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SUMMARY

The application of a nonlinear coordinated adaptive motion washout to the trans-
port ground-handling environment is documented. Additions to both the aircraft math
model and the motion washout system are discussed. The additions to the simulated-
aircraft math model provided improved modeling fidelity for braking and reverse-
thrust application, and the additions to the motion-base washout system allowed
transition from the desired flight parameters to the less restrictive ground
parameters of the washout.

Encountered in the process of tailoring motion cues specifically for a ground-
handling environment were three notable facets. A scaling of 1.0 prior to washout
for representation of negative longitudinal acceleration and a scaling of 0.5 for
positive acceleration were desired by the participating pilots. The second facet was
the ability to realistically represent the ground-handling environment without trans-
lational motion of the motion base in order to eliminate the objectionable hydraulic
noise of the base actuators. The third facet was a fact usually recognized only by
the designers of washout systems, namely, that the fidelity of motion cues are depen-
dent in the first instance on the fidelity of the mathematical model of the aircraft
providing the inputs to the cueing system.

INTRODUCTION

The increasingly prevalent use of flight simulators in lieu of actual flight
operations for the purposes of training, operational studies, and research is pres-
ently being extended to the area of aircraft directional control on runways
(ref., 1). While extensive effort has been expended on the modeling aspects of land-
ing gears, skid-control braking systems, and adverse runway conditions (surface
roughness, weather-induced surface conditions, runway crown, etc.), less attention
has been paid to the motion-simulation aspects of the problem. It is presumed, from
lack of other indications, that most ground studies have utilized the same motion
conditions that were utilized for the flight phases of the simulator usage, with
little consideration of the requirements imposed by the changed environment., 1In some
cases, refinements to provide touchdown bump and runway roughness to the vertical
axis cueing were probably made in the most expedient way possible.

In answer to the growing demand at the Langley Research Center for simulation of
aircraft ground handling (in the area of ground guidance systems, high-speed turn-
offs, and aircraft braking and steering systems), a study was undertaken to apply the
highly successful nonlinear adaptive washout (refs. 2 and 3) directly to the ground-
handling environment. This report documents the results of that effort, detailing
the additions made to both the aircraft math model and the washout system, to provide
motion cues tailored to the ground environment. No attempt is made to justify the
use of motion cues in ground-handling-simulation tasks. (Ref, 4 deals with this
topic.) Although the parameter values of this study pertain to a specific transport
aircraft, experience has shown that because of the adaptive nature of the nonlinear
washout, modifications to allow application to other vehicles would be minimal.



SYMBOLS

ayray aircraft body-axis longitudinal and lateral acceleration at centroid
location, m/sec2 (ft/secz)

a, aircraft body-axis vertical acceleration (referenced about 1g) at centroid
location, m/sec2 (ft/secz)

ax,ay body-~axis longitudinal and lateral acceleration commands to motion simulator
at centroid location, m/sec2 (ft/secz)

c mean aerodynamic chord

fi,x'fi y inertial-axis translational acceleration commands prior to

! translational washout, m/sec2 (ft/secz)

fs,z alrcraft body-axis translational acceleration (referenced about 1g) at
centroid location, m/sec2 (ft/secz)

g gravitational constant, 9.81 m/sec2

p,q,r body-axis angular velocity commands to motion simulator, rad/sec

Pard4:T4 body-axis aircraft angular velocities, rad/sec

§,§ commanded inertial translational acceleration of motion simulator,
m/sec2 (ft/secz)

¢, 98, ¢ commanded inertial angular position of motion simulator, rad

¢, 0,90 commanded inertial angular velocities of motion simulator, rad/sec

&a,éa,$a aircraft angular velocities, rad/sec

SIMULATOR CHARACTERISTICS

Aircraft Math Model

The aircraft mathematical model, a representation of a Boeing 737-100 aircraft,
included a nonlinear data package for all flight regions, a nonlinear engine model,
and nonlinear models of servos, actuators, spoiler mixers, and other associated
flight hardware. The simulation of the basic airframe underwent extensive valida-
tion, including comparisons with actual aircraft response data and pilot evaluations.
This simulation has been and is used extensively in simulation studies at the Langley
Research Center. For the subject studies, the simulated aircraft was in the landing-
approach configuration with the flight characteristics as approximated in table I,
The flight control system used was the manual mode rather than other modes available,
such as control wheel steering, navigation, or autoland.

Computer Implementation

The mathematical model of the aircraft and the simulation hardware drives were
implemented on the Langley Flight Simulation Computing Subsystems. This system,
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consisting of a Control Data CYBER 175 with the necessarily associated interface
equipment, solved the programmed equations 32 times a second. The average time delay
from input to output (1.5 times the sample period) was approximately 47 msec.

Simulator Cockpit

The general-purpose cockpit of the Langley Visual Motion Simulator (VMS) was
configured as a transport cockpit (fig. 1). The primary instrumentation consisted of
an attitude director indicator (including active flight director bars and speed bug),
a vertical speed indicator, a horizontal situation indicator, an altimeter, airspeed
indicators (both calibrated and true), angles of attack and sideslip meters, and a
turn and bank indicator.

The control forces on the wheel, column, and rudder pedals are provided by a
hydraulic system coupled with an analog computer., The system allows for the usual
variable feel characteristics of stiffness, damping, backlash, Coulomb friction,
breakout forces, detents, inertia, and so forth. The force gradients can also be
provided by the digital computer used to solve the aircraft math model. Selection of
the parameters of control loading system was included in the extensive validation
process for the 737-100 flight simulator.

Vvisual Display

The Langley VMS is provided with an "out-the-window" virtual image system of
the beam-splitter, reflective-mirror type. The system, located nominally 1.27 m
(4.17 £t} from the pilot's eye, presented a nominal 48° width by 36° height field of
view of a 525 TV line raster system and provided a 46° by 26° instantaneous field of
view., The system supplies a color picture of unity magnification with a nominal
resolution on the order of 9 minutes of arc.

The scene depicted in the virtual image system was obtained from a terrain model
board. The state-of-the-art TV camera transport system used in conjunction with a
sophisticated terrain model board, the Langley Visual Landing Display System (VLDS),
is described in reference 5. The maximum speed capability of the system is 229 m/sec
(444 knots), with vertical speed capabilities of +152 m/sec (+30 000 ft/min). The
translational lags of the system are 15 msec or less and the rotational lags are
22 msec or less. The average total visual delay, including computational throughput
delay, was thus less than 70 msec.

Motion System

The motion performance limits of the Langley six-degree-of-freedom base are
shown in figure 1. These limits are for single-degree-of-freedom operation. Con-
servatism must be exercised in the use of the position limits, since these limits
change as the orientation of the synergistic base varies. References 6 to 8 document
the characteristics of the system, which possesses time lags of less than 15 msec.
Thus, the average total motion delay, including computational throughput, is less
than 60 msec (ignoring the lead introduced by washout) and is quite compatible with
the visual delays. The washout system used to present the motion-cue commands to the
motion base is nonstandard. It was conceived and developed at the Langley Research
Center, and it is documented in references 2, 3, and 9. The basis of the washout is
the continuous adaptive change of parameters to (1) minimize a cost functional



through continuous steepest descent methods and (2) produce the motion cues in trans-
lational accelerations and rotational rates within the motion envelope of the syner-
gistic base,

The major motivation for the coordination of rotational and translational motion
is the fact that translational cues are induced by angular displacement of the motion
base in pitch or roll. Therefore, sustained translational cues can be represented on
a motion simulator by tilting the pilot and utilizing the gravity vector to present
the cue. However, the tilt angle must be obtained without pilot knowledge; that is,
the rotation necessary to obtain the tilt angle should be achieved with a rate below
the pilot's sense threshold. Thus the initial portion of the cue, the onset, can
only be represented by translational motion until the tilt angle is obtained.

In the case of a desired rotational cue, presentation of the onset cue by means
of rotation alone results in a false translational cue because of temporary misalign-
ment of the gravity vector. Thus, translational motion is required to offset the
false cue induced by rotational motion, The specific parameters of the nonlinear
coordinated adaptive washout used for the flight phase of this study are presented in
table II. Modifications and additions to the system for the ground phase are pre-
sented in the next section of this paper.

THE NONLINEAR ADAPTIVE MOTION WASHOUT

A brief review of the application of the nonlinear adaptive motion washout
(shown in block-diagram form in fig. 2) to the transport flight regime will be pre-
sented before discussion of the ground phase of motion cueing,

Flight Regime

The high degree of success of the nonlinear washout in the transport flight
regime has been attributed directly to the fundamental difference between linear

washout and nonlinear washout.

Fundamental difference.,- Figure 3 illustrates the fundamental difference in
terms of motion cues between a linear filter and a nonlinear adaptive filter for the
first-order case. The difference is an anomalous rate cue presented by the linear
filter as the pulse input in rate returns to zero., This false cue is most evident
for pulse-type inputs and disappears as the input becomes sinusoidal. Thus, the
difference between filters varies, depending upon the responsiveness of the vehicle
and the pilot's input in each axis but not upon the parameter values of the filters,

Figure 4 presents a comparison of linear and nonlinear washout as applied to the
737 simulation for an aileron pulse input. As shown in figure 4, the linear washout
(fig. 4(b)) represents the roll acceleration (fig. 4(a)) well, ignoring the scaling,
while presenting the false cue in rotational rate. The nonlinear washout shown in
figure 4(c) practically ignores the aircraft roll acceleration reversal of fig-
ure 4(a) at Time = 8 sec in order to eliminate the false rate cue. The importance
of presenting the rotational rate cue properly rather than the rotational accelera-
tion cue is documented in references 3, 10, and 11 and is illustrated in tables III

and IV.

Table III reproduces the data of references 3, 10, and 11 in which the subjec-
tive opinions of seven pilots compare the motion cues produced by the linear (the
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open symbols) and nonlinear (the solid symbols) washout methods under instrument
conditions. The values of the parameters of each washout were chosen as the result
of an attempt to optimize subjectively for the stipulated simulation (i.e., the
737-100 simulated on the visual motion simulator). The same formal evaluation pro-
cess was repeated with nine pilots for motion cue ratings under the visual environ-
ment provided by the VLDS (table IV).

The pilots were asked to rate the motion cues presented by each washout method
for throttle, column, wheel, and pedal inputs about a straight-and-level condition in
a landing approach mode. %F¥ach pilot determined his own evaluation inputs. In addi-
-tion to rating the motion for each type of control input, the pilots were asked to
rate how well the overall motion came to representing that of an airplane, (Does it
"feel" like an airplane?) The rating categories were excellent, good, fair, poor,
and unacceptable, with additional ratings halfway between each of the given
categories,

No problems were experienced with the synchronization of motion and visual cues
with either washout, with the exception of the false rotational rate cues produced in
roll and yaw by the linear washout method. . Table IV presents the evaluation results
for the washouts under visual conditions from reference 11. BAgain, the open symbols
represent the pilot's rating of the linear method, and the solid symbols, that of the
nonlinear method., The first four pilots, represented by the triangular symbols, had
actual 737-100 cockpit experience.

Motion for each washout was restricted to five degrees of freedom because of the
fact that extreme hydraulic noise is induced by the heave motion of the synergistic
base and the fact that only a small amount of vertical cue was available, The small
amount of vertical cue available is due to a combination of the position limits of
the motion base and the short-period frequency of the 737 aircraft in the landing
approach configuration. The cue available for heave under these conditions is less
than 0.059 -~ the product of amplitude, 0.457 m (1.5 ft), and frequency squared (fre-
gquency less than 1 rad/sec), The heave axis was therefore used only to present the
high-frequency turbulence cues.

Longitudinal inputs.- Under both instrument and visual conditions, very little
difference was noted by the pilots for longitudinal inputs. The longitudinal charac-
teristics of the 737 prevent pulse-type responses; and this constraint, coupled with
the coordination of pitch cues with longitudinal acceleration, obscures the funda-
mental difference between the washout methods.

Lateral inputs.-~ The ratings of roll and yaw cues under visual conditions rein-
force the findings of the motion-cue evaluations under instrument conditions. All
pilots rated the nonlinear roll cues to be better than the linear cues. The non-
linear yaw cues were also rated higher.

Overall airplane feel.- The nonlinear washout was rated by all pilots higher
than the linear washout in terms of overall airplane feel. All pilots specifically
objected to anomalous rotational rate cues in roll and yaw with the linear method.
Since the pilots considered roll representation to be most important in terms of
overall airplane feel, the elimination of the objectionable anomalous rate cues is
highly desirable. E ‘




Ground Regime

The approach taken in applying the nonlinear washout to the ground regime fol-
lowed the successful approach previously utilized in transport, vertical take-off and
landing (VTOL), and fighter work (refs. 12, 13, and 14, respectively), that is, to
present as much of the motion cues as possible using nonlinear techniques without
major concern for physiological considerations. As in the past (ref. 3), the fixed
parameters of the washout system were chosen offline by an "analog matching" tech-
nique on fixed-base generated data. The body-axis translational accelerations and
rotational rates of the aircraft were displayed and the motion command time histories
were then compared in an iterative parameter selection process. The resulting param-
eters are presented in table II., Provision was made to either fair over a 0.5-sec
period (during ground/air transitions) from the flight wversion to the ground version
{(or vice versa), or to instantaneously change parameters at touchdown/lift-off., The
asterisk and the dagger of table II indicate faired parameters and instantaneously
set parameters, respectively, An examination of typical motion cues generated by the
ground version of the washout, as well as an examination of additions resulting from
the subjective comments of several qualified NASA research pilots, is presented in
the next section,

The subjective comments of the pilots led to additions to the aircraft mathe-
matical model to provide increased realism to the braking characteristics and the
reverse-thrust characteristics. No dynamics had been provided for either system in
the simulation program, resulting in the instantaneous application of stopping force
rather than a gradual buildup of force., This instantaneous application went unno-
ticed in fixed-base simulations involving ground handling and the same aircraft simu-
lation program. However, the deficiencies were quite noticeable with motion cues.

One major modification to the washout system resulted from the piloted evalua-
tion of the offline parameter selections. In all past motion work at the Langley
Research Center utilizing either the linear washout of reference 15 or the nonlinear
adaptive washout previously described, the scaling parameter on longitudinal accel-
eration, prior to washout, was set to 0.5, a value that is quite conventional (pos-
sibly universal). The value is used, not because a value of 1.0 is unobtainable or
restricted by the motion demands that would be incurred by such a value but rather
because the pilots consistently reject the value of 1.0 as giving too much tilt,
However, in the simulation of decelerations on the ground, the participating pilots
requested the increased cueing provided by a scaling of 1,0. In the instances of
accelerations, however, the conventional scaling was preferred. Therefore, the final
version of the washout for ground handling contains an input scaling of 0.5 when the
aircraft has positive longitudinal acceleration and a scaling of 1.0 when the longi-
tudinal acceleration is negative.

Typical time histories of the simulated aircraft responses and the resulting
cueing are presented in figure 5; illustrations of the braking and reverse-thrust
additions to follow utilize this scaling change. The scaling illustrated in figure 5
shows the net effect of the modification just discussed (input scaling) and the non-
linear adaptive washout effect of limiting the pitch angle in the coordination
process,

One further modification was suggested by the pilots during the evaluation and
was incorporated into the ground handling washout system., This modification was
suggested because of the objectionable hydraulic noise induced by the increased
translational motions (increased over those used in the flight regime) being com-
manded by the ground-handling washout system. The pilots felt that the contribution
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to the translational cues pfesented by these large-amplitude low-frequency movements
did not offset the distraction incurred in that presentation. (The typical excur-
sions of 1 m at frequencies around or below 1 rad/sec were near perception threshold
levels.) Evaluation of the system with the translational gain parameters fixed at
zero confirmed that subjective impression. Consequently, only the rotational degrees
of freedom were used once the aircraft had landed., This is true even for presenta-
tion of the bump at touchdown, as illustrated in figure 6. Highly realistic touch-
down bumps for each of the three landing gears of the 737 are consistently possible,
even with no translational motion,

CUE ANALYSIS AND PILOTED EVALUATION

The ground-handling environment to be examined in the context of motion cueing
concerns those cues encountered after touchdown and/or prior to lift-off, The
changes required in the math model for a more realistic braking and reverse-thrust
representation will be discussed after the presentation of the modifications made
prior to pilot evaluation. The modifications included the addition of a representa-
tion of runway roughness and the fairing of washout parameters from the flight value
to the ground value (only done when necessary to prevent discontinuities induced from
instantaneous changes).

Runway Roughness

No attempt was made to provide a sophisticated model of the runway surface with
crown effects, surface conditions, etc., Instead, an implementation of the equation

rad d
RR = 0,00057 m x sin[(?o-—i— + 0.1 —_ra% Groundspee&) X Time]
sec sec-knots

produced a value XR that was added to the six actuator drive signals. Upon evalua-
tion, the resulting velocity-dependent runway roughness was considered representative
by the pilots.

Fairing of Parameters

The translational accelerations and rotational rates of an aircraft are quite
limited once the aircraft is on the ground; hence, the washout system may be less
restrictive, The problem of coordination of the lateral degrees of freedom is also
much simplified on the ground because the motion base itself may be considered a
ground "vehicle." (Alignment of the gravity vector is natural.) Reference 16 dis-
cusses the various coordination burdens for washout degrees of freedom in some
detail. For a ground vehicle, including for our purposes motion bases, a negative
roll angle induces a positive sway force - a condition unlike that of conventional
aircraft in flight. Therefore, the lateral coordination burden is more amenable for
ground operation than for flight.

Because the nonlinear adaptive washout is a dynamic process, fairing of the
changes in system parameters from air to ground values was used to prevent the intro-
duction of discontinuities, When it was possible to instantaneously change from one
value to another, that mechanization was utilized.



Figure 6 illustrates typical simulated aircraft responses and the resultant
motion cues produced by the system prior to touchdown, at touchdown, and following
touchdown. (Runway roughness is not depicted.) Motion cues for a typical high-speed
turnoff (about 60 knots) are shown in figure 7.

Problems of Braking

Piloted evaluation of the motion cues provided for the ground environment imme-
diately revealed a problem with aircraft braking. Rotational force applied to the
rudder pedals to produce the braking action resulted in a violent jerk in the surge-
pitch coordinated cue. The problem was attributed to the lack of dynamics asssoci-
ated with the braking system, which resulted in an instantaneous application of the
pilot's braking force. Time histories that illustrate the problem are presented in
figure 8. The addition of a second-order low-pass filter with a damping of 0,707 and
natural frequency of 4 rad/sec between the brake-pedal inputs and the landing-gear
model yielded the behavior illustrated in figure 9; this resulting behavior was
acceptable to the pilots. The time histories of longitudinal acceleration and pitch
rate are of primary interest in this comparison.

Problems of Reverse Thrust

Piloted evaluation revealed a problem with the application of reverse thrust
similar to that with the application of brakes. Figure 10 shows the effect of the
instantaneous change from positive idle thrust to negative idle thrust. Figure 11
more dramatically illustrates the problem, with a change from a high positive thrust
value to negative idle thrust, The thrust instantaneously changes sign, and then, as
the engines spool down, thrust slowly reaches negative idle.,

Therefore, dynamics, in the arbitrary form of first-order lag filters with a
subjectively selected 0.2-sec time constant, were added between the throttle position
inputs and the engine models to prevent the instantaneous reversal of thrust. Fig-
ures 12 and 13 show the effect of these changes on the situations depicted in fig-
ures 10 and 11. Figure 14 illustrates a typical touchdown and deceleration utilizing
both reverse thrust.and brakes, followed by an acceleration. The pilots found these
changes -to be quite acceptable,

CONCLUDING REMARKS

In the process of providing motion cues tailored specifically for a ground-
handling environment, an environment that is much less demanding than the flight
environment, three notable facets were encountered. ' The 1.0 scaling desired by the
pilots for representation of negative longitudinal acceleration, as opposed to the
traditional 0.5 desired for positive acceleration, came as a complete surprise to all
persons involved in the process.

The second facet dealt with the nonuse of translational motion once the aircraft
had landed. The participating pilots collectively felt that the rotational degrees
of freedom supplied the necessary cues without the distracting hydraulic noise
incurred with the translational motion, which provided, they felt, little additional
cueing information.



The third facet, concerning the necessity of modifying the modeling of the brak-
ing and reverse thrust system, came as no surprise in the sense that the fidelity of
motion cues is dependent in the first instance on the fidelity of the mathematical
model providing the inputs to the cueing system.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

January 5, 1983
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TABLE I.- LINEAR APPROXIMATION OF THE FLIGHT CHARACTERISTICS OF
THE 737-100 AIRPLANE

Weight, N (1b) $000000000000000000000000000000 000 0000000000000 0s0 000 400 340 (90 000)
Center of graVitY U o IS S 1]

Flap deflection, deg 6 0000 0000000000000 0000000000000600000000000600000CC0O0OCRGOIIGITEDS 40

Landing JEAY 000000000 0000000000600600000000000000060000000000000000006000000000000 Down

Damping ratio for -
Short period eecesneosssessessssseser st essestesssssessccssrssnssesssscnsescsss Ue562
Long period 9 0000 0000000000600 000080° 0000006000000 000000000000000006000600006000000 0.089

Dutch roll

0 8 9 0000 00000200000 00000 0000000000000 0000000000000 soes0ssssnccocsscscs 0-039

Period, sec, for -
Short period $0 0006000000 0000000600000000000000000000000000060000000000000000TD0S 6.30
Long period © 0 0000000000 0000000060600000000000000000000006000000000000000000000¢0 44.3

putch roll

0 0 02 00000000 0000000 0008000 P BP0 OO ODOREOCEOORENONPSOEOINPSNPOSESOEPOPIEOIEOIEINPOINOIOEOIETESETSES 5.12
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TABLE II.- WASHOUT PARAMETERS

Parameter

Flight
version

Ground version

after pilot
evaluation

Components of vector from aircraft center of
gravity to motion-base centroid:
Rx, M eeeoss00s00c0e00s0tsssossosscssotoscscsscssssscccssessssosns
R’m 9 0 008 000000000000 0000006000000 0008000002000 080000000
RZ' M ceveceoveceocossetrtssosssrssetosesossssscscocssossososae

Longitudinal breakpoint, X4, m/sec

0900000000000 000000000

Longitudinal scale factor, Sy

o ® e 0000000000000 00000000000

Lateral breakpoint, vy, m/sec2
Lateral scale factor, S Y
Vertical breakpoint, z1,'m/sec
Vertical scale factor, S eescecsscseccssrsesasssransiee
Roll breakpoint, pq, Fad/S€C teeevrsccncsseesssnscsasssnas
Roll scale factor, S cecssecesesssssesscccssssansssnons
Pitch breakpoint, q1,,rad/sec 06000 c000 0000000000000 0000 0
Pitch scale factor, S_  eeceesecescesssccsscsscssssecscns
Yaw breakpoint, ry: TAA/S€C seeeeeesesccscncssceocnocncnss
Yaw scale factor, Sr,o 800 csses00s0cessstsnsesesnsnsnsone
Pitch rate weight, Wer m2/rad2-sec
Longitudinal position penalty, b, sec™4
Longitudinal velocity penalty, c,, sec™2
Longitudinal damping, dx' Yad/SEC sseeesescaccsscasscscecs
Longitudinal frequency, eyr rad/sec
Longitudinal coordination gain,

000 tersoes0000c0s00000000

0000000000000t sssss0s000 0

9006060000600 0600000000000
®eeeo0sccovcocsorcl

YX’ rad-seC/m ®e0s0s000000

Longitudinal gains:

2
K sec-/m © 0000000000 00000000000000000000000000000000
lex, Sec3;m . X
élx’ ® e 000 000 ® 5 000000 O 00O GOS0 OO OO OO NN SSSPNS LN
Longitudinal gains on initial parameters:
K. r sec-1 ® 0O 0 00000000000 OO OO O 0O OSSN POENINOINRIOINOSOEOINOBLIEOEDS
i, Ax -
. s SecC © 90000600000 0000606000000000000s000s0s0sssotere
1]5,x

Limits on longitudinal variables:

® 90000000000 0000000060000000090 0000000600600 006006000000

A
X,MIN

00 0600000000000 00 0008000000000 000CFOECEOISIIOIBINOIEBOIIPBROOIES

Ax,MAX

6x,MIN

6 ® 0 00000 000000000 009000000000 0000000000000000000000

X, MAX
)\. MIN ..0............'0'......000.....0.0'.........'000..

X,
L3

© 0 0000000000000 0006000000000000000000000060000000000e

X, MIN

12.192
0.2286
1.7399
3.6576

0.5

2.4384
0.5
1.2192
0.5
0.18
1.0
0.5
1.0
0.15
1.0
0.00929
0.01
0.2
0.707
0.25
0.164

0.517
0.010764

1.0

-0.06

-1000

{

0.5 (a
*1,0 (a§

12,192
0.2286
1.7399

*2.4384

> 0)

< 0)
2.4384

0.5
t4.5720
0.5
0.18
1.0

0.5

1.0
0.15
1.0
0.00929
0.01
0.2
0.707
0.25
*0.56

*3.22917
0.010764

1.0
*"001

-1000

See footnotes at end of table, p. 15.
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TABLE II.- Continued

Parameter

Flight
version

Ground version

after pilot
evaluation

Initial
A (o)
6x(0)

Roll rate weight,

Lateral
Lateral

Lateral
Lateral
Lateral

Lateral
K
K)\IY:

S,y
lLateral
K,
Kl’ Ay
i, 8,y
Limits o

AY,MIN

erMAX

ay,MIN

6Y,MAX

Ay,MIN
6y,MIN

Initial

conditions:

O 0 00 00 60 000 000000000 B 000N OO OO OO SN OO BN OLEESN NSNS LOEOSSDISIDS
w,,, mz/radz—sec2

position penalty, by, sec”

velocity penalty, c_, sec™2
damping, dy, rad/sec
frequency, " €., rad/SeC2 ceeeeeeesssocssssccnnssoos
coordination Jain, Yy' rad-S€C/M sesecscssscscccas

S0 c0 0000000000000 00000
LI A A O SN S AP I A IO SRR AN B N Y
® e 0000000800000 0000000

gains:
sec3/m

B 600 0000000000000 000000000000s000000000

SeC3/m2 ® 0 0000000060008 0000200006000 00000000080000000

gains on initial parameters:
’ sec™
' sec™

® 0 0000080 CEPCEPCLIIINOOIONPOCCEOEOSIOCEINOIOENOEILIOIOTISLES

0000000000603 0000006000000000000000000000000

n lateral variables:

...0D.Q0.........0....O...'....Q..........l'.......
9 0 0608000000600 0000000000080000600008000600000000000s000
® 06 6000000000060 00000000000800600000800000060006000060000
0000000080000 000000000000000000000000000000000s0000
.Q..'...I.00.00.0.00...O...0..0.0.!.00.0.0..000;00

® S 000 ¢ 0000 0P VOPCPPG0PPNO000000000000000000000s00s00

conditions:

1.0

0.5
0.00929
0.1

2.0
1.2727
0.81
0.0328

0.517
0.269098

1.0

0.5

- 0.00929
*0.01
*0.2
t0.707
to.25
*0.0656

*3.2292
0.269098

Y 0.2 t0.4
BY(0) seeerrrnrsresceennniscesssnesiesstssssesecassnnnons 0.3 0.3
Vertical position penalty, bz, SECTT Leevescsvecccscssesess 0.1 0.1
Vertical velocity penalty, Cy SEC % ceeevscscscesessocsnne 0.1 0.1
Vertical damping, dz, YAad/SEC esescecceccssesscsccsscsccos 1.2727 1.2727
Vertical frequency, e, rad sec2 eeo0essssessssscsssscscccce 0.81 0.81
Vertical gain, K ,Z! sec /m csscescessesecssccsssssssts e 0.516668 0.516668
Vertical gain on initial parameter, Ki,n;z' S€CT | seescens 0.05 0.05
See

14

footnotes at end of table, p. 15.




TABLE II.- Concluded

Parameter

Flight
version

Ground version

after pilot
evaluation

Limits on vertical variables:
n .........0.....'....QO..'.Q.0..00."“'..."..00..

z,MIN

‘n ® 6 0000000800000 060000000000800000000000000008000s000

Z , MAX
nz MIN ...‘...0...0.00.‘00".....000'...’.0'..0.0..'..0'\.

Initial condition,
Yaw
Yaw
Yaw
Yaw

@0 0 0 00 0 00000000 OOOPOEOEBSOIEPIOEQSTEPOSIOSITSDIDS

n (0)
z secC -4

position penalty,

time constant, %ad/sec2

galn, ’ sec/&ad 0000000000000 00000000 00000000000

gain on 1n1t1al parameter, Ky R sec™!
M

9000000000000 000000000s0000

Limits on yaw variables:
0 00 0 08 0060000006060 0000000000008 OO0 E OSSOSO EIOININOEIEOLDBDLIISISPOEOIOS

My MIN

® 0000000000000 00P000000600000060006000600860060 000000000

Mg, MAX

n(b’MIN O 0 000000600600 0600000000000 00000060000600800000000000000

Initial condition,

nq)(o)

Lead compensation parameters:

Cx,A, sec
sec

Y,A'
z,Ar Sec

® 0 00 0000000000000 00000000C0000000

00 0000 000000000000 R PPOODPSOELSNIOEOEIBIOOIOESEIOPIPOIOTSTIOEDS
9 0 00 00000900 OOBEOEBIOOELOOEOGESNOEOEOIEOEOININPBSLOEOSEOEOSEDRPDNEOSEESDOD

C

X,V' SEC eeesecesescctcsssnsososesscssscssssssssesctssssssoe
v,V SEC sevescvvcccscsssscccsocssscescsocncssccssssssssesossse
7 S€C seeeveceretsecsssscccseseccscssnsssscssescsnsesne
SEC eseseveetscssssvessessrsscosoccsscccsoncosccssosscesse

’
C¢,
C/, sec
C r Sec ® 0 0 0000000008000 000000000 OPCOOOONEINOBOEIEOGOINOCESEOEIEOETISIONTTES

Gravitational constant, g, m/sec2
Program step size, h, sec

008 000000000008 060060060000000006000000606060000000s00e00

® @0 0000000000000 0 00000000 IPROETSIES

0.0069
0.,0069
0.0069
0.15
0.15
0.133
0.12
0.12
0.12
9.81
0.03125

0.0069
0.0069
0.0069
0.15
0.15
0.133
0.12
0.12
0.12
9.81
0.03125

*Faired parameter.
*Instantaneously set parameter,
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TABLE III.- PILOT RATINGS OF MOTION CUES FOR THE
LINEAR AND NONLINEAR WASHOUT METHODS
UNDER INSTRUMENT CONDITIONS

RATING
HALF- HALF- HALF HALF-
INPUT EXCELLENT WAY GOOD WAY FAIR WAYW POOR WAY UNACCEPTABLE!
D>avoory d
THROTTLE >aveon <
a ol by
COLUMN A <4 @ [<APpven a)
WHEEL|ROLL, » <AV n 40 AVOD)
AND
PEDAL| YAW v e (pdaem O |4 T >AaOD
OVERALL
AIRPLANE [ ] PeA | VOB | O |D Q| ©C | aVD
FEEL
PiLOT LINEAR WASHOUT NONLINEAR WASHOUT
1 a A
2 v v 737 COCKPIT
3 > > EXPERIENCE
a4 < <
5 a a
6 o .
7 @] [ ]

TABLE IV.- PILOT RATING OF MOTION CUES FOR THE
LINEAR AND NONLINEAR WASHOUT METHODS
UNDER VISUAL CONDITIONS

RATING
HALF- HALF- HALF- HALF-
INPUT EXCELLENT, WAY GO0D WAY FAIR WAY POOR WAY UNACCEPTABLE
A0 O0MvV b
THROTTLE ® AR .«med vov ><><>
A Q<D0
COLUMN A8 avedony e
i , 1§
WAI\-IIEBL ROLLi 4 veqlit @ > o
; T qe O0qv<dO AQ
PEDAL| YAW < ARVIOO
OVERALL RAa0/005d
AIRPLANE .
FEEL A< (vron
PILOT LINEAR WASHOUT NONLINEAR WASHOUT
1 Jay A
2 v v 737 COCKPIT
3 > » { EXPERIENCE
4 Q 4
5 o n
6 o .
7 0 o
8 o .
9 ¢ q
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Roll

Yaw
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Figure 1.- Motion

Position

+30, -20°
+22°
+32°
+0.762, -0.991 m
+1.219 m
+1.245, -1.219 m

Velocity

+15 deg/sec
+15 deg/sec
+15 deg/sec
+0.610 m/sec
+0.610 m/sec
+0.610 m/sec

performance limits of the visual

Acceleration

+50 deg/sec2
+50 deg/sec2
+50 deg/sec
+0.6g9
+0.69
+0.6g9
I~79-312

motion simulator.
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Figure 2.- Block diagram of coordinated adaptive washout.
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Figure 3.- Response of first-order linear and nonlinear
filters to a pulse input.
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Figure 4.~ Continued.
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Figure 4.- Concluded.
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