General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
HYDROGEN DIFFUSION AND ELECTRONIC STRUCTURE

IN CRYSTALLINE AND AMORPHOUS TiCuH_y

R. C. Bowman, Jr.*
Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

A. J. Maeland
Materials Research Center
Allied Chemical Corporation
Morristown, New Jersey 07960

W.-K. Rhim
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

J. Y. Lynch**
Brookhaven National Laboratory
Upton, New York 11973

ABSTRACT

Hydrogen diffusion behavior and electronic properties of crystalline TiCuH_0.9, Ti_2CuH_1.9, and Ti_2CuH_2.63, and amorphous a-TiCuH_1.4 are studied using proton relaxation times, proton Knight shifts, and magnetic susceptibilities. Crystal structure and hydrogen site occupancy have major roles in hydrogen mobility. The density of electron states at E_F is reduced in amorphous a-TiCuH_1.4 compared to the crystalline hydrides.

The crystalline intermetallics TiCu and Ti_2Cu and the amorphous Ti_1-yCu_y (0.3 ≤ y ≤ 0.7) alloys directly react with gaseous hydrogen to form crystalline and amorphous ternary hydrides, respectively, providing the temperature is maintained below 200°C. A recent nuclear magnetic resonance (NMR) study of the proton relaxation times indicated a much higher hydrogen mobility in amorphous a-TiCuH_1.4 compared to crystalline hydrides.

*On leave from current address: Monsanto Research Corporation, Mound, Miamisburg, Ohio 45342.
**Current address is Materials Research Center, Allied Chemical Corporation, Morristown, New Jersey 07960.
to polycrystalline TiCuH$_{0.94}$. The increased disorder2 of interstitial hydrogen occupancy in a-TiCuH$_x$ has been suggested3 for the enhanced mobility in the amorphous phase. The present paper describes further NMR studies of diffusion in crystalline and amorphous TiCuH$_x$ as well as crystalline Ti$_2$CuH$_x$. Furthermore, the electronic structure has been investigated using magnetic susceptibility, proton spin-lattice relaxation time (T_1), and proton Knight shift (G_H) measurements.

Table 1 summarizes the structural properties of the TiCuH and Ti$_2$CuH$_x$ samples as deduced from x-ray diffraction, neutron scattering, and proton lineshape parameters. The preparation procedures have been previously described.1,5

Table 1. Descriptions of TiCuH and Ti$_2$CuH and Hydrogen Diffusion Activation Energies (E_a)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Metal Sublattice Structure</th>
<th>Probable Hydrogen Site Occupancies</th>
<th>E_a (eV)</th>
<th>Temperature Range (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiCuH$_{0.94}$</td>
<td>Tetragonal</td>
<td>94% Ti$_4$ only</td>
<td>0.84±0.02</td>
<td>465 - 560</td>
</tr>
<tr>
<td>a-TiCuH$_{1.4}$</td>
<td>Amorphous</td>
<td>Mixed (mostly Ti$_4$ with some Ti$_4$-γCu$_y$ and octahedral)</td>
<td>0.45±0.02</td>
<td>357 - 410</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.185±0.01</td>
<td>208 - 357</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.09±0.01</td>
<td>150 - 207</td>
</tr>
<tr>
<td>Ti2CuH${1.9}$</td>
<td>Orthorhombic (?)</td>
<td>95% Ti$_4$ (some Ti$_2$Cu$_4$ likely)</td>
<td>0.35±0.02</td>
<td>290 - 519</td>
</tr>
<tr>
<td>Ti2CuH${2.63}$</td>
<td>Orthorhombic (?)</td>
<td>100% Ti$_4$ and 63% Ti$_2$Cu$_4$</td>
<td>0.29±0.02</td>
<td>290 - 395</td>
</tr>
</tbody>
</table>

Hydrogen diffusion behavior has been evaluated using the temperature dependence of the proton rotating-frame spin-lattice relaxation times6 ($T_{1\rho}$) where the spin-locking field was about 7.3G and the proton resonance frequency was 34.5 MHz. The temperature dependences of the $T_{1\rho}$ data for Ti$_x$CuH$_y$ are shown in Fig. 1. Table 1 summarizes the diffusion activation energies (E_a) that have been deduced from the $T_{1\rho}$ data. Although a single E_a corresponding to Arrhenius behavior represents proton mobility in the crystalline TiCuH$_{0.94}$ and Ti$_2$CuH$_x$, three E_a values are required for amorphous a-TiCuH$_{1.4}$, which confirms the behavior previously seen5 in a-TiCuH$_{1.3}$. Furthermore, E_a is greatly reduced when protons occupy sites in addition to the tetrahedral Ti$_4$ interstitials. This effect is seen in both crystalline Ti$_2$CuH$_x$ and amorphous a-TiCuH$_{1.4}$. From a consideration of the TiCu and Ti$_2$Cu crystal structures,1,4 hydrogen diffusion in crystalline TiCuH can only occur by nearest neighbor jumps between the Ti$_4$ sites,
while jumps through the intermediate Ti$_2$Cu$_x$ sites become possible in Ti$_2$CuH$_x$. This probably accounts for the lower E values for Ti$_2$CuH$_x$ and similar (or even easier) jump-paths are available in the more disordered amorphous phase.

The magnetic susceptibilities (χ_m) for Ti$_y$Cu$_x$ were measured between 80 K and 300 K and are summarized in Fig. 2. Although the χ_m values in Fig. 2 have been extrapolated to infinite magnetic field, the field-dependent ferromagnetic contribution was negligible except for a-TiCuH$_{1.4}$, which appears to have some magnetic impurities as well as an opposite temperature dependence for χ_m. There are several contributions to χ_m, but only the paramagnetic term χ_p is directly related to $N(E_F)$, the density of electron states at the Fermi level E_F. Hence, caution should be exercised in correlating χ_m differences only to $N(E_F)$ changes. In particular, the larger χ_m for a-TiCuH$_{1.4}$ compared to TiCuH$_{0.8}$, probably reflects either ferromagnetic or orbital contributions and not a greater $N(E_F)$ for the amorphous phase. However, the unusual χ_m increase with hydrogen content for Ti$_2$CuH$_x$ is believed to actually correspond to $N(E_F)$ becoming larger since the proton T_1 and Q_K parameters also indicate $N(E_F)$ increasing from Ti$_2$CuH$_{1.9}$ to Ti$_2$CuH$_{2.63}$.

![Fig. 2. Magnetic susceptibility values for TiCuH$_x$ and Ti$_2$CuH$_x$.](image)
The proton T_1 and σ_K were measured at 56.4 MHz using methods previously described. The σ_K values are referenced to tetramethylsilane. Table 2 summarizes the σ_K and $(T_1 T)^{-1/2}$ parameters, which are directly proportional to $N(E_F)$, at the upper and lower temperature limits of the present NMR measurements. The negative σ_K values in Table 2 indicate that core-polarization with d-electrons dominates proton hyperfine interactions in Ti$_y$Cu$_x$H$_x$ where the population of d-states is much larger than s-states as has been previously found in other Ti-based hydrides. Furthermore, the proton parameters suggest $N(E_F)$ is significantly reduced in a-TiCuH$_{1.4}$ compared to crystalline TiCuH$_{0.94}$, while $N(E_F)$ increases with content in crystalline Ti$_2$CuH$_{1.9}$. However, a more detailed analysis based upon generalized Korringa relations shows increased s-electron contact hyperfine interactions in the Ti$_2$CuH$_{2.63}$ samples.

More extensive discussions of hydrogen diffusion and the electronic structures of Ti$_y$Cu$_x$H$_x$ will be published elsewhere.

Table 2. Proton Parameters $(T_1 T)^{-1/2}$ and Knight Shifts σ_K

<table>
<thead>
<tr>
<th>Sample</th>
<th>T (K)</th>
<th>$(T_1 T)^{-1/2}$</th>
<th>σ_K (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiCuH$_{0.94}$</td>
<td>300</td>
<td>0.163</td>
<td>-120</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.150</td>
<td>-107</td>
</tr>
<tr>
<td>a-TiCuH$_{1.4}$</td>
<td>210</td>
<td>0.113</td>
<td>- 77</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.108</td>
<td>- 87</td>
</tr>
<tr>
<td>Ti2CuH${1.9}$</td>
<td>300</td>
<td>0.118</td>
<td>- 67</td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>0.115</td>
<td>- 69</td>
</tr>
<tr>
<td>Ti2CuH${2.63}$</td>
<td>300</td>
<td>0.140</td>
<td>- 85</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.145</td>
<td>- 91</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS

This work was partially supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, U. S. Department of Energy, and the Caltech's President's Fund. Mound is operated by Monsanto Research Corporation for the U. S. Department of Energy under Contract No. DE-AC04-76-DP00053. Brookhaven National Laboratory is operated for the U. S. Department of Energy under Contract No. DE-AC02-76-CH00016. Jet Propulsion Laboratory is operated for the National Aeronautics and Space Administration under Grant No. NAS7-100.
REFERENCES

Fig. 1. Proton T₁₂ relaxation times with $H_1 = 7.3$ G at $v_H = 34.5$ MHz.