation error bound is known.

In practice, to construct the confidence region by using Dn,w one

chooses a level of significance 1 - a , then by means of the truncated

series (2.9) determines the corresponding value of a = d 2/n . Thus one

obtains the two jagged shaped bounds c  and c 2 whose equations are

given in the probabilistic equation (2.8). Figure 1 shows a realization

of a sample of size 20 from the uniform distribution [0,1] with its

bounds for 95% confidence. In Figure 2 the sample size is set to be

n = 1000. A comparison of these two figures shows that for a larger

sample size, both bounds "come in" at both tails. The limitation of

using this distance as a solution to our problem is that one can obtain

only an approximated confidence region. Moreover, Canner (1975) has

noted that this distance is very sensitive to first an4 last order

statistics; this implies that the confidence interval is very narrow in

the tails at the expense of the center of the distribution.

A Modified K-S Confidence Region Based on Censoring. When a K-S

confidence region is constructed using the truncated or censored data,

- 6 -	 OF POOR 4.!AuTY,
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Figure 1.--A realization of sample size n - 20 from U[0,1]
together with the 95% confidence region based on
D
n,w
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U[0,1] based on Dn w distance.
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the actual region would be a fixed width band over the right tail, since

in this case it is not required to remain within the band beyond the fth

failure in an "f out of n censored" plan. Consider the following dis-

tance given in Barr and Davidson (1973):

T	 sup	 IF(x) - F (x))	 (2.11)
fn 

x:0<F(x)<(f/n)	
n

The two-sided confidence region using Tf 
n 

can be obtained by noting
i
i
i	 that

P[Tf,n < d(f,n,a)] - 1 - a

where the critical values d(f,n,a) are tabulated for some value of n

[Barr and Davidson (1973)]. Later Koziol and Byar (1975) provided the

asymptotic critical values as n approaches infinity. A good approxi-

mation formula for significance points is given by Dufour and Maag

(1978) when sample size exceeds 25. Figure 3 shows a typical confidence

region using a sample from a uniform distribution based upon the dis-

tance defined by (2.11).

Manija Confidence Region. Manija (1949) introduced the following

distance:

dn(a,b)	 sup [Fn (x) - F(x)) ,	 a < 1,
xeS

where
S = {x ( F(x) < a} V {x , F(x) 3 b} .

By the general distribution-free argument, the distribution of dn(a,b)

is independent of F(•) , F continuous over the set S . A lower con-

fidence region using this distance can be obtained by noting that

P[U(x) 3 Un (x) - z(a,b,n) for all x e Sj - 1 - a

based upon a uniform empirical cdf path. A typical lower confide*+ce

_,s

_% 3

- 9 -
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f
n J

.25
	 d (f n, a)

d(f,n,a)

0	 x	 11

Figure 3.--A modified K-S confidence region based upon censoring
data of U[0,11 .
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region based on this distance using a sample from U10,11 is shown in

Figure 4. The limitation of applying this distance in construction of a

confidence region is that it providea an approxinution region only. The

asymptotic distribution of d n (a,b) is available, and is given in

Sahler (1968).

Tang Confidence Region. Tang (1962) developed a distance based

upon the ratio between the empirical and hypothetical cdf's. This dis-

tance is a special case of the Renyi (1953) distance. the Tang distance

is defined for 0 < b 4 n as

Fn(x)
r(b) -	 supn 	

F(x)
x:O<F(x)<(b/n)

By the usual distribution-free argument, r n(b) has distribution inde-

pendent of F( • ) , if F(-) is continuov q over thy: set

S = (x 1 0 < F(x) 6 b/n 4 11

A one-sided confidence region using r n (b) can be obtained by noting

that

F ;x)
PF(x)>d(a,r.,t,) for all xeS	 1-a

Figure 5 shows a typical confidence region using a uniform empirical cdf

based on the rn (b) distance. The distribution of r n(b) in closed

form is available but it is not easy to implement.

3. THEORY OF POISSON APPROXIMATION TO
GENERALIZED K-S PROBABILITIES

Fo- generalized K-S confidence regions it is necessary to calcu-

late the crossing probabilities 1 - P n (°r,d) from equation (2.5). Far

a given confidence level (1 - a) it is necessary to find solutions of

- 11 -
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Figure 4.--A typical lower confidence region based on Mani,ja
distance using sample size n from U[0,1] .
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Figure 5.--A typical confidence region using a Uniform [0,11
empirical cdf, based on Tang distance.

- 13 -



URIGNAL PAGE N	 T-470

OF POOR QUAXY
the equation a - Pn(Y,6) . To avoid these computational difficulties

and, moreover, to avoid generating very extensive tables with the three

parameters n , Y , and d , we have developed a conservative bound on

Pn(Y,d) which is quite accurate and easy to compute based on the

Poisson process. The theory for this approximation is presented in the

four theorems of this section.

Let {X (t), 0 < t} be a homogeneous Poisson process with unit

rate. Let {Un (t), 0 < t < 1} be the empirical cdf of a sample of n

U[0,1] random variables.

Theorem 1 For 0 < Y < 1 and d > 0 , PCnUn(t/n) < t/Y + d/Y,

0 < t < n) decreases monotonically as n increases. Furthermore,

1 i PCnUn(t/n) < t/y + 6/Y, 0 < t < n)
n-)-w

= PCX(t) < t/Y + d/Y, 0 < t)	 (3.1)

Co	 (_6;-6)j

_ (1 - Y)	 I	
^L	 exp( a - yj)

j= [ 61Y]+l	
j!

Proof	 Dwass (1974) shows that, for c > 1 and d > 0

N
n

PCnUn (t/n) < ct + d, 0 < t < n) = P Y U i < d	 (3.2)
i=1

where Ui , i = 1,2,...,n , are i.i.d. U[0,1] random variables and Nn

is an independent random variable with

(llk
P(Nn	k)	

nc	

n!

(n-k)!	
k = 0,1,2,...	 (3.3)

and

M
PCX(t) < ct + d, 0 < t) =P I U. < d	 (3.4)

i=1 1

- 14 -
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where M is an independent random variable with

k
P(M	 k) _ 

ICJ ,
	 k = 0,1 9 2,... .

T-470

(3.5)

From (3.3) it follows that

st

Nn 4 Nn+l	
(3.6)

It follows from (3.3) and (3.5) that

lim P(Nn > k) = P(M k)	 k = 0,1,...	 (3.7)
n4-

M
Define f d (m) = P	 U  > d	 f  is a monotonically nondecreasing

i=1
function such that

M	 M
P	 U> d =	 P I U> d I M= m P(M = m)
i=1 

i	
m=0 i=1 i

0o

I fd (m) P(M = m)	 (3.8)
m=0

= ECfd (M)) .

It follows from (3.6) and the increasing nature of f  that

fd(Nn) 

s<" f

d (Nn+l )
 , which implies that E(fd (Nn) 4 

E(fd(Nn+l)) 
which,

together with (3.2) and (3.8), proves the monotonicity in the statement

of the theorem. It follows from the discreteness of the random variables

and (3.7) that lim f (N ) = f (M) in distribution, from which
n-,w d n	 d

lim E(f (N )) = E(f (M)) follows by dominated convergence; this,
n-K*	 d n	 d

together with (3.2), (3.4), and (3.8), proves the limiting result in

(3.1). Finally, the second equality in (3.1) is given by Pyke (1959).//

Theorem 1 provides the necessary theory regarding crossing of

upper lines, y(t) = (1/y)t + (6/ny) 	 and Theorems 2, 3, and 4 deal

with the lower lines, y(t) = (1/y)t - (6/ny)

- 15 -
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Theorem 2 For y > 1 and 6 > 0 , PCnU n (t/n) > t/y - 6/y, 0 < t < n)

is monotone nonincreasing in n .

Proof	 Define c - 1/y , d d/y , and Vn (t) - nUn(t/n) , 0 < t

n . Let Pn(c,d) - PCVn(t) > ct - d, 0 < t < n) then, for 0 < c < 1

and d > 0 , we must verify

Pm(c,d) > Pn(c,d) ,	 m < n	 (3.9)

r

The proof is based on induction. We first verify (3.9) for m =

1 : Letting Sn
, j 

= mint: Vn(t) = j) , P1 (c,d) = P(S1,1 < d/c) = d/c

if d/c < 1 , and 1 otherwise. For n > 1 , if d/c < 1 , Pn(c,d) <

P(Sn l < d/c) = 1 - P(S n,l 3 d/c) = 1 - (1 - d/c) n < d/c	 This veri-
,

fies (3.9) for m = 1

We now make the inductive hypothesis that (3.9) holds for m < k .

To complete the proof it suffices to show that this implies that (3.9)

is true for m = k . This inductive step of the proof uses, for fixed

k and n , dependent versions of {V k (t), 0 < t < k} and {Vn(t),

0 < t < n} defined on the same probability space.

The process {Vm(t), 0 < t < m} is a pure birth process with ini-

tial distribution P'Vm(0) = 0) = 1 and transition rate function

A (i,j;t) _ (m-i)/(m-t) if j = i + 1	 and 0 otherwise, i # j
i

0 < t < m	 Let Dk = mint > 0: Vk(t) = t) . We shall define a modi-

fied version of V  which jumps to co when it crosses the diagonal:

( Vk (t)	 0 < t < D 

Vk(t)

10	 D  < t < k

This process has transition function ak(i,j;t) _ (k-i)/(k-t) if

j =i+l , i+l <t<k or if j = co, t<i+l , and =0 otherwise.

- 16 -	
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Note that ak(t) > an(t) , 0 < t < k , if k < n . This implies that

{Vk(t) , 0 < t S k} St {Vn(t) , 0 < t < k} and furthermore that Vk

and Vn can be defined on the same probability space so that

PCVVt) " Vn(t), 0 < t < k) - 1 [see Kamae, Krengel, and O'Brien (1977)

and references therein). From this we get the joint distribution of D 

and Vn (Dk)	 Using these distributions we define {Vk(t), Dk < t < k}

and {Vri(t), Dk < t < n}	 Given {Dk = s} , Vk is a birth process

with initial state Vk(s)	 j , where j = min(i: i > s) and transition

rate function Ak (i,j;t)	 ak (i,j;t) , s < t < k . Given {Dk	 s,

Vn (Dk)	 i} , Vri is a birth process with initial state V(s) 	 i and

transition rate function an(i,j;t) _ an (i,j;t)	 s < t < n . Further-

more, {%(t)$ Vn(t)), C < t < Dk }	 {Vk(t), D 	 t < k} , and {Vn(t),

D  < t < n} are conditionally independent given D  , Vn(D k) , and

Vn(Dk) . Let Vk (t) = Vk(t) , 0 << t < Dk , and Vk(t) , Dk < t < k .

Let Vn (t) = Vn(t) , 0 < t < Dk , and V(t) , Dk < t < n . These de-

pendent processes, V  and V  , will be used in the induction step of

the proof.

(For the sake of completeness, we give an explicit construction

which can be shown to yield the above (V k , Vn)	 Let Xk,i , 0 < i < k-1

and Xn j , 0 < i < n-1 be k + n i.i.d. uniform [0,1] random variables

defined on the same probability :pace. Let G m'i (yIs) = 1 -

exp(- fS
+y 

Xm(i,i+l;t)dtl be the cdf of the holding time of Vm in

stat̀le i given the passage to i occurs at s, m = k , 0 < i < k-1 , and

m = n	 0 < i < n-1 . we first construct {V k (t), 0 < t < k}	 Let

Sk,O	
0	

Yk,O = G
k10 (Xk,O ) Sk,O ) ' Sk ^ l	 Yk ^ O ,	 Yk,i =

Gkl i (Xk,i l Sk i)	 Sk,i+l - Sk,i + Yk,i	
...	

Sk,k = Sk^k-1 + Yk,k-1

.

- 17 -
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Let Vk (t) - max (i: Sk i < t) , 0 < t < k . This defines Vk and also

D  - mint > 0: Vk(t) - t) . Now let us consider IVn (t), 0 < t < n) .

On the interval [0,Dk]	 V  and Vk must be ordered with probability

one. Let Yn ^ i = G-1 ni (Xk,i l Sn,i) , if Sn,i+1 Sn,i + Yn ^ i < Dk

0 < i < k	 Let j = min is Sn,i + Gnli (Xk i( Sn 
i ) > Dd ; define

nnY	 = G l (X	 Dk)	 nand S +1 - Dk + Y	 Then for j < k < n-1n
,j	 ,j	 ,j	 ,j	 n ,j

let Yn ^ R = Gn,	 n ^^I Sn'.t ) and Sn^Z+1 - Sn ^ k + Yn ^^	 As before, let

Vn (t) = max(i: Sn i < t) . It can be shown that the processes V k and

Vn have the properties claimed in the preceding paragraph by appealing

to standard construction techniques such as are found in Heyman and

Sobel (1982, Ch. 4) ar3 comparison '_echniques such as those found in

Kamae, et al. (1977) and Stoyan (1977).)

Now consider the dependent processes IVk(t), 0 < t < k) and

IVn (t), 0 < t < n} constructed above. Letting G(s,i) = P{Dk < s,

V  (D k
)< i ) ,

P . (c,d) = f PCVn (t) > ct - d, 0 < t < n I Dk = s, Vn (Dk) = i)dG(s,i)

= J P(Vn (t) > ct - d, 0 < t < s I D  = s, Vn (Dk) = i)

. PCVn (t) > ct - d, s < t < n I D  = s, V n (Dk) = i)dG(s,i)

(3.10)

and

Pk(c,d) = I P ^Vk (t) > ct - d, 0 < t < s I Dk = s, Vn (Dk) = i^

. PN(t) > ct - d, s << t < k I D  = s, V n ( Dk) = i) dG(s,i) .

(3.11)

The inequality P N(t) > ct - d, 0 < t < s I D  = s, Vn (Dk) = i) >

PCVn (t) > ct - d, 0 < t < s ( D  = s, V n (Dk) = i) follows from the

- 18 -	 OR; ;JAL PAGE IS
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ordering between Vk and Vn . Thus to prove (3.9) for m - k from

(3.10) and (3.11), it suffices to verify

PCVk(t) > ct - d, s 4 t < k I 

D  
= s, Vn(Dk)

(3.12)
> PCV n (t) > ct - d, s<t<n I Dk = s, Vn(Dk)	 i) .

However, the left-hand side of (3.12) is independent of i and the

right-hand side achieves its largest value for i - j-1 , where j -

mink: k > s) , thus it suffices to verify

PCVk (t) > ct - d, s < t < k I 
D 
	 = s, Vk(s) = j)

(3.13)
> PCVn (t) > ct - d, s < t < n I D  = s, Vn (s) = j - 1)

The probability expressions in (3.13) are equivalent to those involving

processes with a fewer number of transitions: The right-hand side may

be evaluated by labeling (s,j-1) as the origin and recognizing that in

the remaining interval of length n - s , the process is equivalent to

counting n - j + 1 order statistics. With the appropriate scaling

this gives

PCVn (t) > ct

= P(Vn-j+l(t)

Similarly, for the 1

PCVk (t) > ct

- d, s < t < n I D  = s, Vn (s) = j-1)

(3.14)
__ c(n-s)

> yl(t)	 n-j+1 t + cs-d-j+l, 0 < t < n-j+l

eft-hand side of (3.13),

-d, s < t < k I Dk = s, Vk (s) = j,

= P(Vk-j (t) > y 2 (t) = 
c kk Js) 

t + cs-d-j , 0 < t < k-jl 	 (3.15)

PCVk-j (t) > y 1 (t), 0 < t < k-j)

the last inequality following from y l (t) > y 2 (t) , 0 < t < k-j . If

yl (0) > 0 , then (3.14) equals zero and (3.13) follows trivially. If

yl (0) > 0 , we use the facts that the slope of y 1
 
G) is less than 1,

- 19 -
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s

m - k-j < k and r.-j 4-1 > k—j , to invoke the inductive hypothesis,

proving (3.13). This completes the proof of Theorem 2.

Theorem 3 For y> 1 and d> 0,

PCnUn(t/n) > t/y - 6/y. 0 < t < n) -0 PCX(t) > t/y - 6/y. 0 < t)

(3.16)

Proof	 The proof of Theorem 3 parallels that of Theorem 2: Define

c = 1/y , d = 6/y , and Un (t) = nUn(t/n) , 0 < t < n . Let Pn (c.d) -

PCVn (t) > ct - d, 0 < t < n) , and let PO(c,d) = PCX(t) > ct - d, 0 < t)

Note that P i (c,d) > PO(c,d) follows from the fact that a uniform [0,1]

random variable is stochastically less than an exponential random vari-

able win mean 1. Next, make the inductive hypothesis that Pn (c,d) >

P.(c,d) , n < k . Consider the process V  , letting D  - mint > 0:

Vk(t) = t) , and define the process Vk(t) 	= Vk(t) , for 0 < t < Dk

_ 00 , for D^ 5 t < k . Note that the transition function of Vk is

greater than the transition function of the Poisson process X ; thus,

it is possible to construct dependent versions of Vk and X such that

PCVk (t) > X(t), 0 < t < k) = 1 and from this get a construction of Vk

and X such that PCVk (t) > X(t), 0 < t < Dk) = 1 . Using analogs of

(3.10) and (3.11) we obtain

PCVk(t)>ct-d, 0 < t < s i Dk = s, X(Dk) =i^

> PCX(t) > ct - d, 0 < t < s I Dk = s, X(Dk) = i)

from the construction on (O,D k) and note that it suffices to demonstrate

PCVk (t) > ct - d, s < t < k I D  = s, X(Dk) = i^

(3.17)
PCX(t) > ct - d, s < t I D  - s, X(Dk) =

„rciGMAL PAGE IS
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to complete the proof. The right-hand side of (3.17) is leas than or

equal to

PCX(t) > ct - d, s < t I X(s)	 j - l)
(3.18)

PCX(t) > y 3 (t) - ct + cs - d - j + 1, 0 < t)

where j = min(k: R > s) . The left-hand side of (3.17) equals

PCVk (t) > ct - d, s < t < k I D  = s, Vk(s) - j)

= P(Vk-j (t) > Y2 (t) = c k-j
k-s 

t + cs -- d - j, 0 < t < k-J) (3.19)

> PCVk-j (t) > Y3 (t), 0 < t < k-J) .

Equations (3.18) and (3.19) combined with the inductive hypothesis veri-

fy (3.17) completing the proof of Theorem 3.

Theorem 4 For Y> 1, 6> 0,

lim PCnUn (t/n) > t/y - 6/Y, 0 < t < n)
n-0

= PCX(t) > t/Y - 61Y, 0 < t) 	 (3.20)

- exp(-6z/Y) ,

where z is the nonnegative root of the equation

Y(1 - e-z ) = z	 (3.21)

Proof	 Given e > 0 , let k be an integer such that

PCX(t) > t/Y - 6/Y, 0 < t < yk E + 6)

(3.22)
< PCX(t) > t/Y - 6/Y, 0 < t) + E

This follows from Pyke (1959, Theorem 2, equation 9). Define U 	 =
i,n

mint: nUn (t/n) - i) , i - 1,2,...,n , and X i = mind : X(t) - i) ,

i - 1,2,...,n . It follows from Miller (1976) that the joint distri-

butions of {U i,n , i - 1,2,...,min(n,kE)) converges to that of

- 21 -
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lim PCnUn (t/n) > t/y - 6/fir, 0 < t < n)
n*W

< 1 i PCnUn (t/n) > t/y - 6/y, 0 < t < min(n,yk e + 6)) (3.23)
n-Ko

PCX(t/n) > t/y - 6/y, 0 < t < ykE + 6) .

Equations (3.22) and (3.23) imply that

lim PCnUn (t/n) > t/y - 6/y, 0 < t < n)
n-w	 (3.24)

< PCX(t/n) > t/y - 6/y, 0 < t) + c .

Theorem 3 and (3.24) verify the limit in (3.20). The second equality

on (3.20) is given by Pyke (1959).

4. IMPLEMENTATION AND SOME NUMERICAL RESULTS

In the following we provide some aspect of our findings related

to Theorems 2, 3, and 4 in more detail. The goal is to construct

confidence regions of the form F(-) < yF n (-) + 6/n , y > 1 . Some

numerical results are provided, together with some examples of how these

results are used. In the construction of an upper confidence region,

one is interested in at least one of the following problems.

(i) Given the desired shape of an upper confidence region of the form

F(-) < yFn (-) + 6/n , that is, given (6,y,n) , what is the sig-

nificance level a of such a confidence region?

(ii) Given (n,y,a) , find a 6 such that the corresponding upper

confidence region has 100(1-a) y confidence.

(iii) What value of y can ensure that the upper confidence region of

the form above has 100(1-a)% confidence?

1.1

- 22 -
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(iv) What is the smallest sample size n necessary to ensure that
IA

e + YF (x) , given (6,y) , is an upper confidence region with	 ^-n

100(1-a) % confidence, where 6 6/n ?

The "exact" solutions to all these problems can be found using

formula (2.5). Due to the computational difficulties in implementing`•'

such a formula and, moreover, the need to construct several extensive

tables for each problem, we use Theorem 3, which shows that a conserve-

tive approximate solution for all these problems is possible. Moreover,

by Theorems 2 and 4 the error committed by this approximation goes to

zero monotonically as the sample size grows larger. Table I shows the

numerical results for some values of 6 , y , and n as computed by

formula (2.5). The last column of this table provides the Poisson ap-

proximation computed by formula (3.20) of Theorem 4. We notice that

these "exact" values of a converge to their Poisson approximations as

n , the sample size, increases as expected. The curves of Figure 6 are

derived from additional computation by formulas from Theorem 4. Specif-

ically, for a given 6 and n find a y such that the upper confi-

dence region has at least 100(1-a)% confidence. By Theorem 4 one can

approximate a as

a exp I - 6 —z)
l	 Y)

where z is the nonnegative root of the equation (3.21). Thus after

some manipulation, one obtains

Y	 lob	 log [C6 + log(a))/61 .
	

(4.1)

The above results are used in the next section, where we provide some

real world applications. Similar results can be developed by

- 23 -
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implementing Theorem 1, but since we have no compelling application for

these cases, we have not pursued their implementation.

5. SOME APPLICATIONS

	

1
Since the idea of constructing a confidence region over the cdf,

based on the generalized K-S distance, is new, we present some areas of

application where this idea is useful.

5.1 Application in Risk Analysis

Gross, Miller, and Soland (1980) studied and gave details of

confidence region construction of a risk profile defined as R(t) =

1 - F(t) . In the following we take one of their examples and apply

our findings. Their data base is a typical simulated risk profile based

on a sample of 500 observations. It is desired to construct a confi-

dence region R(t) < 2Rn (t) + d with 1-a = 95% confidence. They

utilized the formula given in (2.5) and obtained the "exact" value d =

.0075 . Although their approach is straightforward, it was necessary

to write a large and tedious program to find the d value. The desired

region is equivalent to the upper confidence region 2F n (t) + d . Using

the result of Theorem 4 one obtains the following relation from formula

(4.1):

6+1 d(a) = exp I lod(a)I
where iog(a) is the natural logarithm of a 	 This relatively easy

equation can be solved by numerical methods. We employed the method of

binary search and obtained d = 3.760 and therefore the conservative

r	 - 30 -
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value for d - 35000 •00752 . In fact, from Figure b one can easily

obtain an accurate enough solution. Figure 7 shows a typical simulated

risk profile with its confidence region.

5.2 Application in Investment Modeling

The Investment Department of the World Bank developed a trading

strategy for U.S. Treasury Notes. The strategy aims to maximize the

rate of return from its investment in Treasury Notes. The basic idea

behind the strategy is based on trend-following. Turning points in the

movement of prices or yields can be idVntified as generating "buy" and

"sell" signals. "Buy" signals imply that Treasury Notes be bought for

all cash proceeds, and "sell" signals imply that all Treasury Notes held

be sold and all cash proceeds invested immediately in Federal funds

until the next "buy" signal. Federal funds represent money that banks

hold and which can be lent to other banks to fulfill their reserve re-

quirements. The interest rate that banks pay when they borrow Federal

funds is called the Federal funds rate; these loans usually are made on

an overnight basis.

When the "buy" and "sell" signals are generated from the trend-

following strategy, the rate of return is calculated on a quarterly

basis. They are then compared with some "neutral" strategy--for example,

the rate of return in pure Federal funds investment strategy; that is,

investing all money in Federal funds daily, on an overnight basis.

The differential rates of return, or the difference between

the rates of return from the trend-following strategy and the rates of

return from the Federal funds strategy, are calculated on a quarterly

.,
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100	 1000	 10000

Figure 7. Simulated risk profile and confidence regions: risk profile

R  (-- —) based on 500 simulated observations; K-S 95%

upper bound R  + .056 (--"-0 ), generalized K-S 95% upper

bound 2R  + .0075 (--X X ) approximated by the Poisson

process.
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basis. Some measures of performance are calculated. For example, if

the differential rate of return is positive, the trading strategy is

superior in that quarter; if it is negative, the Federal funds strategy

is superior. The measures of performance chart how much better or worse

the trading strategy performs than the Federal funds investment strategy

in the long run. The World Bank defines "reward" as the expected value

of positive differential return, and "risk" as the expected value of

negative differential return. Let

rd = differential rate of return;

then

Reward - E[Max(O,rd)]

Risk = E[Min(O,rd)] .

Using the daily historical prices and yields from June 1974 through

December 1981, Table II can be obtained, where the quarterly rates of

return during this period are presented.

The World Bank is interested in constructing an upper confidence

region for the cdf of the differential rate of return of the following

form:

F(rd) < YF
LI
(rd) + 8 ,	 Y > 1, 8 > 0

with a 95% confidence. This can easily be done as follows. Let us, for

a given 0 = .17 , construct an upper confidence region of the form (1.1)

with a < .05 . With 6 = 30(.17) = 5.14 and using (4.1) we obtain,

6	
log[C6 + log(a))/6]Y	 log(a)

Y = 1.5 .

The same result can be obtained directly from Figure 6. Thus,

- 33 -
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1.5 Fn(rd) + .17 ,	 -a► < rd < +-

is an upper bound for the cdf of the differential rate of return with at

least 95% confidence, with the characteristic of having more confidence

in risk taking circumstances. Figures 8 and 9 show the empirical cdf

obtained from Table II together with the upper confidence region tc1low-

ing two-year and five-year Treasury notes, respectively.

5.3 Reliability Estimation

Suppose an item has a lifetime distribution F(t) - P(L 4 t) ,

t > 0 . In some contexts, such as the analysis of a pro-rated warranty,

it is desirable to have more accurate estimates in the left tail of the

distribution. This leads to a confidence interval of the form:

F(t) < YFn (t) + d ,	 t ^ 0

with Y > 1 .

5.4 Recovery Times in Fault-tolerant Systems

Critical systems must often meet very high reliability require-

ments. This high reliability is achieved by incorporating fault toler-

ance into the system. [A typical application is flight-critical

avionics computers for aircraft, Hopkins, et al. (1978), and Wensley,

et al. (1978).] When a fault occurs in such a system the system must

detect it and take appropriate remedial action, reconfiguring itself so

that the offending component no longer has potential for contributing to

system failure. The length of time needed to achieve detection and re-

configuration has a very strong influence on system reliability; thus

- 34 -
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Figure 9.--An upper confidence region for cdf of differential rate
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it is important to accurately estimate the recovery (or coveraga) time

distribution C(t) - P(TR 4% t) , t y 0 , from data which may be obtained

from bench tests, simulations, or actual operation. Since long recovery

times pre a much greater threat than shorter ones, a confidence inter-

val should take the fcrm

C(t) > YCn (t) - 6 ,	 t > 0

where Cn ( • ) is the empirical cdf and Y > 1 .

ORIGMfay I'
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