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FOREWORD

The report discusses the development of a systematic
methodology to aid pilots in accurately following aircraft
flight test trajectories. Modern control methods are used to
compute time histories for displays which both reduce pilot

workload and make test trajectories consistently accurate.

The work has been performed under NASA Contract NAS4-2906.
Technical discussion and direction of NASA technical monitor

Mr. E. L. Duke are gratefully acknowledged.
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SECTION 1

INTRODUCTION

It is often necessary to follow desired time histories of
several variables during an aircraft flight test. The pilots
often find it difficult to follow such trajectories accurately,
leading to increased test time and pilot workload. This report
shows that modern control techniques can be applied to signifi-
cantly improve the accuracy with which complex trajectories can
be flown. In addition, the pilot inputs are concentrated below
2 rad g1 reducing pilot workload and fatigue.

The study involves computing three display variables on
which pilot pitch, roll and throttle commands can be based. The
pilot perceives a three axis uncoupled control problem because

all couplings are handled by the flight trajectory controller.

The emphasis has been placed on the development of the
techniques. An F-15 nonlinear simulation has been used for
demonstration. The techniques are general and should be appli-
cable to various combinations of trajectories, aircraft and

displays.

1.1 SUMMARY OF APPROACH

The principal steps for systematic development of flight
trajectory controllers are

1. Development of the flight test plan,

2. Control design model specification,

3. Controller design, and

1. Controller validation by analytical simulation
and pilot-in-the-loop-simulation.



The flight test plan prescribes the aircraft with all subsystems
configured for the given test, the trajectory or classes of tra-
jectories to be flown, and the pilot's tasks during the specified
trajectory maneuvers. Figure 1-1 depicts the design procedure
after the flight maneuver and system models have been specified.

1.2 RESULTS

The major result from this study is a set of tools suitable
for developing flight test trajectory controllers. Attention has
been given to keep the techniques as general as possible. The
techniques should have a general application to a wide class of
problems where quantities displayed to a pilot should be appro-
priately computed to improve pilot effectiveness and to reduce
workload and fatigue.

The development of the control laws is straightforward
using an advanced control design program once the model and the
performance index have been specified. Thus, major part of the
attention must be given to these two tasks. Special linearization
tools were developed for the F-15 simulation to develop a suitable
model for control. Integration of pilot model is a difficult task
because the pilot model itself depends upon the trajectory con-
troller. This was achieved by prespecifying a suitable represen-
tation for the aircraft and controller dynamics and basing a
pilot model on this dynamics. It is necessary to roll-off the
control law at high frequency, and frequency shaping methods are

essential to achieve necessary gain margin at high frequency.

Pilot-in-the-loop and flight test validation of controllers
are needed. It may be desirable to integrate pilot inputs with

autopilots to achieve even better oVerall performance.

1.3 REPORT ORGANIZATION

This report is organized as follows: Sections 2 through 4
describe systematic methods for designing flight test trajectory

2
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controllers, illustrated on the F-15 aircraft. Section 2 cate-
gorizes how the equations are developed for different types of
maneuvers. Section 3 develops linear models for each major

subsystem, and Section 4 describes the control design methods.

Section 5 describes the control law synthesis for the zoom
and pushover maneuver, and linear and nonlinear evaluation of
the control law. Section 6 documents this control algorithm for

use in a batch simulation, manned simulator or flight test.

General conclusions are given in Section 7.



SECTION 2

TRAJECTORIES FOR FLIGHT TEST MANEUVERS

A large class of trajectories can benefit from flight test
trajectory controller design. The model for the control law
and the development of the control law will depend strongly on

the particular trajectory to be flown.

Aircraft flight test trajectories could be based on inertial
reference (e.g., level-turn or 3-D guidance) or reference with
respect to another vehicle or vehicles (e.g. in air-to-air combat).
To place the flight test trajectory control design problem in
a proper framework, both of these cases will be discussed.

2.1 SINGLE VEHICLE FLIGHT TEST TRAJECTORY

We divide single vehicle flight paths into those which
require continuous control along the trajectory and those that
specify a final flight condition. In either case the flight
test trajectory could be specified in terms of one of the

following:
1. constraints on position components,
2. constraints on velocity components and altitude,

3. constraints on combinations of load, speed and
altitude.

Combinations of these constraints could also be considered.

Constraints on Position Components

Examples of trajectories which involve position constraints

along the flight path are



1. 4-D guidance (x(t), y(t), h(t) are given functions of
of time).

2. 3-D guidance (x, y, h are related to each other,
e.g., fly along a hypothetical wire in space).
Examples of 3-D guidance are approach to landing,
terminal area flight paths and threat evasion for
reconnaissance aircraft and bombers. This also
includes straight and level flight and flights
along predetermined paths.
Examples of trajectories which specify position constraints at
final trajectory point are:

1. 4-D specification (arrive at a certain point, at a
certain time, e.g., touchdown on the runway at a
specified point).

2. 3-D specification (fly-to-VOR, terrain following).

Note that each of these trajectories requires position measurement.
The 4-D guidance trajectory indirectly specifies velocity and
acceleration components. Thus specification of position compon-
ents is the most comprehensive cbnstraint on the trajectory.

Such a rigid constraint may be unnecessary for most test maneuvers.

Constraints on Velocity Components and Altitude

While the horizontal position components do not, in general,
affect aerodynamic variables, the altitude determines density
and by itself affects dynamic pressure. Thus it must always be
considered as a possible variable to be constrained. In fact,
the altitude and dynamic pressure are so important that a
majority of flight test trajectories will define the altitude

profile (this includes maintaining constant altitude).
Examples of this class of trajectories are:

1. u(t), v(t), w(t) and h(t) [in other words, Mach
number, dynamic pressure, a(t) and B8(t). B(t) may
be zero.

2. Mach number, angle-of-attack and dynamic pressure
(as in shuttle tile tests).

Various other combinations of velocity components and altitudes

could also be specified.

6



Mach number, angle-of-attack and altitude constraints could
also be desired at one point on the trajectory. Zoom and pushover
is a trajectory where angle-of-attack, Mach number and altitude
are specified at one point on the trajectory. Note that since
sideslip angle is assumed zero, zoom and pushover requires a

certain set of u, v and w at a certain altitude.

Constraints on Combinations of Load, Speed and Altitude

The trajectory specifications could involve components of
loads along the three axes, velocity components and altitude.
The typical load specification will consist of desired vertical
acceleration. The desired value of the lateral acceleration
is usually zero. The total speed is specified in lieu of the

fore-and-aft acceleration.

Many combinations of load, speed and altitude specifications

are possible. Some examples are as follows:
1. A constant load, constant Mach number level turn,

2. A constant Mach number, constant altitude spiral turn.

2.2 MULTIPLE VEHICLE FLIGHT TEST TRAJECTORIES

Often the desired flight trajectory for an aircraft depends
upon the position and flight test trajectory of other vehicles.
Typical examples are collision avoidance or air combat with air-
to-air missiles. The specification is typically based on the

position of a target aircraft with respect to the aircraft whose

trajectory is being controlled.






SECTION 3

SYSTEM MODEL FOR TRAJECTORY CONTROLLER DESIGN

The overall system model for the flight test trajectory

control analysis has the following components:
1. aerodynamics and kinematics,

2. hydro-mechanical control system (MCS) and command
augmentation system (CAS) including actuator models,

3. engines,
4. sensors, and
5. pilot.

The flowchart of the complete model is shown in Figure 1.

j AERODYNAMICS
o

N
X | KINEMATICS
CAS
. |
THRUST MODEL | }
b
| 1 SENSORS
PILOT * DOWNL I NK
{ FLIGHT TEST
DISPLAY TRAJECTORY
UPLINK CONTROLLER

Figure 3-1 Schematic of System Model for Flight Test
Trajectory Control Analysis



3.1 AERODYNAMICS AND KINEMATICS

The structure of mathematical equations governing the motion
of a rigid aircraft may be derived from kinematics. Aerodynamics
will be linearized, as necessary. A different approach must be
used to smooth out any discontinuities in slope.

Consider an aircraft state vector

, Wwith (3.1)

[>d
i

X = y , v = v , $ = q , and

0 = o) . (3.2)

The equations of motion can be written as
X = 1fX,w) (3.3)

A detailed nonlinear aerodynamic model of the F-15 from
the NASA Dryden Flight Research Center Simulation SIMII was

linearized by

a) trimming the aircraft at the desired flight
condition,

b) perturbing the six aerodynamic force and moment
equations with respect to all dynamic variables of
interest, and

c) projecting these stability derivatives onto both

body and stability axes (see Tables 5-1 and 5-2 in
Subsection 5.2).

10



3.1.1 Longitudinal Aerodynamic Model

The simplified linear longitudinal equations developed

further in Section 5.2 for the zoom and pushover maneuver are:

&V =

T
- g(wg)sin o, - Xa + g| Sa - g88 + cos ag ST + X.68
m 5§~ SB
T
. | o . ST I
Sa = v g(w )cos a, + Za oo + q + sin ao(m ) + ZﬁssBj

T

- -— ‘ 3 __O .
q = ILa + La g\y Jcos o  + Za ‘Ga + (La + Lq) a

. 8T
+ La sin ao(ﬁ_)+ (L6 + L&ZS) SSB

6é = q

Sh + V(88 - Sa) ,

where
SV - speed GSB - stabilator deflection
Sa -~ angle-of-attack §T/m - thrust acceleration
q - pitch rate

§8 - pitch attitude
§h - altitude
are perturbation states about the trimmed condition in stability

axes.

3.1.2 Coupled Lateral/Longitudinal Equations

For high bank level turns trimmed at a constant turn rate,
Voo

= I 3 a
p wo sin €

Q. = y_ cos 60 sin ¢o

o]
11



r, = wo cos 60 cos ¢o .

The coupled linear equations in body axes are

FQ ] F_YV -U, LN g cos6 cos¢ 0 0
5T N, N, N +p g, 0 0 8 I
5P Ly Lptrya Lp 0 0 TxPo
so|l =1 o 0 1 0 0 P 8,Sind
sw —pO 0 0 —gcoseosind)O Zw U0
6& Mv qypo qyrO 0 Mw Mq
86 0 —sin¢0 0 —(rocos¢o+q0sin¢o) 0 cos¢o
_Gﬁd iSin¢O 0 0 W,Cosb sing -cos¢ cosb 0
where r. = (Iy—IZ)/Ix , qy = (IZ—IX)/Iy sy P, = (Ix—Iy)/IZ.

3.2 MCS AND CAS MODELS

The mechanical control system (MCS) and control augmentation

a O O O O © o o

system (CAS) use pilot commands and instrumentation system measure-

ments as inputs. The outputs of this system are the aerodynamic

control surface deflections and the thrust command.

Only those dynamics in the pilot's range of attention and

response need to be modeled (.1 to 20 radians per second).

Symmetric simple nonlinearities such as position and rate limits

have no memory and should be avoided in trajectory controllers.

An overview schematic of the longitudinal MCS/CAS system
is given in Figure 3-2. The mach servo loop is fixed at a con-
stant gain obtained from SIMII at the trimmed condition. Des-
cribing function analysis indicated that the nonlinear control

elements could be realized at the zoom and pushover trimmed

condition as shown in Figure 3-3 (see Section 5.2 for the linear

equations).

12
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Figure 3-3 F-15 MCS/CAS Longitudinal Linear Model (Roll, Pitch, Yaw CAS on)




3.3 ENGINE MODEL

Simple as well as highly sophisticated models have been
developed for engines such as F100-PW-100. A simple first-order
lag model should suffice for the purpose of the study. The engine
thrust T is related to the commanded engine thrust TC as

1., (3.4)
T
where 1 is the time constant in the first-order lag model.

3.4 SENSCR MODEL

Typical instruments on board a test aircraft include a three-
axis accelerometer, a three-axis rate gyro, angle gyros, angle-of-
attack and sideslip angle vanes, altitude, rate-of-climb and total
speed.

We could use a model with first-order lag and random noise.
Thus, the measured quantity Ym will be related to the true vy

as follows
-y = y -y_+n (3.5)

where 1T 1is the time constant and n is the random noise. All

sensors give sampled measurements (with an assumed rate of 10 Hz).

3.5 PILOT TASK DEFINITION

The trajectory models described in the previous section
specify a portion of the controller task; however, since the
pilot is actually part of the overall controller his precise
role, the variables that are displayed to him, and the controls
he uses to zero the display must be considered. Alternative
roles for the pilot in the overall controller include: 1) using
the pilot only in the loop, nulling the displays driven by the

15



trajectory controller, 2) giving the pilot vernier controls to
refine the performance of the autopilot, or 3) flying the
maneuver automatically after the pilot has achieved the appro-

priate inital conditions.

The first role is desirable since the pilot's iscolation of
faults and corrective action is much more reliable than that of
the autopilot. Only this first role, with the pilot fully in
the feedback control loop will be used in this study.

Besides the pilot role, the control design must also address
which error signals should be displayed and which controls are
most effective for a given trajectory. To simplify the pilot
task the errors displayed should be dynamically decoupled with
respect to the controls as much as possible, and also separated
in frequency where possible. This enables the pilot to more

easily coordinate and sequentially correct the trajectory errors.

There are two other aspects of the pilot task that effect
the controller design, the pilot's preference for the ''plant
controller" dynamics, which is the combined plant that he con-
trols, and the pilot's preference for the speed of the closed—
loop system; i.e., the speed at which he prefers to control.
We want to optimize the pilot performance by giving him a system
which he can best control. Since the pilot responds differently
to different systems, iterative controller design could be used
to converge on the combined pilot controller-plant model.
For this study, a published model of the human operator controlling
a 1/52 plant [1] will be used. Further research is currently being
conducted, employing improved representations of pilot behavior
using frequency shaping methods. Since the human operator adapts
to the given system the 1/52 model will be a conservative des-
cription of the pilot's actual performance in flight tests.

16



Pilot Model

A pilot model presented in previous studies has been

e~ TS
P(s) = Poa(s) 77— )
EQ 1 s +1

N

where PEQ(s) is the human equalization network,

neurological motor delay, and 1 an observation delay.

T

N

(3.6)

is a

Figure 3-4

shows what has been called the control theoretic model of optimal

human behavior.

Pilot Modeling Difficulties

The above control theoretic model requires the propagation

of delay-differential equations which introduce considerable

complication.

Between the two delays and the control and filter weights

in the optimal regulator and estimator, there is considerable

flexibility in this model to fit empirical data.

If the system

is driven with sinusoidal inputs then the assumption that the

human can perfectly compensate for a delay will be self-fulfilling

as the human operator settles into a steady-state after observing

several cycles. Time domain approaches which include random

inputs with a band of frequency content would be more desirable

and should indicate a much lower gain at high frequencies, rather

than primarily the large phase lag. Finally, the model is valid

for a particular plant, in our case 1/82, when the dynamics are

actually higher order and not a pure integrator in the mid-fre-

quency range where the pilot responds well.

The significant aspect of the human pilot, however, is his

ability to identify and adept to the plant dynamics, therefore

our assumption of a 1/s2 plant is a conservative one for the

usverall trajectory controller and pilot system.

Thus,

the given

1/s2 model will suit our purpose in developing trajectory con-

troller design techniques. The frequency response shown in Ref.

[1] is given in Figure 3-5.

17
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The pilot limitation parameters are given in the following

table:

Motor Delay T

100 msec

Observation Delay T

210 msec

The pilot transfer function is

P(s)

PEQ(S) (9.52 - s)
(s + 10)(s + 9.52)

(3.7)

A reasonable linear approximation to the above frequency response

is

P(s)

-56.1(s +

.6)(s + 4.75)(s - 9.52)

(s + 8)(s + 10)(s + 14)(s + 9.52)

(3.8)

A state-space realization of this transfer function (using an

observability form) is

P(s)

Fp

-1
H sl - F

p Sp

p

H = -56.1 0O O
p [-56
[_10. -356.98 0
0 0 1
0 0 0
| 0 -1066.7 321.53

with

0]

31.524

(3.9)

1
.1

-2.1170

37.646 J
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3.6

SUMMARY

A state space linear perturbation model for the overall

system shown in Figure 3-1 appears as

where the states,
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inputs are:

L location coordinates (x, y, z)

Xy = aerodynamic/kinematic states
XMe = MCS/CAS states
Xp = engine states
xp = pilot states
xs = sensor states,
ep. = vertical display error
V
ey = horizontal display error
H
ep = Mach display error
M
w = gust inputs
ng, = sensor noise
np = pilot motor noise




SECTION 4

CONTROL DESIGN PROCEDURE

The overall control-design procedure consists of three major

1. Model reduction: Development of control-design
models from detailed models of the previous section.

2. Control design: Design of a controller/filter or
output-feedback logic to specify the control
structure.

3. Controller simplification: Reduction of the con-
troller obtained in the previous step to simplify
implementation and for more robustness.

The steps in the overall procedure must be carefully inte-
grated to support assumptions and approximations made in each
of the steps. The development of specific design methodologies
which support this integration is the basis of our control design

methodology for flight test trajectory controllers.

We discuss each of these steps in some detail.

4.1 MODEL REDUCTION

Model reduction is required for robustness and to simplify

control law computation and implementation.

Criteria and computation procedures for model reduction
are discussed in this section. The reduced model must contain
essential elements of the dynamics such that the resulting
control law meets the design requirements. Roles of poles, zeros
and residues of transfer functions in closed-loop control design
are discussed first followed by selection of specific criteria

and numerical procedures. 21



Poles, Zeros and Residues: 1In linear systems, the closed-1loop

behavior is dictated significantly by several transfer function
properties. Three of the most significant are the poles, the

zeros, and the residues.

Consider a linear model with nxl state vector x, gx1 control

vector u, and pxl output vector y:

Fx + Gu , (4.1)

.
il

Hx + Du . (4.2)

«
I

The transfer function between y and u is

v(s) [H(sI—F)—IG + D] u(s)

A T(s) u(s) . (4.3)

The roles of transfer function properties are best explained

by considering a single-input single-output (SISO) system
y(s) = T(s) u(s) (4.4)

The characteristic values Ai, i=1, 2, ..., n of the
T(s) denominator are the open loop system eigenvalues and
indicate system stability properties. The transfer function
may be written in terms of zeros Zi, i=1,2, ..., n or

residues T, i=1,2, ..., n as follows:

K(s—zl)(s—zz) . (s—zm)
(s-A)(5-%5) ... (5-1) :

Zeros Representation (4.5)

T(s)

= s—i : Residue Representation (4.6)
! i
i=1
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Consider now a feedback matrix C(s) with gain o . The
closed-loop transfer function is
T(s)

Tc(s) = T ¥ aC(s) T(s) (4.7)

which may be written as

K(S-El) e.e. (s-2=)

T, (s) = — — 2
(s—xl)(s-xz) cen (s—AH) (4.8)
It is easy to see that for smaller a,
axi
3a = aCChy) 1y (4.9)

a0

Thus rs dictates the behavior of the pole for small gain. When
x is large, the finite closed-1loop poles are the zeros of C(s)

and T(s).

To summarize, the residues of the transfer function describe
the low-gain properties and the zeros the high-gain properties.
Both zeros and residues are important in closed-loop control
design. Therefore, an ideal reduced-order model should maintain
the residues of the retained poles and zeros in the spectrum of
interest. Unfortunately, both zeros and residues cannot be
preserved simultaneously. The attempt in reduced-order modeling
methods is to maintain either poles or zeros or provide approxi-

mations to both of them.

Retention of Residues

The procedure for retaining residues is implemented as
follows. Let F, G, H and D be in modal form and assume
that the first n modes are retained. The state equations are

then written as

1 1 (4.10)
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y = [HI 'HZ] —=-~{ + Du . (4.11)

Let the average frequency of the retained model be Wy . The
state Xq is approximated by

N . -1
= Re[(juw,1-F,,) G,1 u (4.12)

X9 22
where Re(+) represents the real part of (+). Therefore, the

reduced model is approximated by

- . -1
y Hlxl + [D +Re[H2(JwaI—F22)

G2]] u . (4.13)
I1f we are interested in matching the dc¢ gain of the reduced model
to that of the high-order model, w, may be set to zero. Note
that only the real part of the term in Eq. 4.12 is retained
because we want reduced-order models with real coefficients.

Retention of Zeros

Suppose we want to retain the first m =zeros and n poles.
Let “a be the average frequency. The transfer function of
Fq. 4.5 idis simplified to

g(j“a'zm+1) e (jma-zM) (s—zl) ‘e (s-zm) (.15
(Jwa-)\ ) ... (Ju‘-a-)N) (S-).l) . o (S—;\n) y

T, .(s) =
k£ n+1
The first term is approximated by a real gain. Each input-output
transfer function is simplified as in Eq. 4.14., These simplified
transfer functions are reconverted into a state-variable

description.
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The computation time requirements to obtain reduced-order
models which retain zeros are very high. Poles and residues
of high-order models are determined much more easily than zeros.
This model-reduction procedure, therefore, has been used rarely.
Methods that maintain system transmission zeros have been des-
cribed using zero directions [2]; however, a systematic design
method employing MIMO zeros has not yet been developed. The
transmission zeros are the frequencies at which there is no
output to any combination of inputs. They are the eigenvalues

of the generalized eigenvalue problem

F G X I 0 X
=2z (4.15)

H D u 0 0 u

Mode Detection Criteria

If the model is to be reduced to n' states, the number
of poles will drop to n'. Criteria have to be developed to
determine the set of poles which may be dropped, along with the
corresponding set of modes. These criteria must consider the

following:

1. Any mode which is uncontrollable and undisturbable
or unobservable can be dropped. Either of these
conditions corresponds to a zero residue or a
perfect pole-zero cancellation in all transfer
functions.

2. Controllable modes should not necessarily be dis-
carded even if they are nondisturbable and add
nothing to the cost functional, since they may be
excited by the control actuators.

3. Highly controllable modes in the bandwidth of
interest should be retained even if they are not
disturbable or observable. Similarly, highly
observable modes should be retained for robustness
reasons,

4. Proper mode ordering based on cost analysis [3]
should include the above factors in additiou to
performance considerations.
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It is clear that many simplifications of the model form
are possible. In general, the analyst would start from the
simplest model and carry the procedure through to evaluation.
If the performance is unsatisfactory, a more detailed model

should be considered.

4.2 SELECTION OF CONTROL LAW AND STATE ESTIMATOR

Multivariable linear-quadratic-regulator (IQR) control
theory is a powerful tool for the development of flight test
trajectory controllers. If the measurements have unacceptable
noise or if unmeasured states are needed for feedback, a state

estimator may also be designed to supplement the regulator.

4.,2.1 Basic Linear Quadratic Regulator Approach

The basic approach is described first. Extensions of the
approach for the test trajectory control problem will then be
‘covered. Consider a linear system model in which the states

x and inputs u represent perturbation around nominal values

X0 and uo

Xx = Fx + Gu . (4.16)

In this problem, u represents the variables to be displayed
(nominally roll, pitch and Mach number errors) and x depends
on the particular model dynamics selected (u, w, 2z, T and
h; for the simplest model). The control design problem selects
u to drive the perturbation states x to zero. The LQR formu-

lation optimizes a quadratic performance index of the form

T
J = %f (xTAx + uTBu) dt . (4.17)
0

The control law is obtained by solving the Riccati equation

S = - SF - F's - A + seB~1gTs
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and

u(t) = -B"1Ts x(t) = cC(t) x(t) . (4.18)

To simplify implementation, a steady-state solution could be
used where the é is set to zero and a constant value of the
gain matrix C(t) is computed. This constant control gain can
be used throughout the maneuver. Note that since x and u
are perturbation values, the steady state X5 and uo must

be subtracted from the measured quantities prior to computing
the control input, and is added into the final control applied.

Each maneuver is specified in terms of desired values of
the 12 aircraft state variables or functions of these variables
(the 12 variables are the three components each of position,
velocity, Euler angles and angular rates.) The specification
can be in one of the following forhs for each state (or function

of states):
1. desired constant value,
2. desired constant value for integral or derivative,
3. desired time history, or

4, desired value at some point on the trajectory.

4.2.2 Constant Values

A desired constant value is equivalent to having trim values
as discussed above. The steady-state states and controls neces-
sary to achieve the desired outputs can be solved from the equation

Xq F G 0
- (4.19)

u, H 0 z,
If the system has open-loop zeros at the origin, this inverse
does not exist, or in other words, there is no neighboring
steady-state value. In this case integral error states can be
27



added to achieve the desired constant value. Constant integral

as well as derivative states are discussed next.

4.2.3 Constant Integral or Derivative Regulation

Integral control: To account for errors in computation

of trim conditions and other low-frequency modeling errors, it

is necessary to place a penalty on the integrals of the error

signals. For example, if a state =z 1is being held at z,, Wwe
can define

E = A ZO (4-20)
and place an additional penalty on & as follows:

el AL . (4.21)

Regulation of derivatives of states: To control derivatives

of states, additional terms are added to the performance index.
For example, to make Ex follow E,, the following term is

added to the integrand of J:

. T .
(Ex - EO) Ae(EX - EO) ’

or

T

[E(Fx + Gu) - E_1° A_[E(Fx + Gu) - E (4.22)

ol

The control laws can be computed directly for the new performance

index and will be of the form:
u(t) = - Cx(t) + CeEo . (4.23)
(References [4] and [5] describe a new stable and reliable algo-

rithm for solving the algebraic Riccati equation with cross-

coupling between state and control cost.)
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Integral control is valuable for zero steady-state errors
although it can lead to a sluggish controller if the feedback
consists primarily of the integral state, since it takes time

for the error to build up.

Derivative control on the other hand gives excellent response,
and in fact, is called dynamics matching in the context of implicit
model following. A typical trajectory where such a control law
would be possible is the specification of loads, where linear
combinations of the derivatives of rate equations are to be

regulated about a constant value.

4.2.,4 Controlling the Time History of a State Variable

The technique can be extended to make certain variables
(say Tx) follow a time history T(t). The integrand of the

performance index is extended as follows:
(Tx - T(t)T A (Tx - T(t)) . (4.24)

The control law now requires the solution of a differential

equation backward in time.

The complete problem formulation as described in Ref. [6] is

t
1 2 1 f 2
J = 5 [z0 - HOX(‘CO)”A + 5'/; [” z - Hx HA—l
0 0
2 1 2
+ “u)‘ _qlat + E(sz - fo(tf)'| 1 (4.25)
B A
where
x = Fx + Gu , (4.26)

given Zq) HO, AO’ z(t), H(t), A(t), B(t), Zgs Hf, Af,
F(t), G(t), tO’ and tf.
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x(t) 1is the state vector of a dynamic system.

H(t) x(t) 1is a vector output history.

z(t) 1is a desired vector output history (prespecified).

u(t) 1is a vector control input history.

Hox(to) and fo(tf) are initial and final vector outputs.

Zq and zy; are desired initial and final vector outputs.

AO, Af, A(t), and B(t) are relative weighting matrices
to be specified by the control designer.

The desirable solution for this '"follower'" problem is a backward
sweep solution derived from the Euler-Lagrange equations, of

the form
A(t) = - XB(t) + SB(t) x(t) . (4.27)

Differentiating (4.27) with respect to time and using the Euler

Lagrange equations yields the backward sweep equations:

o T -1.T T
- Sg = SpF + F'sy - S;G; G'S, + H AH ,
S (t.) = HYA.H (4.28)
B(ts fArHe :

O T T
~ig = (F - GCp Ay + HlAz ,
v (t.) = HYA.z (4.29)
plte £AEZg :

where
A o=1.T

cg & B leTsy . (4.30)

Equation (4.28) is a Riccati equation for the symmetric matrix

S,
B
along with (4.29) for the vector AB.

It must be integrated backward from ¢t = tf to t = to

1

If Cg(t) and B~ GTAB(t) are stored on the backward sweep,

then x and X can be integrated forward to determine u(t):

3C



X .
I

Fx + Gu , (4.31)
where
-1.T
uB = B °G XB (4.33)

Note that this set of equations involves linear feedback of the
state vector x(t). Equation (4.32) is a feedback plus feed-

forward from of solution.

For linear time-invariant systems with which we have approxi-

mated our system, the Riccati equation need not be integrated

but rather a vector forcing function using model decomposition

for the linear two point boundary value problem (TPBVP) (see [7]
for the distinct eigenvalue case and [8] for the general eigen-
structure case). However, except for 4-D guidance, we do not

need to control with a finite time formulation, but rather can
employ steady-state control laws. This is equivalent to saving

that z(tf) persists as a constant value for a long period.

This further simplification gives a constant gain solution

for the control

_ 1.7 -1.T _
u = B G AB - B °G SBx = up - CBx , and (4.34)
-1 X_
S_(t) = S = A X where | .. .. (4.35)
B B ~-Ta A

is an orthogonal basis for the stable eigenvalue of the Euler-

Lagrange equations derived from the Hamiltonian.

Three approaches to solving these equations without inte-

grating AB(t) backward in time are:

1T

A " H Az ,

1. Take XB ~ 0 which implies that AB No— Fc

so that u = Up - CBx, can be computed from

z ard x.
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2. Consider z(t) as a constant, so that
u = uy - CB(x - xO). @

3. Approximate 2z(t) as a function of the states

a. A linearization of a nonlinear relationship
between the states with integral error to
correct the linearization.

b. A random walk which can be integrated forward
in time with x.

1. and 2. above are equivalent, both relying on the assumption
that the rate of change of 2z(t) is much less than the slowest
eigenvalue of FC = (F - GCB)T. This is a reasonable assumption
for most trajectories, since commanded outputs are not rapidly
changing and the controllable roots of FC can be made faster

with feedback.

To approximate z(t) as a function of the states, the first
alternative is not particularily attractive since an accurate
linearization may not exist and the integral error tends to slow
down the response and may also constrain the trajectory unneces-
sarily. The random walk is a much more desirable way to generate
a linear trajectory. The random walk also is affected by the
rate of change of z(t) but not to the same extent as considering
dz/dt = 0 or iB = 0. The overall variance of the error in
vy mayv be comparable to the other approaches, but the model can
be “"tuned” to give a smaller spectral density in the range of
interest.

Changing the direction of integration in Equation (4.29)
gives

N T

> T .
g = (F - GCp) g + H Az(t) , (4.36)

with an unknown initial condition.

The appropriate initial condition XB(tO) appears as an
impulsive input on the above equation. This is true at any
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initial condition as well, hence we can merely append a white

noise source to equation (4.36), an additive random walk term

o T T .

Ay = (F - GCB) A, +H Az(t) + n, with

An(to) = 0, (4.37)
n, = N(O, Q)

and Qn can be chosen to bracket the desired value for XB(tw).

Since

2p(t) H Az(t,) ,

while Eq. (4.37) gives

-1

o 1T
A (t) = -F, H Az(t,) ,

and Eq. (4.37) implies

(4.38)

The RMS values from An give the interval about xn(tx) which

should bracket the theoretical steady-state value XB(tw) with
an acceptable level of confidence or integral error states can
be added for xn.

More simply, the concept of the costate, AB’ can be
dropped by using several appended random walk states driven by

(Hx(t) - z(t)).

4.2.5 Controlling a Set of States at Some Point on the Trajectory

There are several ways to solve this problem. One approach
is to select a state time history which leads to the desired
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trajectory point and then to derive a control law which follows
the time history. It is also possible to define the trajectory
point as a function of several states and then to hold this
desired state fixed while other states are varied. The particular
selection will depend on the desirable nature of the intermediate

trajectory.

A combination of the above controllers can be used, if

necessary.

4.2.6 Extensions and Specializations

Several extensions are proposed to improve the quality of
the control laws. These extensions are designed to minimize

the effects of modeling errors, lack of needed measurements and

noise:
1. Estimator: 1If all states are not measured or if
there is excessive random or quantization noise,
v, a state estimator can be used. If y 1is a

vector of measurements which is linear in the
states, then

y = Hx + v . (4.39)
An estimate of the state can be obtained by
x = Fx + Gu + K(yv - Hx) , (4.40)

and K 1is obtained by solving a Riccati equation.
(See the next section on controller simplification
for a desirable algorithm in the case where some
but not all of the measurements are noise free.)

2. TIrequency-shaped control law: As shown in Appendix
A, the control weightings can be made functions of
frequency. By making the control weighting matrix
an increasing function of frequency and the state
weighting a decreasing function of frequency, the
control activity can be concentrated in the mid-
frequency range. The display will then have a
minimum of high-frequency components. This shaping
will also reduce the effect of neglected states
with high natural frequency [9].
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4.3 CONTROLLER SIMPLIFICATIONS

The controllers based on the LQR approach are simple and
usually do not need to be simplified. LQG controllers involve

a dynamic state estimator and are generally of the form

u = Cx_+Dy. (4.41)

The controller, therefore, has the same form as the system itself,
except that: (1) the roles of input and output are switched, (2)
the controller state vector depends on the choise of frequency
shaping, and (3) K and C are known exactly (unlike G and

H in the design model). Controller simplification is, therefore,

similar to model reduction (see Section 4.1).

Noiseless Measurements and Reduced Order Compensators

The combination of the regulator and estimator can be viewed

as a compensator for the open Ioop plant, where the compensator

transfer functions are given by

u(s) Tc(s) z(s) ,

1

- C(sl - F + FC + KH) ™~ Kz(s) (4.42)

u(s)

This transfer function can be written in modal form as a parallel

bank of first and second order equations.

If some of the measurements are free of white noise, a

reduced order compensator can be determined. Partitioning the

measurements sc that the white-noise-free ones are at the bottom,

T T

Z =121 22

} , the computed estimator gains are K = [K1 . 01.
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These gains result from the reduced order Riceati solution
P = 11 , (4.43)

which can be solved for directly with recent stable and reliable

algorithms [4,5].
The compensator feed-through term, Dc’ where

1

u(s) = [-C(sI - F + GC + KH) ~ K + Dc] z(x) , (4.44)

can be computed from =z which has no error, by considering

2
that

H

H1 ~ .
ww-| x + v, and u = -Cx (4.45)
2

The requested feedback gains are decomposed into

with CD that portion explained by the noise-free measurements

2o = Hzx. CD
the row space of C. If the intersection is zero there is no

is the intersection of the row space of H2 with

feed through, if the intersection is all of C then the dynamic

compensation portion CV is zero. The feed-forward portion,

=[{0:D 1z , (4.46)

u(s) = -C 2

feedthrough

T
Hy

D
is solved from the linear equations,
T DT = T

2 Cy D

H (4.47)
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All unobservable or uncontrollable modes of the controller
should be dropped, since they have no effect on controller perfor-
mance. In addition, poles with small residues can also be drooped.
Note that the residues are physical matrices representing force

or moment applied per unit error.

Further selection of modes or states which should be retained
in the low-order controller is a difficult problem. One approach
is to drop one or two states at a time to determine the set of
states which may be eliminated without loss of performance. To
minimize computation time, a stepwise search procedure is needed.

A modal cost function could be used in the search [10].
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SECTION 5
ZOOM AND PUSHOVER ALGORITHM DEVELOPMENT

This section describes the maneuver modeling, development
of a reduced order linear design model, control design results,
their evaluation on the full order linear evaluation model and
demonstration in the nonlinear simulation. The next section
documents how this flight test trajectory controller can be

implemented for the zoom and pushover maneuver.

5.1 TRAJECTORY MODELING

The zoom and pushover trajectory has been designed to
maximize the time at the target angle-of-attack, or alternatively
maintain a constant vertical acceleration (with zero horizontal

acceleration).

A parabolic flight path with apex at z, has the property
that

tan vy = tan(6 - a) = E(z - zo)1/2 , (5.1)
where Yy is the flight path angle and £ 1is a constant of pro-
portionality, which defines the size of the parabola. An approxi-
mate model can be written as

8 -a=¢(z-2)7%,  (8-a) << 90° . (5.2)

In addition, the following conditions must hold

$ =0 . (5.3)



M and a are given at the apex. Our controller design will try
to achieve the speed time history of a ballistic trajectory, such
that the thrust nominally balances drag. With such a time history,
the thrust would be automatically stabilized for the target angle-
of-attack with desired Mach number and altitude at the apex of

the parabola. Thus, the Mach number at any altitude is given by:

M2 - M2 = 2g(z - z_)/c? (5.4)
o o) ’

where ¢ 1is the speed of sound which is assumed constant on the

trajectory (a variable value can also be accommodated). The

equation can be linearized as

- = 28 _
2(M MO)MO cz (z zo) , (5.5)
or
M- M = g (z - 2z ) .
o Mocz o)

Note that the correct value of the speed will be reached at the

apex because when 2z = Z, M will be forced to Mo'

£ 1is selected such that the 1lift defined by Mach number and
angle-of-attack at the apex exactly balances gravity and the cen-
trifugal force. A large value of £ will be needed when the
target angle-of-attack or Mach number is small and vice versa
(because small 1ift will require a tighter curve). It can be
shown that with vertical acceleration a, and speed V at apex,
£ can be selected as:

-5 = 8 - az (5.6)

since the radius of curvature at the apex is 2/&2.
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Zoom and pushover is defined with 6-a and M as func-
tions of altitude and the bank angle held at zero. 6-o and M

time histories are two of several outputs of interest

y = [aZ’ a, 4, Y, M] ,

which can be generated from a linear model as a function of time

(see section 3).

Since the thrust is stabilized, the exact final altitude

cannot be achieved in the presence of gusts, hence we program

yc(t) and Mc(t) as functions of time rather than altitude.

1/2 . . . . .
/ is linear in time. Since

On a parabolic trajectory (z - zo)
the trajectory command is open loop (due to the stabilized thrust
constraint), the nonlinear relation between vy(t) and M(t) can

be used as shown below. The commanded output is then

yC(t) = azc(t) = a,o T = rpl
Otc(t)/ aC(aZC’YC’M’qOO) -
a,(t) 0 P
Yo (t) AT A Yit/p6 A
M.(t) gR 1/2 (p_~2 2,1/2
c o 2 p7Yc(t) + p5)
[—02 [y, (t)]17 + Mo]

The angle-of-attack is not arbitrary since it is determined by
the commanded az., and Ye and the actual Mach and dynamic
pressure. The flight path angle is programmed from an initial
value to zero at the apex.

A summary of the zoom and pushover maneuver algorithm

development is:

1) Choose Ay, 2 desired apex angle-at-attack, and

Z,» the desired apex altitude.
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(3)

(4)

(5)

(6)

Trim the aircraft at the apex altitude and angle
of attack.

Find a final Mach number MO (which must be slower
than the trimmed value to be on a parabola at the
apex). This value cannot be arbitrary since the
1lift and drag are also functions of velocity. The

force balance equations are:

—— = -L - T sin o + W,
O =-D+ T cos ¢

We seek the apex velocity and thrust from

T+ . ps ] T ]
—~—LL——+ m_ + sin o Vz w
2 R °? o)
O —
- CpP*s , cos o T 0
—3 o i
| 2 d L _ -

The acceleration Vg/RO specifies the shape of the
parabola and hence the constants in Yc(t) and
M, (t).

Chose either the initial altitude or the time of
flight (within an altitude range of approximately
constant speed of sound, one specifies the other).

Find the initial flight path angle and Mach number

for the desired initial altitude, Zj from
3
- |28 2
My = 5 (25 - 23) + M, ’
c
- 3
tan Yi = E(zO - Zi)

Regulate (az - a, ), (a - uc(t)), qQ, (y - Yc(t)),
o)

and (M - Mc(t)) about zero with a robust linear

controller.



5.2 ZOOM AND PUSHOVER (ZAPO) LINEAR MODELS

This subsection describes linear models for: 1) the F-15
aerodynamics, MCS/CAS, and sensor dynamics; and 2) the piloted

aircraft with reduced order models for both.

The trimmed condition of the F-15 used in the simulation

SIMII is shown in Table 5-1.

Altitude ho 32,000 ft.
Angle of Attack o, 11°

Pitch Angle eo 11°

Mach Number M0 4775
Velocity VO 470.9 ft/sec
Thrust TO 6270 1bf
Weight LS 40,700 1b,
Stabilator GSBO -4.76°
Dynamic Force as 55,821.1 1b,

Table 5-1. ZAPO Trim Condition*

*Pitch, roll, and yaw CAS on, flaps up, with autopilots off.
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The six nondimensional aerodynamic coefficients and their
associated dimension stability derivatives reflected into the

appropriate body fixed axis are given below in Table 5-2,

The MCS/CAS equations (ignoring servos at 30, 60, and 100

radians/sec) from Figure 3-3 are

Sop. = -.338gy  + 15.5q + 15.5q
1 1
8 = -5, § + 11.49 §
SB2 SB2 e
GSBB = .882q + .4 a,
= .882q + 5.85 (& - q)
GSB = —20.8SB + 20/57.3(5SB + GSB + GSB

1 2 3
+ .6832q - 4.4766 ) .

The sensor and thrust equations are

§M = ~.18M + 1(%Y)

() () (5e)
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Sdb

ALNDEHENSIONAL CLoCHsCNo LT ZLF 707 -
-3 1S007E-13 -1, 28433660 1L o42408-0B  1,15237E-yr TLODDASE-GL 4. 44B4FE-IC
N .UH o CNEGLY ct CLFT CTRODY
Angle of attack QLT o 36UTESDT -5, 19TASER0L ~0 22TBAE-D3 -0.61945EH0D -0, 16078E4CS G, 19015E-42
Pitch rate G G.00000E+00 ~0,91284E40C G, O000DE4CT . 00000E+0S  0.00000E+00 &, 00000R+Y
Vertical velocity ¥ -3, 7A9295-05 -0 32B19E-02 -0, 47492E-08 -G, 192776400 -0, 31496100 0.31257E-00
Vertical acceleration ANZ G.D00G0ET00 -0, 22116E-02 G, D0000E+00 0. UCOOOEH00 ~0.30785E-01  9.0C000EHOE
Angle of attack rate ALED 0.G0000EH00 -0.74451E-01 &, GD0U0ETO0  2.00000E+00  §.00000E400  0.G0000EHOU
Total velocity YELG -0.35605E-06  0.23463E-03 -0.15343E-97 -0.18801E-02 -0.40951E-02 0.30076E-06
Velocity along A/C nosel 0.14954E-05 G.63794E-03 0,72315E-07 G.37470E-01 0.51226E-01 -U.50835E-0s
Elevator DR O O000EL00 -0,38012E40% -0, 42744E-09 -0, 12220E4G2 -0, 254738402 0. 00000ETOE
Sideslip BE A -0, 103148402 ~0,30038E-06 0,10660E401  G.OO000EH00  G.00000E400 -0, A25B9E+C
Roll rate F ~6.91536E400 0. )0000ET00 ~0,5054E-02  §,000D0EHGE  3.0000UER0C  .00000E400
Yaw rate R G LTRIESYL  0.G0000E400 ~0.25928E40G 0, 00000E+00 1, 00Q00E+0G 0. 0000JE+00
Lateral velocity Yo -0.HI983E+01 ~0,26201E-06 0,2114BE+00 0.00CGOE400  0,00000E+00 -0,37148E+02
Aileron ip G.055748401 0, 74124E-05  0,1042SE-01  0.00000E+00 5.00000E+00 €, 1QGU9EH0C
Rudder I -4, 23370E+00 -0,58042E-G7 -0,102995401  0.00000E+00 . 00000E400 -0,82293E+01
Differential rudder i1 G.33500E401 -0,27136E-07  2.4S272E400C 0,00000E4DC  G.0GOO0EH0C -0, 3BA7AE+UI
Table 5-2, F-15 Aerodynamic Model




The matrices of the linear model

Fx + Gu + T'w

b
Il

= + Vv
y ny y Z HZX

are given below where the states

SB,’

x = |6V, 8a, q, 68, &
1 2

are velocity, angle-of-attack, pitch rate, pitch, four MCS/CAS
states, lagged Mach number, and lagged thrust. The inputs

- T =
u = [Ge éTc/M] y, W = o gust,

-4

and w = N , &L .1125\ radz—sec)

are commanded elevator, thrust acceleration, and angle-of-attack

gust. The outputs
T
y = [6azs o, q, 8y, &M

are acceleration, angle of attack, pitch rate, flight path angle
(66 - 8a), and Mach number. The measurements

T
z = [Gaz, da, q, 66, GM] ,

are acceleration, angle-of-attack, pitch rate, pitch, and Mach

number with

. 2,3 \-6 9
V = N|0O, diag|.2588 ft“/sec , 7.62 rad” -sec

\ -6 o -4 o \-6
1,755 rad”/sec, .1493 rad“-sec, 2.5 -sec

The equations are scaled so that all angles, angular rates, and

angular accelerations are in units of (.01) radians; velocities and
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accelerations are in feet, with seconds the time unit. Mach

number is scaled in units of (.001) Mach.

The linear system matrices are

3 =
!

COLUMNS 1 THRYU 8
-0.,0019 -0,3072 0.0000¢ -0.,3220 0.,0000 0.2080
-0.000% -0,342¢ 1.000¢ 0.0000 0.0000 0.000%

0.0000 -0.,1222
¢,
0,0235 -1.5480 -0.98%0 0.0000 0.0000 0,0G00 Q.
0,
0.

Q
0020 ~0.,0541
006G ~3.8000
0.¢000 0.,0000 1.0000 0.0000 0.0000 0.0000 0930 £.0G600
0.3642 -23.9940 0.1703 0.0000 -0.3330 0.0000 000C -5B.%00C
0.0600 0.000¢ 0.0000 0.,0000 0.0000 =-5.0000 0.0000 0., 000¢
0,0156 -3,3660 -0.8723 0.0000 0.,0000 0.0000 0.0000 ~1,6681
0.0056 -C,3692 -0.2359 0,0000 0.,3490 6.3490 0.3490 -20.5063
0.1014 $,0000 0.,0000 0.0000 0.0000 0.0000 G.0000 0.0000C
0.0000 0.0000 0,0000 0.0000 0.,0000 0.000¢ 0.000¢ 0.0000

<>

COLUMNS 9 THRU 1
0.0000 ¢.9814
0.0000 0.0019
0.0000 -0.0001
0.0000 0.0000
0.0000 0.0000
0.9000 0.,9000
0.0600 0.0060¢
0.0000 20,0000

~-0.1000 0.0000
0,0060  -0.,1000

G =

0.0000 0.0000

0.0000 0.0000
0.9000 0.0000
6.0000 0.0000
0.0000 0.0000
11,4900 0.0000
0.0000 0.0000
-1.3620 0.0000
0.0000 0.9000
¢.0000 0.1000
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o
GM

-0.,3072
-5.3420
-1.5480
60,0000
-23.974¢
0.0000
-3,3640
-0, 3692
0.,0000
N, 006G

HY

COLUMNS

-0,0041
¢.0000
0,0000
0.0000
G.0000

COLUMNG

0,0000
0.5900
0.0000
0.,0000
1.0000

COLUMNG

=0.0041
D.0000
¢, 0000
¢.0000
0.0000

COLUMNS

0.0000
G¢.0000
0.0000
¢.CO00
1.0000

1 THRY
-1.,4105
1.0000
G.0000
-1.0060
20,0000

9 THRU
0.0000
0.0090
0.,0000
0.0000
0.0000

1 THRU
-1.6105
1.0000
2.,0000
¢.0000
0.0000

? THRU
0.0000
0.0000
0.0000
§.0000
0.0000

(8]

16

1¢

5.0000
G.0000
1.2000
.0000¢
00000

0.0000
0.0000
1.0000
0.0000
0.,0000

0.0060
£.0000
0.,0000
1.0000
0.0000

0.0000
0.000¢
0.0000
1.0000
2,0000

0.0000
2.0000
2.0000
0.0000
G.+0000

0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.000¢
0.0000
0.:000C
0,0000

0.0000
0.0000
0,0000
0.0000
0.0000

00009
G.O300
00000
0.0000
3.0000

3.,9000
¢.0000
2.0000
£.,0000
0.0000

~0,2548
0.0000
Je2007%
0. 0004
00,0000

i
O OOy
PR I ey’ B i3]
A

>
- e S e ]
O > OB

Pl or B wr T S0

<
<



Table 5-3 shows the eigenvalues of the aerodynamics alone
as well as the aerodynamics as modified by the MCS/CAS. For
level flight (the final condition at the apex of the ZAPO
maneuver) at such a high angle-of-attack, the MCS/CAS (without
the autopilot) makes the phugoid mode unstable. The time

constant is on the order of the maneuver flight time, however,

and the flight test trajectory controller (FTTC) will compensate

it as well.

Aerodynamics, sensor lag
and MCS/CAS Aerodynamics alone

0.0000 + 0.00001 ~0.0042 4+ 5,03991

0.0178 + 0.0259i -0, 0042 - $.0399.

2.,0178 - 0,02991 -0.6622 + 1.19881

~0.1000 0.00001 -0.6622 - 1.1988:
-0.1600 0.00001 o
-0.3298 0.00001
~1,2223 » 24501
-1.2223 1,24901
0,00001

~5.0000
0,0000i

19,8335

+ 4 4 4 4

Table 5-3. Eigenvalues for ZAPO Linear Model

5.2.1 Nine State Aircraft Model

Since the thrust is stabilized in the zoom and pushover
model, the engine lag state, and thrust control will be dropped

in the subsequent analyses.

Frequency responses of the five outputs to sinusoidal

elevator inputs are shown in Figures 5-1 and 5-2.
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5.2

OUTPUT GAIN (see Sec.

units)

for respect.

PHASE (deg)

. 0000031
1t 1 trines L1 e peeelt P11t [ N
.01 .1 1. 10.
FREQUENCY (rad/sec)
Figure 5-1. Output Magnitude Responses to Elevator -- Nine State
Acrodynamic and MCS/CAS Model
00,
150. | ~—
100. |
5e.
.
50.1
-100. |
-150. L
. —209. L1 3t L1 4 1t A b trrin b 111t
.01 .1 1. 10.
FREQUENCY (rad/sec)
Figurc 5-2. Phase of u(s)/ée(s) -— Nine State Aircraft and

MCS/CAS
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IMAG PART (rad/sec)

The a(s)/de(s) transfer function has the dip at low
frequency because of zeroes produced by the MCS/CAS which
attempt to mitigate the phugoid mode (see Figures 5-3 and 5-4).

The high phase response is caused by the unstable phugoid

mode.

9.03

e.0zL 4

0.01}

f
?
-

|
]
®
far g
I

-2} Q

-.e3 | i i i } 1

t -.30 -.c5 -.C0 -.15 -.10 -.05 0.00

REAL PART (rad/sec)

Figure 5-3. a(s)/de(s) -- Low Frequency Poles and Zeros -- Nine

State Aircraft and MCS/CAS
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IMAG PART (rad/sec)

1.5

1.0

-0.51
-1.0}
X
-1.5 I | ] |
- -2.5 2.0 -1.5 -1.0 0.5 9.0
REAL PART (rad/sec)
Figure 5-4. a(s)/ée(s) -— Mid-Frequency Poles/Zeros -- Nine State

Aircraft and MCS/CAS
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The residues of these transfer functions are given below in

Table 5-4.
Eigenvalues az/Ge 0t/(Se q/6e Y/se M/GU
0.0000 + 0.0000i 0.,0000 0.0000 0.0000 0.0000 09,0000
0.,0178 + 0.,025%9i -0.0028 £.0018 0.0006 0,0150 0.0183
06,0178 - 0.0259i 0.,0009 0.0002 -0.,0002 0.0110 -0,1753
-0.,1000 + 0.0000i 0.0000 ¢.0000 0.,0000 0.0000 -G.,0163
-0.3298 + 0.00001 -0,0003 0.,0002 0.0000 -0,0002 -0,0001
-1,2223 4 1.2490i -0.0800 0.0441 0.0879 -0,0203 -0.0020
-1,2223 - 1,2490i -0.1557 0.0999  -0,1441  -0,0063 0,0010
-5.0000 + 0.00001 0.0104 -0.0607 0.3012 0.0004 0.0000
-19.8335 + 0.00001 0.4704 0.,014¢ -0.3897 0.0050 0.0001
Table 5-4 Residues of Elevator Transfer Functions

(Nine State Aerodynamics and MCS/CAS)

These residues indicate that a good model can be achieved
with five states, by including the phugoid and short period modes
and the control system lag at 5 radians/sec. Such a model would

be useful for flight test trajectory control signals fed directly

into the aircraft control system through the autopilot. This
reduced order model is detailed in the next subsection.
5.2.2 Five State Aircraft Reduced-Order Model

The nine state model of the previous subsection, reduced

to match at zero frequency by the method of Section 4.1 gives

the following equations

X = + +
r Frxr Gru r¥ >
y = H_x_+J_u,
y. r u,
z =
Hz X, *+ Jw w o,
r T

with the matrices given by
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0.0178 0.0259 0.,0000 0.0000 0.0000
-0.0259 0.0178 0.0000 0.0000 0.0000
F_ = 0.0000 0.0000 -1,2223 1.24%0 0.0000
0.0000 0.0000 -1,2490 -1.2223 0.0000
0.0000 0.0000 0.0000 0.0000 -5,0000

0.2905
-0.0541
G -0.1374
0.0904
12,1783

0.5576
0.1872
r. = 2.0404
'007345
0.0000

~-0.0092 -0.0014 -0,1140 -1.0581 0.,0009

H = 0.0060 -0.0017 0,1101 0.6546 -0.0030
Yy 0.0021 0.0004 -0.9280 -0.4379 0.0247
0.0431  -0.0459 0.0822 -0.,0998 0.0000

0.1693 0.5720 0.,0133 -0.0014 0.0000

-0.046%96

0.0012

Jda = -0.0197
r ~0,0002
-0.1631

-0.0092 -0,0014 ~0.1140 -1.0581  0.0009

000060 -000017 001101 006546 “000050
z 0.0021 0.0004 -0,9280 -0,4379 0.0247
0.,0371 -0.0442 -0,0279 -0,7544 0.0050
0.1693 0.95720 0,0133 -0,0014 0.0000

0.4187
-1.8776
Jy = 0.0034

r 2.1376
-2.5170

The frequency response of this five state model is shown in
Figure 5-5. The model is only good up to about 4-12 Radians/sec
and only up to .1 radians in the mach response which is primarily
due to its own lag at .1 second which was not included in the
model.
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OUTPUT GAIN (see Sec. 5.2

units)

tor respect.

.
-

- e
e o e o o
-

1 L1 1 pLitil} 1 L1 1 11111

1.

FREQUENCY (rad/sec)

Figure 5-5 Transfer Function Magnitudes - Five State Aircraft
and MCS/CAS (Reduced Order Model Matched at Zero

Frequency)
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5.2.3 Thirteen State Piloted Aircraft Model

The four state pilot model of Section 3.5 is for a 1/s2
plant. The pilot adaptshis own gain to make the plant look like
the dynamics he wants. At this point we can ignore the gain
question of the pilot until after the compensator has been
designed, then adjust the compensator gain to simulate the
pilot's action.

The unreduced design model is given by

arc| _ |Farc CarcHp| { Farc) , % LT *gust
" T
xp 0 Fp xp Gp 0 P wp
y = [H 0]

Yasc ’
z = [HZ 0] + v .

A/C

The magnitude and phase responses of the five outputs to dis-
played elevator inputs are given by Figure 5-6 and 5-7. These
frequency responses are not surprising when looking at transfer
function of the linear pilot model (see Figures 5-8 and 5-9).

The response of this thirteenth order system to gust inputs
is shown in Figure 5-10.

The residues of the elevator transfer functions are the

basis for model reduction. They are shown in Table 5-5.

The pilot model dominates, so these 4 modes together with
the unstable phugoid mode comprise the reduced order design

model described in the next subsection.
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5.2

OUTPUT GAIN (see Sec.

P)
+
o~
=
=3
-
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]
oY
N
)
|
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G
. 000001
. 0000001
[ B NN 1 11 1130 111t arait 1 1 1801
.01 .1 1. 10.
FREQUENCY (rad/sec)
Figure 5-6 Response to Displayed Elevator Command - 13 State
A/C and Pilot Model
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Figure 5-7 Phase Response to Displayed Elevator Command -
13 State A/C and Pilot Model
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PILOT GAIN
1

PILOT PHASE (deg)
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1

i1 11
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Figure 5-8 Pilot Model Magnitude

L1 {1 1111 1 i i
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Figure 5-9 Pilot Model Phase Response
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Figure 5-10 Response to Gust - 13 State Piloted Aircraft Model
Table 5-5 Elevator Residues - Thirteen State Piloted Aircraft
Eigenvalues aZ/Ge “/Ge q/6e Y/8¢ M/é
¢,0000 + 0.00001 -3,785i0-32 -3.,14770-17 -8.67340-31 -1.,17980-17 8.478?D-15
0.0178 + 0.02591 4,70040-06 -~4,81570-06 ~-1,51590-06 -4.01160-05 -3.1?57D—?g
0.0178 - 0.025%1 -2,60210L-06 -2,78270-07 &.72400-07  -2.73400-05 4.5821U'9ﬁ
-0.1000 + ¢.0000i -3.,8206D-21 2.,50990-21 2.08330-21 2,75310-20 3.5§/8B—un
-0.,3298 + 0,00001 3,21250-07 -2.,12510-07 1,86140-09 2.046870-07 2,562950-08
-1.2223 4 1,2490i  1,24710-03 -8,07420-04  1.31520-03  3,33110-05  -1,05450-0%
-1.2222 - 1,24901 -8.3488D0-04 4,74920-04 6,05700-04 -1.,79440-04 ~1.5938U—09
-5.,0000 + 0.,00001 -2,72880-04 1.58720-03 -7.8779L-03 -1.13900-03 4.;504D—?7
-8.,0000 + 0.00001 ~-1,0129D+00 -4,04420-01  3,45050400 -2,6886[-02 -B.0BSED-CA
-9.,35240 + 0.00001 1.29670401 2,7990D0400 -2.932460401 2.80210-01 }.1é13?—03
-10.0000 + 0.,00001 -1,3282D+01 -2.5523D400 2,83450401 -2.8205D-01 -4.B0651-03
-14.0000 + 0.00001 2.29900400 1.74930-01 -2.93720+00 3.48720-02 ?.BESEU—?:
-19,8335 + 0.00001 -95,7243D-01 -1.7783D-02 4,7425D-01 ~6,1291D-03 ~7.12870-300
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5.

60

2'4

Six State Piloted Aircraft Reduced-~-Order Model

The reduced piloted aircraft model is of the same form as
the equations of Section 5.2.2, with the following matrices

0.0178 0,0259
-0,0259 0.0178
F = 0,0000 0.,0000
0.,0000 0.0000
0.0000 0.,0000
0.0000 0.0000
1,0D404 %
0,0000
G = 90,0000
0.0985
-4,2976
-0.1120
0.3172
0.5576 -16,2773
0.1872 2.9859
r = 0.0000 0.0000
0.0000 0.0000
0.0000 44,2543
0.0000 0,0000
_000092 '000014
0.0060 -0,0017
Hg = 0,0021  0,0004
0.0431  -0.,045%
0.1693 0.5720
1.6135
_ 0.,0398
Ja T -1,2966
0.0208
-0,0192
~0.0092  -0,0014
H = 0.0060 -0.0017
z 0.0021 0.0004
000491 ‘000476
0,1693 0.5720
1.5377 6.8958
-0.9490  -2,0947
JW = 000185 '702272
-0,5339 -1,3389
~2,50864 9.2763

0.,0000

0.0000
~8,0000
0.0000
0.,0000
0.,0000

0.0577
0.0230
-0.19465
0.0244
0,0000

0.0000
0.0000
0.0000
-9.5240
0.0000
0.0000

0.0164
0.0037
’000393
0.0004
0.0000

0.0164
0,0027
-0.0383
0,0040
0.0000

0.0000
0.0000
0.0000
0.0000
“1000000
0.0000

~0,6655
~0.,1279

1.4202
-0.0141
~0,0003

~0.6655
-0.1279

1.,4202
-0.1420
-0.0003

0.0000

0.0000
0.0000
0.0000
0.0000
~14,0000

=0.,0407
=0.0031
0.0320
=0.0006
0.0000

-0.0407
-0,0031
0.0520
-0.0037
0.0000



5.2

OUTPUT GAIN (see Sec.

units)

for respect.

The frequency magnitude response to elevator inputs for this
sixth order reduced order model is given in Figure 5-11. This
model is considerably different from the Tinear cevaluation
(thirteenth order) model above one radian per second. However,
the model information at low frequency is quite good and, with
frequency shaped control methods, can be used to develop a robust
flight test trajectory controller. Reducing the thirteenth order
model at a higher frequency does not significantly improve the
flight path angle response which can be observed in Figures 5-12
and 5-13. Figures 5-14 and 5-15 show the response of this reduced
order design model to gusts and pilot motor noise.

y ] | W A W . 1 1t i1t 1 1 1 3 ttetl | i1 1 tiil

.01 .1 1. i0.

FREQUENCY (rad/sec)

Figure 5-11 Magnitude Response to Displayed Elevator Command -
Six State Reduced Piloted A/C Model (Reduced at
Zero Frequency)
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OUTPUT GAIN (in respective units)
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Figure 5-12 Response to Displayed Elevator - Six State Piloted
A/C Model (Reduced at 1 Rad/Seec)

P 1 1 1 111l

OUTPUT GAIN (in respective units)

[ Lot 11 1 tiiial 11 111t
.01 .1 1. 1e.

FREQUENCY (rad/sec)

Figure 5-13 Response to Displayed Elevator - Six State Piloted
A/C Model (Reduced at 10 Rad/Sec)
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OUTPUT GAIN (in respective units)

OUTPUT GAIN (in respective units)
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Figure 5-14 Response to Gust - Six State Piloted A/C Model
(Reduced at Zero Frequency)
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Figure 5-15 Response to Pilot Motor Noise - Six State Piloted
A/C Model (Reduced at Zero Frequency)
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5.3 FLIGHT TEST TRAJECTORY CONTROL (FTTC) COMPENSATOR

Using the reduced order design model of the piloted aircraft
from the previous section, a standard linear quadratic regulator
could be designed with the following quadratic costs on outputs
and inputs, '

A_ = diag [.01, .01, .01, 10, 1] ,B

1 .
y

Se

This yields the following control gains and closed loop regulator

eigenvalues shown below,

C = 1[1.4068 -1.7544 .0011 .0003 -.0106 -.0006]

9
with Ai (Fr—GrC)
-12,.511 * 1.81951

-8.0244 £ ,90751i

-.0210 = ,02801 .

The closed loop regulator response to incremental elevator is
shown in Figure 5-16.

The poor knowledge of the plant at high frequency as shown
in Figure 5-16 cannot be overcome with regulator design. The
next subsection shows a frequency shaped controller which uses
the high fidelity of the model at low frequency, gives acceptable
performance at midfrequency where the pilot works, and rolls off
the controller at high frequency.

5.3.1 Regulator Design

A more robust controller with respect to the reduced order
modeling errors can be obtained by using frequency shaped control
concepts as described in Appendix A. The following performance
index

64



OUTPUT GAIN (1in respective units)

1. -7
AL
=
—d
-
o1 L
- -
n N, p
~ P4
— hY V4
} 1 b opridt) N N SR T Y N N I SN P 1 1 2ri3
.01 .1 1. 10.
FREQUENCY (rad/sec)
Figure 5-16. Response to Elevator with Full State Feedback -- Six

State Piloted A/C
(Plant reduced at zero frequency)
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where F

and F,

1

t

(1+w2)

E{ 0 6]
z4 GH F1 GlJu
d = z a
dt
u 0] F2
= - o
= -1 1 ’ Gl = 0
-1 1
G, Ha , and Jua
z 4

with the performance index as

T

. 1 2 -2
lim o7 f (zll+u)dt

To» (o)

. The control law is given by

u = —Clx - sz1 - C3u s

dx

+

+ (.01+w2) BGe dw ,

are given in Subsection 5.2.4,

with feedback gains and closed loop regulator eigenvalues as

follows:
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COLUMNS 1 THRU 8
19,2516 -14,5245

COLUMNS % THRU ¢
0.7124

3+0000

9.0000

0.0000

¢.00600

2,400%

0.0003



OUTPUT GAIN (in respective units)

Xi(FA—GACA) = -14,0000 - 6.00001
~7.324¢ - 0.00001
-10.0000 - 0.00001
-8,0000 - 0.0000i
-1,0000 + 0.96321
-1,0000 - §.00321
=0.0671 + 0.252%
=0.0671 - ¢.252%:
-0.0014 + 0.9000:

can be obtained from the ninth state
Our control

The control law for u
of the compensator as shown in Subsection 5.3.3.
u = Ge is primarily used to control flight path angle. By
rolling off the acceleration, the derivative of flight path

angle, at high frequency, the controller achieves good roll off

in all of the outputs as shown in Figure 5-17.

M RETT i) 1 prebie L1 1 a7
1. 1o.

[ B RN |
.01 .1

FREQUENCY (rad/sec)

Figure 5-17. Closed Loop Regulator Response to Gust
(Six piloted A/C states with three shaping states)
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5.3.2 Estimator Design

An estimator can be designed for the six state piloted air-
craft model with the gust and measurement power spectral densities
given in Subsection 5.2.3. Using all five measurements and
w(t) = agust input the performance index is

J = E[wT(wQ'lw(t) + VT(t)R_lv(t)] ,

yielding an estimator feedback gain matrix K to implement the
filter equations

X = FXx + Gu + K(z-H x - J u) .
Z u

 The gains and filter closed loop eigenvalues are shown below.

0.140%  -0,272 0,211 0.0487  -0.0320
4,0486  -G.,1044  -0,0345  -0,3664  0.1011
0.6600  G.0000  5,000C  0.0000  0.0000
G00GC 0,000 0.0000  0.000C  0,0000
0,0000  0,0000  9.0000  0.0600  0.0000
¢.0000  £.0000  Q.0000  A.000C  0.0000

-0, 0294 + §,02951
-0.0294 - 0.0295i
~14.9000 + 0.00001
-8.500G 1 0,00001
-9.5240 + 0.00001
~10.0000 + 0.000%1
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5.3.3 Reduced Order Compensator
The full state compensator is given by

- - - - N

xw F-kH 0] G-kJu_H X k
Z zZ cC

_4 zZ = GH F G,dJu z, |+ (0] =z
dt 1 a 1 1" "a 1

z z

Cl- :Gzcl —G202 F2-G203 | ¢u | ;9.

with Hc = [0 0 1] .

The feedforward of the control into the measurements requires

a negative feedback in the compensator. The residues of this

transfer function are given below in Table 5-6

Eigenvalues

-0.0793 + 0,00001
-0.0807 + 0.22891
-0.,9867 - 0,22891
-L3060 ¢ 0,0030:
-10d030 - 0.00301
-By3717 10,6590t
-3.3717 ~ 0.65901
~15.9253 + 0.00001
-13,8433 + 0.00001

Table 5-6.

Uﬁ/a
z

0.2074
-0,3673
¢.0000
$,0003
=0.0003
0.0019
0.0004
-0,0001

UD/0L

0,5248
-0.5247
0.5060
0.0000
=0,0007
0.0008
-0.0030
-0.0010
6,0002

UD/q

0,1258
-0,1259
-1.5388

0. 0000

0.0014
-0.0013

0.00532

0.0017
-0.0003

*UD is displayed control (elevator) command

UD/y

1,4533
-1.433¢
-3.7311

3.0000

2.0053
-0.0049

2,0193

0. 006
-0.0012

Up/uM

-0.4092
0.4093
0.8434
0.0000

-0.0008
0.0007

-0.0028

=0.0010
4.0002

Full State Compensator Residues.



This compensator can be well approximated with a three state
compensator using modal reduction Jjust as the original model was
reduced (see Section 4.1). The reduced order compensator is

given by
X =Fx +G=z , u=Hx |,
c c c
" with
FC
-1.%3380-01 39360-01  1,3422D-01

3
07630-01  4.47510-G2
1

2,
-2,36%60-01 2,
J.01080-01 -2,54911~01

3
-5,57260-01 +0

6t -
-6,93380-01  1,56450400 ~1,5311400 -&4,5153400  B,1542D-01

-1,19241400  2,2681040C -1,9376D40C -5,3208D400  4,2135D-01
-9.96270-61  8,03400-01  -2,0951D400 -8,53621400  1.3927D4+0¢

HC =

4,4421D-01 -2,4000D-01 -1.8743D-01,

The magnitude and frequency responses of these five transfer
functions are shown in Figures 5-18 and 5-19. On the same scales

" the ninth order frequency response plots are indistinguishable as
. would be expected from the size of the residues.

5.3.4 Controlled Plant Dynamics

The compensator can be further analyzed by investigating
the effect of the dynamic compensator on the full thirteen state
aircraft and MCS/CAS model, G(s). Viewing the pilot as a
compensator, P(s), for this system, we are interested in the
transfer function from the aircraft stick to the displayed

elevator command to which he responds (see Figure 5-20 below).
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Aircraft FTTC

————n G(s)

C(s)

Yyvyy

Pilot

U.(s) U, (s)
C P(s) D

Figure 5-20. Controlled Plant Dynamics

The state equations for the controlled plant are

The frequency response of the controlled plant is shown in
Figures 5-21 and 5-22., In the region of .5-2 radians/sec the
plant is k1/s2 and in the region of 2.-20 radians/sec it is
~approximately kz/ss. A k/s3 plant is clearly harder to
control than a k/s2 plant, however the plant gain at the
upper range of these frequencies is so low (shown on the log-log
scale here) that the change in dynamics is not significant. The
pilot model is based on negative feedback, hence the phase of the
:% plant should ideally remain close to zero, and as shown in
;igure 5-22 remains between -20° to -50° in the .5-2 radian/sec

frequency range.
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Figure 5-21. Controlled Plant Magnitude Response
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Figure 5-22. Controlled Plant Phase Response
(9 State A/C + 3 State Compensator)
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5.4 LINEAR CONTROL LAW EVALUATION

Before evaluating the compensator in the nonlinear simulation
the compensator must meet linear evaluation tests for stability,
disturbance rejection, and other desirable controller properties.
The effect of sampling rates can be evaluated much more inexpen-

sively on the linear model than with extensive nonlinear simulation.

5.4.1 Stability
Stability evaluation of the compensator can be systematically
checked by computing the eigenvalues of

1) the full-state compensator and design model (these should
be the regulator and estimator eigenvalues)

2) the full-state compensator and evaluation model
3) the reduced order compensator and the design model, and

4) the reduced order compensator and the evaluation model.

In each case an augmented dynamics matrix is formed

x.
Q
=
(¢l
e
by

and the eigenvalues computed. The eigenvalues for the second and

final tests are shown in Table 5-7 below.

5.4.2 Disturbance Rejection

The performance of the regulator alone assuming full state
feedback in rejecting gust disturbances can be evaluated with the

following equations

T

1
(F-GC)X + X(F-GC) = —ngustF

Y = H XH
y v
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22nd Order
Evaluation
Model

-19.8241 + 0.00001
-14,0000 + 0.00001
-5.0023 - ¢.00001
-1.2176 + 1.2470i
-1.2176 - 1,24701
-1.0000 - 0.00331
-1,0000 + §.0033i
~0.0666 - 0.24031
-0,0666 + 0.2403i
-0,3298 - 0.00001
-441208 - 0,00001
-0.0272 - 0.02711
-0.0272 + 0.02711
-0,0024 + ¢.00001
-14,0000 - 0.00001
-10.0013 + 0.0000i
-9.5222 - 0.0000i
-8.0006 + 0,00001
-10.0000 + 0.00001
~9.,5240 - 0.0000i
-8.0000 - 0,00001
940000 + 0,00001

Table 5-~7.

16th Order
Evaluation
Model

-19,8241 4 0.0000i
-14,1338 - 0.0000i
-9,8726 + 1.0553i
-9.8726 - 1.05531
-7.6355 + 0.,0000i
-5,0024 - 0,0000i
-1,2176 4 1.2470i
-1,2176 - 1,2470i
~(,0668 + 0,2410i
-0.0648 - 0.2410i
-0,3298 - 0.0000i
-0,1206 + 0.0000i
-0,0270 + 0,0271i
‘000270 - 000271i
-0,0025 + 0,0000i
0.0000 4 0,0000i

Closed Loop EigenValues
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The rms values are the square roots of the diagonals of Y,

shown below with a gust spectral density of .0369 degz—sec:
YRMS -

1,07370-01 g

1,33640-01 deg
4,8379M400 deg/sec
8.965i-02 deg
1,0981400 .001 Mach

URMS -

55074002 inches (Longitudinal stick motion)

s
N

This control law has not been optimized but can be improved
with additional design iterations.

5.4.3 Sampling Rate Effects

The effect of sampling rates can be evaluated by discretizing
the aircraft model as well as the pilot model and FTTC compensator,
at the least common multiple of all the sampling rates involved.
The dynamics augmented with two delays for the display update and
fifteen delays for the sensor update and the appropriate discrete
feedback compensation, can then be evaluated for average behavior

- by solving the discrete form of the symmetric Lyapunov equation.

The discrete model for the compensator (1/A = 160 Hz) is,
xc(k+1) = FDxc(k) + GDz(k)
u(k) = HDxc(k) ,

where these matrices are given by
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3] =
7.98770-¢1
-1,48180-03
-3,4794D0-02

Bk =

4,44210-01

1.539690-03
1.00130400
1,8737D~03

9,78590-03
1,41760-02
9:0136D-03

-2.4000D-01

8,37990-04
4.,0402D-(4
9.98410-01

-1,87430-01 o

The eigenvalues in the z-plane of

?.99490-01 +1,43430-031
z; = $.99490-01 -1.4343D-031
9,79510-01 -3.82010-211 o

The discrete model for the pilot (1/A also 160 Hz) is

Fo

7.39411-G1
7.00001+00
2, 00000400
3.00000400

GLi =

3440532003
3+83150-04
-1,2530D-02
2.23700-01

RE -

-3,010304:1

-2, 16280400

7. 99960-01
-1,95100-02
-4,0384D400

0.0090D+00

with z-plane eigenvalues,

-6,82230-03

+ 23753003
7,74080~01
-1,83960400

0.0000D400

3.09910-03
2,63320-03
4.67100-03

-4,9743D-02
-3,36950-02
-5,32700-02

the compensator are:

-1,36130-95
148290005
3+64090-03
8.13620-411

0.00000+00

+39410-01 +0.00000+66

3D-01 -3,31480-17)
10-01 +5.45030-171
20-01 -1,9440D-17,
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5.5 NONLINEAR SIMULATION CONTROL LAW EVALUATION

After linear evaluations, the control law can be more signi-
ficantly evaluated by demonstration in the nonlinear simulation.
This required closing the control loop of the simulation; the
controls no longer need to be open-loop commands, but rather
can be feedback from the simulation outputs, corrupted by a
desired noise level. The details of how this FTTC simulator

can be invoked are given in the next section.

The zoom and pushover control law developed in this section
was implemented on the modified version of NASA Dryden's SIMII
simulation. Following the algorithm development steps outlined

in subsection 5.1:

Steps (1)-(2): The F-15 trim values were chosen for the

desired apex conditions

o 11 degrees

O

Z

o 32,000 feet

Steps (3)-(4): Assume an acceleration of Vg/RO= 10 feet
per second to climb a thousand feet in approximately
15 seconds. Thus, the radius of curvature is approxi-
mately 20,000 feet (for a Vg that is 90% of the trimmed

value).

The relations in Section 5.1 give VO = 406 feet/second and an
initial flight path angle of Yy = 17.55°, This is a little
too far away from the linearization of the aerodynamics at 11°.
Fixing Yi at 11 degrees gives the trajectory parameters shown
in Table 5.8. The linear model trim condition is approximately
half way in the maneuver velocity, and hence dynamic pressure

range.
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TABLE 5-8 ZOOM AND PUSHOVER DEMONSTRATION
TRAJECTORY PARAMETERS

1000 feet
52,933. feet
6.14710 - 3
442. feet/sec
.4491
5544.6 lbf

2
3.706 feet/second
23.23 seconds
11.°
510.4 feet/second
i .5175

|
N
-

v W N
c O

™Mo O O
|
)
=
e’

|
-+

Heo B B O

To simplify the ac(t) command we keep it constant while
decreasing the flight path angle linearily in time under a stabi-
lized engine power lever angle condition. The thrust itself is
not stabilized because . it is also a function of Mach, as the
aerodynamics are. This maneuver is an acceleration initial

condition response, shown in Figure 5-28 through 5-32.

The loss of velocity (see Figure 5-32) causes a higher angle-
of-attack and acceleration seen in Figure 5-28 and 5-29. The
velocity is lost because it is difficult to trim the aircraft in
a condition where the zoom and pushover can begin. The ballooning
effect, seen in the flight path angle response together with the
variation of the thrust with velocity accounts for the loss of
encergy. It reaches a stable angle-of-attack condition. Initial

trim would provide near perfect response.

Use of throttle would give considerably better control, and
weuld also enable modeling the trajectory commands as a linear
system so that all the control loops could be closed. Random
walk states could also be appended to mcdel the effects of changing
dynamic pressure and thrust. MIMO servomechanism control could
also be used since the response is influenced by the trajectory

commands significantly.
9
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5.6 ZOOM AND PUSHOVER ALGORITHM SUMMARY

The development of a performance index and trajectory
commands with the necessary initial for the zoom and pushover
maneuver was described in trajectory modeling section. Reduced
order models for the aircraft and piloted aircraft were described
and a linear compensator synthesized to regulate about the
necessary trajectory commands. This compensator was reduced
to three modes, and its stability and disturbance rejection
properties evaluated with the full order linear model (thirteen

states).

The compensator and pilot models were discretized and imple-
mented in the nonlinear simulation as described in the next
section and the FTTC User's Guide (Appendix C). The initial
condition response illustrates the desirability of closing the
loop on the trajectory commands as well. This demonstration
used an open loop trajectory command generator, since the thrust

was stabilized.

The particular control law, the linear compensator and the
chosen trajectory command generators, is not optimized but
illustrates all the aspects of the systematic design approach
including the maneuver modeling, linear model development, linear
control design, linear evaluation, and nonlinear evaluation with

simulation.
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SECTION 6

ZOOM AND PUSHOVER ALGORITHM DOCUMENTATION

The zoom and pushover maneuver FTTC is shown in block
diagram form in Figure 6-1. The inputs and outputs used by each
block are given along with references to sections of this report

which document the equations implemented by each block.

For the zoom and pushover with a sensor data rate of 10 H=z
and display update rate of 53-1/3 Hz, the simulation can be inte-
grated at the least common multiple of the sampling rates, in
this case 160 Hz. The discrete compensator equations are updated
every sixteen aircraft integration steps and the display is up-
dated every three steps. (Note that the multiple of integration
time step fcr the sensors and displays can be input to accommodate

general multirate systems.)

The compensator can have arbitrary structure including dyna-
mics and feed forward gains. The pilot model is actually four
independent models which affect the four pilot controls: elevator,
aileron, rudder, and throttle. Any or all of these can be acti-
vated and can have identical or different structure and/or param-

eters which are defined with input data (see Appendix C).

Neglecting for a moment the dynamics of the compensator, the
corresponding regulator control law is of the general form

u = - Cx(x - Xp - Xc) +up +ou, .,

where Xp are the trim states and xc are the commanded states
from the trajectory generator. The overall flight test trajectory

controller is a linear feedback compensator, with set point control,
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Figure 6-1 Zoom and Pushover Flight Test Trajectory Controller (FTTC)
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and an open loop command generator. If we generated the trajec-
tory commands as outputs of a linear system, these loops could
be closed as well in a MIMO servomechanism. On the zoom and
pushover maneuver, however, it is the constraint of stabilized

thrust that requires the open loop trajectory commands.

This FTTC structure can be used for general simulation tasks
as well. For example, the pilot model could be bypassed with
pure feed forward unity gain, the sensors disconnected, and
pure feed forward on the compensator to use the trajectory gener-
ator to input an open loop control function, such as a swept

sine wave.

The flowchart for demonstrating the FTTC in the zoom and
pushover maneuver, and any other maneuver, in a modified version
of the SIMII simulation, is shown in Figure 6-2. The flowchart
shows the sequence of operations in controlling a flight test
maneuver and how the FTTC is interfaced with the NASA DRC
simulation SIMII. The subroutine FTTC integrates the functions
described in the block diagram (Figure 6-1). FTTC is called
by the subroutine CNTRL when flight test trajectory simulation
is requested, otherwise CNTRL implements an open loop control
law, entered as segments of a time history. Only the subroutine
associated with a particular sensor configuration (SENSOR) and
a particular trajectory generator (TRAJGN) need to be recompiled
for a different maneuver. All the others have a general structure
suitable for all trajectories. These subroutine listings are

given in Appendix D.

The outputs from the various blocks of the FTTC are shown
in Table 1 of Appendix C. These user-accessible variables can
be output from the simulation with other time history variables

of interest.
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SECTION 7

SUMMARY

Recent extensions to Linear-Quadratic-Gaussian (LQG)
synthesis theory (Appendix A) applied to meaningful linear models
(Section 5.2) with sufficiently flexible software tools (Appen-
dix B) provide powerful techniques for designing Flight Test
Trajectory Controllers (FTTC). The effort reported here has
adapted and developed the necessary software and models to
implement the zoom and pushover trajectory controller in the
NASA-DRC batch simulation SIMII, The FTTC structure described
in this report is sufficiently general to be used for other
maneuvers, with the aid of the FTTC User's Guide [Appendix CJ.
The zoom and pushover maneuver controller design (Section 5)
provides a detailed roadmap for the design procedure described
in Section 4. This procedure involves a significant yet reason-
able amount of engineering effort given sufficiently powerful
software tools. Subsequent paragraphs summarize conclusions on
the FTTC synthesis procedure, the linear models, the control
design on the zoom and pushover maneuver, technical problems

encountered and recommendations for further research.

7.1 SYSTEMATIC METHODS FOR FTTC DESIGN

The principal steps for systematic development of flight
trajectory controllers can be summarized as planning, modeling,
designing, and validating a trajectory controller. An important
part of the planning is the trajectory specification. Major
classes include single-vehicle and multiple-vehicle trajectories.

Subclasses include constraints on combinations of load, speed
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and altitude. General models suitable for trajectory control
were demonstrated for the major subsystems, aerodynamics, kine-
matics, cngines, sensors and pilot, by linearizing about the
flight path. The control-design procedure consists of model
reduction of the linear models where possible, design of a con-
trol law with a regulator/estimator or output feedback controller,
and reduction of the controller complexity where possible for

more robustness.

7.2 LINEAR MODEL DEVELOPMENT

Having access to a complete set of dimensional stability
derivatives based on a detailed nonlinear F-15 aerodynamic model
at arbitrary flight conditions is highly desirable. The specifi-
cation of flight condition cannot be made completely arbitrary,
however, because of the requirement to trim the aircraft, dis-
cussed further below. These dimensional stability derivatives
are projected onto both stability and body axes. The longitudinal
MCS/CAS, reduced to a fourth order model, is dependent on only one
trim condition simulation parameter. To control high bank
turn maneuvers the simulation has been extended to automatically
trim in a steady coordinated turn. The significance of this
maneuver is the difficulty for the pilot of maintaining altitude

under high g-loads.

The simple linear pilot model represents the magnitude
and phase response of a previously studied control-theoretic
model of optimal human behavior. However, this is the most
unreliable and variable part of the control loop. Suggestions

for further research are given below.

7.3 CONTROL DESIGN FOR THE ZOOM AND PUSHOVER

Several conclusions can be made about design on a reduced
order model. Significant feed forward terms result when there
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a number of mid-frequency poles in which the designer is not
strongly interested (e.g., the pilot model). Frequency shaped
control methods are extremely helpful where the middle and high
frequency model is obscured by model reduction. The feed forward
term of the control into the sensor model is realized as a feed-
back loop in the compensator, and can have a significant effect

on compensator dynamics.

Manipulation of models in a loop where each block is a
linear system requires a flexible design program to form different
block matrix equations which result from breaking the loop at
different points. The abilities to quickly compute eigenvalues
and frequency response plots are extremely helpful for catching
modeling or equation errors, particularly once the physical
interpretation of the model is obscured by model reduction.

7.4 TECHNICAL PROBLEMS

Since the validity of the linear models relies on a trimmed
condition, the ability to get the SIMII simulation to trim near
a desired flight condition can be a significant problem. Since
the maneuvers of interest are all far from straight and level
flight, a significant number of simulation runs were made to
trim. A trimmed condition for the high bank turn necessary to
obtain linear models for the level and windup turn maneuvers was

not achieved during the contract. Hence, the linear control design
methods have all been illustrated on the zoom and pushover maneuver.
Changes to SIMII to help facilitate more efficient trim solution
are described in the FTTC User's Guide (Appendix C). Further
simulations, or identification not requiring trim, can provide

these models.

The controlled plant transfer function is approximately
.05/52. Yet increasing the pilot gain by 20. is too much to
keep the low frequency dynamics from going unstable. Hence,
additional work on pilot modeling and this gain adaptivity would

be desirable.
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7.5 RECOMMENDATIONS FOR FURTHER RESEARCH

Although robust controllers can be designed with existing
pilot models, their lack of fidelity does not parallel detailed
knowledge of the aircraft and its control system. This situation
can in some sense be remedied by changing the structure of the
FTTC to feed forward directly into the autopilot as well as
through the pilot by driving a display. The task can be separated
by frequency, giving the pilot his most favorable frequency band
and letting the autopilot handle low and high frequency control.
Such a controller can be developed by frequency weighting these
" two portions of the gain inversely with the general shape of the
pilot model in a wide enough range that one has effectively,
"safely" inverted a poorly known pilot in the loop to get higher
performance with the controller.

Both the difficulty in achieving trim and all the engineering
effort involved in modeling an MCS/CAS system can possibly be
alleviated using linear identification and the known structure
of the plant, identifying the aerodynamics involved in the
maneuver and parameters of an assumed structure for the MCS/CAS.

It would be very desirable to validate an FTTC for a
difficult maneuver, such as a high bank turn in a manned simulator
after sufficient optimization of the controller in the batch
simulation. Data could be collected in such a study for identi-
fication of the pilot model as well.
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APPENDIX A

FREQUENCY-SHAPING OF COST FUNCTIONALS

Consider state-variable model of the form
x = Fx + Gu + w , (A.1)

with state vector x, input vector u, and state-noise vector
w. In steady-state LQG designs, a cost functional of the

following form is minimized:

T

J = lim%f (xTAx + uTBu) dt . (A.2)
T+ 0]

A is 1 positive-semidefinite matrix and B is a positive-

defini-e matrix. In the frequency domain

J =[ (x*Ax + u*Bu) dw , (A.3)
-0

where x 1in Eq. A.3 is the Fourier transform of time domain

x. A and B are the same as in Eq. A.2, Note that Eq. A.3

speci'ies an equal penalty for states and inputs at all

freque 1cies.

Ti1e problem with the time-domain approach is that it is
not pc :sible to specify frequency-dependent penalties. There-
fore, n Ref.[9], the concept of frequency-shaping was developed
in the frequency domain. WNe can make A and B functions of
freque cy in Eq. A.3. A tz2chnique for designing control laws
for ra ional functional weightings has been developed [9]. The
procedure requires appending additional states in LQG design
problems. Instead of showing the mathematical details of the

design approach, we will d2monstrate it by an example.
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Example: Consider a one-mode, undamped oscillator with
state equations

AR W SN

We shall select a frequency-shaped weighting function of the

form
o0

J = f(x*ax + u*bu) 4 |, - (A.5)
a = 21 ’ (A.6)
w +4
b = w2 + 1 . (A.7)
Defining
X . )
= 2 = A.8
z 5o+ 2 = 2z + 2z X , ( )
U= (jwu+l)u=1u+u, (A.9)
the cost functional becomes
o T
_ - a1 2 2 (A.10)
J = (z*z + u*u) dw = 1lim T (z”+u®) dt . ¢ .
T+
— 0

The appended state equations are a combination of Egs. A.4, A.8
and A.9%

x o 1 o0 olIx 0
dafrx]._1-4 0 0 1 x 410 3 (A.11)
atra o o -1 ollu 1

z 1 o o -2}l= 0
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Standard LQG methods may be used to develop control laws for
this modified problem. The designed controller will take the

following form:

u = Clx + sz + CBZ + C4u . (A.12)
The implementation will use the equations obtained by substituting
Eq. A.12 into the last two terms of Eq. A.11:

TR R R TR R

Note that the controller is a low-pass filter. Thus, the region
where the penalty on the state is small and the penalty on the
control is high has reduced control activity. This behavior

is typical of frequency-shaped control laws.
Notes:

1. The positive-semidefinite matrices A and B,
provided they are functions of w2, may always be
decomposed to convert a frequency-shaping problem
into a modified LQG problem.

2. A standard Riccati equation needs to be solved to
obtain the solution to the frequency-shaping
problem.

3. The resulting controllers are usually dynamic and
have memory. In fact, frequency-shaping is achieved
through this memory. '

4. The frequency shapes allowed by the techniques of
Ref. [9] are a ratio of the polynomials in w2, A
wide class of shapings may be approximated by such
functions.

5. The frequency-shaping techniques shown above for

the control design problem may also be extended for
state estimation (see the following section).
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A.1 ROBUSTNESS TO MODELING INACCURACY

Effects of inaccurate open-loop models on the closed-loop
performance is minaged by injecting minimum control power at
natural frequencies of unmodeled modes. We will discuss proce-
dures for controlling model inaccuracies in the high-frequency
region, although similar techniques are applicable for other

regimes.

The high-frequency robustness can be accomplished by modi-
fying the state of the control weighting. The state weighting
A(jw) may be made a decreasing function of frequency. Three
of the possible forms for A(jw) are shown in the following:

(1) AGw) = 354, (A.14)
W
4
el
(2) A(jw) = —5 353 A, (A.15)
(w +w)
o -
(o2 +0%)?
(3) A(Jw) = —5—535 4 . wy > wy (A.16)
' (wo+w )

To treat the frequency shaping of Eq. A.14, we define additional

states x as follows:
X = x . : (A.17)

The performance index is

T
lim £ / (xT1% + uTBu) dt . (A.18)
T+
0

The control law will be of the form

u = Clx + C2x . (A.19)
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The control gain C2 will ensure that the high-frequency
response is minimized. This formulation resembles integral
control. However, the weighting matrices used in the design
are different.

Spillover may also be reduced by placing high control
weighting at high frequency. Examples of B(jw) which reduce
high-frequency spillover are as follows:

(w2+w§)
(1) B(jw) = —5— B, (A.20)
u)O
w?*‘w
(2) B(jw) = —5—5 B, Wy < Wy s (A.21)
wo W
o3
(3) B(juw) = —= 3 P B . (A.22)

[(w +w§) + 20, w?]

The frequency-shaped parts of these weightings are reciprocals
of the frequency-shaped parts of state weightings. To implement

the weighting function of Eq. A.20, we define a vector u as

u + wou = wo'ﬁ ) (A.23)

The performance index takes the form

T >
J = lim 3 / (xTAx + ulBu) dt , (A.24)
T+ s

The feedback control law will be

u + mou = wou = wo(C1x+-C2u) ,

or

X . (A.25)

(_.
+
£
(o}
[y
[
(@]
[\
[}
£
m
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This control law is shown schematically in Figure A.1.

During maneuvers and in other missions, there is often a
need to not excite a particular mode at Wg * Minimization of

model errors at one frequency We is achieved by:

AGw = P - WH? (A.26)
or by
B(jw) = —22-—'2—'2- . (A.27)
(w™ - wo)

comanp *

=Pt SYSTEM

STATE
ESTIMATOR

wo(sl +mo(1-cl,))'1c1 }0——

Figure A-1. A Frequency-Shaped Controller to Reduce
High-Frequency Model Errors

A.2 ROBUST STATE ESTIMATION

The discussion will again address the estimation of low-
frequency states when the high-frequency modes are not modeled.

Extensions to other cases is straightforward. »

In the linear systems of Eq. A.1, a linear transformation .
can be used to place all errors cause by unmodeled modes into
the measurement equations. Note that when high-frequency modes
are not modeled in the state equations, measurement errors in
the modified system are also at high fregency. Therefore, the
lumped modeling error at high frequency represents a high-

frequency noise measurement with many peaks.
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To derive a filter with desirable high-frequency behavior,
we consider optimal estimation as the output of an optimization
problem with the following performance index:

T
J - lim 7 /(WTQw + vIRy) dt . (A.28)
T+ .
Again, conversion to frequency domain gives the following

performance index:

J = f(w*Q(jw)w + VIR(jw)v) dw . (A.29)
- 0
The problem of model invalidity at high frequency is solved by

making Q and R functions of frequency.

Since all errors associated with model truncation are
incorporated in the measurements, we will consider fre¢quency
shaping only in R. High-frequency measurement spillover is
controlled by increasing R(jw) at high frequency. We may

select R(ju) as:
R(jw) = ————— R . (A.30)

We can define a new measurement y as

Yoty = LY (A.31)
and

v = HX + v , (A.32)
where

X + MOX = “ox (A.33)



The state estimator is of the form:

x = Fx + Gu = K(y - Hx) ,

% |
Il
{
£
»

wox + u)o-f(s; - H-;'Z) ,
V = ~wy+wy. (A.34)

This filter is shown schematically in Figure A-2. Note that

a standard filter is obtained by setting K to zero and

wO/(s + wo) to one. In this formulation, filtered measurements
are compared with filtered states. The eigenvalues of the closed-
loop system are, in general, in the low-frequency region. Low-
frequercy, closed-loop eigenvalues reduce excitation of high-
frequelncy modes through feedback in the state estimator. The
filter shapes may be modified to provide any desired roll-off.
The fi ter, of course, becomes more complex as faster roll-off
is obt ined. Note also that the transfer function between the
estima ed state and the measurements has at least two more poles
than 7z ‘ros. This filter has wide applicability in the design

of pra-tical state estimators.

[ :

Figure A-2. A Frejuency-Shaped Filter to Reduce
High-Frequency Modeling Errors
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A.3 DISTURBANCE REJECTION IN FLIGHT VEHICLES

Aircraft and rotorcraft are subject to high disturbance
levels caused by engines or moving subsystems during in flight
reconfiguration. In addition, turbulence, thrust variations,
and density variations are external disturbance sources. These
sources are nonwhite. Frequency-shaping methods may be applied
to minimize the effect of these disturbances on the aircraft.
Procedures for realizing disturbance rejection are shown in the

following.

Consider a configuration transition of the F-111. The
primary disturbance produced by the transition is at one fregquency
(typically the rotational frequency) and possibly its harmonics.
Let the disturbance frequency be w. Suppose we wish to minimize
the effect of this disturbance on output vy. This disturbance
rejection can be realized by including the followihg term in

the performance index:

?—2——1':2-2" yT Ayy . (A. 35)
WS - w :

Note that the output penalty goes to infinity at the disturbance
frequency. Thus, the impact of disturbance on the output is

minimized.

The implementation of this frequency-shaped weighting

requires definition of additional states as follows:

. 0 Iy _ 0
X = 2 x + y . (A.36) *~
-w” ]I 0 1

The performance index will take the form

T
J = lim 3 /(iTAyi’ + xTAx + ulBu) dt , (A.37)

T
T 6
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and the control law is

u = Clx + sz

The flowchart for this control law is shown in Figure A-3.

The control formulation given above may be extended to
include disturbance at other frequencies or over a frequency
band. In each case, as shown in Figure A-3, there is memory

in the control portion of the feedback.

A.4 SUMMARY

The application of frequency-shaping methods to flight
vehicles leads to a linear controller with memory. However,
the additional states needed to emulate frequency-dependent
weights increase controller order. Software needed for these

controller designs is similar to that for standard 1QG problems.

COMMAND ¢ u y
SYSTEM

\ 4

: B!

STATE
N 1 [ estmtor r“‘"'

+*

CZ,J;,%E

Figure A-3. A Frequency-Shaped Controller to Eliminate the
Effect of Disturbance at w on Output vy
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APPENDIX B

MATRIXX: A DATA ANALYSIS, SYSTEM IDENTIFICATION CONTROL

DESIGN AND SIMULATION PROGRAM

Robert Walker, Charles Gregory, Jr., and Sunil Shah

MATRIXX is an interactive software system to perform a com-
plete cycle of steps starting from data analysis to system iden-
tification, control design, simulation and evaluation., It is
built on a user-friendly interpreter incorporating powerful
matrix operations. State-of-the-art algorithms for linear

system analysis, differential equation solutions, and Fourier

transformation are included and can be called from the interpreter

by simple commands. The package offers four major features

(1) Powerful interpreter, simple command structure, good
graphics capability with most "book-keeping" chores
handled by the software,

(2) State-of-the-art numerical algorithms, which allow
solutions to high order problems,

(3) User transparent file management with uniform and
consistent format, and

(4) Efficient implementation with a stack to require minimum

memory and computation resources.

Basic algorithms for linear system solutions, eigensystem
decomposition (including reliable determination of the Jordan
form), singular value decomposition (SVD), QZ decomposition,
and matrix algebraic operations are implemented as language
primitives. Many of the primitives are inherited from MATRIXX'S

predecessor MATLAB, developed by Moler.

105



The interpreter can execute higher level constructs called
macros and command files enabling construction of muylti-level
hierarchical structures. The command files are typically less
than ten lines long and consist of interpreter primitives or
other higher level constructs. Creation and modification of
specific design and analysis procedures is easy because of the

rich set of primitives and the hierarchical structure.

A set of command files and macros provide specific environ-
ments, such as data analysis and identification, control design

and analysis, and simulation.

Data analysis and identification can be performed very effi-
ciently and easily in MATRIXX. Tied with a flexible graphics

package, MATRIXX
recursive identification methods. A universal interface with

provides a production environment for batch and

external simulations is provided to facilitate data transfer.
Data can be censored, detrended and analyzed in MATRIXX. Batch
procedures include the standard regression methods with analysis
of variance and step-wise regression. State-space and nonlinear
batch maximum likelihood procedures are also available. Recursive
algorithms such as the recursive maximum likelihood, extended
Kalman filter with Ljung's modification, and recursive instru-
mental variable method are implemented. All coVariance factori-
zations and updates are in U-D form for numerical reliability.
Non-parametric batch and semi-batch methods using the FFT are
provided for auto/cross covariances/spectras. Lattice updates
for ARMAX systems are available. Adaptive control algorithms
for multivariable systems using U-D updates can be designed

using simple commands.

In MATRIXX, control design can be based on any of the

following:
(a) Linear Quadratic Gassian (LQG) approach,

(b) Methods based on A-B invariant subspaces,
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(c¢) Eigenstructure assignment and zero placement, and

(d) Classical methods such as Nyquist and Bode.

For the LQG problem, the algebraic Riccati equation is
solved from extended Hamilton equations avoiding inverses, which
are troublesome in the singular case. The equations are row
compressed with an orthogonal transformation followed by the
QZ pencil decomposition and a backward stable ordering of the

eigenvalues.

Meaningful extensions to LQG methods require inclusion of
dynamics of reference, disturbances, sensors, and actuators.
Appending of dynamics in frequency-shaped control design or
model-following techniques involves forming augmented equations,
which is easily accomplished with MATRIXX primitives., Use of
frequency-shaped costs, with singular value plots for robust-
ness evaluation, allow incorporation of engineering judgment

in the control design.

Evaluation tools for linear systems include frequency
response, power spectral density plots, time reponses, trans-
mission zeroes and individual transfer function zeroes. The
principal vector algorithm (PVA) primitive for numerically
reliable extraction of the Jordan Form (with discriminatory
rank deflation of root clusters) is very useful in modal analy-
sis of open-loop systems of vehicles and structures. PVA
permits computation of residues or partial fraction expansions
of multivariable systems. Extraction of the Kronecker indices,
supremal (A,B) invariant subspaces and the Kalman decomposition

is performed using the SVD, QR and the QZ algorithm.

Simulation of stiff differential equations is performed
with Gear's software. Linear system responses are computed

efficiently from the residues.

Use of '"chopped arithmetic," i.e., using various effective
machine word-lengths can provide performance evaluation of

on-board small word-length control system implementations.
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Numerical reliability and stability are important in all of
the analysis environments described above. Primitive matrix
operations are based on the best available numerical software
drawn from EISPACK, LINPACK, and recent research in numerical

techniques.

Reporting and control of numerical errors is performed in
several ways: Estimates of the problem condition number and
the algorithms condition number are available for many of the
primitives in MATRIXX. When requested, MATRIXX provides an
estimate of the problem condition, the algorithm condition and
the solution accuracy when such an analysis has been presented
in the current literature. If an error analysis has not been
performed rigorously, condition estimates using varying word
length arithmetic and perturbed initial data can be requested.

The program is coded in ANSI-77 FORTRAN and will run on
any system allowing interactive execution of FORTRAN. The few
machine dependent features are implemented separately for most
popular operating systems. An implementation with 250K double-
precision complex elements is available for VAX 11/780. System
orders up to 150 can be handled easily within the storage
capacity of the computer and numerical accuracy of the algorithms.
Most algorithms access memory in a linear fashion, so that page-
swapping is not unduly increased in the virtual memory implemen-

tation.

In summary, MATRIX, provides a system which minimizes engi-

X
neering and programming resources required for the complete
cycle of system identification, control design, and validation,
yet provides the flexibility needed in an applied research

environment.

108



APPENDIX C
FLIGHT TEST TRAJECTORY CONTROLLER USERS' GUIDE

AUTOTRIM CAPABILITIES

In the version of the NASA-Dryden Simulation SIMII modified
for flight test trajectory control (FTTC), the autotrim function
is quite important since the linear models depend on achieving
trim. The previous four autotrim options are available with two
new autotrims for steady coordinated turns. Level turns require
a type of dynamic trim, since there are constant body angular
rates, rather than zero angular rates. One of the turn trims
specifies attitude, effective roll angle and angle of attack,
adjusting the turn rate and velocity to achieve trim. The second
turn trim is vice versa, specifying turn rate and velocity,
adjusting the effective bank angle and angle of attack to achieve
trim. A summary of constrained and adjusted variables for all

six trim conditions is shown in Table 1 below.

Table 1 SIMII Trim Options

. Program Constrained Adjusted
Trim Type Mnemonic Variables Variables
NORMAL, also
¢ a
Normal "BBBBBE " \Y PLA,0,B
Throttle THRP PLA v,o,B
Angle-of-Attack ALP a PLA,V,B
Sideslip BTA B a,v,¢
i PLA,x
Turnrate PSIDOT by V ¢L(=>¢:e:¢)
Effective roll
angle (angle of _ :
1ift vector from PHILFT Ot’(bL(_NP’e’d)) PLA,V,¥
the vertical)
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The gains which adjust the unconstrained variables at each
autotrim iteration can be entered as input. Table 2 shows the
appropriate user input variable and the associated default value

for zero input.

Table 2 Autotrim Adjustment Gains and Input Parameters

Trim Type/
Adjusted o

Variable Variables Normal |{Throttle| a B Vo ody
Location

UX(73) PLA(.005) PLA PLA|PLA

UX(74) o,B(.01) o | o | ¢

UX(75) V(1.) A

UX(76) a,B(.1) B {o(.1) ¢

UX(77) V(.3) {v

UX(79) Starting value for PLA (Default = 0)

UX(80) Maximum number of iterations (10,000)

UX(89) $o (Turn rate trim option)==>po,qo,rO

UX(90) ¢L (Effective bank angle option),

a0==>w0,60,¢0

The trim values can be preset to desired values without
going through the autotrim iterations with the subroutine TRMSET.
Values of the UX array are used as input. The association of
variables and locations of UX are documented in this subroutine,

included in Appendix D.

A summary of the user logical flags useful in FTTC design

and evaluation are given below in Table 3.
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Table 3 SIMII-FTTC Option Flags

Logical Input Flag Option
LX(20) = T Find Stability Derivatives (see
Aerodynamic Linearization section)
LX(21) = T Stop SIMII after finding stability
derivatives
LX(22) = T Bypass trim but set all trim values
(invokes subroutine TRMSET)
LX(23) =T Print out intermediate autotrim
convergence data
LX(24) = T FTTC closed loop simulation (additional
inputs required (see Tables 4 and 5)
LX(25) - LX(28) =T Invoke a pilot model for, respectively,
the Aileron, Elevator, Rudder, and
Thrust commands

AERODYNAMIC LINEARIZATION

When the simulation SIMII has been trimmed, all the stability

derivatives can be requested as follows:

LX(20) = T Computes all the stability derivatives,
LX(21) =T Stops the simulation after the stability
calculations

The six aerodynamic force and moment coefficients and the inde-
pendent variables that affect them are shown in Table 5-2, the
zoom and pushover trimmed example., Both stability axis and

body axis variables are shown. The equations in SIMII are imple-
mented with the force coefficients in the stability axes and
moment coefficients in body axes. The linearization procedure
perturbs the appropriate combinations of variables in stability
axes to get the body axes derivatives. The effect of a center-
of-gravity shift is included and the divided differences of the
nondimensional coefficients are converted to dimensional stability

derivatives before output.
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The subroutine STABDR outputs the trimmed nondimensional
coefficients along with the dimensionalizing coefficients (for
checking total force and moment balances), sets up consistent
velocity perturbations, and calls the routine SDCALC for each
state variable of interest. SDCALC saves the initial coefficients
in another six element vector, perturbs the passed state variable
of interest, recalls the SIMII routine CCALC to find the per-
turbed six coefficients, finds the divided differences, appro-
priately dimensionalizes these stability derivative approximations,
and prints out the state variable with its six stability deriva-

tives.

FTTC INPUT AND OUTPUT

FTTC simulation is invoked by inputting LX(24) = T, with
the necessary inputs summarized in Tables 4 through 6. Of the
various blocks of the flight test trajectory controller (see
Figure 6-1), the FTTCOM common block is used for linear models
and the UX array is used to store the outputs of the various
stages of the controller. Thus, time histories of the internal
variables of the controller can be output for plotting.

Table 4 FTTC Input and Output Variables

Variable Storage Location
Aircraft Model Trim Values US(11) - US(25)
Sensor Noise Standard Deviations US(26) - US(40)
Trajectory Constants US(41) - US(55)
Compensator to SIMII Unit Conversions US(56) - US(59)
Sensor Outputs UX(11) - UX(25)
Trajectory Command Generator Outputs UX(26) - UX(40)
Compensator Inputs UX(41) - UX(55)
Compensator Outputs UX(56) - UX(59) ]
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The input for the compensator and pilot models is accom-
plished by FTTCIN,
data is read, CNTRIN.

after Group 11 data cards,

a subroutine called where the control input

Thus the FTTC input comes immediately

the autotrim variables. The necessary

FTTCIN cards are given in Table 5 below.

Table 5 FTTC Linear Model Input
Card Column Format Description
1 1-5 215 Dimension of the compensator dynamics
6-10 matrix (F¢), and the number of com-
pensator inputs (i.e., NZ the number
of sensors)
2 1-60 3D20.13 | Fc, G,, He, Jc, by rows (G¢ by
columns), a new card for each row
(column). Note that there are four
compensator outputs for the four
principal controls
3 1-5 I5 Dimension of the first pilot model
(e.g., FpA)-
4 1-60 3D20.13 | Fpy, Gpp, Hpps, Jpp by rows (G by
columns), a new card for each row
(column). Note that each pilot model
is an independent SISO system
5
Additional pilot models

Immediately following the FTTC linear system input, the

necessary FTTC constants are input as shown in Table 6.
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Table 6 FTTC Input Parameters

Card | Column . . Variable
Type | Number Format Description Locations
1 1-5 215 Sensor and pilot model NSAMPZ,
6-10 sampling intervals (i.e., NSAMPP
multiple of simulation

integration step)

2 1-50 5E10.3 | Aircraft trim values, Us(11) -
yp(NZx1) trim values plus US(25)
four control trim values

3 1-50 5E10.3 | Sensor noise standard devia- US(26) -
tions (assuming uncorrelated US(40)
sensors)

4 1-5 I5 The number of trajectory NTRAJP
parameters

5 1-50 5E10.3 | Trajectory parameter US(41) -
constants US(55)

6 1-50 5E10.3 | Compensator to SIMII control US(56) -
unit conversions US(59)
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APPENDIX D

FORTRAN LISTINGS FROM SIMII-FTTC

The new or significantly changed subroutines of the NASA

DRC F-15 SIMII simulation are listed by function below. Their

calling sequence and function are shown in Figure 6-2. The

FORTRAN listings follow chronologically.

Autotrim Capabilities

AUTOTR

TRMCHK
TRMSET1

Adjust variables to achieve desired initial
condition

Check force and moment balances

Set all trim values to desired variables

Aerodynamic Linearization

STABDR!
spcaLcl

Perturb each state variable of interest

Compute six stability derivatives for each
state variable

FTTC Simulation

Frrcl
SENSOR!
TRAJGN!
PROPAG

Integrate flight test trajectory control law
Extract SIMII variables and add sensor noise
Trajectory command generator

Propagate discrete compensator and pilot models

MATRIXx Control Design Program Interface

MTOSIM

SIMTOM

Translate MATRIXX data files with compensator
and pilot linear models to SIMII-FTTC compatible
file format

Translate SIMII time history file to MATRIXx
compatible file format for plotting

]Ljsting attached to this report
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SUBROUTINE TRMSET

IMFLICIT DOUBLE PRECISION (A-H,G-I)

LOGICAL LX

---— TRMSET SIMULATES A TRIMMED CONDITION BY SETTING THE VALUES
FROM UX{(Z21}-UX{63)

COMMON /VARDINT/ UX{F0)sLX(50)

CONMON /DRVDUT/ F{13)2DF(13;

COMMON /STMOUT/ AMCH»OBAR»GMA» DEL » UR, VB +WE» VEASIVCAS

COMMON /CONTRL/ Dfss DARTAL» DFF s DHs BHR 9 DHL » DT s DR DSB s THRST» THR  OHGE

COMMON /CLCDUT/ CL,CMaCNyCDyCLFT2CY

CONMON /CONPOS/ F1(9)sDSBFsDFFsF2(4)

COMMON /ENGIISF/ FOSNIL,FOSNZRsRPHL sRFHR »TEMPL »TEMFR »
FFLONL FFLOMRFONTY 1

LOGICAL FOUT»NOWC

COMMON /ENGIMF/ FONTY FFLOWsDsFOUT NONCSINETACOSETH

iaTh ITR/ 0174532/

---- UX Z1-46 ARE F:DF
I3 10 I=1213
Fold = UXC20+D
DFiT) = UX{33+1)
----~ CONVERT TO INTERNAL UNITS ON ANGLE STRTES
[0 20 I=6910
F(I}) = FUII*WR
-~-- CONPOS VARIABLES UX 48-56557-60
oo 36 I=1»7

30 Fi(I) = UX{47+I)

40

00 40 I=104
FZ{1) = UX(36t1)
---- CONTROL FOSITIONS UX 6i-64
DA = UX{61)EDTR
IH = UX{62)RBTR
IT = UX(a3)XLTR
iR = UX{64}3DTR
---- ENGINE FARAMETERS UX 45-48
FFLOW = UXioGi
THRST = UX(aé)
FFLOWL = UX{67)
FFLOWR = UX(68)

"

ANCH = UX(71)
VEAS = UX{72)
RETURN

END

117



SUBROUTINE STABDR

IMPLICIT DOUBLE PRECISION (A-H:0-1)

LOGICAL NORMALsLONGIT,LATDIRsLEVEL

COMMON /SIMOUT/ AMCH,QEAR»BMAsDEL»UB1VE»WBsVEAS,VCAS

COMMON /ALTFUN/ ArRHO:GrPA

COMMON /SIMTYF/ NORMAL LONGIT»LATDIR,LEVEL

COMMON /IRVOUT, F(13)+DF(13)

COMMON /CLCOUT/ CLoCM»CNyCDoCLFTSCY

COMMON /CONTRL/ vy DAR s [AL» DFF yDHy DHR s DHL s BTy DR ¥ BSBs THRST» THR » OMGE
COMNON /SIMACC/ AXyATyAZy ANXyANY 2 ANZ s AN

COMMON /FMCOEF/ FM(39)

CONMON /TRIGFN/ SINALFsCOSALFySINBTAsCOSBTA»SINPHI,COSPHI»SINPSIs
' COSPSI»SINTHA,COSTHA

COMMON /DATAIN/ SyBsCBARyANSSsATXrATYAIZsAIXZAIXE

COMMON /STABCN/ G5,05E

EQUIVALENCE (T r FCLih
(F r FE 200080 r FC3) (R s FC )iy

. v v FCSHALE 9 FOA)s{BTA  » FU 70Dy

' (THE o FOB)Io(PST  » FC DIo(PHT ¢ F(10))s

. H r Fiil))e (X y FO2 (Y r FC13))
[ et STABILITY VARIABLE PERTURBATION VALUES

[IATA CVDEL,ALPLEL yRTADEL»FDEL,GREL sRDEL » UDEL »VDEL ;WDEL » ANZDEL »
. ADOTDL,DSBDEL » DADEL »DRDEL » DHDEL » DTDEL/16%.,001/
[iATA CUNAM» ANAH > BNAK PNANs ONAM 2 RNAN, LNAM 2 VAN » WNAN, AZNANy ADNAM
) DSBNAN» DANAN» IRNAM) DHNAN) DTNAN/ "VELD' » "ALPA’y ‘BETA'»'F 'y
. 8 R U ' YW T fANZ “ofALFD»°DSB
) ‘DA 'DROyIH BT/
---------- FIND DIMENSIONAL CONSTANTS
35 = GBARKS
(5B = Q5%k
JRITE(3,8500) AMSS,OBAR,QS, Q5K
g700 FORMAT(/s" AMSS/QBARsB5/05B = “+4(1Xy1PE12.0)4/)
WRITE{3+8510) CLsCMsCNsCDsCLFTCY
8910 FORMAT(  HONDIMENSIONAL CLyCHMsCMsCDyCLFTSCY = 79/8(1Xs1PEL12,5)s/)
WRITE{3:87207 (FM(1}eI=1+3%)
8720 FORMAT(/s’ CONSTITUENT COEFFICIENTS-SEE COMMON FMCOEF+/y
v (6{1Xr1FEL2,5)))
€ mmmmmmeee SET UF VELOCITY PERTURBATIONS
CVDEL = VRVDEL
UDEL = CVDEL
VBEL = CVDEL
WIEL = CVBEL
AKDEL = CVDEL/A
L NOTE THAT STABILITY DERIV. ARE IN THE APPROFRIATE AXES
WRITE(3+9000)
7000 FORMAT(’IDIMENSIONAL STABILITY DERIVATIVES FOR'»/»
o Xy "CLBODY "+ 7Xy "CN* y 11Xy "CNBODY ' # 7% 'CD’ 11Xy 'CLFT " #9Xy "'CYBODY ')

<2

A FIND LONGITUDINAL DERIVATIVES
IFCLATDIR) GO 70 160
C ----ALPHA DER.

CALL SDCALC(CL ALPDELsALFyALPDELsU1sD1s FALSE. +01ANAN)
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CALL SDCALC{CL,GDEL»QsQDELs¥1vB1r FALSE. s U s ONAN)

---- W [ER,

CALL SDCHLC{CLsWDEL»VyD1+ALFsD2y  TRUE . 92 1WNAN)

--=-- ANZ EER.

CALL SDCALC(CLsANZDEL»ANZyANZDEL)V2:D2) FALSE. 109AZNAN)

---- ALPHADOT DER.

CALL SDCALC(CL»ADOTDLyDF{68)»ADOTDLsV29D2s JFALSE . » Oy ADNAN)
---------- DERIVATIVES FOR BOTH LONGITUGINAL AND LATERAL LER,
CONTINUE

--== VELODCITY DER,

CALL SDCALC{CLsCVDEL»VsCVDEL »AHCHs ANBEL » » TRUE, » 3y CUNAM)
---- U DER,

CALL SICALCCCLsUDELyVsDilyilPs D2y, TRUE. s 1y UNAH)

---~ DH DR,

CALL SDCALT{CL,DHDEL »DH:DHDEL s iSBy DHBEL y o TRUE . + O s [HNAM)
----------- COMFUTE STRICTLY LATERAL DERIVATIVES
IF{LONGIT? GO TO 200

---- BETA DER,

CALL STCALC(CLBTABELBTAsBTADEL»V2yD2y JFALSE .y 02 BNAH)
---- F LEFR,

CALL SICALT(CLsPRELsPsPDELsV2sD2¢ FALSE101FNAN)

---- K DER.

CALL SDCALC(CLsREELsRyRDEL»V25D12s JFALSE s 93 sRNAM)

---- U DER.

CALL SDCALC(CL>VDELyBTAsDLsV29D2y FALSE s 3o UNAN)

---- [A DER.

CALL SDCALC(CLsDADEL DAy DADEL U2y D25 JFALSE v 05 [ANAN !
---- [k DER.

CALL SOCALC(CLsDRLEL »DRsDRDEL»V29D2s JFALSE + 909 DRNAK)
---- [T DER.

CALL SDCALC(CL,DTDEL,DTsDTDELsV2sD2s JFALSE s OrDTNAM)

200 RETURN

END
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C -—— -—
SUBROUTINE SDCALC(C,DELTArVAR1sDELTAL»VAR2,DELTA2s NULVAR, IBODY
»  INANKE)
INPLICIT DOUBLE PRECISION (A-H»0-2)
LOGICAL MULVAR
INTEGER NAME,IBODY
---- HULVAR = F => ONLY ONE VARIABLE IS PERTURBED
T => FERTURB TWO0 VARIABLES
--~- IBODY = & = USE STAB. AXES FOR STAB. VAR. AND BODY AXES FOR BODY VAR.
=> PERTURB VT AND ALPHA FOR U
=» PERTURE VT AND ALFHA FOR W
=» PERTURR VT AND BETA FOR ¥

1
2
-
3

Lo I or B o BN or B o0 B oo /BN o B o }

DIMENSTON C{6)+CSAVE(4),DC(4)
COMMON /CGSHFT/ DELXsDELY,DELZ
COMMON /DRVOUT/ F(131,DF(13)
COMMON /DIATAIN/ S+BsCBARANSSsAIX ALY AIZoAIXZAIXE
COMMON /STABCN/ 3S,05SR
COMMON /TRIGFN,/ SINALFsCOSALF »SINBTAsCOSETAs SINFHI,COSFHI»SINPSIy
. COSFSIySINTHA»COSTHA
EQUIVALENCE (V 17 (3))
L - REINITALIZE AND' SAVE COEFFICIENTS
CALL CCALC
00 10 I=1yé
10 CSAVEL(T) = C(L)
L - PERTURD VARIABLES(ONE OR TWO)
IF(1BODOY .EQ. O) GO TG 13
60 TO{11.12513),1BODY
---------- FERTURBATION FOR U---NOTE THAT V IS TOTAL W(VT)
11 DELTA1 = COSALFXDELTA
DELTAZ = -SINALPSDELTA/(VXCOSBTA)
60 10 15
12 DELTAI = SINALPXDELTA
DELTA2 = COSALFXDELTA/(VECOSBTA)
60 10 13
15 DELTA1 = DELTA/COSETA
13 VARY = VARY + DELTAL
IF{.NOT.MULVAR} GO TD 20
YARZ = VAR2 + DELTAZ
20 CALL cCALC .
---------- FIND DIVIDED DIFFERENCES
b0 30 I=1+6
30 DC(I) = (C{Ii-CSAVE(I))/DELTA
L - PREFARE TO ADD EFFECT OF C. G. SHIFT
TERK = (IC(4)XCOSBTAXSINALP + DC(AIXSINETAXSINALF + DC(5)COSALF;%
' as
TERM3 = QSk{DELXX(DC(4)XSINBTA - DC(46)#COSBTA) -
+ DELYX{DC{4)¥COSBTAKCOSALF + DC(&)¥SINBTAXCOSALF - DC(D)XSINALP))
---------- MAKE DERIVATIVES DIMENSIONAL
DC(15 = (DC{1)XQSB + TERM¥DELY)/AIX
DC(2} = (DC{2)BQSHCHAR -~ TERMEDELX)/AIY

far]

<Y

[a¥]
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BC(3) = (DC(3)¥USB + TERN3)/AIZ
[C(4) = -DC(A)xQS/ANSS
DC(S) = -DC(5)*AS/ANSS
[iC(&) = DC(6)XAS/ANSS

---------- TRANSFORM CL AND CD TO BODY AXES
IF(IBODY .EQ. 0) GO TO 40
DCLB = COSALFEDC(S) - SINALFEDC(4)
DCD = SINALFSDC(S) + COSALPYDC(4)
DC(3) = DCLB
BC(4; = DCD
---------- RESTORE THE INITIAL UALUES

45 D0 50 I=1s6

30  C{I) = CSAVE(I)
VARY = VAR1 ~ DELTAI
IF(MULVAR) VARZ = VARZ - DELTAZ
---------- PRINT OUT STABILITY DERIVATIVES
WRITE(3+5000) NAME,DC

7000 FORMAT(1XsA476(1X0E12.5))

RETURN
ENI
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SUBROUTINE FTTC(ITINE)

IMPLICIT DOUBLE PRECISION (A-H»D-2)

INTEGER ITIME

COMMON /FTTCOM/FTT(200) s IFC(3)»I6C(3) 1 IAC(3)»1JC(3}s
) IFPA(3) o IFPE(3) o IFPR(T) o IFPT(3) s INK (33 v

! NSANFZyNSANPP

FTIC IMPLEMENTS & FLIGHT TEST TRAJECTORY CONTROL LW AT
INTEGRATION INTERVAL ITINE

CONFENSATOR ANI: PILOT MODELS ARE STORED IN ARRAY FTT WITH
POINTER INDICES
I.E, IFC{1y  ROW DIMENSION OF FC (COMPENSATOR DYNAMICS)
IFC(2)  COL DIMENSION OF FC
IFCi3)  LOCATION IR FTT WHERE FC IS STORED

+

+

iFFT{1) ROW DIM. OF FPTH(FILOT D'YNAMIC MODEL FOR THRUST)
IFFT{2) €OL DIN. OF FFTH
IFF7{3) LOCATION IN FCC WHERE FFTH BEGINS

NOTE: FOR THE FIVE LINEAR MODELS THE COMVENTION IS TO STORE
FrBsHyJsXy't (MOBEL STATE AND OUTFUT) IN COMMON FTT

NSAMFZ TIME INCREMENT FOR UPDATING MEASUREMENTS
NSHMPF  TIME INCREMENT FOR UFDATING FILOT MODEL

AIRCRAFT MODEL TRIM VALUES Us(11)-us(25)
SENSOR NOISE STARDARD DEVIATIONS US(263-US(40)
TRAJECTORY CONSTANTS US(413-U8(53)
UNIT CONVERSIONS (COMFENS. TO SINID) US{36)-U8(59)
SENSOR OUTFUTS UX{11)-UX(23)
TRAJECTORY COMMAND GENERATOR OUTFUTS UX(26)-UX{40)
COMFENSATOR INFUTS UX(41)-UX(35)
COMFENSATOR OUTPUTS UX(56)-UX(59)

(e ar SR ar N o N o B o St B S U o B o B 0o BN S T B or 2 o B B oo B2 B - B 3 Mo SR or N o T u o BN o B o T o B o B =Y

COMMON /CONFOS/ DAF+FLAT s DATRIMsDER,FLONDETRINsDRFsFFED)DRTRINy
' DSEF s DFPyFLAPL s FLAPRs THSL » THSR

CONMON /VARDAT/ UX(90)»LX(50)

COMMON /VARSIN/ US(90)sL5(50;

C == INITIALIZE INFUT/GUTPUT HISTORY VARIABLES
IF(ITIME .67, 1) GO TO 10
b 5 I=11,39
5 UX(I) = 0.10
10 CONTINUE

L BENERATE TRAJECTORY COMMANDS
C
IF(HOD(ITIME-1,NSAMPZ) .EQ. 07 CALL TRAJGN(US(41),UX(26))
il UFDATE MEAS
C
IF(MOD(ITIME-1/NSANFZ) JE@. 0) CALL SENSORCUX(11),US(117,UX{26),
o UX(41)sUS(26) PNZ)
c

122 R — PROPAGATE THE COMPENSATOR
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30 IX=1JC(3) + IJC(LIRIJCED)
IV=IX + IFC(L)
CALL PROPAG(FTTCIFC(3))»IFC(1)sFTT(IBC(3))s16C(2) sFTT{IHC(3))s
. THCC1 ) oFTTCIIC(3) ) o P TTCIX) sUX (A1) o FTTCIV)»FTTCINK(3) ))

---------- SAMFLE AND HOLD THE COMPENSATOR OUTPUT

IF (MOD(ITIME-1,NSANPP) .NE. &) GO TD 40
DO 35 I=1,4
35 UX(S3#1) = FTT(IY-141)

---------- FROPAGATE THE PILOT MODELS

40 IF(,NOT, LX(23)) GO TO 50
---------- AILERON PILOT MODEL

[FPACI)HIFPA(L) SIFPA(2)
I6 + IFPA(L)
IX = IH + IFPACL) + 1
Iy = IX + IFPALL)
CALL FROPAG(FTTC(IFPA(I) )y IFPA(L)sFTT(IB) » LyFTT(IH) o 1hFTT{IX=1)y
. FTITCIX) oUXCSA) sFTTEIV) SFTT(INK(3)))

------ ADD A/C TRIM TO COMP. OUTFUT
DAP = FTT(IY)SUS(56) + US(114ND)

—
x
" " n

30 IF(.NOT, LX(26)) GO TO &0

---------- ELEVATOR FILOT MODEL

IFPE{3I+IFPE(1)RIFFE(2)
16 + IFPEC(D)
= IH + IFFE(L) ¢+ 1
1Y = IX + IFPE(D)
CALL FROPAG(FTT(IFPE(3) ) IFPE(L) sFTTCI6) s 1sFTT{IH) »1oFTT{IX-1)s
) FITCIX) sUXCS7)oFTT(IV) 9FTTCINKC3)))
------ ADD A/C TRIM TO COMP., OUTPUT

DEP = FTTLIV)RBUS(S7) + USC124NZ)

o

16
IH
I

40 IF(.NOT. LX(27)} 60 TO 70

---------- RUBDER PILOT MODEL

I6 = IFPR(IIFIFPR(1IXIFPR(2)
IH = I6 + IFPR(L)
IX = IH + IFFR(D) + 1
It = IX + IFPE(1}
CALL PROPAG(FTT(IFPR(Z))oIFPR{1)$FTT(IB) o 1oFTTL{IR} o 1sFTT(IX=1)>
' FTTCIX)»UXCD8) sFTTCIV) hFTTCINKC3) ))

------ #DD A/C TRIN TO COMF. OUTPUT

DRF = FTT{IY)SUS(58) + US(13#NZ)

76 IF{,NOT, LX(28)) GO TO 80

---------- THRUST PILOT MODEL

= [FPT(3)HIFPTLLIRIFPT(2)
Ik = I6 + IFPT(1)
IX = TH + TFPT(L) ¢+ 1
IY = IX + IFFT(1)
CALL PROPAG{FTT(IFPT(3))sIFFT{1)yFTT(IG) v1oFTT(IHI»1sFTT(IX~1)»
' FTTCIX) sUXES9 o FTTCIY) 9 FTTOINK(D) ))

------ ADD A/C TRIN TO COMP. OUTPUT 123

THRF = FITCIY)BUS(SY) + USC144NZ)



80 CONTINUE
RETURN
ENTRY FTTCIN

---------- READ COMFENSATOR MATRICES

Y C3 ™

READ(1,101) IFC(1)9IGCCQ)

FORMAT(1413)

IFCe2) = IFC(L)

I6C(1) = IFC(L)

IFCEY) =

IGC(3) = 1 + IFC(1)RIFC(2)

IHC(1: = 4

IRC{(2} = TFCLD)

IHC{(3} = I16C(3) +IGC(1)XIGC(2)

IJC(L) = 4

LJC(2) = IGCE2)

1JC(3) = 1HC(3) + IHC(1)¥IHC(2)

NA = IFC{D)

NZ = IGC(2)

CALL READMACFTTsNAsNAsNAy TRUE.,'(3D20,13) ')

CALL READMACFTT(IGC(3))sNArNAsIGC(2)s FALSE.,' (3D20.13} ")
CALL READMACFTT(IHC(3))»454sNAy TRUE.» " (3020,13)  7)
CALL READMACFTT(IJC(3))»494516C(2)s TRUE.»'(3D20,13) )

10

—
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WRITE(3,103)

103 FORMAT(/9 " —-—- FTTC COMPENSATOR MODEL')
CALL WRITMACFTTNAsNASNAY 'FC )
CALL WRITMACFTT{IGC(3)) HAsNAIIGC(2)5’6C )
CALL WRITMACFTT(IHC(3})»4s4sNA»'HC *)
CALL WRITMACFTT(IJE(3))s4r4I6CC2)s°JC )

£

WRITE(3,8900) (LX(2441)r1=1+4)

8900 FORMAT(/y’ PILOT MODELS ARE ACTIVE FOR THE FOLLOWING CONTROLS-'1/y
JXe'DAF - “sLLs/9SXe'DEP oL1y/sSXs'DRP alla/y
s THRE - “oL1)

15T = LJCADHIJC(IRIICCINIFC(L)+4

IF(,NOT, LX(25)) 50 TO 90
WRITE{(3,9010)
7010 FORMAT!/»’ ---- AILERON CONTROL FILOT MODEL NATRICES®)

READ(1,101} IFPACL)

NA = TFFACL)

IFFAC(Z) = NA

IFPA(3) = IS8T

CALL READMA(FTT(IST)sNAsNAINAY TRUE.» " (3D20.13) i

CALL WRITMACFTT(IST) sNAsNAINAY'FPA )

NI = NAKNA

CALL READMACFTT(ISTENZ)sNArNA»1y FALSE.» ' (3D20.13) )

CALL WRITHACFTTCISTHNZ) yNAsHAsLs‘GPA ')

CALL READMA{(FTT(ISTHN2+NA)11s1sNAy JTRUE.s " (3D26:13) ')

CALL WRITMA(FTT{ISTEN2ENAJ 1r1oNAY 'HFA )

CALL READMA(FTT(ISTIN2+28NA)+1+151s,TRUE,»'(3D20.13) ")
124 CALL WRITMACFTTCISTHN212ENA) s15101y'JPA °)
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20

§620

100

9030

110

7040

120

IST = ISTHN213ENAL2

IF(NOT. LX{24)) GO TO 100
WRITE{3,9020)
FORMAT(/s’ ---- ELEVATOR CONTROL FILOT MODEL MATRICES')

READ(1,1017 NA

IFPE(1} = NA

IFPE(2) = NA

IFPE{3) = IST

CALL READMA(FTT(IST) sNAsNAsNAy JTRUE.»' (3D20.13) ')
CALL WRITMA(FTT(IST)sNAsNAsNA+'FPE ')

N2 = NAXNA

CALL READMACFTT(ISTN2)NAsNA21s FALSE,» (3D20.13) )
CALL WRITMACFTT(ISTNZ) »NAsNAs1y'GPE *)

CALL READMA(FTT(ISTHN2iNA)s1s1sNAs JTRUE.» ' (3D20.13) )
CALL WRITMA(FTT(ISTEN2tNA)s1s1sNAs 'HPE ')

CALL READMA(FTT(ISTEN2+NAX2)s1s1v1s TRUE.» " (3D20.13) )
CALL WRITHA(FTTCISTHN2128NA) 2151910 'JPE )

IS8T = IST +N2+3XNA#2

IF{.NOT, LX(27}) 60 TO 110

WRITE{399030)

FORMAT(/+’ ---- RUDDER CONTROL PILOT MODEL MATRICES")
READ(1y101) NA

IFFR{1) = NA

IFFR(2) = NA

IFFR¢3) = IST

CALL READMA(FTTCIST) sNAsNAsNAs JTRUE,» " (3D20.13) )
CALL WRITMACFTTCIST)sNAsNAsNAs'FPR ’)

N2 = NAXNA

CALL READMA(FTT(ISTHN2) sNAINA»1s FALSE,y’(3D20,13) ')
CALL WRITHACFTTC(ISTHNZ) sNAsNAs1y'GPR *)

CALL READMACFTT(ISTIN24NA)s121sMAs TRUE.» (3D20.13) )
CALL WRITMACFTTCISTEN2#NA)s1r1sNAs"HPR *)

CALL READMACFTT(ISTHN2+28NA)»1+1s15,TRUE. ' (3D20,13) 7}
CALL WRITMACFTTCISTHN228NA)1191910°JPR )

IST = IST + N2+3aNA42

IF{GNOT. LX(28)) 60 TO 120

WRITE{319040)

FORMAT(/»’ ---- THRUST CONTROL PILOT MODEL MATRICES')
READ{1,101) NA

IFFT{1) = NA

IFPT(2) = NA

IFFT(3) = IST

CALL READMA(FTT(IST)sNAsNAsNAs TRUE.,’(3D20.13) )
CALL WRITMACFTT(IST)sNAsNAsNAs'FPT ’)

N2 = NAINA

CALL READMA(FTT(ISTHN2)sNA'NAs1y.FALSE.y’(3D20.13) )
CALL WRITMACFTT(ISTN2)sNAsNAs1,’'GPT *)

CALL READMA(FTTCISTHN2iNA)»1»1sNAs JTRUE.»*(3D20.13) )
CALL WRITMA(FTT{ISTHN2tNA)s1o1sNRs "HFT *)

CALL READMA(FTT(ISTHN2+2dNA)s1)151s TRUE.y (3D20.13) )
CALL WRITMACFTT(ISTIN242¥NA)sirlsels’JPT )

IS8T = ISTENZ+NAR3+2

125
CONTINUE



INK(3) = IST
- FTIC INPUT PARAMETERS

READ(19101) NSAHMPZsNSAMPP
WRITE(3s108; NSAMPZsNGAMPP
108 FORMAT(/y ' ---- SAMPLING NULTIFLES OF INTEGRATION TIME FOR THE's/
v COMPENSATOR AND PILOT »10X»2I5)
WRITE{3+109)
107 FORMAT(/s’ ---- AIRCRAFT TRIM VALUES')
CALL READMA{US(11)s1»1,NZt4s,TRUE.»"(3E10.3) ')
CALL WRITMA(US{111s1s1sNZs YTRN')
CALL WRITHACUS(114NZ)s1+1+4, "UTRH')

WRITE(3,107)

107 FORMAT(/s " ---- SENSOR NOISE STANDARD DEVIATIONS')
CALL READMA(US(26)9151sNZy TRUE.» " (3E10.3) g
CALL WRITMA(US(Z8)»151:NZs'R2 °)

READ{1,101) NTRAJP
WRITE(3,106)
106 FORMAT(/s" =--- TRAJECTORY FARAMETERS)
CALL READMA{US{41)s1s1sNTRAJPs.TRUE.s'(5E10.3) "}
CALL WRITMACUS(41)r121sNTRAJPY'TRAJ')

WRITE(3+105)

105 FORMAT(/y’ ---- CONTROL UNIT CONVERSIONS (COMF. TO SIKII))
CALL READMA(US(56is1s1s4s TRUE.s'(5E10.3) ‘)
CALL WRITMA(US{56}+1v1+4> "UNIT")

C
£ - INITIALIZE FOR SENSOR NOISE
N =
ST = GRAND(N:
C
RETURN
ENR
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SUBROUTINE SENSOR(Z»ZTRIMsZC,ECIRZINZ)

INFLICIT DOUBLE PRECISION (A-Hy0-2)

DIMENSION Z{(1i,2TRIN(1)sZC{1)+EC{1),RZ(1)

COMMON /DRVOUT/ F(13)yDF(13;

COMMON /SINOUT/ AMCHsOBARyGHAsDEL 1UBsVByWByVEAS sVCAS
COMMON /SIMACC/ AX»AYrAZyANXsANY9ANZ1AN

(1) = UX(10+1)

ITRINCI) = USC1041)
(D = Ux(2atD)
EC(D) = UX(404I)
RZ(1) = US(25+1)

---------- OBTAIN SPECIFIC MEASUREMENTS HERE FROM SIMULATION
OUTPUTS
---------- START SPECIFIC ZAFD CODE HERE (SEE FTTC RFT SEC 5)----
UNITS-- FT/SEC ANI* .01 RAD» RAD/SECy ETC., FOR
THE LINEAR ZAFD MODEL

Z{1) -- VERT. ACC.

1{2) -- ANGLE OF ATTACK
1(3; -- PITCH RATE

Z{4) -- FITCH ANGLE
Z(5) -- MaCH

--------- FORM SENSOR MEASUREMENTS IN SIMII UNITS

Z{1j = ANZ + COSCF{81)3CO5(F(10))
U2) = Flé)
1(3) = F(3)
2(4) = F(8)
2(3) = AMCH
---------- FORM ERROR SIGNAL IN COMPENSATOR UNITS

= (Z(1)  -ITRINM(1) - ZC(1))%32.174
EC(2) = (Z(2) -ZTRIM(2) - ZC(2))%100,

= (2(3)  -ZTRIMC3) - ZC(3))¥100,

------ TURN GAMMAC INTO THETAC

= (2(4)  -ZTRIM(4) - (IC{4)+1C(2)))%100.
EC(3) = (Z(5) -ITRIM(S) - ZC(5))%1000.
---------- END SFECIFIC ZAPO CODE HERE —---

---------- ADD MEASUREMENT NOISE { WUST HAVE COMPENSATOR UNITS!)
DG 10 I=1,NZ
ST = GRAND(N)
---------- TENP MOD TO SEE NOISE IN UX(461)-UX{(83)
(I = 2(1) + STARZ(T)
RETURN
END
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C -
SUBROUTINE TRAJGN(TRAJV,ZC)
IMPLICIT DOUBLE PRECISION (A-Hy0-Z)
DIMENSION TRAJV(1)»ZC(1)

C
C TRAJGN GENERATES THE TRAJECTORY COMMANDS AND STORES THE
” COMMANDED OUTPUTS IN ZC
t
COMMON /DRVOUT/ F{13)»DF(13)
COMMON /SETICS/ FI(13)
C
c - THE FOLLOWING CODE WUST BE MODIFIED FOR DIFFERENT
C CLAGSES OF MANEUVERS
L
t - START SPECIFIC Z0OM AND PUSH OVER CODE
C {(SEE FTTC FINAL REFORT SECTION 5.1)
C
L THO CONSTANTS AND THE DESIRED BIAS VALUES ARE THE
€ 7 TRAJECTORY VALUES
C TRAJV(L) = AZO
C (2) = ALPHAD
£ (3) = 00
C (4) = GANMAD
L 9) = N0
c (6) = TFINAL
L {7} = BARO/CEX2
€
IC(1) = TRAJV(L)
Z0(2) = DALPHAXF (1)/TRAJV(S) $TRAJV(Z)
ZC(3) = TRAJV(D)
ZC{4) = -GANAICKF{1)/TRAJHG) + TRAN{A) + GAMAIC
IC(5) = DSQRT{TRAJV(ZIRIC{4)x82 + TRAN(S)IXX2)
RETURN
C
t = D0 TRAJECTORY PARAMETER SETUF
C
ENTRY TRAJST
GAMAIC = FI(B)-FI{4)
DALFHA = TRAJV(Z} - Fl{s:
c
A STOF ZAPO SPECIFIC CODE
L
RETURN
END
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