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SUMMARY

An evaluation of the effect of nonlinearity on convergence of the local linear
and global linear adaptive controllers is presented. A nonlinear helicopter vibra-
tion model is selected for the evaluation which has sufficient nonlincarity,
including multiple minimum, to assess the vibration reduction capability of the
adaptive controllers. The adaptive control algorithms are based upon a linear
transfer matrix assumption and the presence of nonlinearity is shown to have a
significant effect on algorithm behavior.

Simulation results are presented which demonstrate the importance of the
cauticn property in the global linear controller. Caution i{s represented by a
time varving rate weighting term in the local linear controller and this is found to
improve algorithm convergence. Nonlinearity in some cases i3 found to cause Kalman
filter divergence. Two forms of the Kalman filter covariance equation are inves-
tigated, Several deficiences are isolated in the adaptive controllers and
recommendations presented for improvement. Areas requiring further research are
outlined.

INTRODUCTION

Adaptive control techniques for higher hn{mgnsc control (HHC) of helicop;er
vibration have been used in wind tunnel tests !*9+3 and simulation models®:>:8,

A summary of this activity {s reported in ref. 3 and ref. 5. The use of adaptive
control concepts rather than classical coustant gain controllers has emerged because
constant gain controllers have rexulted in unsatisfactoryv vibration reduct ionl=8,
Nonlinearity has been suspect as one possihle explanation for the poor results,
however most research has focused on using the linear transfer matrix model in
adaptive controller design. The adaptive controllers treat the transfer matrix as
an unknown but time varving quantitv, and thus the adaptive solution accounts for
nonlincarity {n an indirect manner. Although nonlinearity is not directly

accounted four in the control design, the demonatrated pgrsozmancc of the adaptive
control solutious have been successful in manv cases 124,39 an investigation of
nonlinearitv on the convergence behavior of adaptive controllers which are based
upon the linear transfer matrix is presented.

A nonlinear model assumed to be rupresentative of vibration is selectud for the
invest{gation. 7The model is gelected to be complex ecnough to represent quadratic
nonlinearity and yield multiple minimum solutions of the objective function, vet
simple enough to provide a clear pciture of algorithm convergence behavior. Simula-
tions and graphical presentation of the vibratfon model are presented.

Three control voncepts are investigated; 1) the local linear adaptive controller
reported in ref. 5, and ref. 6, 2) the global linear controller (deterministic) of

ref. 1 and ref. 3, and 3) the global linear controller with caution of ref. 1 and ref.

The local linear model of ref. 5 and ref. 6 is similar to that in vef. 4 and thus it
is expected to represent similar behavior. In addition, the local linear controller
includes constant rate weighting as well as time-varving rate weighting. Limited
control authority (i.e. upi, ~ U+ upeye ) is emploved as well as control rate
authority limits. The control algorithms {nvestigated are simulated as close as (s
practical to the manner in which thev would bhe used in wind tunnel, flight tesxt, or
simulation experiments.



JU v »
B

Since the algorithms inherently contain a linear Kalman filter, the effect
of nonlinearity violates the assumptions used in the Kalman filter derivation.
This model mismatch can lead to Kalman filter divergence. The validity of the
Kalman filter estimate and covariance is discussed.

The results presented attempt to quaniify the importance of nonlinearity on
adaptive control algorithm performance. The simulation model used in the investiga-
tion, although of limited complexity, is believed to represent the type of non-
linearity encountered in actual helicopter vibration. Thus, the convergence behavior
of the adaptive algorithm can be considered as representative of that expected in
wind tunnel or flight test application.

Au
AUCE

u u
min’ max

Aumin’Aumax

SYMBOLS
Control matrix used in the global and local linear vibration model
in Eq. (2.6) and Eq. (2.20), respectively
estimated control matrix
cost function from time step k
denotes expected value
denotes conditional uoxpected value
general nonlinear vector valued function

measurement matrix used in the Kalman filter; for the global model
defined in Eq. (2.14), for the local model defined in Eq. (2.27)

time step number

expected value of the cost function

control index number used in Eq. (2.11) and (2.12)
Kalman gain matrix defined in Eq. (2.16)

time step number

Parameter Covariance matrix used in Eq. (2.17)
weighting matrix on the state (vibration amplitude)
individual elements of the weighting matrix
weighting matrix on the controls

rate weighting matrix on control change

control vector

optimal control for the global linear adaptive controller, given by
Eq. (2.10)

control vector change from kth to k+l step

certainty equivalent control solution for the local linear adaptive
controller computed in Eq. (2.26)

minimum and maximum control magnitude iimits, respectively
minimum and maximum control change limits, respectively

process nolse covariance matrix

R S o e i W, < ol DR,
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measurement noise covariance matrix
discrete time zero mean white measurement noise

discrete time zero mean white megsurement noise on the difference
between two successive measurements

state vector (vector of vibration sine or cosine amplitude component)
state vector with zero control
state vector of vibrations in the nonlinear model

measurement vector

information set YN-l - {y“‘l, yn—ﬁ'.‘.'yl}

scalar step-size parameter used in Newton-Raphson algorithm
parameter vector in the nonlinear model of Eq. (2.1)
estimated parameter vector

denotes transpose

denotes matrix inverse
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SIMULATION MODEL AND ADAPTIVE CONTROLLERS

This section summarizes the simulation model and the adaptive controllers used
in this investigation. These control algorithmg are the same as those reported in
ref, 3 and ref. 5 and a complete description of the control algorithms are presented
in this section for completeness. Three basic controllers are investigated; 1) the
global linear controller of ref. 1 and 3, 2) the global linear controller with
caution of ref, 1 and ref. 3, and 3) the local linear adaptive controller of ref. 5
and 6.

Simulation Model and Overall Approach

The nonlinear simulation model is selected to contain significant noulinearity
which includes up to second order terms of a Taylor series 2oxpansion about zero HHC.
The simulation does not represent a physical helicopter model but is chosen based
upon the objective to assess the importance of nonlinearity on control algorithm
convergence. The nonlinear model parameter values were obtained from ref. 7. The
model selected is a subset of a larger model used for the Controllable Twist Rotor
(CTR) aeroelastic simulation program (ref. 7). Ref. 7 parameter values were chosen
because of their availability and the fact that significant nonlinearity of HHC is
present in the model. The signs were changed on the nonlinear terms to yleld
multiple minimum solutions. It was found that when using the original signs on
the nonlinear terms the miuimum cost function was nearly the same value as with zero

HHC. Therefore, the signs were altered to simulate a more reaiistic multiple minima
vibration problem.

The nonlinear simulation model used is

2 2
xl(k+l) - Ol + 92 ul(k) + @3 uz(k) + @4 ul(k) + @5 uz(k)
+ 66 ul(k) “2(k) 2.1)
2 2
xz(k”'l) = 07 + @8 ul(k) + 99 uz(k) + @10 ul(k) + 011 uz(k)

+ 012 ul(k) uz(k)

where the state x; and x; represent hub shear and blade bending moment amplitude
in 1bs. and in -lbs., respectively of 4 per rev vibration (for a 4-bladed rotor).
The controls uj; and uj represent higher harmonic control amplitude in degrees.

The simulation parameter values are

ESWRY. 3



ORIGINAL PAGE IS
OF POOR QUALITY

61 = 287.3 97 = 4410,
62 a =25,1 Ga = =32.5
O, = +14.4 e, = =54.0
3 9 (2.2)
04 = -6.4 @10 = -60.6
96 = 46,9 012 = 498.6
The measurement model is
y, (k) = x. (k) + w, (k)
1l 1 1 (2.3)

yz(k) - xz(k) + w, (k)
where w; and wy are zero mean gaussian random white noise sequences with covariance

E{w(k) wT(j)} - WGk (2.4)

3

where Wy = 282 gnd Wa2= 4402, This covariance represents a 10% noise level on the
model of Eq. (2.1) with zero HHC.

Examination of the magnitude of the parameter values of Eq. (2.2) reveals
significant nonlinearity due to the squared terms and cross-product HHC.

The simulations performed are intended to represent the algorithm convergence
about a steady flight condition. The speed of convergence and stability of the
algorithm at a steady flight condition will determine to a large degree the
algorithm behavior as the helicopter maneuvers or changes flight condition. If
convergence is rapid and the algorithm very stable, then the control solution
may be more suitable for a varying flight condition. Slow convergence behavior or
poor stability of the algorithm indicates that the algorithm may then have difficulty
keeping vibrations low during changing flight conditions. Thus, the convergence
behavior about a steady nonlinear condition can be used qualitatively to assess
vibration reduction capability in maneuvering flight.

The overall approach taken in this investigation, is to use the model defined in
Eq. (2.1) through (2.4) as the true model. The adaptive control algorithms are
based upon a linear representation to this model. Both a 1local linearization
and global linearization is used.
Global Linear Adaptive Controller

The nonlinear model of £q. (2.1) is represented as
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X(k+l) = x, + £(0, u(k)) (2.5)

where x, 18 an unknown parameter vector end £f(0, u(k)) is the general nonlinear
function (Eq. (2.1)) of parameter Q and HHC u(k). The state of the nonlinear :
model is denoted by x(k+l). :

The global linear model representation is

x(k+l) = x, + B u(k) (2.6)

where B is a matrix of unknown parameters. The model of Eq. (2.6) is intended to
represent the global nonlinear model of Eq. (2.5). As such, the parameters in b
will not correspnnd in general to the linear parameters in Eq. (2.1). The unknown
elements of x, and B are denoted as O with covariance P.

Measurements are made on the nonlinear simulation model and are given by

y(k) = x(k) + w(k) (2.7)

where

Efw(k)] = 0, E[w(k)w (j)] = ¥y (2.8)

The geasral vibration criterion to be minimized is the expected value of the
cost from step O to N

3(0) = E{C(0)} = E,E KT (k) Q x(0) + u"Ge-1) R uli-D)] (2.9)
k=1

A one atep control solution is obtained by minimizing Eq. (2.9) for N-1 (ref. 3
and ref. 8)

u*@-1) = -[r + E(BT @ B|YN )11 £(8T g x [N (2.10)

where the conditional expectation is given by

n
T N-1,  aT . 2
E(B- Q B =B QB+ 2.1).
(8" Q BlY ) Q jgl qj COV(Bji’B:]Q) ( )
T N-1, T =
E(B" Qx |Y 1=8 Q& + jgl 9y cov(B, ,x ) (2.12)

~

The parameter estimates B, x and the covariances are obtained from a linear
Kalman filter where B and x ®are defined as
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A 6. &
2 =01 , B = [ 2 63 (2.12a)

The global linear model of Eq. (2.6) is modeled as

y(k) = H(k) O + w(k) (2.13)
where
1 ul(k) uz(k) 0 0 0
H(k) = (2.14)
0 0 0 1 ul(k) uz(k)

The Kalman filter estimate of O and covariance is given by (ref. 9

B(k#l) = B(k) + K(k+1) (y(k+1)) - HE (k) O(K)) (2.15)
T T -1

K(k+1) = P(k) H (k) (W + H(k) P(k) H (k)) (2.16)

P(k+l) = P(k) - K(k+1)H(k) P(k) + V (2.17)

Eqs. (2.15) through (2.17) represent the c.iginal Kalman fcrm of the solution
for estimation of parameters ©. An alternate form for the covariance equation is
also investigated which retains positive definiteness better than Eq. (2.17). The
numerically more accurate alternate form (ref. 10) is

P(k+l) = (I ~ K(k+l) H(k)) P(K)(I - K(k+1) H(K))T + K(k+1) W KL (k+l) + V
(2.18)

A third form of the Kalman filter which replaces the process noilse covariance
V in Eq. (2.17) 1is obtained using an exponentially weighted least square formulation
(ref. 9). This form is obtained from Eq. (2.16) and (2.17) by multiplying the
covariance at step k with the forgetting factor 1/A, where X < 1 (typically chosen
to be .99)., The exponentially weighted form is obtained by replacing P(k) with
P(k)/A and setting V = 0. The forgetting factor replaces the process noise
covariance and keeps the covariance and Kalman gain from approaching zero as more
ar.d more data is processed.

An advantage of the forgetting factor form over Kalman form in Eq. (2.16) and
(2.17) is that only a singie number ()) need by selected a priori in using the
filter. In the Kalman form the covariance Vv has n disgonal elements, one for each
parameter.
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It was found that sometimes loss of positive definiteness occurred with the
covarianze equation of Eq. (2.17). Because of this the alternate form of the

covariance equation (Eq. (2.18)), and the filter with forgetting factor P(k) replaced
with P(k)/A) are used throughout the simulations.

Local Linear Adaptive Controller
The local linear model represents a small perturbation about the curreant HHC
value. Evaluating the measurement y(k+l) at time step k+l in Eq. (2.7) and
subtracting Eq. (2.7) from this results in

y(k+tl) = y(k) + f(u(k), ©) - £(u(k-1), 0) + w(k+l) - w(k) (2.19)

Approximation of the nonlinear functions in Eq. (2.19) and linearizing the
right hand side of Eq. (2.19) results in

y(k+l) = y(k) + B(k) Ou(k) + w'(k+l) (2.20)

where at time step Kk,

Au(k) = u(k) - u(k-1) (2.21)
I

B(k) = 201k = 3ulietl (2.22)

w'(k+1) = w(k+l) ~ w(k) (2.23)

The local model of Eq. (2.20) has twice the noise covariance of the global
model as shown in Eq. (2.23). The noise covariance is

208y, 5 L=

Efw'(k) w'T(] ={-Wé  , k=1, j=2andk=2, =1 (2.24)

ki

\0 , for all other values of k and j

As shown in Eq. (2.24) the measurement noise is no longer uncorrelated upon
taking the difference between two successive measurements. The Kalman filter formula-
tion which follows assumes the noise is uncorrelated with covariance equal 2W ékj for
k = § and zero {or all other values of k and j. The effect of this assumption on the
accuracy of the Kalman filter estimate is not known, however the correct correlated
form can be implemented as in Ref. 10,

The glcbal vibration criterion to be minimized is

N
J(0) = E{c(0)} = stz y (k) Q y(K) + u"(k-1) R uk-1)
kel

+ b (k-1) g, Au(k-l); (2.25)

A e ¢

Noollw R Ao
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The rate weighting term R, 1s included and penalizes the com ol for taking
too large a step size. It is noted that the rate weighting term is similar to the
caution property, however the value of R, must be selected as a design parameter.
The caution property in the global model™is based upon the covariance matrix P,
which is automatically determined in the Kalman filter and is also tima varying.

The control required to minimize the objective function of Eq. (2.25) for
one time step is

bu g ()= -(R + Ry + BT Q 81T q yk) + R u(x)) (2.26)

where B is obtained from a Kalman filter. A better approach is to estimate B and
§(k) with a modified Kalman filter. However y(k) is used in Eq. (2.26) to be
consistent with the formulation used in ref. 5 and ref. 6.

The Kalman filter solution of Eq. (2.15) through Eq. (2.17) is used with the
following definitions

bu, (k Au, (k) 0 0
H = {- o "2 (2.27)
Y 0 Aul (k) Bu, (k)
y(k+l) replaced by y(k+l) - y(k) (2.28
W replaced by 2W (2.29)

The local linear adaptive controller consists of Eq. (2.26) and definitions of
Eq. (2.27) through (2.29) used in the Kalman Filter. The alternate form of the
covariance equation and forgetting factor form is applicable.
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GRAPHICAL DESCRIPTION OF THE NONLINEAR VIBRATION SIMULATION

This section presents a graphical description of the nonlinear vibration model
defined in Eq. (2.1) and Eq. (2.2). In addition detailed plots are presented of
the one step deterministic optimizatior criterion (i.e. sum of squares of vibration
sine and cosine amplitudes). A Newton Raphson off-line type algorithm is used on
the objective function to obtain the HHC which minimizes the objective function.

Graphical Description of the vibration Model

The equations used for the nonlinear vibration model are shown in Eq. (2.1)
and Eq. (2.2). The vibration component amplitude term x, is shown plotted in
figure 1 and x, is shown in figure 2. The vertical axis represents the vibration
component amplitude and the horizontal axes represents the HHC u; and u;. The
control axis is shown for -10° < u; < 10° and -10° < u, < +10°. "The nonlinear
curvature (quadratic) is clearly shown in figure 1 and figute 2. 1If nonlinearity
was absent the curves would describe the surface of a plane.

The objective function for minimization is selected atc shown in Eq. 3.1.

J = E{q1 xi(l) +q, xg(l) +r ul(O) +r ug(O)} (3.1

where, q; = lO q) = 5 x 10 8, r1," 10 Qnd ry = 10-4. The values of q; and
qy were chosen approximately as l/xl and l/x at zero HHC, respectively. The
con“rol weightings r; and rp were chosen very smzil and thus their effect is
negiigible. The criterion for minimization (Eq. (3.1)) is shown plotted in
figure 3 through figure 5 with different ranges of u; and v... Figure 3 shows
the cost plotted for -10 < u; < +10 and -10 < u.. < +10. The value of J at

u; =u, = 0 1is

J - 1c>'5(2a7.3)2 +5x 10'8(4410)2 = 1,797 (3.2)

ul-uz-O
A slight "bubble" occurs centered around u;=u,=0 as seen in the figures. This is
more clearly seen in Fig. 4 and Fig. 5. This results in a local meximum and the
cost decreases as u; and uj move away from the [0, 0] coordinate and is more clearly
shown in figure 4 and figure 5.

The graphical description of the cost function of figure 3 through figure 5
indicates the presence of multiple minima solutions as well as a local maximum.
The range of u; and up plotted in these figuras does not provide sufficient
resolution to pinpoint “he local minimum solutions., In figure 5, 4 regions are
defined corresponding to the 4 quadrants I, II, III and IV, These are defined as

Region I : 0 < u, £ +10, -10 < 4, < 0
Region Il : 0 < u < +10, 0 < u, < +10
Region ITI:-10 <u, <0 , 0<u, <10

10
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Region IV : -10<u, <0, -10<u

1 2

Part of Region I (0 < u; < 10, -1 < up < 0) is shown graphically in figure 6
which shows the presence of a valley. Parts of Region I and II combined (-10 < u, <
+10, -1 < uj < 0) is shown in figure 7 which shows the presence of two valleys.
Although the graphical portrayals allows a detailed examination into the shape of
the nonlinear surface the precise minimum point car..ot be determined. A Newton-
type search algorithm is used to locate the local minimum solutioms.

Newton's Search For Local Minimum Solutions

A modified Newton-Raphson algorithm was applied tO c.:e cost function of Eq.
(3.1) with the nonlinear vibration model of Eq. (2.1) and (2.2). The modified
Newton method iterates on the cost while updating the HHC u; and u, at each
iteration according to

2 -1

1 3°J a
u ut +o dudu du (3.3)

The gradient %% and second gradient (Hessian) are computed numerically in the
Newton algorithm., The step-size parameter ¢ is chosen to keep the magnitude of
the update from iteration to iteration reasonably small.

The Newton-Raphson algorithm was started at three different starting points
corresponding to Region I, Region III, and Region IV of figure 5. Three local
minimum solutions were found as follows;

Region I : u'=[5.37 -,729]T , J* = .3035 (83% reduction)

Region III: u*=[-6.15 2.58]T , 1% = .02z (98.77% reduction)

Region IV : u*=[-9,03 -.291T , J* = .025 ¢98.60% reduction)

The cost J for zero HHC input was computed in Eq. (3.2) (J = 1.797 with uj =
up = 0). The percentage reduction is 83%, 98.77%, and 98.60% for Regions I, Il1I,
and IV, respectively. Increasing the allowable iterations in the Newton search
would permit slightly smaller cost values, however the % reductions obtained can
be considered as the approximate local minimum solutions.

The local minimum solutions obtained using the Newton algorithm are used for

comparing the minimum values obtained using the adaptive controllers of the next
section.

11
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SIMULATION RESULTS OF THE GLOBAL LINEAR ADAPTIVE CONTROLLER

This section presents the results of the global linear adaptive controller
presented in Section II. Two versions of the controller are simulated; 1) the
deterministic version based on the certainty equivalence (CE) property of stochastic
control and the, 2) the cautious controller. The CE control assumes the covariance
P of the parameter estimate is zero. First, results from a linear simrlation model
is discussed and then detailed results using the nonlineesr model of Eq. (2.1) are
presented.

Controller Initialization and Authority Limits

The use of the global adaptive controller requires initialization of the
parameters and covariance. Although there are many ways to obtain initialization
the initial parameter estimates were generated from a random number generator with
normal distribution N(0(0), P4;(0)), i=1,2,...,M, where the covariance was set
to Oi(O). An equally valid initialization would be to guess arbitrarily non-zero
values for the parameters and select the covariance to be reasonably large.

During simulation with the nonlinear model it was found that the CE global
adaptive controller and local adaptive controller would often exceed the practical

range of control., Therefore, a software control authority limiter was used on the
controllers and also rate limiting was used on the local controller.

The need for control limits arises because of either; 1) poor parameter
estimates or 2) nonlinearity in the vibration model which result in very large
magnitude control. Limiters were also used in reference 1, 3 and 4.

The form of the control authority magnitude limits used are

u <u <u

IMIN — 1 IMAX
(4.1)

Upay < Y2 S Y2max

and the control authority rate limits are
Au < Au, < Au
IMIN — 771 — T 1MAX (4.2)
<
Bujrn £ 847 < Aoy

The global linear adaptive controller with caution never required rate
limiting, since the caution property is in fact a time vary..z rate limiter.
The local model was also used with a rate limit weighting term Rjp in the cost
function (Eq. 2.25). Both constant and time varying Rp are used. For the
simulation runs, the specific control authority magnitude limits and rate limits
will be clearly indicated. The selection of appropriate magnitude and rate limits
is very important to convirgence behavior for the global linear adaptive CE con-
troller and the local linear controller and is likely dependent on this nonlinear

e
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plant model. Also for the nonlinear model simulation runs the selection of suitable
control magnitude limits dictates which local minimum region (see (fig. 5) the con-
troller will converge to.

Linear Simulation Runs

The focus of this investigation i1s on the effect of nonlinearity in the vibra-
tion model. Linear simulation runs were investigated in detail in reference 6 for
a different simulation model., Detailed linear simulation runs were done in reference
1 before testing on the wind tunnel. It was stated in ref. 1 that all controllers
tested performed satisfactorily on the linear simulation and the performance was
significantly different in the wind tunnel. The linear simulation results obtained
in reference 1 are similar to that obtained here.

The linear simulation model used is that shown in Eq. (2.1) with all nonlinear
terms set to zero. The vibration reduction is shown in figure 8 which shows the
average cos% of 100 monte carlo computer runs for different initial conditions and
noise sequences. No magnitude or rate limiting is used. The CE control takes a
very large control step in the beginning due to parameter uncertainty and this
results in large vibrations and cost.

The cautious control accounts for parameter uncertainty and thus the cost goes
down at every step. Figure 8 also shows rapid convergence for both CE and cautious
control. The large initial step in the CE control causes rapid parameter identifica-
tion and thus the cost rapidly converges. The CE control in the first two time
steps could be improved with a magnitude and rate limiter to avcid large control
inputs, but this was not done.

The main finding for the linear simulation is that both the CE control and
cautious control convergence is 4 to 8 time steps. The CE control requires
magnitude and possibly rate limiting.

The next section demonstrates the effect of nonlinearity on algorithm convergence.

Nonlinear Simulation Results, CE Controller

The nonlinear simulation of Eq. (2.1) is used with the global linear CE control
of Eq. (2.10) with covariance P = 0. The forgetting factor A is set to 1 (i.e. no
forgetting factor) and the magnitude control limits used are

~10 < u, < +10

1
-10 < u, < +10

(4.3)

The computed control, state, an. .ost at k = 1 using the initial parameter
estimates and covariance as discussed previously are

-10. -1475.0

uCE(l)- y x(1) = y J(1) = 21.7 (4.4)
-10. 365.

The control immediately reached the magnitude limits -10 and increased the
cost from 2.8 to 21.7. This should be compared to the lst time step for the linear

13
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model in figure 8 which increases the average cost (shown is the average of 100
runs) to 8.8. The nonlirearity causes a dramatic increase in cost even with the
control magnitude limiter of +10. Figure 9 shows the convergence of the cost and
controls u; and u; for 100 time steps. The initial points for the first 6 steps
are off the scale in figure 9d which is an expanded scale of figure 9a. Convergence
at time step 100 is

=10 | -64.

J . x(100) = ,  J(100) = .045  (4.5)

u_(100) =
CE -278.

- 1.1

Convergence occurs in Reglon IV of the nonlinear cost surface (see figure 5).
Convergence is good only after the excessive control magnitudes die out.

The large magnitude control changes indicate the need for rate limiting. Rate
liniting was used in the wind tunnel cests of reference 1 and reference 3 on this
controller. The cautious control of the next section inherently includes a rate
limiting effect and its operation is significantly improved over the CE control.

Nonlinear Simulation Results, Cautious Controller

The global linear cautious controller of Eq. (2.1J) is used with the nonlinear
simulation model of Eq. (2.1). The cautious controller was used with A = 1 (no
forgetting factor) and A = .99 (with forgetting factor). As discussed previously
the forgetting factor is used in place of the process noise covariance on the para-
meters to account for random variation of the parameters. In addition, three
different values are used foi the initial estimate of the covariance, P(0), P(0)x10,
and P(0)x100.

The convergence results are summarized in Table 1 for the cautious controller.

Convergence is restricted to Region III and Region IV (see figure 5) using the
control magnitude limits

< -8
1 (4.6)
-3 <u < 5

The control magnitude limits (Eq. (4.6)) constrain the control to the local
minimum solution of Region IIT and Region IV, Newton's off-line method which was
discusced in se~tion III converged to u* = [-9.03 -.29]T with J* = .025. This
point is the approximate minimum solution. The cautious controller for run 3a,
2b and 3b of Table 1 converged to a slightly lower minimum point.

The results of Table 1 show that increasing the initial covariance clearly
improves convergence. Since the Kalman filter is based upon a linear model,
increasing the initial covariance causes smaller control changes initially where
the surface is very nonlinear. The linear transfer matrix model used in the
Kalman filter design is a very poor representation where the surface is nonlinear.
Thus, increasing the initial covariance is required to offset the nonlinearity.
Note that this is not required for the linear simulation.

14
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Figure 10 (Run la of Table 1) shows results for P(0)xl, figure 11 (Run 2b)
for P(0)x10 and, figure 12 (Run 3a) for P(0)x100. Convergence results improve
a3 P(0) is increased. It is expected that increasing P(0) further would degrade
prrformance due to too much caution resulting in slow convergence.

Table 1 also shows results with and without the forgetting factor. The
sagsults are similar either with forgetting factor or without except for P(0)x10
{Run 2b of Table 1). The forgetting factor prohibits the covariance from decreasing
as fast as without the forgetting factor, thus the caution effect is larger. More
caution yields better convergence.

In summary, the global linear adaptive controller (with caution) results in
excellent convergence as shown in figure 12. However, to achieve this excellent
- onvergence the initial covariance must be selected larger for the nonlinear

imulation model than for a linear gsimulation model. Multiplying the covariance
imes 100 was required to offset nonlinearities.

15
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SIMULATION RESULTS OF THE LOCAL LINEAR ADAPTIVE CONTROLLER

This section presents the simulation results of the local linear adaptive
controller presented in section II. The local adaptive controller 1s simulated
on the nonlinear model and three different control raEe limiting terms are investi-
gated; 1) Rp = constant, 2) Ry = K/i, and 3) Ry = K/1°. 1In all simulation rums both
a magnitude limiter (Eq. (4.1)) and rate limiter (Eq. (4.2)) are used. The con-
troller initialization is performed in a similar manner to the global adaptive
cont:oller as discussed in section IV.

Local Linear Adaptive Controller With Rate Weighting

The local linear adaptfive controller of Eq. (2.26) through Eq. (2.29) was
simulated on the nonlinear wodel of Eq. (2.1). The magnitude and rate limiter
used 1is

-10 j_ul < -8
(5.1)
-3 <u, < +5
— 2 _—
and
-.1< Aul < .1
(5.2)
-.1 f_Auz_g .1

The magnitude limiter constrains the control to Region III and Region IV of figure 5.

Effect of constant rate weighting on convergence, Ry = K. The rate weighting
term of the performance criterion of Eq. (2.23) is investigated for Ry = 0, Ry = 1,
and Ry = 10. This was done both without the forgetting factor (A = 1) and with the
forgetting factor (A = .99). The results are summarized in Table 2. As indicated
in Table 2 convergence is fast for Ry = 0, very slow for Ry = 1, and very very
slow for Ry = 10. The stability of the convergence behavior is noted by how
oscillatory the solution is. Stability is poorest for Ry = O and improves for
increasing Ry. The behavior is similar both with and without forgetting factor.

Figure 13a shows a plot of the cost function of Eq. (2.25) where Q and R are
the sare as for the global model and Ry = 0. Convergence is rapid and occurs for
N = 20 time steps and then becomes oscillatory (less stable). Figure 13b and 1l3c
show the correspcnding control time histories. Figure 14 shows the cost and
controls for Ry = 1. Convergence is very slow, however the solution has improved
stability. The convergence for Ry = 0 is fast (although considerably slower than
the global adaptive controller) but very oscillatory. Increasing Ry to 1 slows
convergence too much to yield acceptable results. A better compromise would be
to use a time varying rate weighting.

16



Effect of time varying rate weighting on convergence, Ry = K/i. Table 3 is a
repeat of results as in Table 2, with Ry = 1/1, 10/1, and 100/1. As indicated in
the table convergence is either too oscillatory or too slow. For the slow con-
verging runs the control remained in Region IV and the control did not change
significantly from its value at the first time step. The rapid convergence runs
(Run la and 1b of Table 3) went to Region IV and the control u; changed sign to

positive. Convergence is still unacceptable. A more rapid decrease in Rp is
investigated next.

Effect of time varying rate weighting on convergence, Ry = K/iz. Table 4
presents convergence results for Ry = 1/i4, 10/14, and 100/iZ, 1In all cases con-
vergence occurs in Region III with cost less than that for K or K/i. Convergence
is slow for Ry = 100/12 but faster than for either 100/i or 100._Stability is
improved for Ry = 100/12. Oscillations are slight for Ry = 10/12 and has slow
convergence but faster than Ry = 10/1 or Ry = 10. Convergence is fast for
Ry = 1/12 but oscillations are large.

Figure 15 shows convergence for Ry = 1/12, figure 16 for Ry = 10/12, and
figure 17 for Ry = 100/12. Figure 16 for Rp = 10/12 shows perhaps the best
compromise between stability and fast convergence. However convergence is not
nearly as good as the global adaptive controller (see fig. 12) which has very
fast convergence (less than 8 time steps) and is also very stable (i.e. there
are no oscillations after convergence occurs).

The overall effect of the time varying rate weighting term K/i2 is to improve
the stability (less oscillations) of the control solution. Time varying weighting
offers improved flexibility over constant rate weighting in the local adaptive
control solution.

Effect of the control rate authority limits on convergence. - As previously
indicated the control rate authority limits (-.1 < Au < .1) have a significant
effect on convergence and algorithm stability. These limits are relaxed to quantify
this effect. Figure 18 shows the local linear adaptive controller with Ry = O and
-.2 < Au < +.2. Speed of convergence is increased and convergence occurs in 10
time steps. However the oscillations are more pronounced than for -.1 Lbu<.1
(see Fig. 13). Figure 19 shows the rate limits increased to -.5 < Ou < +.5.
Initially, very wild oscillations occur and persist. Thus, the rate limit authority
limits must be kept at -.,1 < Au < .1 to retain algorithm stability.

Figure 20 shows the combination of rate authority limits -.2 < Ou < +.2 and
rate weighting Ry = .1. Convergence is slow (20 time steps are tequire?) and
divergence occurs. This is compared with figure 14 where Ry = 1 and ~.1 < Au < +.1.
Reducing Ry from 1 where convergence is very slow to .1 improves convergence r.te
but divergence occurs. Repeating this simulation run with Ry = .1 and -.5 <lBux< 5
resulted in nearly identical convergence as shown in Figure 20.

The results for the local linear adaptive controller show either slow convergence
or loss of stability relative to the global linear adaptive controller for the
present nonlinear simulation. During the simulation runs a compromise set of
values for Ry and Auyyy < Au < Auypy could not be found which gave results as good as
the global linear adaptive controller with caution shown in figure 12,

17
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Kalman Filter Divergence

Kalman filter divergence is a concern in any on-line application which
includes a Kalman filter. There are three primary causes of Kalman filter
divergence;

1) loss of numerical accuracy due to an accumulation of numerical errors
in the recursive covariance equationm,

2) model mismatch, and

3) truncation of word length (for example when going from 32 bit to 16
bit word length computer)

The lst error source (loss of numerical accuracy) is often a result of a poorly
conditioned covariance matrix (i.e. the eigenvalue gpread is large). Also the
recursive nature of the solution causes an accumulation of errors. These errors
originate in the matrix multiplication and division required in the c.variance
equation. Another problem can occur whenever the covariance change from the kth
to k+lst step is small. The difference in small numbers causes an accumulation of
errors and results in loss of positive definiteness. The alternate form cf the

covariance equation (Eq. (2.18)) is numerically more accurate for this latter problem.

The 2nd error source (model mismatch) occurs whenever the actual model is
different than t he model assumed in the Kalman filter. Nonlinearity will cause
a mode. mismatch in the Kalman filter since the Kalman filter is designed based
upon a linear representation. An example of divergence due to model mismatch is
shown in figure 21. The cost and control time histories are ghown for the local
linear adaptive controller. The rate weighting is Ry = 100/1i° and the control is
constrained in magnitude by + 10

-10 < u; < 10

1

-10 < u, < 10

(5.3)

The control solution goes into region II (as shown in Fig. 21b and 21lc) which
is very nonlinear and the model mismatch occurs prior to time step 50 results in
divergence after time step 60. Increasing the forgetting factor (1/A) or increasing
the parameter process noise covariance sometimes will prevent divergence.

Model mismatch divergence can also occur if the parameters are time varying
and the time variation is so rapid that the Kalmen filter canmnot track the para-
meters. Also for slowly time varying parameters (or constant parameters), if the
parameter process noise covariance is too small (or zero) the Kalman gain will be
too small to permit proper tracking of the parameters. Kalman filter divergence
will res::it. In reference 6 a linear simulation was done with slowly time varying
parameters and Kalman filter divergence is shown (see fig. 12 and fig. 16 of
reference 6). The divergence in this reference occurred near the middle and end
of the run over 120 time steps. Before c>mplete divergence occurred the controllers
recovered. Increasing the process noise covariance or using the alternate covariance
Eq. (2.18) could possibly eliminate the divergence altogether.
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The 3rd source of error (truncation of word length) occurs because of the
recursive nature of the covariance equation. Multiplication and division of
matrices cause an accumulation of errors and divergence results. This problem
requires special treatment which wiil not be discussed here. However, when using
a 16 bit fixed word length computer Kalman filter divergence is possibly a problem
and may require a modification to Eq. (2.15) through Eq. (2.17). All simulation
runs done in this report used a 32 bit word length (single precision on an IBM
computer) .

CONCLUSIONS

A nonlinear simulation was used to analytically investigate nonlinear model
effects on linear adaptive control algorithm convergence and stability characteris-
tics. For the simulation used, nonlinearity was found to have a significant effect
on HHC algorithm convergence behavicr. Linear simulation results showed that con-
vergence to minimum vibrations always occurs in less than 8 time steps (equivalent
to 8 rotor revolutions) with either the ziobal linear CE controller (without caution)
or global linear cautious controller. The CE controller takes an initial large jump
due to lack of caution and then converges rapidly. This initial control inmput could
be overcome by magnitude or rate limiting.

The nonlinear simulation r.sults significantly effect HHC convergence. In
addition to multiple minima solu:ions, the algorithms are generally slower in
convergence, less stable, and can result in Kalman filter divergence due to model
mismatch. By artifically increasing the initial covariance on the parameter
estimates (P(0)x100), the global adaptive cautious controller was found to exhibit
excellent convergence in less than 8 time steps. Increasing the covariance has
the effect of off-setting nonlinearity by introducing more caution than is required
for a linear model. When the initial covariance is too low the convergence behavior
is similar to the global linear adaptive controller without caution where the control
exhibits a l1imit cycle between the control limit stops.

The local linear adaptive controller with rate weighting converges very slowly.
Without rate weighting (Ry = 0), convergence occurs in 20 time steps, however with
persistent oscillations. Adding constant rate weighting increases stability (less
oscillations), but convergence is very slow (typically 100 time steps or greater).

A time varying rate weighting of Ry = 10/12 improves stability and convergence, yet
still requires between 20 and 100 time steps for convergence.

Based upon the simulations performed, the cautious global linear adaptive con-
troller has good convergence and stability and is the superior controller for HHC
of vibration. Although the local adaptive controller does converge its susceptability
to measurement noise, slow convergence, and tendency to oscillate make this con-
troller less desirable for HHC of vibration in the present study.

Control algorithm speed of convergence and stability determine to an extent
the ability to adapt to changing flight conditions. The global cautious controller
may be able to track rapidly varying flight conditions. Previous wind tunnel tests
in reference 1 and reference 3 have established this tracking capability for the
case of increasing airspeed. The local linear adaptive controller may have
difficulty tracking rapidly varying flight conditions due to its slower convergence.

19
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The results of this research have igolated sevcral deficiences in the use of
higher harmonic control ~f vibration; 1) Kalman filter divergence, 2) inability
to reduce vibrations due to multiple minima solutions, and 3) unpredicted erradic

convergence b uaavior due to nonlinearity. It is recommended that further investiga-
tion be undertaken to solve these potential problem sreas of HHC.

In addition, research gshould be further advanced to prohibit Kalman filter
divergence. Numerical accuracy, model mismatch, and word length truncation error
should be investigated. Finally, there is a need to further reduce the computational
burden due to the requirement for on-line Kalman filter calculation and matrix

inversion. Algorithms which simplify the computational solution should be investigated.
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