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An evaluation of the effect of nonlinrarity on convergence of the local linear 
and ~lobal linear adaptiw controllara la prraanted. A nonlinear helicopter vibra- 
tion modal la relectod for tha evaluation which has sufficient nonlinearity, * 
including multiple minimum, to aaaarr tho vibr8tion reduction eapahllity of the 
adaptive controllera. The adaptive control algorithms are baaed upon a linear 
tranafer matrix aarumption and the presencr of nonlinearity is shown to have a 
significant effact on algorithm behavior. 

Simulation results are preaented which demonatrate the importance of tho 
cauticn property in the global linear controller. Caution is represented bv a 
time varving rate weighting term in the local linear controller and this is found to 
improve algorithm convergence. Nonlinearity in soma cases is Found to cause Kalmn 
filter divar#ence. W o  forms of the Kalmcrn filter covariance equation are invau- 
tigatcd. Several daficiances are isolated in ths adaptive controllers and 
recommendations presented for improvcrrncnt. Areas raquiriny further research are 
outlined. 

INTRODUCTION 

Adaptive control tachniquan for higher ha m n c control (HHC) of he1 
vibration have bean used in wind tunnel tests I V Y * $  and simulation models 
A summarv of this activity is reported in ref. 3 and ref. 5. The us@ of adaptive 
control concepts rather than classi~al cotratant grin controll*rs has emerged because 
constant gain contrullars hem resulted in unsat is factor" vihrat ion roduct 
Nonlinearity has bean suspect r s  one possible explanation for the poor results, 
however most research has focused on using the linear transfer matrix model in 
adaptive controller design. The adaptive controll@rs treat the transfer matrix as 
an unknown hot time varying quantitv, and thus the adaptive nol\~tion accounts for 
nonlincoritv in en indirect manner. Although nonlinearity is not directly 
accounted fur in the control dasisn, the demonstrated pqr o mance of the adaptive 5.s control yolutioirs have baen auccsxsful in many cases * . An invcstig~tion of 
nonlinearitv on the convargrnce behavior of adaptive controllers which are based 
upon the linear transfer matrix is presented. 

A nonliuaar model aurumed to be ruprocrentativa of vibration is relacted for the  
investigation. The model is selecteci to he complex enough to represent quadratic 
nonlinearity and yield multiple minimum  solution^ of the objective function, vet 
simple enough to provide a clear pciture of algorithm convergence buhavior. Simultr- 
cions and graphical prewcntrtion of  the vihratlon modal arc presentad. 

Three control concepts are invssttgated; 1) the local linear adaptive controller 
reported in ref. 5 ,  and ref. 6, 2) the global litrear controller (detsrministicl of 
ref. 1 and ref. 3, and J) the global linear wntrollcr with caution of ref. 1 and ref. 3. 
The local linear ncdcl of ref. 5 and ref. 6 is similar to that In r e f .  4 and thus it 
is expected to represent Y imilar hehavior. In addition. the locnl linear 
includes constant rate weighting ow well as time-varyin8 rate weighting. 1.irnitcd 
control authority (i.c. umin 1 UrnaX ) is emploved us well as control rtatc 
authority limits. TIrc control :algortthms invcstipnted are simulated as clkbse 3s Is 
practical to the manner in which thsv \*~~rld he used in wind tunnel, flight test. or 
sirnulac ion experiments. 



Since the  algorithms inherent ly  conta in  a l i n e a r  Kalman f i l t e r ,  the  e f f e c t  
of nonl inear i ty  v i o l a t e s  the  assumptions used i n  the  Kalman f i l t e r  der iva t ion .  
This  model mismatch can lead t o  Kalman f i l t e r  divergence. The v a l i d i t y  of the  
Kalman f i l t e r  es t imate and covariance is discussed. 

The r e s u l t s  presented attempt t o  q u a n ~ i f y  the  importance of non l inea r i t y  on 
adapt ive  con t ro l  algorithm performance. The s imulat ion model used i n  the  invest iga-  
t i on ,  although of l imi ted  complexity, is bel ieved t o  represent  the  type of non- 
l i n e a r i t y  encountered i n  a c t u a l  he l i cop te r  v ibra t ion .  Thus, t he  convergence behavior 
of the  adaptive algori thm can be considered a s  r ep re sen ta t ive  of t h a t  expected i n  
wind tunnel  o r  f l i g h t  t e s t  appl ica t ion .  

U 
min * 'max 

*urnin *'",ax 
v 

SYMBOLS 

Control matrix used i n  the  g loba l  and l o c a l  l i n e a r  v ib ra t ion  model 
i n  Eq. (2.6) and Eq. (2.20), respec t ive ly  

estimated cont ro l  matr ix  

cos t  funct ion from time s t e p  k 

denotes expected value 

denotes condi t iona l  ~ x p e c t e d  value 

general  nonl inear  vector  valued funct ion 

measurenient matr ix  used i n  t h e  Kalman f i l t e r ;  f o r  the  g loba l  model 
defined i n  Eq. (2.14), f o r  t he  l o c a l  model defined i n  Eq. (2.27) 

time s t e p  number 

expected va lue  of t he  c o s t  funct ion 

cont ro l  index number used i n  Eq. (2.11) and (2.12) 

Kalman gain matrix def ined i n  Eq. (2.16) 

t i m e  s t e p  number 

Parameter Covariance matrix used i n  Eq. (2.17) 

weighting matr ix on the s t a t e  (v ib ra t ion  amplitude) 

ind iv idua l  elements of t h e  weighting matr ix 

weighting matr ix on the  con t ro l s  

r a t e  weighting matrix on con t ro l  change 

con t ro l  vector  

optimal con t ro l  f o r  the g loba l  l i n e a r  adapt ive con t ro l l e r .  given by 
Eq. (2.10) 

con t ro l  vector  change from k th  t o  k+l s t e p  

c e r t a i n t y  equivalent  con t ro l  so lu t ion  f o r  the l o c a l  l i nea r  adapt ive 
c o n t r o l l e r  computed i n  Eq. (2.26) 

minimum and maximum cont ro l  mawitude l i m i t s ,  respec t ive lv  

minimum and maximum cont ro l  change limits, respec t ive ly  

process noise covariance matrlx 



measurement noise covariance matrix 

discrete time zero mean white measurement noise 

discrete time zero mean white measurement noise on the difference 
between two successive measurements 

state vector (vector of vibration sine or cosine amplitude component) 

state vector with zero control 

state vector of vibrations In the nonlinear model 

measurement vector 

information set Y - I  = p, yn-*, . . ..,r1) 
scalar step-size parameter used in Newton-Raphson algorithm 

parameter vector in the nonlinear model of Eq. (2.1) 

estimated parameter vector 

denotes transpose 

denotes matrix inverse 
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SIMULATION MODEL AND ADAPTIVE CONTROLLERS 

This s ec t ion  srunaarizes t h e  s imulat ion model and the  adapt ive c o n t r o l l e r s  used 
i n  t h i s  inves t iga t ion .  These con t ro l  a lgori thms a r e  t h e  same as those reported i n  
r e f .  3 and r e f .  5 and a complete desc r ip t ion  of t he  con t ro l  a l g o r i t h m  a r e  presented 
i n  t h i s  s ec t ion  f o r  completeness. Three b a s i c  c o n t r o l l e r s  a r e  inves t iga ted ;  1 )  t he  
g loba l  l i n e a r  c o n t r o l l e r  of r e f .  1 and 3, 2) t he  g loba l  l i n e a r  c o n t r o l l e r  wi th  
caut ion of r e f .  1 and r e f .  3, and 3) t h e  l o c a l  l i n e a r  adapt ive c o n t r o l l e r  of r e f .  5 
and 6. 

Simulation Model and Overal l  Approacb 

The nonl inear  s imulat ion model is se l ec t ed  t o  contain s i g n i f i c a n t  nou l inea r i t y  
which includes up t o  second order  terms of a Taylor s e r i e s  expansion about zero HHC. 
The simulat ion does not  represent  a physical  he l i cop te r  model but is chosen based 
upon the  objec t ive  t o  assess the  importance of non l inea r i t y  on con t ro l  a lgori thm 
convergence. The nonl inear  model parameter values were obtained from r e f .  7.  The 
model s e l ec t ed  is a subset  of a l a r g e r  model used f o r  t he  Control lable  Twist Rotor 
(CTR) a e r o e l a s t i c  s imulat ion program ( r e f .  7) .  Ref. 7 parameter values were chosen 
because of t h e i r  a v a i l a b i l i t y  and t h e  f a c t  t h a t  s i g n i f i c a n t  non l inea r i t y  of HHC is  
present  i n  t h e  model. The s igns  were changed on t h e  nonl inear  terms t o  y i e l d  
mul t ip le  minimum solu t ions .  It was found t h a t  when using the  o r i g i n a l  s igns  on 
the  nonl inear  terms the  mi~imum cos t  funct ion was near ly  t h e  same value a s  with zero 
HHC. Therefore, t h e  s igns  were a l t e r e d  t o  s imulate  a more r e a l i s t i c  mul t ip le  minima 
v ib ra t ion  problem. 

The nonlinear s imulat ion model used is  

where the  s t a t e  x l  and x2 represent  hub shear  and blade bending moment amplitude 
i n  lbs .  and i n  - lbs . ,  respec t ive ly  of 4 per  rev  v ib ra t ion  ( f o r  a 4-bladed r o t o r ) .  
The con t ro l s  u l  and u2 represent  higher  harmonic con t ro l  amplitude i n  degrees.  

The simulat ion parameter values a r e  
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The measurement model is 

where wl and w2 are zero mean gaussian random white noise sequences with covariance 

where ~11' 2a2 and ~ 2 2  - 4402. This covariance represents a 10% noise level on the 
model of Eq. (2.1) with zero HHC. 

Examhation of the magnitude of the parameter values of Eq. (2.2) reveals 
sipificant nonlinearity due to the squared terms and cross-product HHC. 

The simulations performed are intended to represent the algorithm convergence 
about a steady flight condition. The speed of convergence and stability of the 
algorithm at a steady flight condition will determine to a large degree the 
algorithm behavior as the helicopter maneuvers or changes flight condition. If 
convergence is rapid and the algorithm very stable, then the control solution 
may be more suitable for a varying flight condition. Slow convergence behavior or 
poor stability of the algorithm indicates that the algorithm may then have difficulty 
keeping vibrations low during changing flight conditions. Thus, the convergence 
behavior about a steady nonlinear condition can be used qualitatively to assess 
vibration reduction capability in maneuvering flight. 

The overall approach taken in this investigation, is to use the model defined in 
Eq. (2.1) through (2.4) as the true model. The adaptive control algorithm are 
based upon a linear representation to this model. Both a local linearization 
and global linearization is used. 

Global Linear Adaptive Controller 

The nonlinear model of Eq. (2.1) is represented as 



where xo is an unknown parameter vector end f ( O ,  u(k))  is the genezal nonlinear 
function (Eq. (2.1)) of parameter O and HHC u(k). The state of the nonlinear 
model is denoted by %(k+l), 

The global linear model representation is 

x(k+l) - xo + E u(k) 

where B is a matrix of unknown parameters. The model of Eq. (2.6) is intended to 
represent the global nonlinear model of Eq. (2.5) . As such, the parameters in b 

. , will not corresp~nd in general to the linear parameters in Eq. (2.1). The unknown 
A , elements of xo and B are denoted as O with covariance P. 

Measurements are made on the nonlinear simulation model and are given by 

y(k) = g(k.) + w(k) (2.7) 

where 

The geasral vibration criterion to be minimized is the expected value of the 
cost from step 0 to N 

A one step control solution is obtained by minimizing Eq. (2.9) for N-1 (ref. 3 
and ref. 8) 

where the conditional expectation is given by 

n 
e(BT Q BlyN-') - ET Q 6 + qj cov(Bji,Bje) (2.1J.1 

j-1 

h 

The parameter estima5es B, f and the covariances are obtained from a linear 
Kalmn filter where B and  are defined as 
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The global linear model of Eq. (2.6) is modeled as 

y(k) = H(k) O + w(k) 

where 

The Kalman filter estimate of 0 and covariance is given by (ref. 9) 

K(W1) = P (k) EIT(k) (W + H(k) P (k) ~ ~ ( k )  )-' (2.16) 

Eqs. (2.15) through (2.17) represent the cLiginal Kalman fcrm of the solution 
for estimation of parameters O. An alternate form for the covariance equation is 
also investigated which retains positive definiteness better than Eq. (2.17). The 
numerically more accurate alternate form (ref. 10) is 

A third form of the Kalman filter which replaces the process noise covariance 
V in Eq. (2.17) is obtained using an exponentially weighted least square formulation 
(ref. 9). This form is obtained from Eq. (2.16) and (2.17) by multiplying the 
covariance at step k with the forgetting factor 1/X, where X < 1 (typically chosen 
to be .99). The exponentially weighted form is obtained by replacing P(k) aith 

' ,  
P(k)/X and setting V = 0. The forgetting factor replaces the process noise 
covariance and keeps the covariance and Kalman gain from approaching zero as more 
atd more data is processed. 

An advantage of the forgetting factor form over Kalmn form in Eq. (2.16) and 
(2.17) is that only a single number (1) need by selected a priori in using the 
filter. In the Kalman form the covariance V has n dingonal elements, one for each 
parameter. 



It was found t h a t  sometimes l o s s  of p o s i t i v e  de f in i t enes s  occurred with t h e  
covarianze equation of Eq. (2.17). Because of t h i s  t he  a l t e r n a t e  form of the  
covariance equation (Eq. (2.18)), and the  f i l t e r  with f o r g e t t i n g  f a c t o r  P (k) replaced 
with P (k) / A )  are used throughout t he  s imulat ions.  

Local Linear Adaptive Cont ro l le r  

The l o c a l  l i n e a r  w d c l  represents  a small  per turba t ion  about t h e  cur ren t  HUC 
value. Evaluating the  measurement y(k+l) at time s t e p  k+l i n  Eq. (2.7) and 
sub t r ac t ing  Eq. (2.7) from t h i s  r e s u l t s  i n  

Approximation of t h e  nonl inear  funct ions i n  Eq. (2.19) and l i n e a r i z i n g  the  
r i g h t  hand s i d e  of Eq. (2.19) r e s u l t s  i n  

where a t  time s t e p  k, 

The l o c a l  model of Eq. (2.20) has twice the  noise  covariance of t h e  g loba l  
model a s  shown i n  Eq. (2.23) . The noise  covariance i s  

I 2 w 6  , L =  j 
k j  

~ [ w ' ( k )  w ' ~ ( ~ ) ]  = -W 6 , k =  1, j - 2 and k m  2, j = 1 (2.24) 
k j 

i 0 , f o r  a l l  o the r  values of k and j 

As shown i n  Eq.  (2.24) the  measurement no i se  is no longer uncorrelated upon 
taking the  d i f fe rence  between two successfire measurements. The Kalman f i l t e r  formula- 
t i o n  which follows assumes t h e  noise  is uncorrelated with covariance equal  2W 6kj f o r  
k = j and zero f a r  a l l  o the r  values of k and j .  The e f f e c t  of t h i s  assumption on t h e  
accuracy of the Kalmon f i l t e r  es t imate is not  known, however t he  co r r ec t  co r r e l a t ed  
form can be implemented as i n  Ref. 10. 

The global  v ib ra t ion  c r i t e r i o n  t o  be minimized i s  



The r a t e  weighting term RA is included and pena l izes  t he  con 701 f o r  tak ing  
too l a r g e  a s t e p  s i z e .  It is noted t h a t  t h e  r a t e  weighting term is  s i m i l a r  t o  t he  
cau t ion  property,  however t h e  va lue  of R must be ee l ec t ed  a s  a design parameter. 

A The cau t ion  property In t he  g loba l  model is based upon t h e  covariance matrix P, 
w h i ~ h  is  automatical ly  determined i n  t h e  Kalman f i l t e r  and i s  a l s o  time varying. 

The con t ro l  required t o  minimize t h e  ob j ec t ive  func t ion  of hq. (2.25) f o r  
1 one t i m e  s t e p  is 

A -1 T 
Au,, (k)- - (R + RA + fiT Q 9) (fi Q y (k) + R u (L) ) (2.26) 

A 

where B is obtained from a Kalman f i l t e r .  A b e t t e r  approach is t o  estlmate a d  
F(k) wi th  a modified Kalman f ilter. However y(k! is used In Eq. (2.26) t o  be 
cons i s t en t  with t he  formulation used i n  r e f .  5 and r e f .  6. 

The Kalman f i l t e r  so lu t ion  of Eq. (2.15) through Eq. (2.17) is used with t h e  
following d e f i n i t i o n s  

I 

replaced by y(k+l)  - Y (k) (2.28 

replaced by 2W (2.29) 

The l o c a l  l i n e a r  adapt ive c o n t r o l l e r  c o n s i s t s  of Eq. (2.26) and d e f i n i t i o n s  of 
Eq. (2.27) through (2.29) ueed i n  the  Kalman F i l t e r .  The a l t e r n a t e  form of t he  
covariance equat ion and f o r g e t t i n g  f a c t o r  form is appl icab le .  
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GRAPHICAL DESCRIPTION OF THE NONLINEAR VIBRATION SIMULATION 

This  s e c t i o n  presen ts  a  g raphica l  de sc r ip t i on  of t he  nonl inear  v ib ra t i on  model 
def ined i n  Eq. (2 . l )  and Eg. (2.2). I n  add i t i on  d e t a i l e d  p l o t s  a r e  presented of 
t h e  one s t e p  de t e rmin i s t i c  op t imiza t ior  c r i t e r i o n  ( i . c .  sum of squares  of v ib ra t i on  
s i n e  and cos ine  amplitudes).  A Newton Raphson o f f - l i ne  type algori thm ?.s used on 
t h e  ob j ec t ive  func t ion  t o  ob ta in  t h e  HHC whCch minimizes t he  ob j ec t ive  func t ion .  

Graphical Descr ipt ion of t h e  J ib ra t i on  Hodel 

The equat ions used f o r  t h e  nonl inear  v i b r a t i o n  model are shown i n  Eq. (2.1) 
and Eq.  (2.2). The v ib ra t i on  component amplitude term xl is  shown p l o t t e d  i n  
f i g u r e  1 and x2 is shown i n  f i g u r e  2. The v e r t i c a l  a x i s  represen ts  t h e  v ib ra t i on  
component amplitude and the  hor izonta l  axes r ep re sen t s  t he  HHC ul and u2. The 
con t ro l  axis is shown f o r  -100 < ul ( lo0  and -lo0 < u2 < +lo0. The nonl inear  
curvature  (quadrat ic)  is c l e a r l y  shown i n  f i g u r e  1 and f G d r e  2. I f  non l inea r i t y  
was absent  t h e  curves would descr ibe  t h e  su r f ace  of a  plane. 

The ob jec t ive  funct ion f o r  minimization is se l ec t ed  ac shown i n  Eq. 3.1. 

-8 -4 -4 where, q1 = q2 - 5 x 10 , r = 10 , y d  r2  = 10 . The values  of q 1  and 
2 42 were chosen approximately a s  l / x l  and 11x2 a t  zero HHC, respec t ive ly .  The 

con'rol weightings r l  and r2  were chosen very email and thus t h e i r  e f f e c t  19  

neg l ig ib l e .  The c r i t e r i o n  f o r  minimization (Eq. (3.1)) is shown p l o t t e d  i n  
f i g u r e  3 through f igu re  5 with d i f f e r e n t  ranges of u  and u:. Figure 3 shows 
the  cos t  p l o t t e d  f o r  -10 - < ul - < +10 and -10 ( u; ( +  0. The value of J a t  
U1 = U2 = 0 is  

1 

A s l i g h t  "bubble" occurs centered around ul-u2=0 a s  seen in the  f i g u r e s .  This  is  
more c l e a r l y  seen i n  Fig. 4 and Pig. 5. This  r e s u l t s  i n  a  l o c a l  m~ximum and the  
cos t  decreases  a s  u l  and u2 move away from t h e  [O, 0 )  coordinate  and is more c l e a r l y  
shown i n  f i g u r e  4 and f i g u r e  5. 

The graphica l  de sc r ip t i on  of t he  cos t  funct ion of f i g u r e  3 through f i g u r e  5 
i nd i ca t e s  the  presence of n u l t i p l e  min im so lu t ions  a s  w e l l  a s  a  l o c a l  maximum. 
The range of ul and u2 p lo t t ed  i n  these  f i gu rz s  does not  provide s u f f i c i e n t  
r e so lu t ion  t o  pinpoint  "e l o c a l  minimum so lu t ions .  In  f i g u r e  5, 4 regions a r e  
defined corresponding t o  the  4 quadrants I, 11, 111 and I V .  These a r e  defined a s  

Region I : 0 ( ul 5 +lo,  -10 5 d2 - c 0 

Region I1 : 0 5 ul 5 +lo,  0 - < u2 - < +10 

Region 111:-10 5 ul 5 0 , '3 - < u2 10 



Region I V  : -10 5 ul 5 0, -10 < u c 0 - 2 -  

P a r t  of Region I (0 < ul < 10, -1 5 u2 5 0) is  shown graphica l ly  i n  f i g u r e  6 
which shows the  presence z f  a ;alley. P a r t s  of Region I and I1 combined (-10 < ul 5 
+lo, -1 5 u l  S 0) i s  shown i n  f i g u r e  7 which s h o w  t h e  presence of two val leysT 
Although t h e  graphical  po r t r aya l s  allows a d e t a i l e d  examination i n t o  t h e  shape of 
t he  nonl inear  sur face  the  p rec i se  minimum p o h t  caz..st be determined. A Newton- 
type search algorithm is used t o  l o c a t e  the  l o c a l  minimum solu t ions .  

Newton's Search For Local Minimum Solut ions 

A modified Newton-Raphson algorithm was appl ied to  t:!e cos t  funct ion of Eq. 
(3.1) with the  nonlinear v ib ra t ion  model of Eq. (2 . l )  and (2.2). The modified 
Newton method i t e r a t e s  on the  cos t  while updating t h e  HHC u l  and u2 a t  each 
i t e r a t i o n  according t o  

u j + l =  J + a =  fZJ1 -Ig  
( 3  3) 

as The gradien t  and second gradient  (Hessian) a r e  computed numerically i n  t he  
Newton algorithm. The s tep-size parameter a is chosen t o  keep t h e  magnitude of 
the update from i t e r a t i o n  t o  i t e r a t i o n  reasonably small .  

The Newton-Raphson a l g o r i t h e  was s t a r t e d  a t  t h ree  d i f f e r e n t  s t a r t i n g  po in t s  
corresponding t o  Region I, Region I I I ,and  Region I V  of f i g u r e  5. Three l o c a l  
minimum solu t ions  were found a s  follows; 

* 
Region I : [5.37 -.7291T , J* = .3035 (83% reduct ion)  

* 
Region 111: u*= [-6.15 2.581T , 1 = .022 (98.77% reduction) 

T Region I V  : u*=[-9.03 - .29]  , J* = .025 (98.601 reduct ion)  

The cos t  J f o r  zero HHC input w a s  com+ted i n  Eq. (3.2) (J 5 1.797 with u l  = 
u2 = 0). The percentage reduct ion is 835, 98.77%, and 98.60% f o r  Regions I, 111, 
and IV, respect ively.  Increasing the  allowable i t e r a t ?ons  i n  the  Newton search  
would permit s l i g h t l y  smaller  cos t  values,  however t he  Z reduct ions obtained can 
be considered as the  approximate l o c a l  minimum so lu t ions .  

The l o c a l  minimum so lu t ions  obtained using the  Newton algorithm a r e  used f o r  
comparing t h e  minimum values obtained using the  adaptive c o n t r o l l e r s  of the next  
sec t ion .  
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SIMULATION RESULTS OF THE GLOBAL LINEAR ADAPTIVE CONTROLLER 

T h i ~  section presents the results of the global linear adaptive controller 
presented in Section 11. Two versions of the controller are simulated; 1) the 
deterministic version based on the certainty equivalence (CE) property of stochastic 
control and the, 2) the cautious controller. The CE control assumes the covariance 
P of the parameter estimate is zero. First, results from a linear simvlation model 
is discussed and then detailed results using the nonlineer model of Eq. (2.1) are 
presented. 

Controller Initialization and Authority Limits 

The use of the global adaptive controller requires initialization of the 
parameters and covariance. Although there are many ways to obtain initialization 
the initial parsmeter estimates were generated from a random number generator with 
normal distribution N(O (O), Pii(0)), i=1,2, ..., M, where the covariance was set 
to 0$(0). An equally va f id initialization would be to guess arbitrarily non-zero 
values for the parameters and select the covariance to be reasonably large. 

During simulation with the nonlinear model it was found that the CE global 
adaptive controller and local adaptive controller would often exceed the practical 
range of control. Therefore, a software control authority limiter was used on the 
controllers and also rate limiting was used on the local controller. 

The need for control limits arises because of either; 1) poor parameter 
estimates or 2) nonlinearity in the vibration model which result in very large 
magnitude control. Limiters were also used in reference 1, 3 and 4. 

The form of the control auehority magnitude limits used are 

and the control authority rate limits are 

The global linear adaptive controller with 
limiting, since the caution property is in fact 
The local model was also used with a rate limit 

caution never required rate 
a time  vary;..^ rate limiter. 
weighting term RA in the cost 

function (Eq. 2.25). Both constant arid time varying RA are used. For the 
simulation runs, the specific control authority magnitude limits and rate limits 
will be clearly indicated. The selection of appropriate magnitude and rate limits 
is very important to convrrgence behavior for the global linear adaptive CE con- 
troller and the local liltear controller and is likely dependent on this nonlinear 
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p lan t  model. Also f o r  the nonl inear  model siniulation 
con t ro l  magnitude limits d i c t a t e s  which l o c a l  minimum 
t r o l l e r  w i l l  converge to .  

runs t h e  s e l e c t i o n  of s u i t a b l e  
region ( see  ( f i g .  5) t he  con- 

Linear Simulation Runs 

The focus of t h i s  i nves t iga t ion  is  on t h e  e f f e c t  of non l inea r i t y  i n  the  vibra- 
t i o n  model. Linear simulation runs were inves t iga ted  i n  d e t a i l  in reference  6 f o r  

. a d i f f e r e n t  s imulat ion model. Detai led l i n e a r  s imulat ion runs were done i n  reference 
1 before t e s t i n g  on t h e  wind tunnel.  It was s t a t e d  i n  r e f .  1 t h a t  a l l  c o n t r o l l e r s  
t e s t e d  performed s a t i s f a c t o r i l y  on t h e  l i n e a r  s imulat ion and the  performance was 
s i g n i f i c a n t l y  d i f f e r e n t  i n  t he  wind tunnel .  The l i n e a r  s imulat ion r e s u l t s  obtained 
i n  reference 1 a r e  similar t o  t h a t  obtained here.  

The l i n e a r  s imulat ion model used is t h a t  shown i n  Eq. (2.1) with a l l  nonl inear  
terms s e t  t o  zero. The v ib ra t ion  reduct ion is shown i n  f i g u r e  8 which shows the  
average cos t  of 100 monte ca r lo  computer runs f o r  d i f f e r e n t  i n i t i a l  condi t ions and 
noise sequences. No magnitude o r  r a t e  l i m i t i n g  is used. The CE con t ro l  takes  a  
very l a r g e  con t ro l  s t e p  i n  t h e  beginning due t o  parameter uncer ta in ty  and t h i s  
r e s u l t s  i n  l a r g e  v ib ra t ions  and cos t .  

The caut ious con t ro l  accounts f o r  parameter uncer ta in ty  and thus the  cos t  goes 
down a t  every s t e p .  Figure 8 a l s o  shows rapid convergence f o r  both CE and caut ious  
cont ro l .  The l a r g e  i n i t i a l  s t e p  i n  t h e  CE con t ro l  causes rapid parameter i d e n t i f i c a -  
t i o n  and thus the  c o s t  rap id ly  converges. The CE con t ro l  i n  t he  f i r s t  two time 
s t eps  could be inproved wi th  a  magnitude and r a t e  l i m i t e r  t o  avcid l a rge  con t ro l  
inputs ,  but  t h i s  was not  done. 

The main f ind ing  f o r  t h e  ldnear  s imulat ion is tb t  both the CE cont ro l  and 
caut ious cont ro l  convergence is 4 t o  8 time s t eps .  The CE cont ro l  requi res  
magnitude and possibly r a t e  l imi t ing .  

The next s ec t ion  demonstrates t he  e f f e c t  of nonl inear i t )  on algori thm convergence. 

Nonlinear Simulation Resul ts ,  CE Cont ro l le r  

The nonl inear  simulation of Eq.  (2.1) is  used with t h e  g loba l  l i n e a r  CE con t ro l  
of Eq. (2.10) with covariance P = 0. The f o r g e t t i n g  f a c t o r  X is s e t  t o  1 ( i . e .  no 
fo rge t t i ng  f a c t o r )  and the  magnitude con t ro l  l i m i t s  used a r e  

The computed cont ro l ,  s t a t e ,  an: - o s t  a t  k = 1 using the  i n i t i a l  parameter 
est imates  and covariance a s  discussed previously a r e  

The con t ro l  immediately 
cos t  from 2.8 t o  ?1.7. This 

reached the  magnitude l i m i t s  -10 and increased the 
should be compared t o  the 1st time s t e p  f o r  t he  l i n e a r  



model in figure 8 which increases the average cost (shown is the average of 100 
runs) to 8.8. The nonliriearity causes a dramatic increase in cost even with the 
control magnitude limiter of 5 0 .  Figure 9 shows the convergence of the cost and 
controls ul and u2 for 100 time steps. The initial points for the first 6 steps 
are off the scale in figure 9d which is an expanded scale of figure 9a. Convergence 
at time step 100 is r -647 

Convergence occurs in Region IV of the nonlinear cost surface (see figure 5). 
Convergence is good only after the excessive control magnitudes die out. 

The large magnitude control changes indicate the need for rate limiting. Rate 
J.in,+-ring was used in the wind tunnel cests of reference 1 and reference 3 on this 
controller. The cautious control of the next section inherently includes a rate 
limiting effect and its operation is significantly improved over the CE control. 

Nonlinear Simulation Results, Cautious Controller 

The global linear cautious controller of Eq. (2.1;) is used with the nonlinear 
simulation model of Eq. (2.1). The cautious controller was used with X = 1 (no 
forgetting factor) and X = .99 (with forgetting factor). As discussed previously 
the forgetting factor is used in place of the process noise covariance on the para- 
meters to account for random variation of the parameters. In addition, three 
different values are used fol the initial estimate of the covariance, P(O), P(O)xlO, 
and P (0)xlOO. 

The convergence results are summarized in Table 1 for the cautious controller. 
Convergence is restricted to Region I11 and Region IV (see figure 5) using the 
control magnitude limits 

The control magnitude limits (Eq. (4.6)) constrain the control to the local 
minimum solution of Region I11 and Region IV. Newton's off-line method which was 
discussed in seption I11 converged to u* = [-9.03 -.291T with J* = .025. This 
point is the approximate minimum solution. The cautious controller for run 3a, 
2b and 3b of Table 1 converged to a slightly lower minimum point. 

The results of Table 1 show that increasing the initial covariance clearly 
improves convergence. Since the Kalman filter is based upon a linear model, 
increasing the initial covariance causes smaller control changes initially where 
the surface is very nonlinear. The linear transfer matrix model used in the 
Kalman filter design is a very poor representation where the surface is nonlinear. 
Thus, increasing the initial covariance is required to off set the nonlinearity. 
Note that this is not required for the linear simulation. 



Figure 10 (Run la of Tabla 1) shows results for ~ ( O ) x l ,  figure 11 ( ~ u n  2b) 
f ~ r .  P (0) xlO and, figure 12 (Run 3.) for P(O)x100. Convergance results improve 
a9 P(0) is increased. It is expected that increasing P(0) further would degrade 
performance due to too much caution resulting in slow convergence, 

Table 1 also shows resulta with and without the forgetting factor. The 
. :lesulte are aini1.r either with forgetting factor or without except for P(0)xlO 

,Run 2b of Table 1). The forgetting factor prohibit8 the cov8riurce from decreasing 
as fast as without the forgetting factor, thus the caution effect Is larger. Hore 
caution yields better convergence. 

I 

In summary, the global linear adaptive controller (with caution) resulta in 
f!xcellent convergence as shown in figure 12. However, to achieve this excellent 
.onvergence the initial covariance must be selected larger for the nonlinear 
imulation model than for a linear simulation model. Multiplying the covariance 
imes 100 was required to offset nonlinearities . 



SIMULATION RESULTS OF THE LOCAL LINEAR ADAPTIVE CONTROLLER 

This section presents the simulation results of the local linear adaptive 
controller presented in section 11. The local adaptive controller is simulated 
on the nonlinear model and three different control ra e limiting terms are investi- 
gated; 1) RA = constant, 

2, Rf = K/i, snd 3) RA - K/i i . In all simulation runs both 
a magnitude limiter (Eq. (4.1 ) and rate limiter (Eq. (4.2)) are used. The con- 
troller initialization is performed in a similar manner to the global adaptive 
cont:,oller as discussed in section IV. 

Local Linear Adaptive Controller With Rate Weighting 

The local linear adaptrve controller of Eq. (2.26) through Eq. (2.29) was 
simulated on the nonlinear vodel of Eq. (2.1). The magnitude and rate limiter 
used is 

and 

The magnitude limiter constrains the control to Region I11 and Region IV of figure 5 .  

Effect of constant rate weightinu on convergence, RA = K. The rate weighting 
term of the performance criterion of Eq. (2.23) is investigated for R = 0, RA = 1, 
and RA = 10. This was done both w*thout the forgetting factor ( A  = 1 !? and with the 
forgetting factor ( A  = .99). The results are summarized in Table 2. As indicated 
in Table 2 convergence is fast for RA 0, very slow for RA = 1, and very very 
slow for RA = 10. The stability of the convergence behavior is noted by how 
oscillatory the solution is. Stability is poorest for R* = 0 and improves for 
increasing RA. The behavior is similar both with and without forgetting factor. 

Figure 13a shows a plot of the cost function of Eq. (2.25) where Q and R are 
the sace as for the global model and RA = 0. Convergerlce is rapid and occurs for 
N = 20 time steps and then becomes oscillatory (less stable). Figure 13b and 13c 
show the correspcnding control time histories. Figure 14 shows the cost and 
controls for RA = 1. Convergence is very slow, however the solution has improved 
stability. The convergence for Rb = 0 is fast (although considerably slower than 
the global adaptive controller) but very oscillatory. Increasing RA to 1 slows 
convergence too much to yield acceptable results. A better coqromise would be 
to use a time varying rate weighting. 



Ef fec t  of time varying r a t e  weighting on convergence, RA = ~ / i .  Table 3 is a 
repea t  of r e s u l t s  a s  i n  Table 2, wi th  Rb = l/i, 1011, and 100/ i .  A s  ind ica ted  i n  
t he  t a b l e  convergence i s  e i t h e r  too  o s c i l l a t o r y  o r  too slow. For t he  slow con- 
verging runs t h e  cont ro l  remained i n  Region I V  and the  con t ro l  did not change 
s i g n i f i c a n t l y  from its value a t  t h e  f i r s t  time s tep .  The rap id  convergence runs 
(Run l a  and l b  of Table 3) went t o  Region I V  and the  con t ro l  u2 changed s i g n  t o  
pos i t ive .  Convergence is s t i l l  unacceptable. A more rap id  decrease i n  RA i s  
inves t iga ted  next .  

E f f ec t  of time varying r a t e  weighting on convergeve,  RA = ~ 1 1 ~ .  Table 4 
presents  convergence r e s u l t s  f o r  RA = l / i 2 ,  10/iZ, and 100/ iz .  I n  a l l  cases  con- 
vergesce occurs i n  Region I11 with cos t  less than t h a t  f o r  K o r  K / i .  Convergence 
is slow f o r  Rg - 100/i2 but  f a s t e r  than f o r  e i t h e r  l O O / i  o r  100. S t a b i l i t y  is  
improved f o r  RA - 100/i2.  Osc i l l a t i ons  a r e  s l i g h t  f o r  RA = 1 0 / i 2  and has slow 
convergence but  f a s t e r  than RA = 1 0 / i  o r  RA = 10. Convergence is f a s t  f o r  
RA = 11i2 but  o s c i l l a t i o n s  a r e  la rge .  

Figure 15  shows convergence f o r  RA = 1/i2 , f i g u r e  16 f o r  RA = 10 / t2 ,  and 
f i g u r e  17 f o r  RA = 100/i2. Figure 16  f o r  RA = 10 / i2  shows perhaps the  bes t  
compromise between s t a b i l i t y  and f a s t  convergence. However convergence i s  not  
near ly  a s  good as t h e  g loba l  adapt ive  c o n t r o l l e r  (see f i g .  12) which has very 
f a s t  convergence ( l e s s  than 8 t i m e  s t e p s )  and i s  a l s o  very s t a b l e  ( i . e .  t h e r e  
a r e  no o s c i l l a t i o n s  a£ t e r  convergence occurs) . 

2 The o v e r a l l  e f f e c t  of t he  time varying r a t e  weighting term K / i  i s  t o  improve 
the  s t a b i l i t y  ( l e s s  o s c i l l a t i o n s )  of t h e  con t ro l  so lu t ion .  Time varying weiqhting 
o f f e r s  improved f l e x i b i l i t y  over constant  r a t e  weighting i n  t he  l o c a l  adapt ive 
con t ro l  so lu t ion .  

Ef fec t  of t he  con t ro l  r a t e  au tho r i ty  l i m i t s  on convergence. - A s  previously 
ind ica ted  t h e  con t ro l  r a t e  au tho r i ty  limits (-.I < Aq < .1) have a s i g n i f i c a n t  
e f f e c t  on convergence and algorithm s t a b i l i t y .  These limits a r e  relaxed t o  quant i fy  
t h i s  e f f e c t .  Figure 18 s h m s  t h e  l o c a l  l i n e a r  adapt ive c o n t r o l l e r  w&th RA = 0 and -. 2 5 Au < +. 2. Speed of convergence is  increased and convergence occurs i n  10 
time s t e p s .  However t h e  oscf l l a t i o n s  a r e  more pronounced than f o r  -.l < Au < .1 
(see Fig. 13) .  Figure 19 shows the  race  l i m i t s  increased t o  -. 5 < Au <-+. 5 .- 
I n i t i a l l y ,  verv wild o s c i l l a t i o n s  occur and p e r s i s t .  Thus, t he  r a t e  l x m i t  au tho r i ty  
l i m i t s  must-be kept  a t  -.l 5 Au 5 .1 t o  r e t a i n  algorithm s t a b i l i t y .  

Figure 20 shows t h e  combination of r a t e  au tho r i ty  l i m i t s  -.2 < hu 5 +.2 and 
r a t e  weighting RA = .l. Convergence is  slow (20 time s t e p s  a r e  required)  and 
divergence occurs. This is compared with f igu re  14  where RA = 1 and -.i - < Au 5 +.I. 
Reducing RA from 1 where convergence is very slow t o  .1 improves convergence r ~ t e  
but divergence occurs. Repeating t h i s  s imulat ion run with RA = .1 and -.5 - < h u <  - 5 
r e su l t ed  i n  nearly i d e n t i c a l  convergence a s  shown i n  Figure 20. 

The r e s u l t s  f o r  the  l o c a l  l i n e a r  adapt ive c o n t r o l l e r  show e i t h e r  slow convergence 
or  l o s s  of s t a b i l i t y  r e l a t i v e  t o  t he  g loba l  l i n e a r  adapt ive c o n t r o l l e r  f o r  t he  
present  nonl inear  s imulat ion.  During the  s imulat ion runs a compromise s e t  of 
values f o r  RA and AUNN < Au 5 AuMAX could not  be found which gave r e s u l t s  a s  good as 
t h e  global  l i n e a r  adapt ive c o n t r o l l e r  with caut ion shown in f i gu re  12. 



Kalman F i l t e r  Divergence 

Kelman f i l t e r  divergence is a concern i n  any on-line app l i ca t i on  which 
includes a Kalman f i l t e r .  There a r e  t h r e e  primary causes of Kalman f i l t e r  
divergence; 

1) l o s s  of numerical accuracy due t o  an accumulation of numerical e r r o r s  
i n  t h e  r ecu r s ive  covariance equat ion,  

2) model mismatch, and 

3) t runca t ion  of  word length  ( f o r  example when going from 32 b i t  t o  16  
b i t  word length  computer) 

The 1st e r r o r  source ( l o s s  of numerical accuracy) is  o f t en  a r e s u l t  of a poorly 
conditioned covariance matr ix  ( i .e .  t h e  eigenvalue spread is l a r g e ) ,  Also t h e  
recurs ive  na ture  of t he  so lu t ion  causes an accumulation of e r r o r s .  These e r r o r s  
o r i g i n a t e  i n  t h e  matr ix  mu l t i p l i ca t i on  and d i v i s i o n  required i n  t he  c.wariance 
equation. Another problem can occur whenever t he  covariance change from t h e  k t h  
t o  k+ls t  s t e p  is  small. The d i f f e r ence  i n  small  numbers causes  an accumulation of 
e r r o r s  and r e s u l t s  i n  l o s s  of p o s i t i v e  de f in i t enes s .  The a l t e r n a t e  form of t h e  
covariance equation (Eq. (2.18)) is  numerically more accura te  f o r  t h i s  l a t t e r  problem. 

The 2nd e r r o r  source (model mismatch) occurs whenever t h e  a c t u a l  model is 
d i f f e r e n t  t h a n t h e  model assumed i n  t h e  Kalman f i l t e r .  Nonlinear i ty  w i l l  cause 
a mode: mismatch i n  t h e  Kalman f i l t e r  s i n c e  t he  Kalman f i l t e r  is  designed based 
upon a l i n e a r  represen ta t ion .  An example of divergence due t o  model mismatch is 
shown i n  f i g u r e  21. The cos t  and c o n t r o l  time h i s t o r i e s  a r e  hown f o r  t h e  l o c a l  1 l i n e a r  adapt ive  con t ro l l e r .  The r a t e  weighting is R* = 100 / i  and the  con t ro l  is  
constrained i n  magnitude by 2 10 

The con t ro l  so lu t ion  goes i n t o  region I1 (as shown i n  Fig. 21b and 21c) ~ h i c h  
is very nonl inear  and the  model mismatch occurs p r i o r  t o  time s t e p  50 r e s u l t s  i n  
divergence a f t e r  time s t e p  60. Increas ing  the  f o r g e t t i n g  f a c t o r  (1/X) o r  increas ing  
t h e  parameter process no i se  covariance sometimes w i l l  prevent divergence. 

Model mismatch divergence can a l s o  occur i f  t h e  parameters a r e  t i m e  varying 
and t h e  time v a r i a t i o n  is  s o  rap id  t h a t  t he  Kalmen f i l t e r  cannot t r a c k  t h e  para- 
meters. Also f o r  slowly time varying parameters (or cons tan t  parameters),  i f  t he  
parameter process no i se  covariance is too  small (o r  zero)  t h e  Kalman ga in  w i l l  be 
too smal l  t o  permit proper t rack ing  of t h e  parameters.  Kalman f i l t e r  divergence 
w i l l  res : r l t .  In  re fe rence  6 a l i n e a r  s imulat ion was done with slowly time varying 
parameters and Kalman f i l t e r  divergence is shown (see  f i g .  12 and f i g .  16 of 
re fe rence  6) .  The divergence i n  t h i s  re fe rence  occurred near  t h e  middle and end 
of t he  run over 120 time s t eps .  Before c2mplete divergence occurred the  c o n t r o l l e r s  
recovered. Increasing the  process noise  covariance o r  using t h e  a l t e r n a t e  covariance 
Eq. (2.18) could possibly e l imina te  t h e  divergence a l t oge the r .  



i 
The 3rd source of e r r o r  ( t runca t ion  01 word length)  occurs  because of t he  i 

recurs ive  na ture  of t he  covariance equation. Mul t ip l ica t ion  and d iv i s ion  of i : 
matr ices  cause an accumulation of e r r o r s  and divergence r e s u l t s .  This  problem i 

r equ i r e s  s p e c i a l  t reatment  which w i i l  no t  be discuseed here .  However, when us ing  
a  16  b i t  f i xed  word length  computer Kalmon f i l t e r  divergence is poss ib ly  a problem 
and may r equ i r e  a modif icat ion t o  Eq. (2.15) t k o u g h  Eq. (2.17). A l l  s imula t ion  
runs done i n  t h i s  r epo r t  used a 32 b i t  word length  ( s i n g l e  prec is ion  on an IBM 
computer) . 

CONCLUSIONS 

A nonl inear  s imulat ion was used t o  a n a l y t i c a l l y  i nves t i ga t e  nonl inear  model 
e f f e c t s  on l i n e a r  adapt ive  con t ro l  a lgori thm convergence and s t a b i l i t y  cha rac t e r i s -  
t i c s .  For t he  s imulat ion used, non l inea r i t y  was found t o  have a  s i g n i f i c a n t  e f f e c t  
on HHC algori thm convergence behavior. Linear s imulat ion r e s u l t s  showed t h a t  con- 
vergence t o  minimum v ib ra t i ons  always occurs i n  l e s s  than 8 time s t e p s  (equivalent  
t o  8 r o t o r  revolu t ions)  wi th  e i t h e r  t h e  g loba l  l i n e a r  CE c o n t r o l l e r  (without caut ion)  
o r  g loba l  l i n e a r  caut ious c o n t r o l l e r .  The CE c o n t r o l l e r  t akes  an i n i t i a l  l a rge  jump 
due t o  lack  of caut ion and then converges rap id ly .  This i n i t i a l  con t ro l  input  could 
be overcome by magnitude o r  r a t e  l im i t i ng .  

The nonl inear  s imulat ion r - 3 u l t s  s i g n i f i c a n t l y  e f f e c t  HHC convergence. I n  
add i t i on  t o  mul t ip le  miniina s~l[~:?-ons,  t h e  algori thms a r e  genera l ly  slower i n  
convergence, less s t a b l e ,  and car. r e s u l t  i n  Kalman f i l t e r  divergence due t o  model 
nismatch. By a r t i f i c a l l y  increas ing  the  i n i t i a l  covariance on t h e  parameter 
es t imates  (~ (O)x100) ,  t h e  g loba l  adapt ive  cau t ious  c o n t r o l l e r  was fcund t o  e x h i b i t  
exce l l en t  convergence i n  l e s s  than 8 time s t eps .  Increasing the  covariance has  
the  e f f e c t  of o f f - s e t t i ng  non l inea r i t y  by introducing more cau t ion  than is  requi red  
f o r  a  l i n e a r  model. When t h e  i n i t i a l  covariance is  too low t h e  convergence behavior 
is  s i m i l a r  t o  the  g loba l  l i n e a r  adapt ive  e o n t r o l l e r  without cau t ion  where t he  con t ro l  
e x h i b i t s  a  l i m i t  cyc le  between t h e  cont ro l  l i m i t  s t o p s .  

The l o c a l  l i n e a r  adapt ive  c o n t r o l l e r  with r a t e  weighting converges very slowly. 
Without r a t e  weighting (RA = 01, convergence occurs in 20 time s t e p s ,  however with 
p e r s i s t e n t  o s c i l l a t i o n s .  Adding constant  r a t e  weighting increases  s t a b i l i t y  ( l e s s  
o s c i l l a t i o n s ) ,  but convergence i s  very slow ( t y p i c a l l y  100 time s t e p s  o r  g r e a t e r ) .  

2 A time varying r a t e  weighting of RA = 1011 improves s t a b i l i t y  and convergence, y e t  
s t i l l  r equ i r e s  between 20 and 100 time s t e p s  f o r  convergence. 

Based upon the  s imulat ions performed, t h e  caut ious g loba l  l i n e a r  adapt ive con- 
t r o l l e r  has  good convergence and s t a b i l i t y  and is t h e  supe r io r  c o n t r o l l e r  f o r  HHC 
of v ib ra t i on .  Although the  l o c a l  adapt ive c o n t r o l l e r  does converge i ts s u s c e p t a b i l i t y  
t o  measurement noise ,  slow convergence, and tendency t o  o s c i l l a t e  make t h i s  con- 
t r o l l e r  l e s s  d e s i r a b l e  f o r  HHC of v ib ra t i on  i n  the  presen t  s tudy.  

Control a lgori thm speed of convergence and s t a b i l i t y  determine t o  an ex t en t  
the  a b i l i t y  t o  adapt t o  changing f l i g h t  condi t ions.  The global  cau t ious  c o n t r o l l e r  
may be a b l e  t o  t r ack  rap id ly  varying f l i g h t  condi t ions .  Previous wind tunne l  t e s t s  
i n  re fe rence  1 and re fe rence  3 have e s t ab l i shed  t h i s  t rack ing  c a p a b i l i t y  f o r  t he  
case  of increas ing  a i r speed .  The loca l  l i n e a r  adapt ive c o c t r o l l e r  may have 
d i f f i c u l t y  t racking rap id ly  varying f l i g h t  condi t ions  due t o  its slower convergence. 



The r e r u l t r  of t h i r  r roearch  have i s o l a t e d  r avc ra l  de f i c i encas  i n  t he  use of 
higher harmonic c o n t r o l  nf v ib ra t i on ;  1) Kalman f i l t e r  divergance, 2) i n a b i l i t y  
t o  reduce v i b r a t i o n s  due t o  mu l t i p l e  m i n i m  ao lu t ion r ,  and 3) unpredicted e r r a d i c  
convergance b :rovior due t o  non l inea r i t y .  I t  i s  recornmended t h a t  f u r t h e r  inverrtiga- 
t i o n  be undertaken t o  r o l v r  these  p o t e n t i a l  problem a rea8  of HHC. 

I n  add i t i on ,  reaearch should be f u r t h e r  advanced to  p roh ib i t  Kalman f i l t e r  
divergence. Numerical accuracy, model m i a ~ u t c h ,  and word length  t runca t ion  e r r o r  
should he  inves t iga ted .  F ina l ly ,  t he re  is  a need to  f u r t h e r  reduce the  computational 
burden due t o  t h e  requirement f o r  on-line Kalman f i l t e r  c a l c u l a t i o n  and matr ix  
inversicn.  Algorithms which s impl i fy  t h e  computational s o l u t i o n  rhould be inves t iga ted .  
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ORIGINAL PAGE 19 
OF. POOR QUALITY 

Figure 1. - Vibration State x as a Nonlinear Function of M C  
u1 and u 1 

2 ' 



Figure 2. - Vibration State x2 as a Nonlinear Functfon of HHC 
u1 and uZ . 





ORlGlVAL PACE iS 
OF POOR QUALITY 

Figure 4. - Quadratic Coat Function ae a Nonlinear Function of 
HHC ul and u2 (-10 5 u < +lo, -5  < u < + 3 ) .  

1 - - 2 -  



OR1OINAL PAGE b 
a p o o ~  QUAL~N 

Figure 5 .  - Quadratic Cost Function as  a Nonlinear Function of HHC ul 
and u2 (-10 5 u l z  +lo,  - 3  2 u2 - < + 3 ) .  



Figure 6. - Quadratic Cost Function as a Nonlinear Rnction of WC 
u and uZ ( 0 5 ul 5 +lo. 0 5 u2 < -1). 1 - 





ORIGINAL PAC2 S;; 
OF POOR QUiILIPY 

- CE CONTROL 
.c.-- CAUTIOUS CONTROL 

Figure 8.  - Honte Carlo Average Cost (of 100 Runs) va. Time Step Number 
For The Linear Vibration Model. (Global Linear Adaptive 
Controllere CE and Cautious). 



Figure 9. - Convergence of the CE Global Linear Adaptive Controller on the 
Nonlinear Vibration Model; Cost, ul and u2 vs. Time Step Number. 
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Figure 9 .  - Concluded 



Figure 10. - Convergence of the Cautious Global Linear Adaptive Controller 
on the Nonlinear Vibration Model; cost ,  ul and u VE. Time Step. 
( A  = .99 ,  P(0) x l ) .  2 



ORIGINAL PACE IS 
OF POOR QUAI-ITY 

Figure 11. - Convergence of the Cautious Global Linear Adaptive Controller on 
the Nonlinear Vibration Model; cost ,  ul, and u2 v s .  Time Step. 
(a = .99, P(0) x10). 



Figure 12. - Convergence of the t r u t i o u  Global Linear Adaptive ContrclLer on 
the Nonlinear Vibrat io~ Model; Cost, ul, and uZ vs. Time S t e p .  
(X  - 1, P ( 0 )  ~ 1 0 0 ) .  



Figure 13. - Cotwrgcnce of the Local Linear Adaptive Controller (CE) on the 
Nonlinear Vibration Model: Cost, ul and u, va. Time Step. 
(Rd. - 0. - .1 < AU 5 .I).  e 

- 



ORIGINAL PAGE tS 
OF POOR QUALlTV 

T I M E  HI S T O R Y  

Figure 14. - Coitvergence of the  Local Linear Adaptive Controller (CE) oa 
the Nonlinear Vibration Model; cost,  ul and u2 ve. T i m e  Step. 
(RA * I., -.l 5 AU 2 . l )  



Figure 15. - Convrrrgencr of the Local Lisaar Adaptive Controller on the 
t$onllnrar,Vibrrtion Model; c o ~ t ,  ul and uZ vs. Time Step. 
( - 1 1 A .I). 
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H I  S T O R Y  

Figure 16. - Convergence of the Local LInaar Adaptive Controller (CE) on the 
Nonilnear Vibration Model; Cost, u , and uZ va. Time Step. 
R - 10/f2, -.I 5 Au 5 .l). 1 



T I M E  H I S T U R Y  
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cu.*4 4 0 . s ~  m . 3 5  A;.;; 12:, .:: 
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c > 
Figure 17. - Convergence of the Local LInear Adaptive Controller (CE) on 

the Nonline r Vibration Model; Cost, ul, and u2 vs.  Time Step. 

( R ~  - 100/iq, -.l 5 Au 5 .I). 



T IME H I S T O R Y  

c 1 
Figure 18. - Convergence of the Local Linear Adaptive Contraller 

(CE) on the Nonlinear Vibration Simulation Model; 
Coat. ul, and u2 va. Tim Step. (R,, - 0. - . 2  5 Au 5 .2 )  



ORIGINAL PAGE TS - OF POOR QUALITY 

Figure 19. - Convergence of the Local Linear Adaptive Controller 
(CE) on the Nonlinear Vibration Simulation Model; 
Cost, u , and u2 vs .  Time Step. (Rd - 0, - . 5  C Au 5 . 5 )  1 - 



HI S T O R Y  

Figure 20. - 
c 

Convergence of the Local Linear 
(CE) on the Nonlinear Vibration 
Coat, ul, and upvs. Time Step. 

Adaptive Controller 
Simulation Xodel; 
RA - .l, - .2  - < hu 5 .2) 
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b 0 '  3.35 2 2 . 5 ;  a:. ;; . f , S .  :,?, 6,; . ',:, I *>:, . 5 ; 
T : : A ~  S T E P  

Figure 21. - Divergence of Cost, ul, and u2 Due To Nonlinear Model nisutch 
Resulting in Kalman Filter Divergence. (Local linear Adaptive 
Controller, R = 100/i2, - .l 5 Au 5 .l, -10 < u < +lo). A - - 


