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I.  INTRODUCTION

The problem of transmission of sound through shear layers has stimu-
lated many investigations for quite some time. The simplest model con-
siders a shear layer of zero thickness or an interface of two fluid media
in relative motion known as the plane vortex sheet model. As early as
1944, Landau(lg) investigated the stability of such compressible fluid
motions which evidenced a discontinuity in tangential velocity at a plane
surface. He demonstrated the stability of the vortex sheet, that is, the
persistence of infinitesimal displacements from its equilibruim position
provided that there is a sufficiently large velocity jump across the dis-
continuity. The nature of vortex sheet phenomena has acquired a greater
importance 1in connection with theories of Jjet noise initiated by
Lighthi]](zo) in 1951; specifically, it is appropriate to determine vortex
sheet motions in the presence of an incident acoustical excitation. The
problem investigated in this thesis concerns, in particular, the inter-
action of an implusive ring source with a curved vortex sheet which forms

the boundary of a cylindrical jet flow.

During the late 1950's numerous studies of reflection and trans-
mission of sound by a vortex sheet due to incident time-periodic plane
acoustic waves were undertaken; after some initial efforts in which a
kinematic boundary condition at the sheet was improperly formulated,
Miles(23) (1957) removed this defect and successfully determined the plane
wave reflection coefficient. He confirmed Landau's results regarding the

stability of small amplitude vortex sheet motions and furthermore drew



attention to the so called neutrally stable motions with large amplitudes
of the sheet that do not tend to grow or decay. The designation of
resonant mode is given to such a large amplitude excitations of the vortex
sheet. Miles' study was paralleled by that of Ribner(za) (1958) who also
included transmission as well as reflection in a similar problem; both
their studies were relatively simple and significant as prototypes of more
complex problems. Mi]es(24) (1958) also analyzed the displacement of an
initially undisturbed p]éne vortex sheet following a suddenly imposed,
spatially periodic velocity disturbance. The resulting stability
criterion was shown to be in agreement with that appropriate to the prior
time periodic case. Transient wave propagation problems are inherently
more difficult than the steady state harmonic ones and it was not until
1969 that Friedland and Pierce(g) determined the reflected field due to an
implusive line source embedded in a stationary half-space, separated by a
vortex sheet from a moving half-space. Howe(13) (1970) examined a similar
problem, locating an impulsive point source close to the vortex sheet and
stressed the fact that a correct analysis must account for both the insta-
bility and resonance which are left out of the classical ray theory.
Subsequently, in a series of papers published in the early 1970's, Jones

(14-16) (11-17)

and their associates investigated various

and Morgan
problems of sound-vortex sheet interaction due to line or point sources
with time-periodic or impulsive nature and significantly clarified the

propagation of instability waves.

Integral transform methods are employed for the analysis of the

multi-variable (space-time) problems just mentioned; the technical diffi




culties, which arise predictably at the stage of inverse transformation of
the solutions, are approached differently by various investigators.
Causality can be ensured when the path of a time inversion integral is
suitably located. This 1is accomplished for instance by Friedland and
Pierce before analyzing the response integral with the help of Cagniard's
technique which sequentially involves an integration variable change, a
contour deformation, and an interchange of order of integration. Although
they are able to derive an exact solution for the reflected wave, the
physically more significant transmitted wave is set aside as being too
difficult. Howe likewise adopts Cagniard's technique in his analysis and
by restricting attention to the far field is able to deduce an explicit
representation for the transmitted solution which incorporates the insta-
bility and resonance waves. dJones and Morgan elected to invert the space
Fourier transform first. The solutions thus obtained do not satisfy
causality, that is, disturbances may precede the excitation, unless a
homogeneous (source free) solution which corresponds to instability waves
is added. This additional term is neither a conventional nor a real genera-
lized function, but a delta function with complex arguments or so-called
ultra-distribution. It is, in fact, the ultra-distribution thus intro-
duced which helps to clarify the role of instability waves in a transient
problem. However, the final form of their solutions is usually too
abstract fpr extracting quantitative estimates of the excitations under

consideration.

More recently, Chao(13) (1977) employed the Cagniard's technique and

also allowed for ultra-distribution in the inverse analysis; moreover he



was able to express in an exact manner the point source solution in terms
of a single finite range integral and to characterize the solution without
any integral in the line source case. The solutions which he arrived at
are advantageous in that they enable the influence of a plane vortex sheet
on an incident impulsive source of sound to be ascertained through uncomp-
licated numerical evaluations. The outcome confirms the following.
First, areas on the vortex sheet reached by the sound waves will now act as
source regions which generate transmitted as well as reflected waves in the
respective media. Second, for Mach number M < ZJE_, sound disturbances
will cause the vortex sheet to become unstable, resulting in the propaga-
tion of instability waves. Finally, when M > 2, resonance or neutral
stability waves are propagated. Both instability and resonance waves are
shown to propagate downstream in a limited wedge-like region close to the

vortex sheet.

The success shown by Chao's method has motivated the investigation of
a more complicated vortex/source geometry considered in this thesis.
Specifically, the configuration chosen involves a curved vortex sheet
which forms the boundary between an external medium at rest and a cy]indri-.
cal jet column, otherwise known as an axisymmetric jet. And for mathemati-
cal simplicity as well as practical interest, the source considered here .
assumes the shape of a circular ring (with negligible internal radius)
whose plane is normal to the jet axis and is centered within the jet. Both
fluids are assumed to have the same density and speed of sound to keep the
details simple and all non-linearities including those of viscosity and

heat conduction are neglected.



The stability of axisymmetric jets was first discussed by Batchelor
and Gill(z) (1962) and then in a similar fashion by Crow and Champagne(ls)
(1970), with criteria that involved not only the jet speed but also the
wavelength of the primary sound source. Their works were significant in
strongly suggesting that instability in jets is temporal, i.e. time-wise,
in nature. The mathematical problem of cylindrical vortex layer insta-
bility under the influence of a time periodic pressure fluctuation was
first investigated by Tam(zg) (1971) but his sé]ution simplified to that of
a plane vortex sheet due to the nature of his approximation. However, his
work was significant in linking the instability predicted by the vortex
sheet model with the strong directional acoustic radiations from super-
sonic jets observed in some experiments. Morgan(zs) (1975) was actually
the first to obtain a solution for the transmitted sound field in the
motionless fluid outside an axisymmetric subsonic jet, due to a harmonic
point source located off axis within the jet. He rigorously proved that
there is essentially only one instability wave which arises, and that
therefore an infinite number of other waves which are solutions to the
homogeneous problem can be ignored. This investigation differs from that

effected by Morgan in so far as a ring rather than a point source is used

and furthermore that both subsonic and supersonic flows are contemplated.

The organization and method chosen here for analysis are as follows.
In Chapter II, the problem is formulated and its solution in the Fourier
transformed space is obtained in the form of a multiple integral whose
integrand involves complicated Bessel and Hankel functions. Chapter III

contains the derivation of an approximate version of the integral solution




for the transmitted field; this is based on the assumption that the jet
source radii are sufficiently large so that the two leading terms from the
appropriate asymptotic (large argument) series expansions of Bessel and
Hankel functions can be bsed. It is shown that proper attention is
required on the different forms of Bessel function expansions over the
argument regions. As a limiting case of both radii becoming arbitrarily
large but retaining a finite difference between them, the first term is
shown to reproduce the exact solution to the simplest model previously
described, i.e. the transmitted field across a plane vortex sheet due to a
line source embedded in the flow medium. The second term corresponds to
the first order curvature effects. In approximating with these expansion
terms, contributions arising from internal reflections are isolated and
neglected, leaving a representation for only the primary or directly
transmitted field. Howe(13) (1970) suggests that instability becomes sig-
nificant after a time which is long enough for sound to travel backwards
and forwards several times between opposite faces of the jet, when the
acoustic coupling between these faces becomes large. The present analysis
essentially calculates the transmitted field due to that sound which is

emitted before these internal reflection effects become important.

Singularities of the integrand are examined in Chapter IV prior to the
inverse analysis. The branch points and the real pole which exists when
M > 2 associated with neutral stability wave are identical to that found in
the plane vortex sheet case. However, the instability pole is shown to be
a function of wavenumber as well as frequency in contrast to the plane case

where it is independent of the former. Furthermore, as the pole remains




complex for all Mach numbers, its transition to the neutral stability mode
observed in the plane case does not take place. The coupling that exists
between frequency and wavenumber in the integrand is responsible for this
difference and indubitaly acts to complicate the inverse analysis. The
condition of causality would be satisfied unambiguously if the double
integral is carried out first with respect to frequency, but a procedure is
not found to do this. Instead, in a fashion similar to Chao's application
of Cagniard's technique, a change in the order of integration is facili-
tated by deforming the frequency integration contour consistent with
causality. In the plane case, this then leads to the simple solution forms
alluded to previously. The solution obtained here is expectedly Tless
simplex. Due to the curvature effects, the solution now exhibits a radial
decay factor of 1//r . In the evaluation for the specularly transmitted
field, a branch point particular to the present problem is produced. As a
result, in addition to the term that is similar to the corresponding field
for the plane case, a second term arises from integration along the
resulting branch cut. Evaluation of this branch cut integration is accomp-
lished numerically by Gaussian interpolation. Related to neutral
stability wave for M > 2 is a pole in the wavenumber space which is again
distinctive to the curved vortex sheet problem as a consequence of its
curvature being finite. This pole results in an additional term that is
shown to decay exponentially away from the neutral stability wave and thus

appears to effect a broadening of its singular wavefront.

The integral that remains unresolved is one in which the moving insta-

bility pole is directly involved. An analysis of this integral is




presented in Chapter V where the essential features of instability wave is
made relevant. First, it is shown that in the limit of krj + = where k
is the wavenumber and o is the Jjet radius, the pole reduces to the
instability pole for the plane case as anticipated. The pole is observed
to move when kro is varied, but as kro becomes small, its movement cannot
be adequately described by the approximate form derived from the two-term
asymptotic expansions. Even though several terms would be needed to
approximate the profile generated by the moving pole, it is shown that only
one additional term is sufficient in establishing the general trend. A
clear picture emerges when movement of the pole is determined for small krO
as well by taking the leading terms in the convergent power series of the
cylinder functions. From these considerations, the way in which the pole
moves is approximated for all Mach numbers. Of particular interest is
for M > 2/2 where neutral stability instead of instability is predicted
in the plane case because the complex pole becomes real. Here the pole is
real only in the kro +> @ 1imit but remains complex for other values
indicating the persistence of instability even for such high Mach numbers.
As a consequence, M = 2/2  is not a clear cut transition point as
predicted in the case of a plane vortex sheet that when M < 2/2 the
system is unstable and when M > 2/2° the system is neutrally stable. In
fact, instability waves may arise at all Mach numbers but further analysis
shows that they are dependent on kro and cease to exist for sufficiently
small kro. In other words, instability waves will be caused by wavelengths
large (high frequency) compared to the jet radius for all Mach numbers.
The way in which this dependence takes effect is also shown to relate to

the spatial extent of instability wave's presence, which is seen to con-



tract towards the vortex sheet with increasing wavelength. This predic-
tion appears to be in agreement with the strong directional acoustic radia-
tion observed in some jet noise experiments. In Chapter VI, some numerical

results are presented and discussed.

The 1idealized problem of the curved vortex sheet enclosing a
cylindrical column of Jjet presented in this thesis is of particular
interest since it is a first approximation to the real jet. As a next step
in the modelling, it is desirable to include a rigid attachment to the flow
to simulate a jet nozzle. This will bring out any contribution to the
noise generation process of edge scattering which may in fact be extremely

important in the overall picture. Problems associated with edge
'scattering have mixed boundary values and are in general rather difficult
to handle. Nevertheless, a significant literature on that subject exists,
including contributions by Crighton(4) (1972), Crighton & Leppington(s)

(25) for the plane case and by Munt(27)

(1974), and more recently by Miura
(1977) for the curved case, just to mention a few. It is also desirable to
consider a finite shear layer instead of an infinitesimally thin vortex
sheet since in all practicality it never occurs even near the jet nozzle
exit because of boundary layer. Some investigators have ventured into
plane shear layer models such as Graham & Graham(lo) (1968), Jones(17)
(1977), and Koutsoyannis(ls) (1980) for example, but none has considered a

curved shear layer.



II. FORMULATION OF THE PROBLEM

Consider the problem in which a cylindrical column of jet fluid moves
axially through a similar stationary fluid medium, extending over the
entire space. The two fluids are ideally separated by a vortex layer that
is equivalent to a shear layer of zero thickness. The jet is taken
with its axis along the z-axis of a cylindrical polar coordinate system
(r, 8, z) and to have constant speed U and radius r,. Within the jet,

oriented along the z 0 plane, is placed a ring shaped mass source of radius

rs as shown in Figure 1I-1,

——— ‘\‘ r e
EE—— . Source 0 —
—_— ' —
—_— S § SRR N S8 SRR W =X -
—_— H ——
- " ' rs mana o
S L L

Vortex Layer

FIGURE II-1 Sketch of the Problem Geometry

Without affecting the underlying phenomena, both fluids are assumed
to have the same speed of sound and density to keep the details simple.
A1l nonlinear effects including those of viscosity and thermal conducti-
vity will be ignored, which is expected to introduce some uncertainties,

especially in the amplitude prediction of instability waves. Because of
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the axisymmetric nature of the problem, all quantities are independent of
© . variation and the equations satisfied by the velocity potential

¢ (r, z, t) are then as follows:

in region I outside the jet

1 o¢
— - v, = 0 "> To (11-1)
a ot

in region II inside the jet

8{(z)s(r - r )& (t)
WK 3 \2 2 0 s 11-2
2\at+”az)¢2‘v¢2 rer, (11-2)
a 2'nr‘S
where
2 2
2 _ 3 1 3 3
Ve = + + (I1-3)
ar2 r or az2

a is the speed of sound and Q is the strength of the ring source which is
impulsively activated, i.e. turned on and off at time t = 0. The plane

vortex sheet geometry is a special case of the above when r_ and rs become

0
arbitrarily large. Then, by the fact that Q = 2'nrsq, where q is the

source strength per unit length, Equations II-1 & 2 are replaced by:

2
] "¢ 2 ]
Z L2 " ¢ 0 y>o (I1-1a)
A (3 9 )2¢ -v24 <o
2 (at + U] ¢2 2 y (11-2a)
a

= q&(x) 8y + y.) 8 (t)

11



where now

2 2
2 3 9

x being the axial coordinate of the rectangular coordinate system (x,y,z),
the vortex sheet being located aty = 0, and the 1line source at
y= -y, x= 0. This line source problem had been investigated by Chao(4)

and his results will form a basis for comparison with the present problem.

There are two matching conditions at the common boundary r = o of the
two regions of irrotational motion. The dynamical condition that the

pressure is continuous across the boundary gives

3¢ 3 36
1 2 2
st - 5t T Uz

(11-8)

The kinematic condition for egqual particle displacement n_ on both sides

of the vortex layer gives

°
%) an %2 _sn, ,.2n (11-5)
ar 3T °* 3r at d 2z

In addition, there are the following conditions that must be

satisfied by the solution. The radiation condition requires that the field

12



be radiating outwards at infinity, the finiteness condition is required at
the center of the jet that insures no blow up of the solution there, and

finally the causality condition, which states that the field be unper-

turbed before time t = 0, will apply.

Define ¢ (r,k,w), the Fourier transform of ¢ (r,z,t) as:

L © (oo {(wt - kz)
TRl ./;,J; s dz dt (11-62)
¢ = -1 (wt-kz) 11-6b
; d{; J[w v © dw dk ( )

where j =1, 2, and Ck and Cu) are integration contours in the wave number

k-plane and the frequency w-plane respectively which will satisfy the

causality condition.

Then Eqs. II-1 & 2 reduce to

2

(_dT.;.ld )w +-'Y2tp = 0 (11-7)
dr rdr 1 1 1
2 2 QG(r-rs)
d 1 d ) = - (11-8)
—+t ——=v + Y Y 3
( g2 T odr)% 2 72 81 rg
where
2
2 (11-9)
2
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M = U/A is the Mach number of the flow.

The boundary conditions at r = r_, Eqs. II-4 & 5 become:

S’

wyy = (w-Uk) ¥ (1I-10)

dy dy
(w- UK) drl. = w ——d;L (11-11)

Eqs. II1-7 & 8 can be recognized as the zeroth order Bessel's equations

and the solution to Eq. II-7 which is for region I is

o= A HD (v ey ey (B (v (11-12)

where H&}) and Héz) are Hankel functions of the first and second kind
respectively, and Al’ B1 are constants to be determined. The y's are
generally complex and if the argument of Y, is restricted to non-negative
values, i.e., Im(Y 1) > 0, then by the radiation condition, B1 = 0 and

'] 1 reduces to

¥ = Ay H((,l) (yyr) (11-13)




For region II, the solution to Eq. II-8 can be put down as:

Vp =Ry 9y (Y1) +B, Y (Y, 1) (11-14)

where Jo and Yo are Bessel's functions of the first and second kind respec-
tively, and as the equation has an inhomogeneous right hand side, A2 and B,

are functions of r determined by the variation of parameters. Thus,

A, = __Q_?___ Yo (v 2 rs) H(r - red + ¢

167

and (11-15)
- _ _Q _

B, = - Jo (v 2 rs) H (r rs) +C

2

where Cl and C2 are constants to be determined and H stands for Heaviside

function.

It is to be noted that in the limiting case of rs+o, Yo + © .

However, with H(r - rs) =1 - H(rS -r), A, can be rewritten as

= . Q - ' -
A o 2 Yo (v ? rs) H (rs r) + C1 (11-16)

A '
where now as s 0, A2 -+ C1 .




By the finiteness condition, C2 is necessarily zero sinceasr + 0,
Yo + — o , Therefore, Eq. 11-14 becomes

¥y =Cp 9 (Y, 1) - Ign—é_ 5 () (11-17)

where SH(r) = Yo ( Yg rs) Jq ( Y, r) H (rs -r)+ Jo (YZ rS)YO(er)H(r-rs).
Even though the condition Im( '12) > 0 is not required, that branch is
assumed for consistency with Yl and this choice also happens to yield a

better form. The constants A1 and C; can now be solved by applying
boundary conditions Egs. II - 10 & 11.

Q w( w- UK) Jo (Yé rs)

17 3
8 ro SJ
and (11-18)
c' - Q o (YZ rs) Sy
1 2
167 S'J

where S =y1( w- UK)2 H_%l) (ero) I (ero) -YZ‘*’ZHC()J) Ulro) J_I(YZro)
Sy =¥, (- UK)? “§'1) (re) Yo Oprgd - Ya“’z“gn (ryrgd Yy frory)

Finally, the transformed solutions are obtained as:

Q w{w- UK) Jo (Y2 rs) Hél) (er)

3
87 o S‘J

¥, = (11-19)

16




and

v, = Q [ JO (YZ rs) JO (YZ T') SY s (r) ] (II-ZO)
2 gl s, H

The purpose of this work is to derive for the transmitted field
exterior of the jet alone, and therefore only Eq. 11-19 will be dealt with
for its inverse. This, in reality, is clearly of more practical value and
interest than;the corresponding reflected field internal to the jet. How-
ever, one may seek to find it as well by inverting Eq. II-20 in a manner
similar to that which will be described in the following text, although
more difficulties are expected, as vy o appears substantially more complex

than “’1' The integral in question is given by Eq. II-6b and substituting
Eq. II-19 into it gives:

wtic wlo-UK) 3 (Lru)(ve) .
- _Q o '2s’ 1 -i(wt-kz)

-0 -°°+'i€ J

(11-21)

A brief discussion on the selection of integration contours is appro-
priate here. Note that integration with respect to time is to be carried
out prior to space. This is to ascertain that the causality condition can
be dealt with rigorously and unambiguously. If space integration was to be
performed first, then the contour C, does not have a clear cut choice and
one may obtain a solution which is non-causal. The way in which causality

is satisfied is by selecting an e large enough such that any and all

17



singularities associated with the integrand will 1ie below the contour.
This requires that none of the zeros of SJ be at infinity, an assumption
which will be shown to hold in a later section. It is then apparent that
the field is quiet before time t = 0 by invoking Jordan's Lemma. Since the
causality condition is duly fulfilled in the time domain and there isn't a

comparative condition in the space domain, CK assumes the usual intergra-

tion contour along the real axis.
)

The proposed method of attack is in the spirit of so-called Cagniard's
method which was in wide application on seismic wave propagation problems
until recent times. The method may be summarized in simple terms as a
sequence of a change of integration variable, a contour deformation, and an
exchange in the order of integration. Friedland and Pierce(g) were first
to apply this method on any problem involving wave propagation in fluid
mediums. Its success depends largely on the particular contour chosen for

deformation, as examplified by Chao(3).

First, make the change of variable. Let

€= (11-22)

which is the complex phase speed. This differs from the original
Cagniard's method in which k/w or the wave slowness is the new variable.

Eq. II-21 becomes

18




(1
o - 20 ":/- e(g-M)a, (kr,pr.) K )(krlr)e_ik(gat_z) g dk
' L Je(K)

. 3 '
8n o S.J
(11-23)

where

St I&(E-M)zHgl)(kFlro)Jo(kFZro) -rzgznél)(krlro)al(krzro) (11-24)

and
2 Y
kly =k (£ - 1)% = Yq
L 11-25
kry = k[ (e-m)? -1]% = v, (11-25)

The contour C £ = C(k) is now a function of k in accordance with Eq.
11-22 and is shown below. It consists of two horizontal paths such that all
the singularities lie below C; when k > 0 and above C_ when k < 0. The

causality condition is observed by again applying Jordan's Lemma.




v E - plane
* E=u+ iv

[
Y

Figure II-2 Integration Contour C(k) and

Branch Cuts for T r

1: 2

Ty and r, defined by Eq. 1I-25 have four branch points at
£ = +1 and £ = M+1

To satisfy the coomitment made previously which restricts Im( yl) > 0 and
Im( v 2) > 0, the imaginary parts of T, and I, must have the same sign
as k while integrating along C(k) in the E -plane. Accordingly, branch
cuts are placed as illustrated in Fig. II-2. This restricts each of the
arguments of £ + 1 and £ + 1 - Mbetween the range of -7 and w while
the range of argument for both I‘1 and T ? will fall within 0 and =

above or -7 and O below the real axis for all points, thus automdtica'l]y

satisfying the requirement on the T 's, Due to the complex nature of Eq.

20




I1-23, an exact expression for ¢ 1 s not possible and some approximations

will have to be made next.

21




ITII. THE APPROXIMATE SOLUTION

a. ASYMPTOMATIC EXPANSION OF BESSEL FUNCTIONS

Carrying out the exact inverse transform as presented by Eq. 1I-23 has
not been possible because of the complicated Bessel and Hankel functions in
the integrand. These cylinder functions are now approximated. First,

observe their arguments to contain r

the jet radius, r the source

o’ s?
radius, and r, the radial distance out from the jet. These are physical
parameters which can and will be assumed to be large for the present
problem. Then, provided kI‘l and k T, remain finite, the asymptotic (large
argument) series expansions of the cylinder functions can be used. T 1
and T o Can never be zero since all their zeros must lie within the strip
bounded by the integration contours C:' But the integral in k clearly will
pass through zero and the arguments will become vanishingly small near that
point. However, it will be shown that contribution from small k can be

ignored except in dealing with instability. The expansions for Hankel

functions are:

HY (2) =\/% -] eit-7)
: . 3m
WY (@ fF [0 e -5

- m<arg z< 27 (111-1)

But the expansions for Bessel functions take on different forms.

22



o B[] P

. . 3 . .o 3m\) (111-2)
bt e )

J,(2)

where plus is for —m < argz < m and minus for 0 < arg Z < 2T

While asymptotic expansions of functions with complex arguments may vary
in different regions, they usually do not take on different forms in an
overlapping region as indicated by Eq. III-2. That the expansions for Jo
and J1 differ by the small term in the range of argument between 0 and T

is recognized as Stokes' phenomenon, so called because it was first dis-
covered by Stokes(30) in 1857. It has been confirmed in the present study
that a correct analysis must account for this subtle difference. This
situation does not arise if only one term in the expansion series is used
as Tam(zg) did in his analysis. But the so]utioﬁ then simplifies to that
for the plane case because curvature effects enter through higher order
terms. The two forms of expansions for J (z) are each applied in the
following manner. Recall in Chapter II the branch cuts of T and T
are defined so that their arguments fall within -7 and «. This means

for k > 0,

-m < arg (krj) <T

but for k < 0,
0 > arg (krj) <2m, j=1,2

23



By approximately combining Eq. III-1 with Eq. III-2, the following

approximation is obtained.

J (kr ]-\2) H( )(krl‘ ) = W [D 1k(rI‘ !‘ r ) 1k(rr1+rsr2)]w

3, (ke Tp) W (kr 1)) = -——l-—-——{pzeikro(r1‘r2) tg,etkrolTi*Ty) ]  (111-3)
"krd/rl 2
1 [D oikr (T-T,) S E RITH R ”"2)]4
3 3
nkro ryry

3, (kr.T,) Hél)(krorl)

where plus sign is for k < 0 and negative sign for k > 0.

In the above,

i 1 1
D = 1 + - —
1 8k ( rsrz rrl )
1 .
b, = + -1
CHE e s AR
° = (111-4)
1 1 1 .
E, = 8k (rsrz * T )+ !
i 1 3
E, = 1 - gkr ( T, T, )
i 3 1
E, = 1+ (— - )
3 8kr, T , T
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Now, to show that contributions from small k can be ignored, leading terms
from the power series expansions of the cylinder functions are substituted

into the integrand of Eq. I1-23.

kr rl
__e(e-wy M=) —
kr T kr T
1 2 2 § o1 o1l
kr PI[I‘I(E-M) e -3 In(— )]
0 (111-5)

In the limit of k » 0, the above quantity can be seen to vanish except at
the zeros of the denominator. When treating with instability, its effect
on the integral will be studied. Here, Eq. II-23 is replaced by the

approximate form using Eqs. III 3 and 4
12kr 1‘2] 1kf

. {ff E(E-M) dF de
1° 8n3\[_ i °2 12kr1‘2] .

ICH

(111-6)

©

E,
/ /‘ g(e-m, [ 1 - W 12krgTo e ”‘f]
+ + d g dk

0o “c 01[1 + Zi 12k|" l"z]

where

f=2+ Iy (r - ro) +T, (r0 - rs) £ at (I11-7)
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. 2 _ .2 .
o, = Bkr T, (ry™ = 1,%) (1-3rTp) - (r) +T,)(0 + 1)

1'2
5 ; 2> (111-8)
2" BkrIT, ()" - 1,%) (1+3n1,) - (r; - T,) (1 -TT))

This expression represents the transmitted field from a large ring-shaped

source positioned within a cylindrical jet of large radius o with the

source plane normal to the jet axis. Hence, the radial field distance r is

at least as large as o In the special case of r_ and re becoming

0
arbitrarily large but retaining a finite difference between them, Eq. III-

6 reduces to

0 - :az ff g(g-n)eik [z tTy 4T, Ye - gat] aE d
- .

o e (k) (r1 + r2)(1 + rlrz)
(111-9)

which is not unexpectedly the exact solution to the line source problem as
stated by Eqs. II-la through 3a. Hence, it may be concluded that the small
k or high frequency effects may be lost when a real jet is approximated by

a plane vortex sheet.

b. FURTHER APPROXIMATIONS

The approximate expression of Eq. III-6 for the transmitted field
¢ 1 is still too complex for evaluation and further approximations are

necessary. An examination of the integrand shows its denominator to con
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tain a term exponentially small due to the fact that Im(kl‘z) > 0, and
this permits the following series expansions:
o . -1 o .
z 2 _i2kr T . 2 i2kr T

[1+ _o—l—e 02] "li—o;Ie 02+ (III'IO)

0-.2
(——g) e14kror2 ...,

01

Rewrite Eq. III-6 as

o. E(g&=MD, _. E, . o, _i2kr T .
6. = ag ff 1 [1+ D1 2k T, 92 e'“o 2+....]
! o 01 1 %1

8n

. ‘ © ] o . .
REge ‘”‘*fﬂ £ (&-M)D, I ) o ik, 02 gikrgr, o oike dgdk}
o “c o ) 0

1 1

(I11-11)

Thus, the integrands in Eq. II-23 have been transformed to infinite series
following two successive approximations. The integrals are assumed to be
uniformly convergent so that the order of integration and summation can be
interchanged. Eq. III-11 then represents the transmitted solution as a sum
of infinite number of integrals. By attaching physical significance to
contribution from each integral, it will now be demonstrated that only a
finite number of terms are needed to generate a fairly descriptive picture
of the transmitted field. First, it is simple to observe the exact solu-
tion to the line source problem as given by Eq. III-9 is again reducible

from Eq. I11I-11, requiring however only its first term. Second, a wealth
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of information can be gleaned through the examination of expopential fac-
tors in these integral solutions. For instance, this factor in Eq. III-9
carries with it the sense of a wave front and subsequent motion initiating
fromx =0, y= ~¥g» which are points on the line source., This reasoning
will be substantiated in a later section for the factors found in each term
of Eq. III-11, which have a parallel functionality. The first of these is
f as defined by Eq. III-8a and it is identical to the corresponding factor
in Eq. III-9 just described. Fig. III-la illustrates the fact that f
carries the information on wave front as it relates to signals coming from
the source point closest to the observer field position. The factors in
the subsequent terms all contain f and an expression based on k Tps and it
is not difficult to find an interpretation for each of them. Thus, the
second term relates to signals coming from the source point farthest to the
field position as depicted by Fig. III-1b. Since the signals will be
continuous following the wavefront, combination of the first two terms of
Eq. III-11 is seen as descriptive of the transmitted field due to the
primary source-vortex layer interaction, beginning with the wave front
coming from A and ending with the contribution from B. The primary inter-
action is clearly without any reflected contributions, which as expected
can be found in the succeeding terms. The field resulting from a single
reflection is contained in the third and fourth terms as indicated by their
respective exponential factdr (fourth term is not shown in Eq. III-11 but
basically it is the product of second and third terms). As illustrated in
Figs. III-1c and 1d, it begins from A and ends at B with a single reflec-
tion at the interface. This simple argument can be applied on subsequent

terms to show that they represent multiple reflections of increasing
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order. Howe(13) suggests that after several reflections, the acoustic

coupling between opposite faces of the jet may become large. It

x Any Field Point x X X
{ J 4
A
D) (D
a. 1Ist term b. 2nd term c. 3rd term d. 4th term

Figure III-1 Physical Significance of Terms in Eq. III-11

will be assumed here that for small time the contributions arising from
these internal reflections are negligible to the total transmitted field.
With these considerations, just the first two pair of terms in Eq. III-11
will be evaluated to focus attention on the added role played by the

curvature effects in the transmission mechanism.

c. NON-DIMENSIONAL FORM

First, rewrite Eq. III-11 as follows,
¢1 = ¢f + ¢g

.2 f" f'+f°°f 6E-mDy _ikf df dk
/) J - + O3

a
8173" ,r.sr (o 0cC

O r o FmE. (111-12)
+ [/[-ff+ E(—E—T)—l—e‘kgdgdk]
" Jodc 03
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where

g=2+T, (r - ro) +T, (r0 + rs) - Eat

Notice the similarity as well as the difference between ¢f.and ¢g. They

will be treated separately from here on.

v [ [ el

kr (111-13)
where
Ay =(ry+T,) (1+7T,T,) (I1I-13a)
A, =i (02 -T,2)(1-3T, T.)/8
1 1 2 1°2 (I11-13b)
A = _1ro ( 1 _ 1 )
8 rz rs Pl r

A check on Eq. III-13 reveals the imaginary part to vanish as anticipated
and hence it can be put in the following equivalent form, with Re to mean

the real part of the integrals.
A_ .
£ (6-M) [ ﬁ——]e kT

¢ J__ REf] 0o dgdk

2
1 2 kr

(I111-14)

After some algebraic manipulations, this equation is non-dimensionalized

as follows:
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11 i KF
o, ig(g-M [ ] L 1
o ff+ L - T — +7x;"]e dE(dIKu-m)
4113\/§ (o K+._AZ__ 2
RLAETY™
with non-dimensional quantities
r
R = __S_. R R:._r._ . K:kr . z:-z_
S o o ] o
F = Z4+T,(R-1)+7T, (1-R.)-¢T (I11-15a)
2
L. i(rl_rz) T=at’¢=¢fro
- 8 R R’ , "o F aQ
¢g is similarly put in its non-dimensional form:
AL
K |1+ 12 .
A L iKG d&dK
P S— Re[7 £(e-M) i (111-16)
G - 3 + 2 2 -
4"\fRsR 0 “c {G———A—-]
1ok
Here,
L, = (el 2 3 o o 111-16
+ T ot TR) vt (111-162)
G -

Z+T, (R-1)+ Ty (1+ RS) - ET
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¢F and °G do not differ greatly in their appearance but retracing from
previous discussions on the significance of each term, it is to be kept in
mind that while the former contains information on the wave front, the
latter should be free of it since there can only be a single wave front.
Whether or not this is indeed the case will become apparent in the final

evaluation of the solutions.
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IV. INVERSE ANALYSIS

a. THE CONDITION OF CAUSALITY

In two previous chapters, an integral solution of the transmitted
field which approximates for large values of radial lengths and which
excludes any contributions arising from internal reflections is derived.
This inversion integral with its non-dimensional form as given by Eqs. III-
15 & 16 is evaluated in the present chapter to the simplest analytic repre-
sentation possible. To begin with, an examination of the integrand is made
(see Appendix A) to identify all the singularities. The branch points and
the real pole which exists when M > 2 associated with neutral stability
wave are identical to that found in the plane vortex sheet case. The
instability pole is complicated by being a function of wavenumber as well
as frequency—5n contrast to the plane case and detailed examination will be

presented later in its appropriate place.

Recall the integration paths for & and K are originally as follows.
K runs from 0 to = while £ moves along the path C_ such that all
singularities are restricted to lie below it. Then, the condition of
causality can be checked by invoking Jordan's Lemma as illustrated in

Figure IV-2.
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R 77 2 o e B e
-1 1 M-1 M+
Figure IV-2

Since there is no singularities within the closed contour of C+ and

the deformed path C._ , the integrals vanish by Cauchy's Integral

Theorem. That is,

(1v-3)

The first implies that before time T equals R - R_, which is the minimum

>
time for the waves to reach the field point R, ¢ F remains zero to satisfy
the physics that before the secondary sources on the interface are excited,
there cannot be any response from the transmitted field. Before elabo-
rating on the second condition given in Eq. 1IV-3, it is expedient to
reflect on the differences between ¢F and ¢ G that are easily discernible
in Eqs. III-15 & 16. The development of Chapter III pointed to the fact

that their sum characterizes only the directly transmitted field, having

disregarded all successive terms arising from one or more reflections at
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the interface. A question comes up as to why the characterization goes in
pairs, whose answer may very well rest with the curvature variations. For
if the field point of interest is at P, as illustrated in Fig. IV-3, the
top half of the circular interface is seen to have the curvature, say, in a
positive sense. Top half of the ring source similarly has its curvature in
the same sense, but that of the lower half clearly has the opposite sense.
This makes it plausible for an interpretation of ¢F and ¢G in the manner
described below. ¢F is representative of the transmitted field arising
from top half of the source as depicted in Fig. IV-3b, and the first
condition of Eq. IV-3 which implies the initiation of the wave front from
point A nearest point P, applies as it gives the minimum time necessary for
the waves to make contact with the field point. Obviously, transmission
cannot occur prior to this time. On the other hand, ¢’G represents the
field originating from lower half of the source as is apparent from Fig.
IV-3c, and the second condition of Eq. IV-4 which cannot have anything to
do with the wave front, applies as again it furnishes the minimum time

before transmission from any point on the lower half source is possible.

xP x P xP
I‘ e »
[} \
\ []

\ ”
Source.
Vortex Layer

a b c
Figure IV-3
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It can be concluded from the previous discussion that the integral
solutions represented by Eqs. III-15-& 16 exhibit the causality conditions
properly and this clears the way for the inverse analysis. For the
inequalities of Eq. IV-3 to hold in the opposite sense, i.e. < instead of

>, Jordan's Lemma requires taking the lower semi-circle on Fig. IV-2 which
now together with C+ forms a region containing all the singularities as
well as the branch cuts. Basically, the inverse analysis entails the
evaluation of residues coming from the singularities and integrating
around the branch cuts. While residues are relatively simple to evaluate,
branch cut integrations for complicated integrand such as the ones
encountered presently are not likely to be easy nor manageable to yield a
final expression useful for applications. This is the reason why a partic-

ular technique is demanded for the analysis.

b.  ZERO IMAGINARY CONTOURS

Cagniard's technique will be employed in similar fashion as Chao
applied it to his plane vortex sheet problems. The success to this method
lies in finding a path for contour deformation such that integration along
the branch cuts need not be concerned with and an exchange in the order of
integration can be made consistent with the causality condition. In other
words, the idea is to find a way to integrate with respect to K first
instead of £ because that is substantially less cumbersome to carry out
than the other way around. An examination of Eqs. III-15 & 16 shows that
if a contour on which Im(F) or Im(G) is greater than zero can be found,

then the power raised to the exponent in either integral will have a
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negative real quantity for all K, and along such a path, the order of
integration can be altered without any violation. So the functions F and G

will be studied next. Recall

-
n

Z+T)(R-1)+T, (1-R) - £
(1v-4)

[p]
|

7+ rl (R-1) + r2 (1 - RS) - &1

First, it is observed that they are purely real along the real axis not
covered by the branch cuts of Tl and TZ. A parametric equation which
defines the curves of Im(F) = 0 or Im(G) = O not on the real axis can be
determined. Chao showed in his plane vortex sheet problem that these
curves are oval-shaped. Here the same is anticipated as the functions are
quite similar, but the curves which shall be designated CFO and CGO are
numerically searched instead. A computer program can be set up with
relative ease and generate a whole array of them by varying the parameters
X, R, Rs’ and 1. Some examples are shown in Fig. IV-4 with just the top
half as they are symmetrical about the real axis. Several observations can
be made regarding these curves. Whether or not they split into two depends
primarily on the Mach number. For M < 2 when the branch cuts overlap, a
single curve is maintained, whereas for M > 2 after the branch cuts become
separated, two similar curves will evolve around the cuts when the timeT
is at least greater than that shown in the inequality of Eq. 1IV-3. When
time is small, the oval-shaped curve is very large for all Mach numbers.

As time grows larger, the curve starts to move 1in and becomes
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smaller until when T gets infinitely large, the curve(s) will just barely
wrap around the branch cuts. Finally, the curves usually bias to one side
or the other depending on the values of R and RS as they resemble weights
to T, and Ty respectively. A1l the background information just secured

on CFO and CGO will help in the analysis later.

Now that the question of where and how the imaginary parts of F and G
vanish has been thoroughly resolved, it is possible to establish the con-
tours along which the individual imaginary parts are always greater than
zero. These shall be designated by CF+ and CG+ respectively and a sketch

is shown in Fig. IV-5,

(a) (b)

Figure IV-5 Sketch of Contours C

C

F+» Ua+
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The plus and the minus symbols in double prime quotes are indicative of the
signs of F or G in the various regions. The jumps across contours where
the imaginary parts vanish are distinctly clear. CF+’ or identically CG+’
for that matter, wades through the positive imaginary regions in the manner
shown. Fig. IV-5a illustrates the case when M < 2 or M > 2 but t small.
In such a case, the contour is inside of CFO above the real axis and
outside of CFO below. When M > 2 and there are two of the zero imaginary
curves as illustrated by Fig. IV-5b, then the contour takes a little detour
into the lower half spaces between the branch cuts such that the local
portion of the real axis outside of CFO is exterior of CF+ as well. A point
which is rather self-evident will be made here. Note that whereas the
contour CF0 or CGO is uniquely determined for a given set of parametric
values, there is no clear-cut choice on CF+ or CG+‘ This is simply due to
the fact that regions of positive imaginary part spread over a large area.
The added flexibility thus acquired in the selection of a contour might be
interpreted on first thought to give rise to some technical difficulties in
performing the actual contour deformation. However, taking a closer look,
one would expect the final solution to be independent of the particular
contour selected, because there cannot possibly be more than one solution
for a problem so well defined as the present. This supposition will in

fact be shown to be true.

From here on, the analysis will be described for °l’ only, with the
understanding that results for ¢ G could be similarly obtained. It is easy
to see that while some singularities will be enclosed by CF+’ others will

be left out depending on the particular contour chosen. The final results
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however will be the same regardless of the choice made. Actually, the
question of where the poles are located with respect to CFO is of greater
importance and is examined next. As the imaginary part of F is zero along
Ceg» 1t is natural to look at the sign of F to see whether a point is in or
out of the closed contour. First, consider £ and ¢ 2 which are given
in Eq. A-2. Substitute them into F defined by Eq. IV-4 and sort out the

real and imaginary parts,

z+1§[\/mz+1 -1](R+RS-2)-T§
s [ +1)% . (-’22—+ 1] %[(——R . ') (W) - 7]

a+ iB (1v-5)

-n
"

In agreement with Fig. IV-5, 51 p Will be inside of Cy if B> 0 and

outside if B < 0, Using the Heaviside step function, let

T [T ) (R - R() (F,M2+1 + J)] (1v-5a)

M

£ 3> g and g as defined in Eq. A-2 are on the real axis along which
the imaginary part of F vanishes. Therefore, some other check is needed to
determine where they are in relation to CFO' First of all, these poles
will be enclosed by CFO as long as it is a single curve. When they split
into two, then a condition exists for the poles to fall outside of CFO'

Since its derivation is similar to that found in Appendix 1 of Chao(3).
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only the condition itself will be presented here. The poles &, , 5
1] ]

will be outside of CFO if the inequality represented by the following is

satisfied.
v
E3
u
CFo
Figure IV-6
(¢ -M) (1-R)
7> EMiR=1) L tm s’ m=3,4,5 (IV-6)
L ry (&)

Eg» Which is the pole of K + A, /(T 1 To A 1), will be examined

later for its movement as a function of K and how that will relate to CFO‘

c. EVALUATION OF INTEGRALS

To begin with, break up ¢ F given by Eq. III-15 into three parts as

follows: .
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0

A A
= K+ 12‘ )
1T2M
o 1 - iKF
og =f ’E(EA”)L- K — &' d ok (1v-9)
o “ct 2 K+ —2
TTh
1F2M
oc =[f ! gxM)L- e'KF 4r gk (1v-10)
ct 2

o g and ¢ ¢ can be combined but they are evaluated separately for mathe-
matical simplicity. As discussed at some length earlier, the main idea in
the inverse analysis is to deform from C, to CF+ as illustrated in Fig.
IV-7. By Cauchy's Integral Theorem, integration along C_ is now equivalent
to the sum of integrations along CF+’ CT'+ as p_ * e and Cj's which
gives the residues of all the poles exterior to CF+’ Because the
integrands decay as good or better than 1/¢ 2 for ¢ becoming very large,
the contour makes no contribution by Jordan's Lemma and thus Egs. IV-8 to
10 following the contour deformation becomes (with the poles indexed in

accordance with Appendix A):
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In the representations above, an exchange of order of integration has been
effected along Cpy Where the real part of iKF is positive. For the
present, all poles have been assumed to fall outside of CF+ even though the

final outcome will not depend on where the poles lie in relation to Ceye

First, let
Iy = _}r K e TKFgx (1v-14)
o A2
K +

T1ToM
and evaluate this integral which occurs in d)Al and ¢ B1* By a simple
translation and a rotation of the K-coordinate, it is possible to transform

IK into a form involving exponential integral as follows:
g F) (Iv-15)

where K’E = - A 2/( ry T, ‘Al) is the moving pole in the K-plane

discussed in Appendix A and Ei (-iK . F) represents the exponential

£
integral

z t
B = [T g

-CO

Thus,
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- & E(E-M iE(£-M), . TKF. , .
a1 = %11 * %12 "f S g -f_%_i_l,(&e £E; (-1KgF)de
Cry 1 Cpy 1 (Iv-16)

>
!

B1~ B11 T BI12 iﬂg‘éiéiﬂgk’dg jf§1€ ﬁ'M L ke eFE, (-ik F)de
°Fe 2 Cpy 72 ST )

o., = ’ﬁc E(E-ML. de

-
Fe 2

Notice that ¢ B11 and ¢ c1 are the same integrals but opposite in sign to

drop out from the above. Now, the integrand of ¢A11 behaves as

(g- M) 1
_E—jg\lT - ? , lgl -+ o

making it poéﬁible to deform from CF+ to G as shown in Fig. IV-8.

Fig. IV-8 Contour Deformation of ¢A11
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Integration over C_  does not contribute as can be seen from the above by

taking p_ infinitely large. Thus,

5
- E(E-M) -M
“a11 -J,zz:lf R M Co (1v-18)

cj 1 o 1

where CO is evaluated if and when the zero of F 1ies exterior of CF+' Cj's

prevail by the previous assumption that the enclosed poles are all outside

of CF+' By the residue theorem, Eq. IV-18 is evaluated to give

Q, (&)
5 S\
¢A11=-2m‘{2 —1———l + QF(E)I J (1v-19)
j=1 da, df
aE 5T £ & &
where
£ £, (g -M)
() . 3™ and q (g) = O
M RET PO ()

The zero of F is denoted by & 0 and deserves some discussion for its
physical significance. Consider first the fact that those points where F
vanishes are also the intersection points for Re(F) and Im(F) where they
both vanish. Earlier, it was shown (Fig. IV-4) that curves of Im(F) = 0
which are denoted by CFO are oval-shaped. In Fig. IV-9, the curves of
Re(F) = 0 are illustrated along with the corresponding curves CFO' These
curves in general must and can be determined numerically without much
difficulties. Basically, the real part of F is shown to vanish along a

curve that approaches a straight line perpendicular to the real axis when
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far away from CFO’ Only the upper half is shown in both Figs. IV-4 and 9
because the curves are symmetrfc about the real axis. Furthermore, CF+ is
such that it always encloses the lower half of CFO together with the branch
cuts and hence the need to include them in the analysis is circumvented as

a consequence of the contour deformation.

The position of ¢ 0 is found to be a function of time. For small
time, it is on the real axis exterior of CFO which when substituted into
Eq. 1V-19 gives rise to a purely imaginary quantity. This clearly does not
contribute to the real transmitted field represented by ¢ F of Eq. III-15.
‘g ( moves toward Crp with growing time (Fig. IV-10a) and reaches the point
where CFO meets the real axis (Fig. IV-10b). Beyond this time, ¢ 0
becomes complex by moving onto and oscillating back and forth on CFO (Fig.
Iv-10c) for all times. This 1is true with one exception that occurs for
M > 2 when CFO splits into two parts as exemplified in Figure IV-9. For
these cases, ¢ o may fall onto the real axis between the two parts so that
even for time greater than T-OF’ it can become real again. Whereas £ 0
does not contribute for time 1< ToF because it gives rise to a purely
imaginary quantity, it always yields a real quantity to Eq. IV-19 for
™ Tor and therefore contributes to the transmitted sound field. Recall
the condition of causality given by Eq. IV-3 which states that ¢p = 0 for
<R - RS’ the minimum time of sound propagation from source to vortex
layer. Through numerical calculations, ToF is found to be the minimum time
of wave arrival at a field point of interest and ToF R - RS is obvious.
Thus, 50 provides just the geometric acoustics contributions. In fact,
it has been verified that all the remaining contributions, which arise from

sound-vortex sheet interations, arrive at later times than TOF'

49



v ReF = 0 v ReF = 0 V ReF =0

ImF = 0 ImF = 0 ImF = 0

H54515455455554 —U HE5555555 5 T U %’55’:%5”%’7 mat’
e *
o

a. T<‘l’oF b. T= To_F c. T >T0F

Figure IV-10 EO Motion Analogy of Wave Propagation

Next, focus attention on ¢A2 which can be rewritten from Eq. 1IV-11

as

When j = 1 and £y is inside of Cpy so that Im(F) > 0 on Cl, an exchange
in the order of integration is possible. Then, by using Eqs. IV-14 & 15

for IK, ¢ A2l reduces to

p, (&)
dn I - %a2cj

1

€ e

o = 2ni (1v-20)

A21

j=1
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where for general purposes

- JE(E-M) iK_F .
°A2cj ‘fl _JTng £ E].(-1K€F) dg (1v-20a)

For the case of j = 2, £ has to be dinside of CF+ when its complex
conjugate £y lies within CFO' Thus, ¢ A2 = 0. When j =1 but €1 is
outside of CFO so that Im(F) < 0 on Cl, ® ppp CAN be evaluated in the

following manner.

- ig(E-M) ® ro K iKF dK d
v o HEL[ g o s
j - " K +

-C0

TIPZA

1
Q () (1v-21)
=211 —— - ¢ + 0
d A ' A2C1 AZKj .H1
dE‘ j:l
£=€1
where again for general purpose
L iele-M) K iKF
® a2k j/fjf; ULy e dodk (1v-21a)
Zo V. +
R 1Tl

Eq. IVv-21 alone is sufficient to represent ¢ A21 for both cases since the
Heaviside function Hl’ which is defined by Eq. IV-5a, is zero when £ 1
lies outside of CFO and Eq. IV-20 is recovered. When El is outside of

Crg» SO is & , and it may lie on the outside of Cp,. Then,
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Q, (¢)
¢ = R S - o
a2z - 2T " A2C2

1 -
& les, (1v-22)

54 and £ g are points on the real axis and exterior of CF+ so that the
imaginary part of F is greater than zero on the portion of €, and C5 below

the real axis and less than zero above. Thus,

QAl (€)

dn,
e =g

+

¢A2m = 271 ¢A2Km’ m = 4, 5’(IV-23)

= % a2cm

In ¢ Azkme» the integral along C is for the upper half only. When j = 3,
the situation is similar to j = 4 or 5 because & 3 is also a point on the

real axis exterior of CF+'

QAI(E)

¢ A23 = 27 i -¢A2C3 + ®A2K3 (IV-24)
dA1
dg £=ty

In summary,

5 Q. (&)
0, = {om —1 — - % +9 +0 (1v-25)
A2 T & ' A2Cj A2Kj A26
j=1 dA1
1
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Evaluation of ¢ A%6 will be saved for a later section as it requires
special treatment. Note the absence in Eq. IV-25 of any additional factors
to indicate when and where each term is present. For example, ®q is
present only when M <2 Vri-and where it is exterior of Cc, so that the
corresponding terms would vanish if these conditions are not met. The same
in a consistent manner is implied on Eq. IV-19 but the factors are not
tagged on in the meantime for simplicity. By duplicating the procedure of

4’A2, the following results are obtained.

A3

%p = -2 TH T * P3oc %2k *P2k3 ~ ®B26 (1V-26)
dé E=€3

QAZ(E)
6. = 27 ———u (1V-27)
c2 da, * Seax

“de

€=£3
where

QA?_(g’) - §§€;M}L_

£=¢
_ N R 1 (22 ) I | R
Oy O A 2
B2k ®cak j;f 2
€3
KF
ig(e- M)L el
®B2K3 [f KT T, +hy 9 &

2

¢B2C =f ’—5(—5’\:&&'— Ke e1KEF E; (-1KF)
c3 2 2
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Again, © B26 will be evaluated Tater along with ¢ pog" Next, ®a2k3 and
¢ gok3 are simplified further by directly substituting £3 = M/2 into

these integrals and working out the double integration.

_ L, 2)E(E-M) Qy ()
) =2 A
A2k3 ~ " 1 7dny G[F(£:3)]+ a, l - Hep
dz €=£3 ac €=€3 (1v-28)
Q. (£)
2 .
¢82K3 = 27 —dBAl—_—’ HKF (Iv-28a)
dg -
£=E,
where
) Q,(82)
Qy(85) = £5(e4M) Ky e a7 (B3) | g (e, - N %2 (1v-28b)
2 &3

K =

oM
2 nM2-4" (8-M2)
Her = H[F(e)] W [w-2) W [z - 0] - w [Fey) v [ -2\ ]
It will now be shown that ¢ AKj's® where j =1, 2, 4, 5 all vanish in

reference to earlier remarks. Take ¢ A2K1 for illustration and the rest

will follow in likeness.

ig(E- M iKF
® nk1 [f e ddk

€1 A (ke +)
N 2"1
® w Ao JIKF
=/f E(E -M) d&dK f i g -M) A2 i 3 e dK
| -0 7€} i\r 2 2
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Then, it is quite clear that the residue contribution from the two parts

are equal but opposite in sign to bring about a zero net contribution.

Integrals dealt with up to the present have not involved elaborate
treatment and most have been reduced to analytic simplicity, with the
remainder purposely left incomplete for the moment. Next, attention will
be placed on ¢ AL2 and ®g12 which are expressed in Egs. IV-16 & 17.
First, recall the exponential integral is likewise expressible in terms of
the incomplete Gamma function, i.e. Ei(z) =-17 (0, -2z2). 1 (a,z) is an
entire function of 3, but in general, except when 3 1is an integer, it is
a many-valued function of z with a branch point at z = 0(7). Since a =0
here, Ei(-iK £ F) is analytic in the £ -plane. However, at ¢ 0 which is
the zero of F, the argument vanishes and this causes the exponential

integral to diverge. Thus, EO is a singular point. Expressed in series,

o ikF)"
E; (-ik F) = Y+ In (K ¢F) +n>;1 N (1v-29)

where Y is Euler's constant. Clearly, in the 1limit as &*%, so that
F-> 0, Ei presents there a logarithmic singularity which is defined as a
branch point. For each & 0 when it is complex, there is also its complex
conjugate Ed*. But since this point will always be enclosed by CF+’ only

Eo needs to be concerned with. Now, as|E|+ , iK &;F -> 1/£ .
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Certainly, Ei(O) diverges, but note -iK . FE, (-iKE F) which for large

£
behaves as
w -t
1 e
Y P
£
By L'Hospital's rule
o -t
_[ £ dt -t
Tim 1/¢ _lim 1 e - 0
Erw g oo 52 t
t= o
Furthermore,
. . . 1/
1im _iK_F Tim g > 1
E—boo € E > E}-m €
and in ¢A12 and ¢BIZ’ respectively,
E(E-M) 5 2 e(E-M)L. > 1
Al F 52 ’ A2 F £

Therefore, the integrands of ®A12 and ¢812 are shown to behave as 1/¢ 3
or better for & becoming very large. This makes it possible to deform
the integration contour in a manner identical to that illustrated by Fig.
IV-8 used in the evaluation of ¢A11' Without the branch point, contibu-
tions arise only from those poles exterior of CF+’ as in the case before.
Here, with the branch point at EO’ additional contribution will result
from integration over the branch cut that must be made to account for the

multi-valuedness. Thus,

56




®a12 ¥ ®a12s * ®A12b

5 . )
=Y f 1€ i'” K e’KgF E. (-iK_F) dg
J:l 1 g 1 E.:

J

. . (1v-30)
- / LM ¢ oHF £ ik r) o

where Cp is the contour around the branch cut which is to be discussed
next. The character of ¢§ o %as examined in detail and portrayed by Fig.
IV-10. Essentially, before time equals ‘IOF’ which is the minimum time for
the waves to arrive at a given field point, E() stays on the real axis.
After F> E:o moves onto CFO to become complex. There is no unique way
of making the branch cut but definitely it should be made in the most
uncomplicating manner. For instance, it is highly desirable that the cut
be straight and bypass CFO and CF+' So, the cut can be made in the
subsequent forms. Before T= oF? depending on which side the point EO
may be positioned, it is made along the real axis away from CFo as depicted
in Fig. IV-11. This simplifies the integration in that it is performed
with respect to u alone. Substitute the series expression Eq. IV-29 for
the exponential integral into Eq. IV-30 and clearly, only the In term will

contribute as the other two terms are single valued on Cb.
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Figure IV-11 Branch Cut Before F

With the branch point not contributing over the vanishing circle C

¢ A12b becomes

A12b” - ,/C- "

bu “bL

which is real along Cbu and CbL' But,

In (iKF) = n (2 e'%) = Inz+ s

where [ = liKE F| s the same but ©

———l"gl(f'M ngiKaF In (iKgF) d
1

bo’

g

(Iv-31)

is discontinuous on the two

paths. For £,<0, 6= m on Cbu and 8 = - g on CbL’ and for £, > 0,

6 =0 on Cbu and 6 = 27

on ch' This quite simply leads to:



®pp2p =1 2T f Selu) 4, £ <0

(1v-32)

"
-,
N
=
‘\
8
Y
w ©
-
-
s
—
Q.
o
Ty
A\
o

Since the above is a purely imaginary quantity, it will not add on to the
overall transmitted field. However, later in dealing with ¢ 6 the same
integral would yield a real quantity which will be shown to have a signifi-

cance relating to the causality condition.

The expression for QAle obtained above is for T less than oF when

§) is real. Now, turn attention to Tt greater than OF Once more, the

branch cut can be made straight and away from CFO and CF+ as depicted in

Fig. 1Iv-12 for the two possible cases of (1) £o being complex and (2)
£ 0 being real but in between two CFO'S.

Figure IV-12 Branch Cut After 1

OF
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The simplification of ¢A12b directly follows by employing again the

procedure taken for T < ToF

*mizb 7 - 1‘2nf Sg (uy + iv) dv (1v-32a)
Yo

where &, = u, + iv,. By the same development,

812 T ®B12s * ®B12b (1v-33)

where for 1 « TOF

£
®B12b = - 127 LOTF (u) du go<o
= -d27 /50 Te (u) du £, > o (1v-34)
fort > -E)F
¢A12b = 12w j; TF(u0 + iv) dv (I1v-34a)
0
with

Te(p) = R ¢ iKF (1v-34b)




and

5 : .

®Blos - 21 f SE(EML. i;M L ngm&FE,-(-iKgF) dg (1v-35)

J= c.
J

Note however that when j+# 3, -iKEF + © . Express the exponential
| integral by its asymptotic expansion for large arguments,
-iK.F
-3 -_ & _§& o1 2
Ei( 1K€F) 1‘K£F [1 iKEF + YiKgF)Z + ]

and substitution into Eq. IV-35 leads to, for j = 3,

ie(e-M)L- [, 1 ., 2
f;-. AZ 1 _iKiF + T]—l—(g—l_.)-z + ... dg
J

The above shows that those points are no longer poles and hence reduce to

zero. Thus Eq. IV-35 is replaced by
= ig(e-M)L. iKF s )
¢ B12s j%g A, Kg et Ei( 1K£F) dg (Iv-35a)
3

This completes the analysis of ¢ F with the exception of ¢A26 and ¢ B26
which will be dealt with in the section on instability as they can be
directly linked together. For the time being, an intermediate summary
shall be made by collecting all the terms which have just been evaluated.
The reason for having kept some terms in their incompleted forms becomes

immediately clear as a multitude of cancellation takes place. So, write
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Q- (&)
® l1__ pe [;ZNi F

F oA dar *op2k3tOB2x3t0A126"
4'" SR E

(1v-36)
&8 ®n26 ~®B26 ]

Interpretation of these results will be reserved for a subsequent section
but a brief description is in place here for clarity of the above equation.
The first term (Eqs. IV-4 & 19) requires a simple analytic evaluation which
is only complicated slightly in the determination of go. The second and
third terms defined by Eqs. IV-28 & 28a contain details on the resonance
waves as indicated by the delta function operating on F( ¢ 3) which is
fairly simple to calculate. The definition of ®a12b and ¢ B12b from
Eq. IV-31 to Eq. IV-34b depends on the time 7 and their evaluation require
numerical integrations that may lead to some technical difficulties.
Finally, the last two terms whose definitions can be found in Eqs. IV-11 &

12 will be tackled later as mentioned.

To complete the analysis, Eq. IV-16 for ¢G will be evaluated next.
Since the course taken is identical to that for ¢>F, the intermediary steps
leading to the final solution will not be described. However, while there
are similarities between ¢ F and ¢ G to high extent, there are also subtle
but distinct differences and these are pointed out in careful examination.

First, write down the results as follows:

¢ 1 R [ 2 QG(E) + +¢ +0 10
S e =27 q)
G 3 RR dG D2K3 "TE2K3 "D12b TE12b
4n RSR ‘d—g‘ €=€0 (IV-37)

*opos * ¢Eze]
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where the expression for G is found in Eq. IV-4 and

Qu(E,) = Q(E) = o{tg°H) (1v-37a)
60"~ TFo” T A (E)
2. £(e-m)| %(8)
Rl ' JEENE . . Hyg (1V-37b)
1], 1
& 3 KN
Q:(€)
_ 2. %
Oppk3 = 2T 1 _EX{""l Hya (Iv-37c)
£=¢
€ e Coley) L,

Qp(E3) = E5(E5M) kye ®3BE3) g (e, = T lg_g
>3

with L, defined way back in Eq. III-16a and K3 in Eq. IV-28b.

Heg = H [6(53)] #[r-2] H[zﬂ] - H [-6(53)] o [n- 2 ]

Before the wave arrives 1 < T 06 , where now go is the zero of'G.
®pyop = - 2n-./zo SG (u) du £, >0
= - 2n~4r- Sg (u) du £, < © )
0
¢ (1v-37d)
¢E12b=-2n[ Te (u) du £ >0
To) P
=-2'n'/u- T (u) du £, <o

(o]

and after the wave arrivest > T06
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(-]
°012b =-27 ./C SG (u0 + iv) dv
0

%c1op = - 2 n~4r TG (uo + jv) dv (1v-37e)
(o]
with
_ _iE(E-M) iK_G
Sg (&) \Al ng 3
T () = 1§(A§-M)L+ ngixgs
2
Lastly,
\
¢ .
D26 = f‘”}‘; £(g-M) K iKG
e dt dK
T {Toh b (1v-37f)
°£26 = f"" E(-M)L, K e K& 4rak
°o g A K+ Ao )
T T,h

It is immediately recognizable that there is a certain oddity about the
first item in that this quantity can be non-zero before time equals 06
which is the minimum time for signals from the lower half of the ring
source to arrive at a given field position. This appears to be in viola-
tion of the causality condition established in Eq. IV-3, but a closer
examination points to the resolution of this contradiction at once. It
might be kept in mind that the causality condition simply requires ¢ G to

be zero before‘FOG and not each term which makes up its expression. So, if

the terms can be shown to sum up to zero, then the causality condition is

64




quite obviously satisfied. To do this, first examine the terms that make
up ¢>F where this problem is not encountered. The reason is there, in Eq.
IV-36, the first term vanishes before < equals ToF and furthermore, the
terms ¢ Al2b and ®B12b make zero contribution as they are purely
imaginary quantity. Now, returning to ¢ G it can be seen that while the
first term is real bEfOFET‘OG, L D12b and q’Ele which correspond to
o Ale'and ®B12b also make purely real contribution. The fact that ¢q
had been shown to satisfy the causality condition at the outset and then
having properly carried out the integration all the way provides for a
sufficient ground to assume that these terms have the self-cancellation
quality. However, thié point cannot be easily substantiated as direct
proof is not possible. It will be necessary to perform the numerical
integration on ®p12b and ¢ E12b and then to compare with the quantity of
the first term. Next, observe that ¢ D2K3 and ¢ Eok3 are purely
imaginary in contrast with the parallel terms in o which are real and as
mentioned can be related to resonance waves. Here, they simply do not
contribute probably due to the influence of curvature effects. Lastly, it
will Jjust be remarked that ¢ 026 and ¢ E2g are again referred to as
instability integrals and together with their counterparts in ¢ F will be

treated in the next section.
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V. THE INSTABILITY ANALYSIS

This chapter is devoted to the examination of those terms identified

as instability integrals in the last section. First, restate them:

® p26 =.[ﬁ g (E-H) K oKF g o
.. M 2

6 K+
w Iy Tl
12 =[§ 1£(£I-\M)L_ KA K 4 gk
T3Tohy

¢026 is similar to ¢ A%6 except in the absence of i and the function F
being replaced by G. Taking away i and replacing L. and F by L, and G
respectively in ¢A26 transforms it to the expression for ¢ £26° What
these integrals have in common is the fact that they all diverge. It can
and will in fact be shown that this occurs only in a limited region in
space and time as expected. Recall that C6 is a small circle of vanishing
radius about the moving pole of 1/(K+ A 2/ Iy Fz Al). Clearly, C6 is a
function of K and by continuously varying K, the movement of the pole will
follow a certain path C. This path C is merely an approximation to the
actual path CS which is traced from the original eigenequation SJ defined
in Eq. 1I-24. In fact, Cs may not be the only path of SJ. However, any
other possible paths of SJ will not be be considered as they play no role
in the stability analysis, which is the real concern here. That any path
other than CS can be disregarded has been shown by Morgan(ze) and Munt(27).
The most central issue here is, how well does C approximate CS? Getting

the answer to this question is not a trivial matter as CS remains an

(10




unknown because of its complexity which was the reason for making approxi-
mations in the first p]ace7 So the alternative is to obtain not the exact
but a fairly accurate picture by taking more terms in the asymptotic
expansions. But before going on with that idea, examine first the curve C
which can be constructed rather simply. Fig. V-1 shows a number of curves
for various Mach numbers. Observe that in the limit of K tending to
infinity, every curve independent of the Mach number moves toward the
corresponding point of 1 + Pl FZ = 0. This comes as no surprise since K
equals infinite is the short wavelength 1imit where the plane voftex sheet
analysis is valid and the zeros of 1 + T 1 r 2 give rise to instability
waves in that analysis. In the other.extreme of K tending to 0, observe
the curve moves toward and overshoots M slightly for the case of M = 0.5.
This path is surely acceptable since the original path of integration C_
can be placed above the curve in accordance with its requirement. But the
figures show that for all the other Mach numbers, their corresponding
curves C seem to move out toward infinity. If this was true, then C, would
have been crossed in violation of the causality condition. However;
considering the present problem to be well set up, there is no reason to
believe that such incompatibility can take place and the paths are highly
suspicious of being far from representing the true paths Cs. The fact that
C appears to fail in describing CS for small K is not entirely unexpected
since the asymptotic expansions for large K were carried only to the second
term. Now, one more term will be appended as suggested beforehand. Thus,

the expansions for Hankel functions are:
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with their arguments in between -7 and 2 m . The expressions for Bessel

functions are:

R R e R R T R P

1282 128z
. . 37 . 3n
1 2 i3 15 i(z- =) i3 15 -i(z- =)
J.(z) = =—y— 1|1 + + e 4 /+(1- =+ e 4
1 2 mz [[ 8z 12822 ] [ 8z 12822]

where these expansions are valid in the region - 7 to = . The expan-
sions for the region of 0 to 2w deviate from the above in the manner
consistent with the differences between Eqs. III-2 of the two-term expan-

sions. Then, in reference to Eqs. I1I-4 & 5, the following definitions are

derived.
1 1 1 1 9 9
Dy =1+ g - ) + - )
1 8k F2 rs rl r 64k2 Plrzrsr 2P12r2 Zrlzrsz
1 1 3 i 3 15 9
D = - i+ ( + ) + - + )
2 Bkro " Ty Ty eakée @ T TyTp p 2 o2
(o] 1 2
1 3 1 : 3 9 15
Dy =i+ ( + - + - )
3 Bkr ‘' T T 22 7 2
0 2 1 6ak°r rr, o 2r,
. 1 1 1 i 1 9 9
By =it g (et ) - ( : )
1 8k rore  Iyr 6ak? Tafe"s" 22, 22
1" Fa'%s

69




1 3 1 3
E 1 - ( - ) + ( + - )
2 Bkrg " Ty Tyl U eaktr 2 Ty p 2 pp 2
0 1 2
i 3 ] ] 3 9 15
£, = leg— (2.l T )
3 Bkro T Ty 64k2r02 Ty 2ri? 2r22

Following some algebraic manipulations, 0y and 0y in Eq. III-8 now become

= - 3 1
oy i (r1+r2) (1 + rlrz) + 8kror1r2 (r1 + rz) (r1 - rz) (1 - 3r1r2)
i3 [~ 2
{r.+T,)(r, -T,)°"(3-5T,,)

Q
]
1

i
g = - (Fyp=Ty) (1 -Tyry) + EEF;T;T;"'(rz - Ty) (r) +To)(1 + 30 1)

3
128(kr0P1T

2
2)2 (r1 + rz) (3+5 rlré) (rl- rz)

Without getting into the mathematical details, it can simply be stated that
the above will transform the expression for the moving pole in the denom-

inators of Eqs. III-15 & 16 to the form
2 A,

A
b+ g+ —3

K
T.T,A
1271 (I‘lr2

2
)2,

where A1 and A2 are defined as before in Eq. III-13a and 13b, and

_ 3 2
Ay = - —gg— (rp +T,) (Ty - Tp)" (3 - 5ryTy)

Obviously, the quadratic equation will allow for two branch of curves

traced by its zero as a function of K. In order to select the appropriate

branch, first rewrite the above for its zero as
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: 2 =0 (V-
16r1r2 (1+ rlréf‘ (1 -3 rlrz)

Then, it is at once clear that the plus branch is to be taken since near the

zeros of (1+ rl rz), this expression reduces to

- 1(1‘1 - rz)(1 - 3r1r2) 0

8r1r2 (1+ r,r

2)

which is dealt with when two-term expansions are used. Now, a new set of
curves C are obtained numerically and sketched in Fig. V-2 based on the
positive branch of Eq. V-1 and the same curves in Fig. V-1 have been
superposed for the sake of comparison. For M = 0.5, the two curves are
very nearly the same and approach the point g = M = 0.5 overshooting in
the former and undershooting presently. For higher Mach numbers, the
two curves are decidedly different except near the K = = 71imit where
falling back to the points of the zeros of 1+ 1‘11‘2 is expected. In the
case of M = 1.5, the curve appears to head toward the point & =M but then
undershoots it drastically. For both M = 2.5 and 3.5, the curves again
visibly diverge but not before the move towards their respective point of
€ = M has become more than evident. Once more, the reason for diverging
in the direction of infinity is inescapably due to the smallness of K on
that portion of the curves. It might be concluded then that the three-term
expansion still falls short of yielding a representative picture of CS,
thus requiring additional terms. On the other hand, there is no question
about the notable improvement of the three-term curves over the two-term
ones in showing more sense of direction. Unmistakably visible is the fact

that all curves now seem to move toward the point & = M, leading to the
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speculation that CS is a smooth curve whose end points are at the zeros of
1+ T, FZ in the large K limit and at & = M in the small K limit.
Therefore, it would suffice to prove that the curve can indeed be traced to
E =M in the limit of K + 0. This approach is preferred over manipu-
lating on extra terms in the asymptotic expansions which can be rather
cumbersome. For small K, it is necessary to exapnd Sh in ascending series

and here to the second terms as follows:

2
Jp (z2) =1~ z + ..
3
I (@) =5 - —fg+
2
;&}%z) = (1 --%E-)+ i —%—-[]n (-3) - 4+ [ In (5 +v- 1]]-+....

3
o (3 -go 123 -4 1)

where ¥y is the Euler's constant., Substituting these into the expression
for Sa in Eq. II-24 and collecting only the leading terms deliver the

following equation for the zeros.

5 (K rl)2 K T

In ( 5

ry (£-M)2 + 3 =0 (V-2)

Clearly, when K = 0 the above reduces to a zero at & = M and on first
inspection it appears to be a zero of order two. But noting (£ - M) is as

well a part of the numerator in Eq. II-23 makes £ = M just a simple pole,
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thus in consistency with the poles for all values of K. This completes
the proof on where CS begins its path at the K = 0 end. Now Eq. V-2 can be
used to show, as illustrated in-Fig. V-3, how it approximates Cs for small
K. Note the curves from Figs. V-1 & 2 have been superposed so that the
combination of all three sets of curves can help to shed light on the
general nature of CS. Here, those curves resulting from two-term expan-
sions are labeled Cl, 02 for three-term, and C3 for small K. For M = 0.5,
C3 is sandwiched in between Cl and C2 in the most conspicuous manner that
CS can be safely assumed to lie within that narrow strip, beginning at £ =
M and ending at £ = £, the corresponding zero of 1+ ry T, which is
displayed in Eq. IV-2. For M = 1.5, there is no doubt in seeing C3 to
approach the other end point at £ = E 1» SO @ dashed line has been
extended from C3 to complete a curve most likely to portray CS. For either
M=2.5and 3.5, C3 seems to head a little off course but still appears to
proceed toward the other end, so a dashed line is drawn in each case to

simulate the likely profile of CS.

It is established that the path C traced by the two-term expansions does
not come close to approximating CS, espacially in the small K limit. The
situation is remedied by taking one extra term and at the same time
approaching from the small K end by using ascending series expansions. The
results have been shown to furnish sufficient grounds for drawing up a
conclusive picture of Cs's profile. As remarked in the beginning of this
section, CS has not been found exactly due to the complex nature of Sh, but
the approximate picture obtained is all that is necessary in showing the

moving pole to be bounded. So in working with ¢ A%6 etc., the pole will be
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taken to move along in that fashion. With this knowledge, the instability
waves can be examined for the spatial extent in which they propagate. The
moving pole illustrates specifically the presence of a singularity for
every value of K, where the one corresponding to K = « is precisely the
singularity found in the line source problem that gives rise to instability
waves. The integrals under consideration, i.e. ¢A26 etc., can therefore
be regarded as made up of infinitely many integrals, with each giveh rise
to instability waves at a distinct K. The idea then is to get a picture of
how the region of propagation varies with K. First, express the integrals

in a representative form.

. ® (g) .
1 f 55 M e WKF4r gk (v-3)
4n ¢ c. £-¢
6 6

-00

with Eg continuously varying for all K such that for the integral corre-
sponding to K - « , Eg = E1 Or & 4. E o and ¢ g are no longer included
since £ o is always in the Tower half while g g moves into the lower half
as soon as K # « and it was shown in the last section that any poles below
the real axis can be enclosed within CF+ to nullify their contributions.
Inversion of the above can be shown to lead to QI( 56) . 5[F(g 6)] .
Ql(g 6) represents the magnitude which is generally expected to be large.
For M< 2V2, it is supplemented by Hl’ (see Eq. IV-5a) the Heaviside
factor containing the information on when §&; is exterior of Ces which is
directly related to space and time. Observe the delta function has a
complex argument. Using the notation of Eg. IV-5, that is for F( 56) =a

+ i8 it can be shown that
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savig) < £ LA 5 (a)
X -

Thus, the instability waves propagate along o= 0 in the region B < O.

The spatial extent can be determined by eliminating time between the two to

find it boundary. Recall first

F=12+T, (R-1) + Ty (1 - RS) - 1

For K o . E = 51 = M/2 + in and

a =7+ %— [ NMZ + 1 -1] (R + Rg
B =n[% ( W2 +1 +1) (R-RS)-T]

- 2) N TZM

from which the boundary line for the instability waves becomes
A HMZ +1 +1] (R-RY) - —%—[\/MZH -1] (ReRg-2) (v-4)

Since dZ/dR =1, it is clear that the line makes a 45° angle with the axial
direction. For K # « , the boundary equation becomes, with £ 6(K) =u+

iv,

2= [rl(R S 1)+ r2(1-Rs)] - Re[I‘l(R—l) + T,(1 - RS)] ws)
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and

dz __u v
R = v InTh - Rel

This means the boundary no longer makes a 45° angle but still is a straight
line. The expressions of i for K # =« are not known explicitly and must
be resorted to approximations provided by Fig. V-3. By tracing fromK = =
along the possible profiles for CS, the values of £ can be roughly
estimated to be used in Eq. V-5. For illustrative purpose, the boundary
lines thus obtained are shown in Fig. V-4a for the case M = 0.5 since CS is
believed to be most accurately predicted there. The boundary 1ines for the
instability waves from both ¢F coming first and ¢ G second are included.
It is clear from these figures that the boundary line for K = » is always
the outermost while the other lines, for K moving away from « , all fall
to the right with lesser angles. The instability waves propagate in these
regions where B(K) < 0 as singular wave forms defined by a(K) = 0,
which are straight lines more or less perpendicular to the boundary lines
as shown. At this point, it might be recalled that as K becomes smaller,
the corresponding point on CS approaches the point & = M. What this
means is that because & =M is always enclosed by CFO’ somewhere along the
way as K becomes small, say at some critical valueK = KC’ € 6 will cease to
be outside of Cp, which is equivalent to being enclosed by Cp, as shown in
the last section, and hence for K< KC’ instability waves may no longer
appear. This relationship is illustrated by Fig. V-5. It must be
recognized that the present analysis is only an approximation, and just as

the explicit expression for €6 as a function of K remains undetermined,
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Figure V-5  The moving instability pole and its connection to the

region of propagation

the value of Kc and consequently that of 50 are approximation, and just as
the explicit expression for £ g 35 @ function of K remains undetermined,
the value of KC and consequently that of ¢ ¢ are unknown quantities.
Therefore, the precise location of the boundary line for K = KC cannot be
established. But quantitatively, KC is of the order of 1 and sinceK = kRo,
Kc is of the order of the jet radius. The possibility remains for that
line to come in contact with the vortex layer. Then the instability waves
may be characterized as having their presence in a limited region which is
~a function of wavelengths such that for short waves, the boundary makes a
45° angle with the vortex layer and as wavelengths become large, the:
boundary moves to the right and draws near the discontinuous surface until
finally, at some critical wavelengths, the boundary comes to fall on the
vortex layer to end the instability propagation for any longer waves. This
characterization is merely an assumption and it is actually more

defensible to simply state that the instability waves have wavelengths on
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the shorter end. Even though the profile of Cg for M =1.5 is less
perceptible from Fig. V-3, an attempt has ‘been made at obtaining the
corresponding boundary lines and these are shown in Fig. V-4b. In contrast
to the lines for M = 0.5, these are tighter together and the angular
variation is nearly absent. Similar pictures are expected for higher Mach
numbers so the previous contention that the boundary line for K = KC may

fall on the vortex layer is less probable.

The preceding discussion has centered on the case of M < 2 2.
Basically, the curvature effects are responsible for the predicted func-
tional dependence of the spatial extent of instability waves on the wave-
lengths. Next, consider what happens for M >2 2. 1In the plane vortex
sheet model, the instability waves will cease to exist as the complex poles
become real to characterize the neutral stability waves. However, an
examination of Fig. V-3, for the case of M = 3.5, reveals the vortex layer
model to yield a different picture. The profile of CS clearly shows that
the pole is truly on the real axis only when K = =« and as K is varied from
large to small, it moves into the complex domain. Since in reality, K =«
corresponding to zero wavelength is just a limit, the overall picture calls
for the continued presence of instability waves at the higher Mach numbers.
The representative Eq. V-3 can be used once again to ascertain the spatial
extent. Here, however, when K = = | the inverse is accompanied by H4
defined in Eq. IV-7. Eliminating time betwveen this expression and F( 56) =
0, which is now real, yields the boundary line equation as follows.

Mp-1
z = fR-l . 23 (1-R)

€52 -1
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where Eq and Eg are given in Eq. IV-2. dZ/dR is less than unity so that
the angle which this line makes with the horizontal is less than 45°, When
K #e , 56 becomes complex and the boundary lines can be determined
identical to the M< 2V2 case. These lines as expressed by Eq. V-5 are
again expected to fall to the right and closer to the vortex layer until at
some critical wavelength, the pole moves inside of CFO to end the insta-

bility wave presence.

In summary, it has been shown the instability integrals will give rise
to instability waves for all Mach numbers but that they are wavelength
dependent and cease to exist for wavelengths large compared to the jet
radius. Furthermore, the region of propagation is similarly affected in

that it becomes less extensive for longer wavelengths.
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VI. RESULTS AND DISCUSSIONS

To validate and interpret the results obtained in the previous
chapters, a computer program based on the analytical solution was
developed and numerous cases have been investigated. These numerical

results are now presented and discussed in this chapter.

First, the organization and method chosen for analysis are summa-
rized. In Chapter II, the problem is formulated and its solution in the
Fourier transformed space is obtained in the form of a multiple integral
whose integrand involves complicated Bessel and Hankel functions. Chapter
II1 contains the derivation of an approximate version of the integral
solution for the transmitted field; this is based on the assumption that
the jet and source radii are sufficiently large so that the two leading
terms from the appropriate asymptotic (large argument) series expansions
of Bessel and Hankel functions can be used. In approximating with these
expansion terms, contributions arising from internal reflections are
isolated and neglected. Singularities of the integrand are examined in
Chapter IV prior to the inverse analysis which is carried out in the spirit

of Cagniard's technique of contour deformation.

The results are now put together and presented below.

©
!

o + &

F

6
_ 1
37— Re J O + Gpoys * dpoys + Opyp t Sgip + pop - Opop
4% RSR

1
—g———— Re { ¢ + ¢ + ¢ + ¢ + ¢
4H3VE;§' [ SG D12 E12 D26 E26]

+
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where ¢ F and ¢ g represent the fields from upper and lower half of the
source respectively. Each is subdivided 1into component parts as
specularly transmitted, instability, and neutral stability waves. The
instability waves (¢ A2 ® B26 and ¢ E26) requiring a separate analysis
are discussed in detail in Chapter IV. And while both halves of the source
may give rise to instability, the neutral stability waves are caused only
by the upper half. They are, like the instability waves, confined to a

limited wedge-1like region whose boundary is described by the elimination
M(R - R¢)
M- 4

modify the specularly transmitted field in the region of its propagation

of time between F( & 3) =0 and T~ = 0. A field that would
appears to follow these neutral stability waves, as represented by ® poK3

and ® B2K3 defined in Eqs. 1V-28.

The remaining terms in Eq. VI-1 form the specularly transmitted
field. If the solution were approximated by just the one-term asymptotic
expansion of Bessel functions, ¢ G would have been absent because its
prediction is a consequence of accounting for the finite curvature which is
lacking in the simpler approximation. Since upper and lower halves of the
ring source have their curvatures opposite in sense, it is not surprising
to find ¢SF and QSG somewhat different in characteristics as pointed out
previously. In fact, every term in ¢ F is different from the corresponding
one in ¢G’ although the mathematical differences would not be meaningful
unless they can be interpreted and explained from the physical point of
view. 4)SF and ¢SG given in Eqs. IV-19 & 37 are fundamentally unequal in

the order of arrival at a given field point. Arising from the upper half

closer to the point, ¢ SF clearly arrives ahead of ¢ SG* This means that
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®or should have the identity of a wavefront while ®go which comes in
succession, should not because the total field ¢ cannot possess but a
single wavefront. As mentioned formerly, the only way to substantiate the

above is by working out numerical evaluations and some examples will be

presented a little later.

Next, attention will be focused on the last remaining terms of g Al2?
®812> ¢ p12 and %12 defined in Egqs. IV-32 to 34b and Egqs. IV-27d and
37e. These integrals cannot be simplified analytically any further as
shown in Section IV and again must resort to numerical evaluations. A

significant point to look for is the way in which they will modify ¢ d

sF "
s to form the total specularly transmitted field. There is no
uncertainty in F to satisfy the causality condition as both gF and da12
and ¢ g2 are zero before the time of arrival. But the same is not obvious
for ‘bG’ the field coming continuously after the wavefront. It is expected
that ¢ G and ®p12 & & F12 Sum to a zero value for the sa;isfaction of its

causality since the two parts are non-zero separately. The numerical

evaluations, which will be discussed now, indeed show this to be the case.

The calculations of ¢ SF and ¢ gg Are fairly straight forward because
of their analytic simplicity. For a given set of field and time data, it
is just a matter of finding the zeros of F and G for substitution into the
expressions. The minimum time of travel or the time of expected wavefront
arrival for ¢ 1is manifest in O This time is directly related to F in
that it corresponds to the time when Re(F) first intersects Im(F) at one
point of CFO on the real axis. One can find this time by trial and error

numerically but to do so is both costly and unnecessary. For the

85



specularly transmitted field is something that is theoretically predict-
able from the approach of geometric acoustics. Surely the complex nature
of the present problem is sufficient to discourage any such attempt but at
least one information can be readily extracted without much difficulty.
And that is precisely the minimum travel time. First, the minimum time for

the signal to reach the surface of the jet is given by

Tgp = 1 - Rg

In this time, the source is imaged downstream to the point

Z =

1F Typ M

- And the minimum time to reach the field point (Z,R) strictly evaluated by

geometric acoustics is then given by

For Z < ZlF
ToF = TyF * sz - le)2 + (R -1)2 M>1 (Vi-2a)
<ty + VEZ 4 (R - 1) M <l (VI-2b)
where
E_ z - My ¢ ( TZZF - 'rzu_-)35
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N < .
and + is for 7> Zy. For Z > 7, T4 s the same as Eq. VI-2b for
both M less and greater than 1. In the above, Tor>T §F and should yield a

minimum in ToF* Therefore, dTOF /dt =0 or

2F

‘/ 2 2 2 2

2+ k-1 (- &) v (2 - &S ]
[ T 2F 1F - ET M (TZF - TIF) by TZF)]" 0
ToF is the minimum time of travel for ¢ F as well as ¢ so that a wavefront
is expected then. On the other hand, T06 is just the minimum travel time
for ¢, and it is different from ToF only in the expression for TG which
is now (1+Rs) instead of (1-RS). In the examples to follow, T OF and T06

are calculated by the above expressions.

Numerical integrations of °A12 ect. are more difficult to perform.
Considering the semi-infinite interval of integration, an initial attempt
by Laguerre intergration proved unsuccessful because the integrands do not
decay in a simple exponential fashion. More often than not, the path of
integration would pass relatively close to a singularity causing the
integrands to fluctuate. Therefore, the task is completed by Gaussian
integration instead at the cost of considerably dincreased computation
time. This involves subdividing the semi-infinite span into small inter-
vals and integrating with Gaussian weights from the starting point. Each
subinterval is integrated until the desired accuracy is attained. Then,
the same is performed onward until two intervals in sequence do not differ
in value greater than a specified amount. If the maximum number of
Gaussian points used do not lead to a satisfactory result for any sub-
interval, then it is subdivided even further repetitively until necessary.

Since the integrands decay smoothly and rapidly for large arguments, that
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is, when the path leaves the region of singularities, convergence to three
place accuracy usually occurs well before the argument reaches the order of
50000. Convergence is slower when t1is large because the integrated values
are much reduced. The results presented will be divided into two regions.
They are designated as the quiet and the noisy regions depending on the
absence or the presence of instability waves. In the quiet region, inte-
gration always converges. But in the noisy region, convergence is
difficult to obtain once entering the actual regions where instability
waves propagate. This is because the branch cut integration now passes
through the moving pole contour which influences the integrand to
oscillate with large amplitudes. In reality, even if convergence is
achieved, the transmited field thus calculated still does not include the
contribution arising from instability waves. In order to predict the
amplitudes for the instability waves, non-linear effects such as due to
viscosity must be retained in the conservation equations. The present
analysis based on the linear theory can only give a qualitative picture of
where and when instability waves propagate and how large a region in space
and time they occupy. Thus in the results to be presented, the instability

regions will be indicated simply by blanks in that portion of the curves.

From the solution for the velocity potential, two field variables of
more interest can be derived, namely the acoustic pressure and the vortex
layer displacement. In the 1linearlized Euler equation, pressure is
related to velocity potential by its time derivative which can be evaluated
in analytic simplicity as shown in Appendix B. The derivation of vortex

layer displacement found in Appendix C is more involved in that it requires
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the same inverse analysis applied to velocity potential. Numerical calcu-
lations for all three field variables are performed by the computer program

listed in Appendix D.

First, analyze what the solution predicts in the quiet region. Figs.
VI-1 through 6 are plots of velocity potential ¢ vs time 1 for various
field points, Mach numbers, and source radii. There are three curves in
each plot. The dotted ones are ¢ P the dashed ones d’G’ and the solid
ones ¢ which is the sum of the other two. Several general features are
immediately evident from these figures, some of which are rather signifi-
cant. First of all, ¢F admits a wavefront at the time of its arrival as
expected. This is represented by an acute rise from zero at that instant
and then followed by a sharp fall before a smooth decay takes place. Next,
observe the behavior of ¢ at its arrival which comes slightly behind op-
Numerically, the sum of QSG and ¢012 & ®r12 is shown to add up to zero
within the desired accuracy. Thus, the causality condition is satisfied in
the fact thatdb rises from zero. The total specularly transmitted field
hence possesses just a single wavefront. These figures demonstrate the
fundamental differences between ¢ and ®ee To describe the sound field
for the same data points, now look at the pressure vs time plots, which are
presented in Figs. VI-7 thrcugh 12. The first five of these are for small
ring redius, RS = 0.1, so that the source is nearly centered on the jet
axis. Fig. VI-7 is for a point downstream of the source fairly close to
the jet. There isn't much difference except in the amplitude between it
and Fig. VI-8 which is at the same downstream point but farther away from

the jet. The reduced amplitudes and the smoother decays mean lower sound
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pressure. If now the point is moved further downstream while keeping the
same radial distance as in Fig. VI-9, a significant change in the curves
are clearly observed for supersonic cases. Here the amplitudes are much
increased and exceed the corresponding cases in Figs. VI-7 & 8 which are
both for points closer to the jet. It is clear from this that more sound is
refracted in the downstream direction. What this means is that with
increasing jet speed, more sound is refracted downstream. This is even
more evident from Fig. VI-11 which is for a point straight out from the
jet, or more upstream than the other cases. While its distance from the
jet is no greater than the point in Fig. VI-7, the amplitudes are much
reduced indicating that very 1little sound 1is transmitted upstream,
especially in the supersonic cases. Between Figs. VI-8 & 9, one can detect
the effect, but otherwise the amplitudes are pretty much dependent on
distance between the jet and the field point. The cases discussed thus far
are more or less representative of the near field characteristics. If the
point in Fig. VI-9 is moved outwards in the radial direction, but fixed
axially as in Fig. VI-10, then it is out in the far field. A comparison
reveals some interesting features. In addition to the amplitude loss due
to radial decay, there is the apparent stretching in the time decay history
so that it takes longer period for the quieter sound to fade away. The far
field radiation also seems to affect the transmission characteristics for
supersonic jets. The curve for M = 1.5 in this case is no longer distin-
guishable from that for the subsonic speed, and for M = 2.5, the curve
appears to start losing its supersonic identity. Finally, the effect of
source radius can somewhat be examined in Fig. VI-12 which is for the same

field point as in Fig. VI-7. As the radius increases, the transmitted
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field takes on a different look from previous cases. The relative lower
amplitudes reflect the influence of the square root quantity on source
radius in the denominator of the solution. The character of the pressure
disturbance is also affected due to the fact that as source radius becomes

larger, more time separates the signals from various parts of the source.

Next, examine the disturbed fields in the noisy region closer to the
jet axis. In this region, vortex layer displacements as well as velocity
potential and pressure can be examined. As mentioned earlier, instability
regions are the blanked portion of the perturbation curves. But as the
exact time of passage in the K = « 1limit can be calculated, that time is
indicated by a short vertical line in each case. In Fig. VI-13, the field
point is relative downstream making a 30° angle with the jet. Velocity
potential is plotted on the top and pressure on the bottom for two Mach
numbers. As expected, more sound is refracted into this region. While the
disturbances decay rather smoothly in the quiet region, here they actually
become increasingly unstable until the passage of instability waves is
observed. After its passage, however, the disturbances die out quickly so
that the noise covers just a short time period. This is especially true in
the supersonic case where the impulsive nature of the source is very
evident. Fig. VI-14 is a plot for vortex layer displacement vs time at two
field points. On the upper left corner, the point is directly in line with
the source relative upstream. For subsonic flows, represented by M = 0.5,
the displacement is small and smoothly decays. For supersonic flows, as
disturbances cannot propagate upstream, the vortex layer remains undis-

placed for all times. The other three curves are for a point somewhat
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downstream. In all cases, the vortex layer becomes excessively displaced
and finally ends up with instabilities. But after its passage, vortex
layer returns to quiet very soon. For M = 2.5, besides the instability
disturbances, there is also the resonance disturbance which gives rise to
the resonance modified field. This is indicated by the increased displace-
ment following the passage of instability waves. This field which follows
the resonance wave is shown to die out quickly. It may be concluded that
the solution not only predicts a region of instability but also a region of
resonance. Finally, Fig. VI-15 shows the time lapse downstream direction.
It can be seen that for small time a disturbance begins to develop. This
includes a wavefront followed by the instability and a smooth decay. Then
as time increases, the disturbances move downstream with increasing ampli-
tudes behind the wavefront. This large displacement is always quieted very
quickly after the passage of instability disturbances, which is in agree-

ment with the previous two figures.

In conclusion, an approximate solution to the problem of transmission
of sound across a cylindrical vortex layer has been obtained. The results
are considerably different from the plane vortex sheet case because of the
added role played by the curvature of the jet. In comparison with the
plane case, the specularly transmitted waves are more complex and requires
some numerical integration. Resonance waves are identically predicted for
M > 2, but there is also a wave field whose modified effect appears to
extend the region of resonance just as the instability waves cover a region
in space and time. The instability waves are predicted to exist for all

Mach numbers but vanish for wavelengths large compared to the jet radius.
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And the region of propagation is similarly wavelength dependent. The
prediction that large wavelengths are unimportant in the transmitted field

is in agreement with some experimental observations.
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Legend to Figures VI-1 to 15

Non-dimensional quantities are defined as follows:

2
L S T 5
RS = s , 1= at ° M= Y °
o o > a
b . s zp ., n- ”;Cf
pa~Q
where (L = Length, T = Time, M = Mass)
o - velocity potential of the transmitted field (L2T'1)
ro - jet radius (L)
2 - speed of sound (LT'l)
Q - source strength (L3)
z - distance along the jet (L)
r - radial distance (L)
re - ring source radius (L)
t - time (T)
u - jet speed (LT'l)
p - acoustic pressure (ML-IT_Z)
p -  fluid density (ML)
n - vortex layer displacement (L)
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APPENDIX A.  SINGULARITIES OF THE INTEGRAND

a. The zeros of A 1= ( ryt rz)(l t N r2) have been determined in the
plane vortex sheet problems as is evident in Eq. III-9, but they will be

verified here for the sake of completeness. Recall

L L
el -n% L elem?og]
Now let p, = p, e ie1 = a, + ib
1 1 1 1
- i6, _ . (A-1)
I, Pre 72 =a, % 1b2

where bl and b2 have the same sign. Then, Iy+r,= 0 requires a; +a, = 0
and b1 + b2 = 0. The only possibility for satisfaction of the latter is if
bl = b2 = 0. As this translates to plsinsl = = pqsinp,, it requires
either el = 0 and 62 = 7 or vice versa. The condition a; = -a, means

p 1cosB1 = - p2cose 2 and it is clear from Fig. IV-1 that el = 0

and 6 o = while P =Py M/2 only when M > 2. Thus, T 1t F2 has a

single real zero at £ = §3 = M/2 for M> 2.

\ Ep=up *ivp o
P =Py P P= By By
o th ol 8y 0y
1= Y7
2 2

L LLLL, LL LLLLad Y u
VI /APl A VII7777777 778 o
- Mo M- M+1
u,=—
R 2
Figure IV-1

110




1+ I, = 0 requires 3,3, - blb2 +1=0 and a1b2 + a2b1 = 0, from which
cos(p; +6,) =- ——— and sin(e; + 8,) = 0 are the consequences, leading
to6, +6, =7 and PP, = 1. From Fig. IV-1, it is obvious that By *6p =

only if Up» the real part of the zero ER = WR + iVR, equals M/2. Then,

pl = p2 =1 and VRo the imaginary part of Eg» c€an be determined.

_ - 2 M 12 2 M 2 _
pl"pll plz"{VR +("2"1) ﬁR +(2+1) 1

Square both sides and solve for v.
io= - 0fe1) s Yw e

The spurious negative root is discarded. Then,

2
\[ 2 M L1k
+ - _+12}2 f M 2\?2
[ M 1 ( Z ) ) or < \/

2 L
[+ - W] for M > 2\/2

i
1+

]
i+

Thus, 1 + P1F2 have two zeros, which for M< 2V2 are complex conjugates and
for M>2V2 are real. At M = 2V2, vz = 0 and the two zeros collapse into a
single value of M/2 which coincides with the zero ofI‘1 +T o,

b. The zeros of A, = i(r12 - réz ) (1 - 3r1P2)/8. The first part of
2 2 . . . .

rl -T2 = (Ti + Ié) - FZ) is examined in a). By making use of Eq. IV-1
again, Tl -T o = 0 requires olcose1 = 02c0562 and plsinel =rnzsir1% and the
only possibility of this is if ) =68, =m /2 and Py =Py when M< 2. The
corresponding zero is then at M/2 as before, which is a point on the

overlapped portion of the branch cuts.
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Any zero of 1 - 31‘11‘2 must satisfy the conditions 1 + 3(b1b2 - alaz) =0
and a1b2 = -azbl, which translates to cos Blsin€§ = -sinelcose2 or
sin(el + 62) = 0. Since b1 and b2 have the same sign as required by the way
branch cuts are made, Y and a, similarly must have the same sign as well.
This leads tos 1t0, =" and PPy = - 1/3, which is not possible under any
circumstances and therefore the conclusion is that 1 - 3T1T2 does not have

any zeros.

c. The zeros of L and L_ are similar to the zeros of Iy +T, andT - T2
but their presence and positions will depend on RS and R. As R tends to
become much larger than RS, the zero of L, will move very closely to 0 on

the branch cut of rl’ while that of L_ is likely to disappear.

d. The zeros that have been identifed thus far all fall in the ¢£-plane
and are functions of only the Mach number. The zeros of K + A 2/(P1F2 Al)
on the other hand are identifiable in both the &- and K-planes in addition
to being Mach number dependent. Any zero in either plane is a function of
the other variable and the resulting movement makes it rather difficult to
handle. In the K-plane it is straightforward to recognize the zero as
function of 51 or K = Kg = -.Az/(l‘ll‘2 Al). To find the corresponding
zero as function of K in the E&-plane is more elaborate and will require
search by numerical means except for the limiting cases of K+ 0 and
K » =, However, as these are directly linked with instability, they will

be treated in more details later.
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The zeros of F and G have different physical interpretations so their
treatment is given in the main text. In summary, all the zeros of Eqs.
ITI-15 & 16 have been identified or pointed out. Those which are poles to
the integrand will be shown to contribute to instability and resonance

associated with the vortex layer model.
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APPENDIX B. DERIVATION OF PRESSURE

From the linearlized momentum equation, the acoustic pressure p is

related to the velocity potential by

R as (8-1)

In terms of non-dimensional quantities, this relationship reads,

3
r °p

P = —-———02 = . gi (8-2)
pa-Q

where ¢ and T are defined in Section III.

Here, Eq. A-2 will be calculated for the specularly transmitted wave
field. As ¢ = Q)F + ¢G’ the total pressure field will also be the sum of
PF and PG' This is expected to introduce some errors at the vicinity of
arrival of PG since the derivative of ¢ 6 is discontinuous there. Only
the derivation for P F will be demonstrated with the understanding that

similar procedure applies to PG‘ First write,

0%
Pp =~ BTF (B-3)
13 Q- ()
1 o) ) . °F o |d +¢
= ———=——}Re —| 2mi Al2b "B12b
4n3vﬁg§ [ 9T BE, [ gg_ ] T [ ] ]

£=to

Now, £0 is such that, from Eq. III-16

F(g) =2+ Ty(g) (R=1) +Tp(£) (1-R) -£x =0
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and so

1
B sl AR XCRNCEE IR ACRRCEEN]

Thus, £, (R-1) (£ -M)(1-R¢)
£, [ r? €y 7 r; €) ]-[Z +Ty(g )(R-1) + rz(eo)(l-Rsﬂ

9T _
I3 2
° £o (B-4)
From Eq. IV-19
EO(EO -M)

QF (Eo) = ——KI—(g—y——

o

where

AI(EO) = (rl + I‘Z) (1+ rlrz)

=8,
Thus,
A (g Y(2g -M) - £ (g -M) A% (g )
3 ' 1'”0 0 0 '°0 1'70
—Q (5 ) = Q (5 ) =
%, F'70 F'=o 2 (B-5)
n’ (g,
with ( )
. M &
My(e) = 2[e To(e) + (E-m (e )] + £ (g, rl(go) + TZ?EZTJ
(B-5a)
Next,
dF o _ EO(R-I) (EO-M)(I - Rs)
Tde - = Flgg) = ry(g,) ¥ T, (g,) -t (8-6)

115



2 2
Then, £ “(R-1) (£,-M)"(1-R¢)
. Pl(ﬁo)(R"l) - “‘(——T‘—ro £ TZ(EO) - Or )
F(g,) = — * e
0 rlz(go) FZZ(EO) 350

Egqs. A-5 through 6a apply to the first term

P %) J. P G () - Geley) Pt
ST Fre,) 2
e}

The second term of Eq. A-3 is made up of the sum of the time derivative of
the two integrals ¢A12b and ¢812b' As the two are identical in nature,

it suffices to show the derivation of just the first part. From Eq. IV-

32a,
Spyob = " i2 ?/‘ SF (u0 + iv) dv
v
o
where
Sp (ug + 1v) = S-(€) = ——’g(f\;”) ke e Kef

and F is expressed in Eq. III-16. By Leibnitz's rule of differentiation,

oo
3 3 Splu_ + iv) v
AL2b _ . f A : 0
e i2n v, . du + i2m Sp(g)) —

(B-7)

with
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BSF

s = - ¢ K£ S (u0 + iv)
and

v, i 8,

3T 9T
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APPENDIX C.  DERIVATION OF VORTEX LAYER DISPLACEMENT

The vortex layer displacement is related to the velocity potential
through the kinematic boundary condition applied at the interface r = ros

%1 _ o
5r 3t

Expressed in the Fourier transformed space,

Ro= awl
w ar

By the use of Eq. II-19 for ¥,

o ¥y Gom 0K) 3y (v ) WY ()

1
n
]
-

3
8n ro SJ
Then,
. [ ettt -k g
C C
k w

and this inverse can be evaluated in the exact manner as for ¢ . Let

£ = w/ka, then
s . (1)
Q J“f 1I'1(5 M) Jo (krsr2) H1 (krorl) -ik(gat -z) de d
o3 , e & dK
mr S

0

n =

In the development, Eqs. III-4 & 5 become,

(1) _ 1 ik(r I'y-r T.): ik(r I'.4r T
Jo(krsl‘z)H1 (krorl) = D.e 01's 2)+ Ele ( 0l 's 2)]

1
nk-ﬁrorsrlrz
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where

i 1 3
1- 3 rf, ~ orT )

Ey

After some manipulations, the non-dimensional form becomes

s n
= = + :
1 Reff iry(e-) 12 de dK
3 + A
4m ﬁR o Yc 2
s Ayt Trx
1'2
o -T.(2-M) [1- L=—]e KB
+ 1 Re_[_[ 1 KT T, .
4n3VRS o c+ AZ dg dK
A, + ——
1 TIFZK
where now
Fe =2+ T, (1 +Rg) - &1
L= -1 (=1 +3r.)
+ 8 RS -T2

The above equation is then evaluated in the exact manner as described in

Sections IV and VI.
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APPENDIX D

06 36 96 06 38 36 36 0606 3636 36 36 36 96 36 D36 36 36 36 36 36 36 36 06 DF 36 06 36 36 36 3 36 6 3 36 36 M 06 06 oF 30 06 D6 36 30 36 34
HAIN PROGRAM

R - RADIAL DISTANCE
RH - HACH NUMBER

B - RING SOURCE RADIUS.

A - TIHE

X - DISTANCE IN THE DOWNSTREAH DIRECTION
1P - 1 BEFORE HAVE ARRIVAL. IHITIAL INPUT

- 2 AFTER HAVE ARRIVAL. OUTPUT FROM ROOT FOR COMPLEX ROOT
- 3 SAME AS 2 BUT FOR REAL ROOT

NI - HAXTIHUN NUHMBER OF INTEGRATION SUBTHTERVALS.
DI - ARRAY FOR ESTABLISHING SUSINTERVALS.
HL - HUMBER OF FUNCTION EVALUATIONS OF FUNCA OR B.
NG - NUMSER OF SUDINTERVALS NECESSARY TO ARRIVE AT
THE FIHAL VALUE.
HT - NUMBER OF TIME INPUTS
MAXIHUM OF 30. STOPS EXECUTION IF ©
NC - CASE HUMBEIR
R - 1 FOR VELOCITY POTENTIAL

- 2 FOR PRESSURE
- 3 FOR VORTEX LAYER DISPLACEHENT

FCR - 0 FOR PHIA, -1 FOR PHIB
FCI - -1 FOR PHIA, 0 FOR PHIB
TIME - SUBROUTINI FOR GEHERATING TIME IHPUTS

ROOT - SUBROUTINE FOR FINDING THE ZERO OF F OR G

SHOD - SUSROUTINE FOR CALCULATING MODIFIED FIELD IM THE
NEUTRAL INSTABILITY REGION, WHEN M > 2. FM ITS VALUE

SPEC - SUBROUTINE FOR CALCULATING THE SPECULARLY
TRANSHITTED FIELD, AND FA ITS VALUE

LAG -~ SUSPOUTIHE HHICH PERFORM5 GAUSS
IHTEGRATIONS ON FUNCA OR FUNCB, AND FCB ITS VALUE.

F - THE TOTAL FIELD, PHI.

OO0 000000000O00N000000000000000

IMPLICIT REAL*8(A-H,L,0-Z)
DIMENSION T(30),DI(50)
COMMOH /CHA/ RM,R,B,A,X /CMB/ USP,FCR,FCI /CHMC/ NW
EXTERHAL FUNCA,FUNCB
EPS=1.0D0

5 EPS=EPS5/2.0D0
TOL1=1.0DO+EPS
IF(TOL1.GT.1.0D0)GO TO 5
PI=4.0D0*DATAMN(1.000)
READ 10,HI,HH

10 FORNATI212)
READ 15,(0I{1),1=1,HI)

15 FORMAT(7D10.2)

20 READ 25,HC,MT,X,R,B,PH

25 FORMAT(2Y2,4D10.2)
IF(MNT.EQ.0)5T0P
HL=0
HG=0
RHH=RM¥0.5D0
DF=2.0D0<PI*DSQRT(BR)
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CALL TINE(T,EPS,NT)
FRINT 30,NC,RM,B,R,X
30 FORMAT('-','CASE *,12,', M= *,1pPDi12.5,', B= *,D12.5,", R= *,D12.5,
% X= "HDI2.5//5% *TIHE* » 11X, U" , 11X, V', 10X, *ABS* 08X, *SPEC* ,8X,
+'HODI' 12X, *INTG' » V11X, 'PHIA' ,8X, *PHIB" ,9X, 'FHI'/)
ISA=1
Isp=1
DO 85 I=1,NT
FCR=0,0D0
FCI=-1.0D0
A=T(I)
I5B=1SP
ISP=ISA
DO 70 J=1,2
CALL RODT(U,V,1ISP,FS)
usp=u
FCB=0.0D0
FA=0.000
Fi1=0.0D0
IF(B.LT.0.0D0)GO TO 45
F11=SHOD(RHH)
GO TO (69,45,55),1IsP
45 FA=SPEC(U,VI/PI
GO 70 (50,55,55),1ISP
50 FCB=LAG(FUNCA,NLyKG,U,NI,DI,ISP)/P1/8.0D0
G0 T0 60
§5 FCB=LAG(FUNCB,NL,NG,V,HI,DI,ISP)/PX/8.0D0
60 F=(FCB+FA+FM)/DF
B=-B
GO 70 (65,80),J
65 FT=F
FCR=-1,000
FCI=0.0D0
ISA=ISP
ISP=IS8
70 PRINT 75,A,U,V,FS,FA,FM,HL,FCB,NG,F
75 FORMAY(' *,1PD12.5,5(2X,D10.3),2X,13,1X,010.3,1%,12,2X,D10.3}
80 FY=F+FT
85 PRINT 90,U,V,FSyFA,NLFCD,NG,F,FT
90 FORMAT(' *,14X,401PD10.3,2X),12X,
+13,1X,D010.3,1X,12,12%X,2(2X,010.3))
GO 70 20
EHD
CHEBREEENURESEPRERMEENER WP RN RN MMM NR KRN WA RN PPN
SUDROUTINE TIME(T,EPS,NT)

o

o PROGRAM FINDS: WHEN HT=30, THE MININUM TIME OF TRAVEL FROM

c SOURCE TO THE FIELD POINT, AND GENERATES 30 TIME STEPS FOR INPUT.
o RHEN HT < 30, PEADS IH NT TIME SYEPS FOR INPUT.

C ZERO - SUCROUTIHE WHICH SOLVES FOR THE MININMUM TIME

Cc AN - HINIMUM TIME

o

INPLICIT RTAL*8(A-H,0-Z)
DINENSION T(30)
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COHMON /CHMA/Z RM,R,B,A,X /CTAZ AZ,S,RZ
EXTERNAL FP
IF(NT.NE.30)G0 TD 50
RZ=(R-1.0D0)#%x2
NC=1
2 AZ=1.0D0-B
XZ=RM¥*AZ
AU=AZIDSGRTI(X-XZ )%*24RZ)
IF(X.LT.XZ)GO TO 10
$=1,0D0
5 AL=AZ
AMN=ZERO(FP,AL,AU,1.0D-5,EPS)
AMN=AMH+DSQRT( ( X~-RH¥AMHN-SXDSQRT( AMN»AMM-AZ*AZ ) }%#24RZ)
GO 7O 20
$0 IF(RPH.GT.1.0D0)GD TO 15
$=-1.000
GO 70 5
15 ANN=AU
20 IF(HC.EQ.2)60 TO 22
T(2)=AMH
T(1)=AMN-1.0D-4
T(3)=AHN+1.0D-4
B=-B
HC=2
GO YO 2
22 T(5)=Aht
T(4)=AN-1.0D-4
TI6I=AN+Y . 0D-4
TC7)=DINT(ALH+1,0D0)
DO 25 I=8,13
25 T(I)=T(I-1)+1.0D0O
DO 30 I=14,23
30 T(X)=T(I-1)+2.0D0
TE=T(23)
EL=30.0DC
DO 35 J=t1,20
IF(TE.LT.EL)GO TO 40
35 EL=EL+5.000
40 T(2G)=EL
DO 45 1:25,29
45 T(I)=T(I-1)45.000
T(30)=T(29)+10.0D0
=-B
RETURN
50 READ 55,({T(I),1=1,NT)
55 FORMAT(7D10.3)
RETURH
END
CF MDD 2D 000 30 20006 06 06060 D636 06 06 06 0696 D0 06 05 36 06 36 3606 o 06 06 36 6 b 6 00 96 06 U 36 06 3% 96
FUHCTION FPULT)

Cc FUNTTION EYTERNAL TO TIME AHD CALLED BY ZERD

INPLICIT PEAL#B(A-H,0-2)
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COMION /CHA/ RM,R,B,A,X /CTA/ AZ,S,RZ
AA=DSQRT(T#T-AZNAZ)
AF=X-RInT-S*AA
FP=DSQRT(AFNAF4RZ)%AA-AF*(RH*AA+S*T)
RETURN
END

CHMMIN NS NI U I MR U D DIEI D006 D6 D000 00050000 06 0 DI
SUBROUTINE ROOT(U,V,ISP,FS)

C

o PROGRAM FINDS THE ROOT OF F OR G

c FAyZA - GAMMA ONE. FB\,ZB -~ GANMMA THO
Cc FS = VALUE OF F OR 6 AT THE ROOT

c

IHNPLICIT REAL%B(A,B,D-H,0-Y),COMPLEX*16(Z)
COMPLEX%#16 CDSQHT,CHPLX
DIMENSION B!(5),FR(4),FI(4),FHALG),FHB(4),FHS(4),YM(4)
COMNoN /CHAZ RIM4R,ByAX /CRAZ FA,FB /CRC/ JS /CRB/ ZA,ZB
JS5=0
RHS=RH*RN
BS=(1.000-B)%»2
AP=2 . 0DO*(RI{*BS-X¥*A)
AZ=X¥X+BS*(1.0D0-RHS)
AT=A¥A-BS
IF(R.EQ.1.0D0)GO TO 20
RS=(R-1.0D0)%x*2
AS=4,0D0*RS*BS
AZ=AZiRS
AT=AT-PS
BI(5)=AT*AT-AS
BM(4)=(AP*AT+ASXRH)#*2,0D0
BM(3)=AP*AP+2.0D0*AZ*AT-(RH5-2.0D0)#AS
BM(2)=2.0D0#( AP*AZ-AS¥RM)
BM(1)=AZ*AZ+ASH(RMS~1.0D0)
CALL QUARTI(BM,FR,FI)
JD=4

5 HMh=0
-D0 15 J=1,JD
IF(FI(J).EQ.0.0D0)GO TO 10
IF(FI(J).LT.0.0D0)GO TO 15
Z=DCHPLX(FR(J),FI(J))
ZA=CDSGQRT(Z¥Z~1.0D0)
ZB=CDSGRT((Z-RM)%%2-1,0D0)
IF(DINAG(ZA).LT.0.0D0)ZA=-ZA
IF(DINAG(ZD).LT.0.0D0)ZB=-ZB
ZS5=X+ZA%(P~1.0D0)+ZB*(1.000-B)-A%2
FS=CDABS(ZS)
IF(FS.GT.1.0D-4)GD TO 15
IspP=2
U=FR(J)
V=FI(J)
RETURN

8 FA=DSQRT(1.0D0-UxU)
ZA=DCIPLX(0.0DO,FA)
ZB=DCHPLX(FDB,0.0D0)

123



JS=1
GO 70 12

10 U=FR(J)
FB=DSGRT{{(U-RH)*®2-1.0D0)
IF(U.LT.PM-1,0D0)FB=-FB
IF(DABS(U).LT.1.0D0)GO TO 8
FA=DSQRT(U»U-1.0D0)
IF(U.LT.-1.0DD)FA=-FA

12 FS=X+FA*(R-1.0D0)+FB¥(1.0D0-B)-A»U
IF(DABS(FS).GT.1.0D~4)GO 1O 15
HH=MH+ Y
XM(HM)=U
FUHA(MMIZFA
FH3(t)=FB
FHS(HM)=FS

15 CONTINUE
CALL SELECT(MM,XMH,MN)
FASFHACMN)
FB=FHB(NN)
LVES 18 rid )]
V=0.0D0
FS=FHS(MN)
IF(ISP.EQ.2)ISP=3
RETUPH

20 AA=AP¥AP-6.0DO*AT®AZ
SAD=-AP/AT*0.5D0
JF(AA.LT.0,0D0)GO TO 25
SAA=DSORT(AA}/AT®0.5D0
FR{1)=SAD+SAA
FR(2)=SAD-SAA
FI(1)=0.000
FI(2)=0.000
JD=2
60 T0 5

25 SAA=DSQRT(-AA)/AT*0.500
FR(1)=SAD
FR(2)=5AD
FIC1)=SAA
FI(2)=-SAA
JD=2
GO T0 5
END

0K KR MI D I HEI DI MO DT DI I MDD DN Dm0 06 M08 000 0 96 96 2 6

FUNCTIOH SPEC(U,V)

CALCULATES THE SPECULARLY TRAUSHMITTED FIELD
U AND V ARE RESPECTIVELY THE REAL AND IMAGINARY PART OF PSI

o000

IMPLICIT REAL*8(A,B,D-1,0-Y), COMPLEY*16(C,Z)

COIN0d /C1AZ RNLRL,B,LALX /CHS/7 DUMLFR,FI /CHC/Z NX ZCRAZ FA,FB
coM~oN /CRC/ JS /CRG/ ZA,2B

RR=R-1.0D0

Bb=1.cD0-B

IF(V.EQ.0.0DD.AND.JS.EQ.D)GO TO 10D
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ZFAC=DCHPLX(FR,FI)
Z=DCHPLY(U,V)
ZG=(ZA+ZB)*(ZA%ZB+1.0D0)
ZN=2%(Z-RH1)
ZC=(Z-RN)¥EB/ZB
IF(HA.NE.3)ZC=ZC4ZXRR/ZA
ZFN=ZN/2G
ZFD=2C-A
IF(HA.EQ.2)G0 TO 5
IF(HA.EQ.3)ZFN=-ZFHN*ZA/Z
SPEC=DREAL(ZFH/ZFD*ZFAC)
RETURN
5 HH=1
ZMI=DCHPLX(0.0D0,-1.0D0)
ZFG=X+ZA¥RR +ZBXBB
IDT=2¥2/(Z%ZC-ZFG)
ZDG=2.0D0K(Z5ZB+ (Z-RHIXZA)4ZHX((Z-RM)/ZA+Z/2B)
2D3=(ZG%(2.0D0%Z-RH)-ZH¥ZDG ) /1 2G*ZG)
ZDFD=(ZA-Z*Z/ZA¥RR/{ZARZA)-ZDT
+ +(ZB-(Z-RH)*{Z-RM)/ZB)IxBB/( ZB*ZB)
SPEC=-DREAL((ZFD*ZDQ-ZFH¥ZDFD )/ (ZFD*ZFD }¥ZF AC-ZHIXFUNCB{V 3 )%ZDT
Hd=2
RETURN
10 FG=(FASFB)*(FAXFB+1.0D0)
FM=U%(U-BHM)
FC=(U-RM)*BB/FB
IF(NH.HE.3)FC=FC+U%RR/FA
FN=-FI1/7G
FD=FC-A
IF(HW.EQ.2)60 TO 15
IF(HA.EQ.3)FH=-FN*FA/U
SFEC=FN/FD
RETURN
15 Hu=1
FFG=X+FAYRR+FBXBY
FOT=U*U/(U*FC-FFG)
FDG=2.000#{U*FB+(U-RMI¥FA) +FH*( (U-RM)/FA+U/FB)
FOQ={FG*{2.0DONU-RM)-FM*FDG)/(FG*FG)
" FOFD=(FA-U*U/FA)XRR/(FAXFA)-FDT

+ +(FB-{U-RI1)»(U-RH)/FB)*B3/(FB*FB)
SPEC=~FDT#((FDQ*FD-FDFD*FN)/(FD*FD )-FUNCA(U))
W=2
RETURN
END

ORI P R DI 30 TD D06 0000606 00 D060 DE D36 0606 96 06 DC 06 06 06 06 30 06 6 06 06 06 06 36 36 36 36 5 B0 DD
FUNCTION SHOD(U)

CALCULATES THE FIELD HHICH FODIFIES THAT OF THE
SPECULARLY TRAHSMITTED HWAVE
PPESENT BEHIND THE HEUTRAL STABILITY MWAVE

00000

IMPLICIT PEAL*B(A-H,0-2)
COItiON /CHAZ RMLR,B,A,X ZCHC/Z WA
DATA T5T7/2.828427126474619D0/
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SHOD=0.0D0
JF(RH.LT.2.0D0JRETURN
IF(A.LT.RH¥(R-B)/DSQRT(RH*RM-4,0D0) )RETURH
GA=DSQRT(U<U-1.0D0)
6B=-GA
PF=X+GA¥(R-1.0D0)+GB*(1.0D0-B)-A*U
IF(RM.GT.TST) GO TO 10
IF(PF.GT.0.0D0) RETURN
FAC=1.0D0

5 GAB=GA%GD
GPT=1.0D0+GAB
QT=U*(U-RM}/Z(GPT*(U/GA+{U-RM)/GB)*8.0D0)
IF(NA.EQ.3)QT=-QT*GA/U
PS=(GA-GB)*(1.0D0-3.0D0*GAB)/GPT/GAB
PSM=PS-GA/B+GB/R
IF (R4, EQ.3)PSH=PS-GA/B-3.0D0*GD
SMOD=PIN*QT+*DEXP(-PS*PF/8.0D0)%FAC
RETURH

10 IF(PF.LY.0.0DOJRETURN
FAC=-1.000
GO TO 5
END

CHEXFRRFFERF RS E R RERAEENARAAEFRE AR ERRRERENVARRARF R K

FUNCTION LAGI(FUNC,IC,X,S5P,NI,DI,ISP)

PERFORIS INTEGRATION OF FUNC OVLR (SP,INF)
BY GAUSSIAN IHTEGRATIONS. IF SP < 0, THEN INTEGRATES
OVER (SP,-INF)
RANGE IS SFLIT INTO NI PARTS. (SP,SP1), (SP1,SP2)y ceevcecesns
ecseneny (SPHI-1),INF)
THE HUM3ER OF GAUSS POINTS RANGE FRON
HMININCH OF 2 TO MAXIHUI OF 16
SP{J)=5P(J-1)+4DI(J)
SUPPLIED BY USER TO SUIT NEED
Y - GAUSS POINTS ARRAY LESS ALL ZEROS
v - GAUSS WEIGHTS ARRAY WITH THE ADDITION OF
YZ - GAUSS HEIGHTS ARRAY HHEH CORRESFONDING POINTS ARE 0.0D0O
JRG - POINTER 7O Y AND V
JZ - POINTER TO VZ

o000 nNDO0nN0000n0n

IMPLICIT PEAL*B(A-H,L,0-2)

DIHENSICH JRG(12),J2(11),ID(5),V(39),Y(39),VZ(4),DD{80),E(5),DI(1)

DATA JRG/1,2,3,5,7,10,13,17,21,26,32,40/

DATA JZ2/5:1,5:2:5,3,5,4,5,5,5/

DATA Y/0.577350269189626D0,0.774596669241483D0,0.61136311594053D0
»0.339981043584856D0,0.90561793457386464D0,0.538467231010568300
»0.93246951420315200,0.66120938544626500,0.2386191860E3197D0
+»0.949107912342759D0,0.7415311£55993945D0,0.405845151377397D0
20.960289856497536D0,0.796666477413627D0,0.525532409916325D0
»0.1834366062095650D0,0.968160239507626D0,0.836031107326636D0
»0.613371432700590D0,0.324253642340330500,0.973906528517172D0
»0.86506336668898500,0.679909568299024D0,0.43339539412924700
»0.14807433896163100,0.981560563424671900,0.904117256370475D0
+0.7699026764194305D0,0.587317956428661700,0.34783164983998180D0

PO A Y Y
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10

15

20

+
4
+

+0.12523340851146900,0.98940093499165000,0.94457502307323300
»0.86563120238703200,0.7554C4408355003D0,0.617876244402644D0
»0.458016777657227D0,0.2816035507792600,0.095012509337637D0/

DATA V/1.000 »0.555555555555556D0,0.34785454513745400

* - & b b P e s s

10.652145154062546D0,0.236926885056189D00,0.476628670499366D0
»0.171324492379170D0,0.360761573048139D0,0.467913934572691D0
»0.12948496616887000,0.27970539148927700,0.38183005050511900
»0.101228535290376D0,0.222381034453374D0,0.31370664587788700
»0.36268378337036200,0.081274358351574D0,0.180648160694057D0
10.2606106966402935D0,0.312347077040003D0,0.06667134430860800
»0.14945134915050100,0.2190£636251598200,0.269266719309996D0
»0.295526224714753D0,0.0471753363856512D0,0.1069393259%5318D0
»0.160076328543346D0,0.203167426723066D0,0.233492536538355D0
10.24914704581340300,0.027152459411754D0,0.062253523938648D0
»0.09515851168249300,0.124623971255534D0,0.145595938016577D0
20.16915651939500300,0.18260341504492400,0.18945061045507D0/

DATA VZ/0.8568535658688889D0,0.5688888535858589D0,

+

»0.641795918367346900,0.330239355001260D0/

SGH=1.0D0
IF(ISP.EQ.1)SGN=DSIGN(1.0D0,SP)

Sv=5p
I1C=0

DO 5 I=1,NI
DD(I)=DItI)

KL=t
KLS=1
15=1
IL=HI

GSb=0.0Dd

JS5=1
JP=0
JHL=1

DO 55 I=1S,IL

A=SP

B=SP+DD(I)¥#SGN
Q=0.5D0*(DB+A)

P=q-A

TB=0.0D0

18=0

DO 25 J=JS,11
GD=0.0D0
JF=JRG(J)
JL=JRG(J+1 ) -1
JH=JZ(J)

DO 15 K=JF,JL
ID=IB+2

PY=P#Y(K)

GD=GD+VIK)*( FUNC(Q-PY)+FUNC(Q+PY))
IF(JN.EQ.5)G0 TO 20
GD=CD+VZ{JM)*»FLNCIQ)

IB=1IB+1

TA=CD¥P

IF(DABSU(TA-TBY/TA).LT.0.5D-3)G0 TO 35
25 TE=TA
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PRINT 30,I,TA

30 FORMAT(® *,°'MAX',12,°'VAL',D10.3)
ID(KL)=]
E(KL)=A
KL=KL+1
GO TO 42

35 GSA=GSB4TA
IC=IC+1B
IF(I.LT.15)G0 TO 40
IF(DABS((GSA-GSB)/GSA).LT.2.0D-3)GO TO 60

40 GSB=GSA

G2 JT=J-JML
IF(JT)45,47,50

45 J5=J-3
IF(JT.LT.-1)JS=J-2
GO TO 52

47 J5=J-3
IF(JT.EQ.JP)IS=J-2
GO 10 52

508 J5=J+JT-2
IF(JT.GT.2)JS=2041

52 JP=JT
Jre=y
IF(J3.LT.13J05=1
IF(J5.6GT.10)J5=10

55 sp=3

60 CONTINUE
IF(KLS.EQ.KLIGO TO 70
IP=ID(KLS)
SP=E(KLS)
DS=DD(IP)/1.0D}
15=1
IL=I+9
KLS=KLS+1
DO 65 JJ=1S5,1IL

65 DD(JJ)=DS
GO TO 10

70 LAG=GSA
SP=5V
RETURN
END

CHAERERERS B RS R E R WSS MIRERRAENEREERERERNF S B R RN NP W R

FUNCTION TFUNCALU)

INTEGRAL ALOHG THE BRANCH CUT BEFORE WAVE ARRIVAL
U - ARGUNENT SUPPLIED BY FUNCTION LAG, REAL PARTY OF PSI

Oon0o00n

INPLICIT REAL®B(A-H,0-2)

Conrdl /CHAZ RN, R,B,A,% /CHS/ Y

PF=1.00D0

GA=DSQRT(U*U-1.0D0)

CB=DIORT((U-RM)I#+2-1,0D0) )
IF(U.LT.-1.0D2)CA=-GA

IF(U.LT.Ri1-1,0D0)CB=-GB
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GAB=GA*(CB
FP=(1.0D0+GAD }*GAB
SP=(GA-CB)I*(1.0D0-3.0DOXGAB)/FP
IF(HH.EQ.2)PF=U*SP/8.000
TP=U¥(U-RM)/Z(GA+GCB)
SD=TP#*SP/(1.0D0+4GAB)
IF(NA.EQ.1)TD=TP*(GB/R-GA/B)/FP
IF(HH.EQ.3)TD=TPXGA/U%(3.0D0*GB+GA/B)/FP
AH=5P(X+GB¥(1.0D0-B)-A%U)/8.0D0
IFCNM . HE.3)AM=AH+SP*GA*(R-1.0D0)/8.0D0
FUHCA=-(SD+TD )¥DEXP(AH ) %PF
RETURN
EHD

(M2 S Ia S IS 3232333113303 1T P T g T
FUHCTION FUNCB(V)

INTEGRAL ALDNG THE BRAHCH CUT AFTER WAVE ARRIVAL

V =~ ARGUMENT SUPPLIED BY FUNCTION LAG, IHAGINARY PART OF PSI
USP- U0, STARTING POINT, REAL PART

FCR- 0 FOR PHIA, -1 FOR PHIB

FCI- -1 FOR PHIA, © FOR PHIB

o000 00

IMPLICIT REAL®8(A,B,D~H,0-Y), COMPLEX*16(C,2)
CONMOH /CHAZ RM,R,B,A,X /CHB/ USP,FCR,FCI /CNC/ Ha
ZPF=DCNPLX(1.0D0,0.0D0)
ZFAC=DCHPLYIFCR,FCI)
Z=DCHPLX(USP,V)
IF(V.EQ.0.0D0)GD TO 10
ZA=CDSART(Z¥Z-1.0D0)
ZB=CDSQRTI{Z-RM)I*%2-1.0D0)
IF(DINAG(ZA).LT.0.0D0)ZA=~ZA
IF(DIMAG(ZE).LT.0.0D0)ZB=-ZB

5 ZAB=ZA*ZD
ZFP=(1.0D0+ZAB)*ZAB
ZSP=(ZA-ZB)#(1.000-3.0D0%ZAB)/ZFP
IF(NH.EQ.2)ZPF=Z%ZSP/8.0D0
ZTP=Z#(Z-RN)/(ZA+ZB)
ZSD=ZTP*ZSP/(1.0D0+ZAB)
IF(HU.HE.3)ZTD=ZTP*(ZA/B-ZB/R)/ZFP
IF(HH.EQ.3)ZTD=-ZTPXZA/Z*(3.0D0%ZB+ZA/B)/ZFP
ZAM=ZSPX{X+2B*(1,.0D0-B)-A%Z)/6.0D0
IF(HILHE  3)ZAN=ZAM+ZSP*ZA%(R-1.0D0)/8.000
FUNCB=DREAL(IZFAC¥(ZSD-ZTD )*CDEXP(ZAH)¥ZPF )
RETURN

10 FDB=DSQRT((USP-RM)*x2-1,0D0)
JF(U.LTY.RH-1.0DO)FB=-FB
ZB=DCHPLX(FB,0.0D0)
IF(DABS(USP).LT.1.0D0)GO YO 15
FA=DSQRT(USP*USP-1,0D0)
IF(U.LT.~-1.0D0)FA=-FA
ZA=DCHPLX(FA,0.0D0)
GO 70 5

15 FA=D3QRT(1.0D0-USPXUSP)
ZA=BCHPLX(0.0DO,FA)

129



GO 70 5
END

(K 2338222220232 8323282203320 3383332822222 2322 2.2,

c
(o
c

10
15
20

25
30

SUBROUTINE SELECT(M,XM,K)

PROGRAM FINDS THE ROOT EXTERIOR OF CFO OR CGO

IMPLICIT REAL*8(A-H,0-2)
DIMEHSION XM{G),XH(&)

COMMON /CRC/ JS

IF(M.EQ.11GO TO 30

Do 5 I=1,H

XN{I)=DABS(XM(I])

GO 70 (30,10,15,20), N
»H(3)=0.0D0

XH(4)=0.0D0
X=DHAXTIXHIT ) XN(2),XN(3),XH(4))
IFLJS.EQ. $)X=DHINIT(XH{1),XN(2))
DO 25 K=1,%
IF(OLEQ.XHIK ) IRETURN

CONTIHUE

K=1

RETURH

END

[ 2323232233282 3323222332333 23 2222333223232 32 28]

(]

20

30

40

FUNCTICH ZERO{F,AX,BX,TOL,CPS)
PROGPAM FINOS THE ZERO OF A FUNCTION F

INPLICIT PEAL*8({A-H,0-2)

A = AX

B = BX

FA = F(A)

FB = F(B)
IF(USIGH(1.0D0,FA).HE.DSIGN(1.0D0,FB))IGO TO 20
ZERO=A

RETURN

C=A

FC = FA

D=8B-~-A

E=D

IF (DABS(FC) .GE. DABS(FB)) GO TO 40
A=B

B=¢C

C=A

FA = FD

FB = FC

FC = FA

TOLY = 2.0DO*EPS*DABS(B) + 0.5D0%10L
X1=0.500>(C-B)

IF (DADS(Xt) .LE. TOL1) GO TO 90

IF (FO .EQ. 0.0D0) GO TO 90

IF (DABS(E) LY. TOLY) GO TO 70

IF (DADS(FA) .LE. DADS(FB)) GO YO 70
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IF (A .HE. C) GO TO 50

S = FDB/FA
P = 2.0DOXXH*S
Q= 1.000 - S
G0 T0 60
50 @ = FA/FC
R = FB/FC
S = FD/FA
P = S*(2.0D0¥XM¥Q*(Q - R} - (B - A)*(R - 1.0D0))
Q = (Q - 1.0D0)%(R - §.0D0)%(5 - 1.0D0)

60 IF (P .GT. 0.0D0) Q = -Q
P = DABS(P)
IF ((2.0D0%P) .GE. (3.0D0¥XM*Q -~ DABS(TOLI%*Q))) GO TO 70
IF (P .GE. DABS(0.5D0%E%Q)) GO TO 70

E=D
B = P/Q
GO TO 80
70 D = XM
E=D
80 A=B
FA = FB

IF (DABS(D) .GY. TOLI) B
IF (DABS(D) .LE. TOLY) B
FB = F(B)
IF ((FB*(FC/DABS(¥C))) .GY. 0.0D0) GO TO 20
60 T0 30
90 ZERO=B
PETURN
END
33333233 232202832223 2 2 T 3T It L aT TR e
SUBROUTINE QUARTI (C,XR,XI)

B+D
B + DSIGH{TOL1, Xt)

PROGRAM FINDS RODTS OF QUARTIC EQUATION
CO1) + C(2)%X + CU3)¥X%¥2 4 ClQIXYRXT + CI(SIuXN%4 = 0
REAL PARTS OF ROOTS ARE PLACED IH XR, IMAGIHARY PARTS IN XI.

[ BN s BN e B o B o ]

IMPLICIT REAL%8 (A-H,0-Z)
DINENSION C(5), XR(4), XI(4), CU(5), YR(4), YI{(4)
Z=C(5)
IF(Z.HE.0.0D0)GO YO 20
CALL CUBIC(C,XR,XI)
XR(4)=0.0D0
XI(4)=0.0D0
RETURN
20 XI(1)=0.000
X1(3)=0.0D0
CuU(5)=0.0D0
CuUt4)=1.0D0
CuU(3)=-C(3)/Z
A0=C(1)/2Z
A12=C(2)/Z%0.5D0
A32=C(4)/Z%0.5D0
Cu(2)= (A32#A12-A0)%4.0D0
cu(1)= ~(A12X%24 A0 A32%%24C1I(3)))*4,0D0
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CALL CUBICI(CU,YP,YI)
DD 40 I=1,3
U2z YR(I)*D.5DO
Ti1=U12%%2-A0
IF(TI.LT. 0.0D0)GO YO 40
T2=A32%#24U124U12+CU(3)
IF (T2.GE.0.0D0)GO YO 50
40 CONTINUE
XX(1)=-100.0D0
RETURN
50 T1=DSQRT(T1)
T2=DSIGHIDSQRT(T2),A325U32-4A12)
60 CQ=U12-T1
BR2= (A32-T2)%0.500
DISC=BRz*%2-CQ !
IF (DISC) 90, 80, 70
70 DISC=DSCGRT(DISC}
80 ¥R(1)=-BQ24DISC
XR(2)=-BQ2-DISC
GO TO 100
90 ¥R(1)=-BR2
¥R(2)=-BQ2
XI(1)=DSQRT(-DISC)
100 CQ=U12+TY
BQ2:EQ2+T2
DISC=BU2*%2-CQ
IF (DISC) 130, 120, 140
110 DISC=DSRRT(DISE)
120 YR(3)=-BR24DISC
XR{4)=-BQ2-DISC
GO TO 150
130 XR(3)=-BQ2
XR(4)=-BQ2
XI(3)=DSRRT(-D1SC)
150 XI1(2)=-XI(1)
XI(4)=-X1(3)
RETURH
EHD
XN IATEN I N NI D0 00606 20 0 36 26 96 06 06 36 05 36 36 26 36 3 3% 96 36 96 36 36 96 36 36 36 5 6 06
SUBROUTIHE CUBIC(C,XR,XI)

PROGRAM FINDS ROOTS OF CUBIC EQUATION
CUT) 4 C2)%)X + C(3)¥Xu%2 3 C(GIXX*¥3 = 0
REAL PART OF ROOTS ARE PLACED IN XR, IMAGINARY PART IM XI.

OO0 0

IMPLICIT REAL®8 (A-H,0-2)
DIMEHSION C(5),XR(4),XI(4)
A=3.0D0

2=C{4)#3.0D0
IF(Z.MNZ.0.0D0)GO TO 20

XR(3)=0.0D0

XI1(3)=2.0D0

C3= C(3)»¥2.0D0

CC=C(2)mn2- C(1)%C(3)*4,0D0
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IF(CC10,50,90

10 SC=DSART(-CC)
XI1(3)=8C/C3
XI(2)=-XI(1)
XR{1)=-C(2)/C3
XR{2)=XR(1)
RETURN

50 XR({1)=-Ct2)/C3

XR(2)=0.0D0
110 XI(1)=0.0D0
XI1(2)=0.0D0
RETURH

90 XR(1)=(-C(2)+DSQRT(CC))I/C3
XR(2)=(-C(2)-DSQRT(CC))/C3
GO 70 110

20 XI(1)=0.0D0
XI(2)=0.000
P3=C(3)/Z
Q3:=C{2)/2
PQ18=Q3%P3%0.500
R2=C(1)*1,5D0/2
AMIN3=P3%%2-Q3
B2=AMIN3*P3-PQ18+R2
DISC=E2%¥2-ANIN3I**3
IF (DISC) 86, 40, 30

30 DISC=DSRRT(DISC)

40 B2D=-B2+DISC
SI=DSIGH(1.0D0,B2D)
CAPA=SI*DABS(B2D)%%(1.0D0/3.000)
IF (CAPA.NE.0.0D0O)GO TO 60
CAPB=(-B2-B2)*%(1.000/3.000)
GO T0 70

60 CAPB=AMIN3/CAPA

70 XR{1)=CAPA+CAFB-P3
XR(2)=-{CAPA+CAPB)%0.5D00-P3
XR(3)=XR(2)

XI(2)=DSGQRT(A ) *¥(CAPA-CAPB)*0.5D0
GO 70 to00

80 RODT=DSQRT(AMIN3)
PHI3=DARCOS(-B2/(ROOT*AMIN3))/3,0D0
T1=DSQRT(A I*DSIN(PHI3)
T2=DCOS(PHI3)
XR(1)=T2¥R0ODT#2.0D0-P3
YR({2)=ROOT#{-T2-T1)-P3
XR{3)=RCOT*(-T2+T1)-P3

100 XI(3)=-XI(2)

PETUPH
END
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