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ABSTRACT

Hydrogen diffusion behavior and electronic properties of crystal-
line TiCUH0.94, Ti2CUHI_90, and Ti2CUM2 . 63 and amorphous a-TiCuH1.4
are studied using proton relaxation times, proton Knight shifts, and
magnetic susceptibilities. Crystal structure and hydrogen site
occupancy have major roles in hydrogen mobility. The density of
electron states at EF is reduced in amorphous a-TiCuH1 . 4 compared to
the crystalline hydrides.

The crystalline intermetallics TiCu and Ti2Cu and the amorphous
Til_,Cuy (0.3 < y < 0.7) alloys directly react with gaseous hydrogen
to form crystalline and amorphous ternary hydrides,1 4 respectively.
providing the temperature is maintained below 200°C. A recent ouclear
magnetic resonance MR) study of the proton relaxation times  indi-
cated a much higher hydrogen mobility in amorphous a-TiCuH1.3 compared
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to polycrystalline TiCuHo g 4. The i-.icreased disordsr = of interstitial
hydrogen occupancy in a-TiCuH has Lem suggested  for the enhanced
mobility in the amorphous phase. The present paper describes further
IM studies of diffusion in crystalline and amorphous TiCuH as well
as crystalline T12CUH . Furthermore, the electronic structure has
been Investigated using magnetic susceptibility, proton spin-lattice
relaxation time (Ti), and proton Knight shift (aK) measurements.

Table 1 summarizes the structural-properties of the TiCuH and
Ti2CuH samples as deduced from x-ray diffraction, neutron scattering,
and proton 	 lineshape parameters. The preparation procedures have
been previously described. 175

Table 1.	 Descriptions of TiCuH and Ti2CuH and Hydrogen
Diffusion Activation Energies (E.1

Metal Probable E Temperature
Sublattice Hydrogen Site a Range

Sample Structure Occupancies (ev) (K)

TiCuH0.94 Tetragonal 94% Ti4 only 0 . 84±0.02 465 - 560
s

a-TiCuH Amorphous Mixed (mostly 0.43±0.02 357 - 4101 . 4
Ti4 with some
T14-,Cuy and 0 . 185±0 .01 208 - 357

octahedral)

C	 '

0.09±0.01 150 - 207

Ti2CuH`.9 Orthorhombic (?) '^95s Ti4 (some 0.35±0..02 290 - 519
ii2Cu4 likely)

Ti2CuH2.63 Orthorhombic (?) 100% Ti4 and 0.29±0.02 290 - 395
63s Ti2Cu4

Hydrogen diffusion behavior has been evaluated using the temper-
ature dependence of the proton rotating-frame spin-lattice relaxation
times 6 (Tip) where the spin-locking field was about 7.3G and the pro-
ton resonance frequency was 34.5 MHz. The temperature dependences of
the Tip data for Ti. CuH, are shown in Fig. 1. Table 1 summarizes the
diffusion activation energies (% ) that ha , re been deduced from the Tip
data. Although a single % corresponding to Arrhenius behavior re-
presents proton mobility in the crystalline TiCuHo.94 and Ti2CuH,,
three E. values are required for amorphous a-TiCuHl.4, which confirms
the behavior previously seen 5 in a-TiCuHi,3. Furthermore, % is
greatly reduced when protons occupy sites in addition to the tetra-
hedral Ti 4 interstitials. This effect is seen in both crystalline
T12CuHx and amorphous a-TiCuH 4. From a consideration of the TiCu

12Cu crystal structures, •4 hydrogen diffusion in crystalline
can only occur by nearest neighbor jumps between the T14 sites,



while jumps through the intermediate T37Cu4 sites become possible in
Ti4Cuffx . This probably accounts for the lower 8^ values for TizCuHx
and similar (or even easier) jump-paths are available in the more
disordered amorphous phase.

The magnetic susceptibilities (xm) for Tiy CuHx were measured be-
tween 80 K and 300 K and are summarized in Fig. 2. Although the xm
values in Fig..2 have been extrapolated to infinite magnetic field,
the field-dependent ferromagnetic contribution was negligible except
for a-TiCuH1.4, which appears to have some magnetic impurities as
well as an op?osite temperature dependence for xm . There are several
contributions to xm, but oily the paramagnetic term xa is directly
related to N(E.), the density of electron states at the Fermi level
EF . Hence, caution should be exercised in correlating xm-differences
only to N(EF ) changes. In particular, the larger xm for a-TiCuH1 .4
compared to TiCuffo.;4 probably reflects either ferromagnetic or or-
bital contributions and not a greater N(FF ) for the amorphous phase.
However, the unusual 7 ' 8 j(m increase with hydrogen content for Ti2CuHx
is aelieved to actually correspond to N(E F ) becoming larger since the
proton T 1 and aK parameters also indicate N(EF ) increasing from
Ti2CuH l . 9 to Ti2CuH2.63-
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Fig. 2. Magnetic susceptibility values for TiCuH x and Ti2 CUR x.
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The proton T 1 and Q were measured at 56.4 MHz using methods
Previously described. 9 %e aK values are referenced to tetramethyl-
silane. Table 2 summarizes the QK and (T1.T)-h parameters, which
are directly proportional 6#809 to N(EF), at the upper and lower
tesperature limits of the present NMR measurements. The negative

QK values in Table 2 indicate that core-polarization 6 with d-elec-
trons dominates proton hyperfine interactions in Ti y CuHx where the
population of d-states is much larger than s-states as has been pre-
viously found in other Ti-based hydridds. 8 ' 9 Futhermore, the proton
parameters suggest N(EF ) is significantly reduced in a-TiCuH I .a com-
pared to crystalline TiCuHo.94, while N(EF ) increases with content
in crystalline Ti2CuHx . However, a more detailed analysis based up-
on generalized Korringa relations6 shows increased s-electron contact
hyperfine interactions in the Ti2CuHx samples.

More extensive discussions of hydrogNn diffusion and the elec-
tronic structures of T: y CuHx will be published elsewhere.

Table 2. Proton Parameters (T1i T) -h and Knight Shifts DK

T	 (TI*T)-ll
	

cK
Sample	 (K)	 (SK) -19	 (Ppm)

TiCuFi0.94

a-TiCuH1.4

Ti2CuH1.9

Ti2CuH2.63
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Fig. 1. Proton Tip relaxation times with H 1 - 7.3'G at vH 34.5 MHz.
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