
, 

, 

i 

NASA Contractor Report 170395 

NASA-CR-170395 
19830010473 

Flight Test Trajectory 
Control Analysis 

Robert Walker and Naren Gupta 

Contract NAS4-2906 
February 1983 

NI\S/\ 
National Aeronautics and 
Space Administration 

11\\111\1 \1\\ IIII \\11\ 11\\1 \1111 1\\1\ 1\11 lUI 
NF02579 

I 

).ANGLEY RESEARCH .:l:.NTER 
LlBr~ARY, NASA 

Hb!'.:?TQN, YlRGltlL~ 



 

 

 

 

 

 

 

All Blank Pages in this Document  

are Intentionally Left Blank 



.... .01' 

_ ... :::, 
..... --...j m 
1.0 :,. t;)J 

:1-·' .. "~ 
... + (J1 

NASA Contractor Report 170395 

J) ...... 
:::c 
C") 
:;0 
1> 
~' 

! 

::;0 
", 
-{) 
1'':) .. _, 
,-t 

National Aeronautics and 
Space Administration 
Ames Research Center 
Dryden Flight Research Facility 
Edwards, California 93523 

, .• or .,,,: 

.)ctory 





FOREWORD 

The report discusses the development of a systematic 

methodology to aid pilots in accurately following aircraft 

flight test trajectories. Modern control methods are used tn 

compute time histories for displays which both reduce pilot 

workload and make test trajectories consistently accurate. 

The work has been performed under NASA Contract NAS4-2906. 

Technical discussion and direction of NASA technical monitor 

Mr. E. L. Duke are gratefully acknowledged. 
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SECTION 1 

INTRODUCTION 

It is often necessary to follow desired time histories of 

several variables during an aircraft flight test. The pilots 

often find it difficult to follow such trajectories accurately, 

leading to increased test time and pilot workload. This report 

shows that modern control techniques can be applied to signifi

cantly improve the accuracy with which complex trajectories can 

be flown. In addition, the pilot inputs are concentrated below 

2 rad s-1 reducing pilot workload and fatigue. 

The study involves computing three display variables on 

which pilot pitch, roll and throttle commands can be based. The 

pilot perceives a three axis uncoupled control problem because 

all couplings are handled by the flight trajectory controller. 

The emphasis has been placed on the development of the 

techniques. An F-15 nonlinear simulation has been used for 

demonstration. The techniques are general and should be appli

cable to various combinations of trajectories, aircraft and 

displays. 

1.1 SUMMARY OF APPROACH 

The principal steps for systematic development of flight 

tra,jC'ctory controllers are 

1. Development of the flight test plan, 

2. Control design model specification, 

3. Controller design, and 

1. Control]t~r validation by analytical simulation 
and pi]ot-in-the-Ioop-simulation. 



The flight test plan prescribes the aircraft with all subsystems 

configured for the given test, the trajectory or classes of tra

jectories to be flown, and the pilot's tasks during the specified 

trajectory maneuvers. Figure 1-1 depicts the design procedure 

after the flight maneuver and system models have been specified. 

1.2 RESULTS 

The major result from this study is a set of tools suitable 

for developing flight test trajectory controllers. Attention has 

been given to keep the techniques as general as possible. The 

techniques should have a general application to a wide class of 

problems where quantities displayed to a pilot should be appro

priately computed to improve pilot effectiveness and to reduce 

workload and fatigue. 

The development of the control laws is straightforward 

using an advanced control design program once the model and the 

performance index have been specified. Thus, major part of the 

attention must be given to these two tasks. Special linearization 

tools were developed for the F-15 simulation to develop a suitable 

model for control. Integration of pilot model is a difficult task 

because the pilot model itself depends upon the trajectory con

troller. This was achieved by prespecifying a suitable represen

tation for the aircraft and controller dynamics and basing a 

pilot model on this dynamics. It is necessary to roll-off the 

control law at high frequenc~ and frequency shaping methods are 

essential to achieve necessary gain margin at high frequency. 

Pilot-in-the-Ioop and flight test validation of controllers 

are needed. It may be desirable to integrate pilot inputs with 

autopilots to achieve even better overall performance. 

1.3 REPORT ORGANIZATION 

This report is organized as follows: Sections 2 through 4 

describe systematic methods for designing flight test trajectory 
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FLIGHT TEST LINEAR SYSTEM MODEL 

TRAJECTORY MODEL (AIRCRAFT, SE',SOR, 
PILOT ETC. ) 

, Ilf 

r S[',SOR SYSTEM: INTEGRATE AND SIMPLIFY --- -
I, 

. 
MULTIVARIABLE CONTROL -DESIGN ALGORITHM -

,~ 

ARE ALL VARIABLES NEeDED 
FOR CmJTROL ~1EASURED? 

'W ~~O 
YES 

ESTIMATE U~MEASURED 
VARIABLES OR ELIMI~ATE -

THEM FROM CONTROL -
COMPUTATION 

,~ 'If 

SIMPLIFY CONTROLLER, ~ 

IF POSSIBLE -I, 
EVALUATE C~ COMPLETE 

S I ~1ULAT ION , 
SATISFACTORY? r~o 

f YES 

FINAL DESIGN 

Fjgure 1-1 Flight Test Trajectory Control Design Procedure 
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controllers, illustrated on the F-15 aircraft. Section 2 cate

gorizes how the equations are developed for different types of 

maneuvers. Section 3 develops linear models for each major 

subsystem, and Section 4 describes the control design methods. 

Section 5 describes the control law synthesis for the zoom 

and pushover maneuver, and linear and nonlinear evaluation of 

the control law. Section 6 documents this control algorithm for 

use in a batch simulation, manned simulator or flight test. 

General conclusions are given in Section 7. 
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SECTION 2 

TRAJECTORIES FOR FLIGHT TEST MANEUVERS 

A large class of trajectories can benefit from flight test 

trajectory controller design. The model for the control law 

and the development of the control law will depend strongly on 

the particular trajectory to be flown. 

Aircraft flight test trajectories could be based on inertial 

reference (e.g., level-turn or 3-D guidance) or reference with 

respect to another vehicle or vehicles (e.g. in air-to-air combat). 

To place the flight test trajectory control design problem in 

a proper framework, both of these cases will be discussed. 

2.1 SINGLE VEHICLE FLIGHT TEST TRAJECTORY 

We divide single vehicle flight paths into those which 

require continuous control along the trajectory and those that 

specify a final flight condition. In either case the flight 

test trajectory could be specified in terms of one of the 

following: 

1. constrai nts on posit ion components, 

2. constraints on velocity components and altitude, 

3. constraints on combinations of load, speed and 
altitude. 

Combinations of these constraints could also be considered. 

Constraints on Position Components 

Examples of trajectories which involve position constraints 

along the flight path are 

5 



1. 4-D guidance (x(t), y(t), h(t) are given functions of 
of time). 

2. 3-D guidance (x, y, h are related to each other, 
e.g., fly along a hypothetical wire in space). 
Examples of 3-D guidance are approach to landing, 
terminal area flight paths and threat evasion for 
reconnaissance aircraft and bombers. This also 
includes straight and level flight and flights 
along predetermined paths. 

Examples of trajectories which specify position constraints at 

final trajectory point are: 

1. 4-D specification (arrive at a certain point, at a 
certain time, e.g., touchdown on the runway at a 
specified point). 

2. 3-D specification (fly-to-VOR, terrain following). 

Note that each of these trajectories requires position measurement. 

The 4-D guidance trajectory indirectly specifies velocity and 

acceleration components. Thus specification of position compon

ents is the most comprehensive constraint on the trajectory. 

Such a rigid constraint may be unnecessary for most test maneuvers. 

Constraints on Velocity Components and Altitude 

While the horizontal position components do not, in general, 

affect aerodynamic variables, the altitude determines density 

and by itself affects dynamic pressure. Thus it must always be 

considered as a possible variable to be constrained. In fact, 

the altitude and dynamic pressure are so important that a 

majority of flight test trajectories will define the altitude 

profile (this includes maintaining constant altitude). 

Examples of this class of trajectories are: 

1. u(t), vet), wet) and h(t) [in other words, Mach 
number, dynamic pressure, aCt) and Set). set) may 
be zero. 

2. Mach number, angle-of-attack and dynamic pressure 
(as in shuttle tile tests). 

Various other combinations of velocity components and altitudes 

could also be specified. 

6 



Mach number, angle-of-attack and altitude constraints could 

also be desired at one point on the trajectory. Zoom and pushover 

is a trajectory where angle-of-attack, Mach number and altitude 

are 5pecified at one point on the trajectory. Note that since 

sideslip angle is assumed zero, zoom and pushover requires a 

certain set of u, v and w at a certain altitude. 

Constraints on Combinations of Load, Speed and Altitude 

The trajectory specifications could involve components of 

loads along the three axes, velocity components and altitude. 

The typical load specification will consist of desired vertical 

acceleration. The desired value of the lateral acceleration 

is usually zero. The total speed is specified in lieu of the 

fore-and-aft acceleration. 

Many combinations of load, speed and altitude specifications 

are possible. Some examples are as follows: 

1. A constant load, constant Mach number level turn, 

2. A constant Mach number, constant altitude spiral turn. 

2.2 MULTIPLE VEHICLE FLIGHT TEST TRAJECTORIES 

Often the desired flight trajectory for an aircraft depends 

upon the position and flight test trajectory of other vehicles. 

Typical examples are collision avoidance or air combat with air

to-air missiles. The specification is typically based on the 

position of a target aircraft with respect to the aircraft whose 

trajectory is being controlled. 

7 





SECTION 3 

SYSTEM MODEL FOR TRAJECTORY CONTROLLER DESIGN 

The overall system model for the flight test trajectory 

control analysis has the following components: 

1. aerodynamics and kinematics, 

2. hydro-mechanical control system (MCS) and command 
augmentation system (CAS) including actuator models, 

3. engines, 

4. sensors, and 

5. piJot. 

The flowchart of the complete model is shown in Figure 1. 

-
~ - AERODYr~AM I CS II l-J " 

.. 
M:::S 

& -- K I '.::MAT I CS 

CAS ~-

U 
.. 

-
~ - THRl..'SI MODEL n .. 

Sn~SORS 

PILOT DOWNL I 

FL I Gi-1T TEST 
DISPL.AY - TR~,J E='TORY 

UPLINK CONTROLLER 

Figure 3-1 Schematic of System Model for Flight Test 
Trajectory Control Analysis 

9 



3.1 AERODYNAMICS AND KINEMATICS 

The structure of mathematical equations governing the motion 

of a rigid aircraft may be derived from kinematics. Aerodynamics 

will be linearized, as necessary. A different approach must be 

used to smooth out any discontinuities in slope. 

Consider an aircraft state vector 

x 

v 
x = with (3.1) . 

<l> 

8 

x = v = <l> = and 

8 = (3.2) 

The equations of motion can be written as 

(3.3) 

A detailed nonlinear aerodynamic model of the F-15 from 

the NASA Dryden Flight Research Center Simulation SIMII was 

linearized by 

10 

a) trimming the aircraft at the desired flight 
condition, 

b) perturbing the six aerodynamic force and moment 
equations with respect to all dynamic variables of 
interest, and 

c) projecting these stability derivatives onto both 
body and stability axes (see Tables 5-1 and 5-2 in 
Subsection 5.2). 



3.1.1 Longitudinal Aerodynamic Model 

The simplified linear longitudinal equations developed 

further jn Section 5.2 for the zoom and pushover maneuver are: 

where 

. 
6V = - g(To)sin a. W 0 

. 
88 = q 

oh + V (08 - 00.) , o 

oV - speed 

00. - angle-of-attack 

0SB - stabilator deflection 

oT/m - thrust acceleration 

q - pitch rate 

oR - pitch attitude 

oh - altitude 

are perturbation states about the trimmed condition in stability 

axes. 

3.1.2 Coupled Lateral/Longitudinal Equations 

For high bank level turns trimmed at a constant turn rate, 

\j!o' 

Po = - Wo sin 8 
0 

. 
qo \jio cos e sin CPo 0 
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. 
ro = 1/1

0 
COS 8

0 cos ¢o . 

The coupled linear equations in body axes are 
-------

. y v -U Wo g cosSocoscj>o 0 0 0 v 0 

· or N N Np+pzqo 0 0 PzPo 0 v r 
· OP L L +r q Lp 0 0 rxpo 0 v r x 
· ocj> = 0 0 1 0 0 poSosincj>o 0 

· ow -p 0 0 -gcosS sincj> Z Vo 0 
0 o 0 w 

· oq Mv qyPo qyro 0 M M 0 w q 
· 08 0 -sincj> 0 -(r coscj> +q sincj> ) 0 coscj> 0 

0 000 0 0 

oh sincj>o 0 0 wocosS sincj> -coscj> cosS () Uo o 0 o 0 

where rx = (Iy-I z ) /Ix qy = (Iz-Ix)/I y Pz = (Ix-Iy)/I z · , , 

3.2 MCS AND CAS MODELS 

The mechanical control system (MCS) and control augmentation 

system (CAS) use pilot commands and instrumentation system measure

ments as inputs. The outputs of this system are the aerodynamic 

control surface deflections and the thrust command. 

Only those dynamics in the pilot's range of attention and 

response need to be modeled (.1 to 20 radians per second). 

Symmetric simple nonlinearities such as position and rate limits 

have no memory and should be avoided in trajectory controllers. 

An overview schematic of the longitudinal MCS/CAS system 

is given in Figure 3-2. The mach servo loop is fixed at a con

stant gain obtained from SIMII at the trimmed condition. Des

cribing function analysis indicated that the nonlinear control 

elements could be realized at the zoom and pushover trimmed 

condition as shown in Figure 3-3 (see Section 5.2 for the linear 

equations). 
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Figure 3-3 F-15 MCS/CAS Longitudinal Linear Model (Roll, Pitch, Yaw CAS on) 



3.3 ENGINE MODEL 

Simple as well as highly sophisticated models have been 

deve10ped for engines such as F100-PW-100. A simple first-order 

lag model should suffice for the purpose of the study. The engine 

thrust T is related to the commanded engine thrust TC as 

T = (3.4) 

where T is the time constant in the first-order lag model. 

3.4 SE~SOR MODEL 

Typical instruments on board a test aircraft include a three

axis accelerometer, a three-axis rate gyro, angle gyros, angle-of

attack and sideslip angle vanes, altitude, rate-of-climb and total 

speed. 

We could use a model with first-order lag and random noise. 

Thus, the measured quantity Ym will be related to the true y 

as follows 

~v '. m = Y - Y + n om (3.5) 

where T is the time constant and n is the random noise. All 

sensors give samp1ed measurements (with an assumed rate of 10 Hz). 

3.5 PILOT TASK DEFINITION 

The trajectory models described in the previous section 

specify a portion of the controller task; however, since the 

pi10t is actually part of the overall controller his precise 

ro1e, the variables that are displayed to him, and the controls 

he uses to zero the display must be considered. Alternative 

roles for the pilot in the overall controller include: 1) using 

the pilot only in the loop, nulling the displays driven by the 

15 



trajectory controller, 2) giving the pilot vernier controls to 

refine the performance of the autopilot, or 3) flying the 

maneuver automatically after the pilot has achieved the appro

priate inital conditions. 

The first role is desirable since the pilot's isolation of 

faults and corrective action is much more reliable than that of 

the autopilot. Only this first role, with the pilot fully in 

the feedback control loop will be used in this study. 

Besides the pilot role, the control design must also address 

which error signals should be displayed and which controls are 

most effective for a given trajectory. To simplify the pilot 

task the errors displayed should be dynamically decoupled with 

respect to the controls as much as possible, and also separated 

in frequency where possible. This enables the pilot to more 

easily coordinate and sequentially correct the trajectory errors. 

There are two other aspects of the pilot task that effect 

the controller design, the pilot's preference for the "plant 

controller" dynamics, which is the combined plant that he con

trols, and the pilot's preference for the speed of the closed

loop system; i.e., the speed at which he prefers to control. 

We want to optimize the pilot performance by giving him a system 

which he can best control. Since the pilot responds differently 

to different systems, iterative controller design could be used 

to converge on the combined pilot controller-plant model. 

For this study, a published model of the human operator controlling 

a l/s2 plant (1) will be used. Further research is currently being 

conducted, employing improved representations of pilot behavior 

using frequency shaping methods. Since the human operator adapts 

to the given system the l/s2 model will be a conservative des

cription of the pilot's actual performance in flight tests. 

16 



Pilot Model 

A pilot model presented in previous studies has been 

pes) = (3.6) 

where PEQ (s) is t he human equal i zat ion network, T N is a 

neurological motor delay, and 1 an observation delay. Figure 3-4 

shows what has been called the control theoretic model of optimal 

human behavior. 

Pilot Modeling Difficulties 

The above control theoretic model requires the propagation 

of delay-differential equations which introduce considerable 

complication. 

Between the two delays and the control and filter weights 

in the optimal regulator and estimator, there is considerable 

flexibility in this model to fit empirical data. If the system 

is driven with sinusoidal inputs then the assumption that the 

human can perfectly compensate for a delay will be self-fulfilling 

as the human operator settles into a steady-state after observing 

several cycles. Time domain approaches which include random 

inputs with a band of frequency content would be more desirable 

and should indicate a much lower gain at high frequencies, rather 

than primarily the large phase lag. Finally, the model is valid 

for a particular plant, in our case 1/s2, when the dynamics are 

aetually higher order and not a pure integrator in the mid-fre

quency range where the pilot responds well. 

The significant aspect of the human pilot, however, is his 

ability to identify and ad~pt to the plant dynamics, therefore 

our assumption of a 1/s2 plant is a conservative one for the 

()verall trajectory controller and pilot system. Thus, the given 

1/s2 model will suit our purpose in developing trajectory con

troller design techlliques. The frequency response shown in Ref. 

[1] is gh"en in Figure 3-5. 
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Tbe pilot 1 imi t at ion parameters are gi ven in the fo llowi ng 

tau]e: 

tlotor Delay 

Observation Delay 

The pilot transfer function is 

pes) = 
PEQ(s) (9.52 - s) 

(s + 10)(s + 9.52) 

TN I 100 msec 

T I 210 msec 

(3.7) 

A reasonable linear approximation to the above frequency response 

is 

pes) = 
-56.1 (s + .6)(s + 4.75)(s - 9.52) 
(s + 8)(s + 10)(s + 14)(s + 9.52) 

(3.8) 

A state-space realization of this transfer function (using an 

observability form) is 

pes) = H [s1 - F ]-1 G with 
p p p 

(3.9) 

H = [ -56.1 0 0 0] 
P 

-10. -356.98 0 0 1 

0 0 1 0 .1 
Fp = 

0 0 0 1 -2.1170 

0 -1066.7 321.53 31. 524 37.646 
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3.6 SUMMARY 

A state space linear perturbation mode 1 for the overall 

sy~tem shown in Figure 3-1 appears as 

(3.10) 

xL FL F LA 0 0 0 0 xL 0 0 

~A 0 FA FAM FAE 0 0 x A 0 r A 

:;~C 0 0 FMC 0 FMP 
FMS x MC 0 0 

= + 0 

[:~:r 
0 x

E 
0 0 0 F FEP PES xE E 

0 

Gp rp x 0 0 0 0 Fp 0 xp 
cP 
X 0 0 0 0 0 F x 0 r 

s s s s 

~here the states, controls, and noise inputs are: 

20 

XL = location coordinates (x, y, z) 

x A - aerodynamic/kinem~tic states 

XMC = MCS/CAS states 

XE = engine states 

x = pilot states p 

x = sensor states, s 

e = vertical display error 
DV 

eD = horizontal display error 
H 

eD = ~rach display error 
M 

w = gust inputs 

n = sensor noise s 

np = pilot motor noise 

r::l 



SECTION 4 

CONTROL DESIGN PROCEDURE 

The overall control-design procedure consists of three major 

steps: 

1. Model reduction: Development of control-design 
models from detailed models of the previous section. 

2. Control design: Design of a controller/filter or 
output-feedback logic to specify the control 
structure. 

3. Controller simplification: Reduction of the con
troller obtained in the previous step to simplify 
implementation and for more robustness. 

The steps in the overall procedure must be carefully inte

grated to support assumptions and approximations made in each 

of the steps. The development of specific design methodologies 

which support this integration is the basis of our control design 

methodology for flight test trajectory controllers. 

We discuss each of these steps in some detail. 

4.1 ~ODEL REDUCTION 

~odel reduction is required for robustness and to simplify 

control law computation and implementation. 

Criteria and computation procedures for model reduction 

are discussed in this section. The reduced model must contain 

essential elements of the dynamics such that the resulting 

control law meets the design requirements. Roles of poles, zeros 

and residues of transfer functions in closed-loop control design 

are discussed first followed by selection of specific criteria 

and numerical procedures. 21 



Poles, Zeros and Residues: In linear systems, the closed-loop 

behavior is dictated significantly by several transfer function 

properties. Three of the most significant are the poles, the 

zeros, and the residues. 

Consider a linear model with nx1 state vector x, qx1 control 

vector u, and px1 output vector y: 

x = Fx + Gu 

y = Hx + Du 

The transfer function between y and u is 

yes) = [H(SI-F)-lG + D] u(s) 

6 T(s) u(s) • 

(4.1) 

(4.2) 

(4.3) 

The roles of transfer function properties are best explained 

by considering a single-input single-output (SISO) system 

yes) = T(s) u(s) 

The characteristic values Ai' i = 1, 2, .•. , n of the 

T(s) denominator are the open loop system eigenvalues and 

indicate system stability properties. The transfer function 

may be written in terms of zeros 

residuE's r., i = 1, 2, .•• , n 
1 

T( s) = 
K ( s - z 1 ) ( s -z 2 ) 

n 

=L 
i=l 

22 

R. 
1 

s-:\ . 
1 

z., i = 1, 
1 

as follows: 

2, ... , n 

Zeros Representation 

Residue Representation 

or 

(4.4) 

(4.5) 

(4.6) 



Consider now a feedback matrix C(s) with gain a. The 

closed-1oop transfer function is 

= 
T(s) (4.7) 1 + aC(s) T(s) 

which may be written as 

T (s) c = 
K(S-Zl) '" (s-zm) 

(s-\1)(s-\2) .•• (s-\n) 

It is easy to see that for smaller a, 

(4.8) 

OA i 
= aC ( A .) r. ( 4 .9) az- 0 1 1 a-+ 

Thus r. dictates the behavior of the pole for small gain. 
1 

~ is large, the finite closed-loop poles are the zeros of 

When 

c(s) 

and T(s). 

To summarize, the residues of the transfer function describe 

the low-gain properties and the zeros the high-gain properties. 

Both zeros and residues are important in closed-loop control 

design. Therefore, an ideal reduced-order model should maintain 

the residues of the retained poles and zeros in the spectrum of 

interest. Unfortunately, both zeros and residues cannot be 

preserved Simultaneously. The attempt in reduced-order modeling 

methods is to maintain either poles or zeros or provide approxi

mations to both of them. 

Retention of Residues 

The procedure for retaining residues is implemented as 

f011ows. Let F, G, Hand D be in modal form and assume 

that the first n modes are retained. The state equations are 

then written as 

(4.10) 
u , 
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(4.11) 

Let the average frequency of the retained model be wa' The 

state x2 is approximated by 

(4.12) 

where Re(·) represents the real part of (.). Therefore, the 

reduced model is approximated by 

. 
xl = F11x 1 + Gu 

(4.13) 

If we are interested in matching the dc gain of the reduced model 

to that of the high-order model, wa may be set to zero. Note 

that only the real part of the term in Eq. 4.12 is retained 

because we want reduced-order models with real coefficients. 

Retention of Zeros 

Suppose we want to retain the first m zeros and n poles. 

Let be the average frequency. The transfer function of a 
Eq. 4.5 is simplified to 

(j ~ -z ) a M 
(4.14) 

The first term is approximated by a real gain. Each input-output 

transfer function is simplified as in Eq. 4.14. These simplified 

transfer functions are reconverted into a state-variable 

des c r i pt ion . 
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The computation time requirements to obtain reduced-order 

models which retain zeros are very high. Poles and residues 

of high-order models are determined much more easily than zeros. 

This model-reduction procedure, therefore, has been used rarely. 

Methods that maintain system transmission zeros have been des

cribed using zero directions [2]; however, a systematic design 

method employing MIMO zeros has not yet been developed. The 

transmission zeros are the frequencies at which there is no 

output to any combination of inputs. They are the eigenvalues 

of the generalized eigenvalue problem 

(4.15) 

Mode Detection Criteria 

If the model is to be reduced to n' states, the number 

of poles will drop to n'. Criteria have to be developed to 

determine the set of poles which may be dropped, along with the 

corresponding set of modes. These criteria must consider the 

for lowing: 

1. Any mode which is uncontrollable and undisturbable 
or unobservable can be dropped. Either of these 
conditions corresponds to a zero residue or a 
perfect pole-zero cancellation in all transfer 
functions. 

2. Controllable modes should not necessarily be dis
carded even if they are nondisturbable and add 
nothing to the cost functional, since they may be 
excited by the control actuators. 

3. Highly controllable modes in the bandwidth of 
interest should be retained even if they are not 
disturbable or observable. Similarly, highly 
observable modes should be retained for robustness 
reasons. 

4. Proper mode ordering based on cost analysis [3] 
should include the above factors in additioll to 
performance considerations. 
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It is clear that many simplifications of the model form 

are possible. In general, the analyst would start from the 

simplest model and carry the procedure through to evaluation. 

If the performance is unsatisfactory, a more detailed model 

should be considered. 

4.2 SELECTION OF CONTROL LAW AND STATE ESTIMATOR 

Multivariable linear-Quadratic-regulator (LQR) control 

theory is a powerful tool for the development of flight test 

trajectory controllers. If the measurements have unacceptable 

noise or if unmeasured states are needed for feedback, a state 

estimator may also be designed to supplement the regulator. 

4.2.1 Basic Linear Quadratic Regulator Approach 

The basic approach is described first. Extensions of the 

approach for the test trajectory control problem will then be 

covered. Consider a linear system model in which the states 

x and inputs u represent perturbation around nominal values 

Xo and U o 

x = Fx + Gu . (4.16) 

In this problem, u represents the variables to be displayed 

(nominally roll, pitch and Mach number errors) and x depends 

on the particular model dynamics selected (u, w, z, T and 
1 

hm for the simplest model). The control design problem selects 

u to drive the perturbation states x to zero. The LQR formu

lation optimizes a quadratic performance index of the form 

J = 
1 [T T T 
2 Jo (x Ax + u Bu) dt • (4.17) 

The control law is obtained by solving the Riccati equation 

S = 
26 



and 

u (t) = = C(t) x(t) . (4.18) 

To simplify implementation, a steady-state solution could be . 
used where the S is set to zero and a constant value of the 

gain matrix C(t) is computed. This constant control gain can 

be used throughout the maneuver. Note that since x and u 

are perturbation values, the steady state Xo and Uo must 

be subtracted from the measured quantities prior to computing 

the control input, and is added into the final control applied. 

Each maneuver is specified in terms of desired values of 

the 12 aircraft state variables or functions of these variables 

(the 12 variables are the three components each of position, 

velocity, Euler angles and angular rates.) The specification 

can be in one of the following forms for each state (or function 

of states): 

1. desired const ant value, 

2. desired const ant value for integral or derivative, 

3. desired time history, or 

4 . desired value at some point on the trajectory. 

4.2.2 Constant Values 

A desired constant value is equivalent to having trim vn]ues 

as discussed above. The steady-state states and controls neces

sary to achieve the desired outputs can be solved from the equation 

(4.19) 

If the system has open-loop zeros at the origin, this inverse 

does not exist, or in other words, there is no neighboring 

steady-state value. In this case integral error states can be 
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added to achieve the desired constant value. Constant integral 

as well as derivative states are discussed next. 

4.2.3 Constant Integral or Derivative Regulation 

Integral control: To account for errors in computation 

of trim conditions and other low-frequency modeling errors, it 

is necessary to place a penalty on the integrals of the error 

signals. For example, if a state z is being held at zo' we 

can define 

= (4.20) 

and place an additional penalty on ~ as follows: 

~T A ~ (4.21) 
~ 

Regulation of derivatives of states: To control derivatives 

of states, additional terms are added to the performance index. 

For example, to make Ex follow Eo' the following term is 

added to the integrand of J: 

(Ex - E )T A (Ex - E ) o eo' 
or 

(4.22) 

The control laws can be computed directly for the new performance 

index and will be of the form: 

u(t) = (4.23) 

(References [4] and [5] describe a new stable and reliable algo

rithm for solving the algebraic Riccati equation with cross

coupling between state and control cost.) 
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Integral control is valuable for zero steady-state errors 

although it can lead to a sluggish controller if the feedback 

consists primarily of the integral state, since it takes time 

for the error to build up. 

Derivative control on the other hand gives excellent response, 

and in fact, is called dynamics matching in the context of implicit 

model following. A typical trajectory where such a control law 

would be possible is the specification of loads, where linear 

combinations of the derivatives of rate equations are to be 

regulated about a constant value. 

4.2.4 Controlling the Time History of a State Variable 

The technique can be extended to make certain variables 

(say Tx) follow a time history T(t). The integrand of the 

performance index is extended as follows: 

T 
(Tx - T(t» At(Tx - T(t» • 

The control law now requires the solution of a differential 

equation backward in time. 

(4.24) 

The complete problem formulation as described in Ref. [6] is 

where 

given 

F( t ) , 

+ 

x = Fx + Gu , 

zo' HO' AO' 
G(t), to' and 

z(t) , 

t f • 

(4.25) 

(4.26) 

H(t) , A (t ) , B(t) , 
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x(t) is the state vector of a dynamic system. 

Het) x(t) is a vector output history. 

z(t) is a desired vector output history (prespecified). 

uCt) is a vector control input history. 

HOx(t O) and HfxCt f > are initial and final vector outputs. 

zo and zf are desired initial and final vector outputs. 

AO' Af , ACt), and BCt) are relative weiahting matrices 

to be specified by the control designer. 

The desirable solution for this "follower" problem is a backward 

sweep solution derived from the Euler-Lagrange equations, of 

the form 

A (t ) = (4.27) 

Differentiating (4.27) with respect to time and using the Euler 

Lagrange equations yields the backward sweep equations: 

SB = SBF + FTS S G-1GTS + HT AH 
B B B B 

SB (t f) 
T = HfAfHf , (4.28) 

(F T + HTAz - ~'B = GCB) AB , 

1BCtf) 
T = HfAfzf (4.29) 

where 

(4.30) 

Equation (4.28) is a Riccati equation for the symmetric matrix 

SB. It must be integrated backward from t = t f to t = to 

along with (4.29) for the vector AB . 

If CB(t). and B-1GTAB(t) are stored on the backward sweep, 

then x and \ can be integrated forward to determine u(t): 
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x Fx + Gu , (4.31) 

where 

u = uB - CBx (4.32) 

uB = B-1GTA 
B (4.33) 

Note that this set of equations involves linear feedback of the 

state vector x(t). Equation (4.32) is a feedback plus feed

forward from of solution. 

For linear time-invariant systems with which we have approxi

mated our system, the Riccati equation need not be integrated 

but rather a vector forcing function using model decomposition 

for the linear two point boundary value problem (TPBVP) (see [71 

for the distinct eigenvalue case and [8] for the general eigen

~tructure case). However, except for 4-D guidance, we do not 

need to control with a finite time formulation, but rather can 

employ steady-state control laws. This is equivalent to saying 

that z(t f ) persists as a constant value for a long period. 

This further simplification gives a constant gain solution 

for the control 

u = B-1GT A B-1GTS
B

x = u B - CBx and (4.34) B , 

SB(t) = SB = A X-I 
where [.~~.] (4.35) 

is an orthogonal basis for the stable eigenvalue of the Euler

Lagrange equations derived from the Hamiltonian. 

Three approaches to solving these equations without inte

grating AB(t) backward in time are: 

1. Take iB ~ 0 which implies that AB ~ - F~IHTAZ 
so that u = uB - CBx, can be computed from 

Z Rrd x. 
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2. 

3. 

Consider z( t) as a constant, so that 
u = Uo - cBex - x O) . 

Approximate z( t) as a function of the states 

a. A linearization of a nonlinear relationship 
between the states with integral error to 
correct the linearization. 

b. A random walk \yhich can be integrated forward 
in time with x. 

1. and 2. above are equivalent, both relying on the assumption 

that the rate of change of z(t) is much less than the slowest 
T eigenvalue of Fc = (F - GCB). This is a reasonable assumption 

for most trajectories, since commanded outputs are not rapidly 

changing and the controllable roots of 

with feedback. 

F c can be made faster 

To approximate z(t) as a function of the states, the first 

alternative is not particularily attractive since an accurate 

linearization may not exist and the integral error tends to slow 

down the response and may also constrain the trajectory unneces

sarily. The random walk is a much mor~ desirable way to generate 

a linear trajectory. The random walk also is affected by the 

rate of change of z(t) but not to the same extent as considering 

dz/dt = 0 or \B = O. The overall variance of the error in 

y m'_ly be comparab 1 e tot he ot her approaches, but the mode 1 ca n 

Ile "tu:-Jed" to gi\'e a smaller spectral density in the range of 

i !~t erest . 

Changing the direction of integration in Equation (4.29) 

gives 

" , = 
B 

(4.36) 

with an unknown initial condition. 

The appropriate initial condition \B(t O) appears as an 

impulsive input on the above equation. This is true at any 
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initial condition as well, hence we can merely append a white 

noise source to equation (4.36), an additive random walk term 

= with 

(4.37) 

= 

and Qn can be chosen to bracket the desired value for AB(t oo )· 

Since 

while Eq. (4.37) gives 

and Eq. (4.37) implies 

o = => (4.38) 

The RMS values from An give the interval about 

should bracket the theoretical steady-state value 

An(t x ) which 

f.B (too) with 

an acceptable level of confidence or integral error states can 

ue added for An. 

More simply, the concept of the costate, A
B

, can be 

dropped by using several appended random walk states driven by 

(Hx(t) - z(t». 

4.2.5 Controlling a Set of States at Some Point on the Trajectory 

There are several ways to solve this problem. One approach 

is to select a state time history which leads to the desired 
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trajel'tory point and then to derive a control law which follows 

the time histury. It is also possible to define the trajectory 

point as a function of several states and then to hold this 

desired state fixed while other states are varied. The particular 

selection will depend on the desirable nature of the intermediate 

t r:tjectory. 

A cc,mbination of the above controllers can be used, if 

!1t-'cessary. 

4.2.6 Extensions and Specializations 

Several extensions are proposed to improve the quality of 

the control laws. These extensions are designed to minimize 

the effects of modeling errors, lack of needed measurements and 

!1oise: 

34 

1. Estimator: If all states are not measured or if 
there is excessive random or quantization noise, 
v, a state estimator can be used. If y is a 
vector of measurements which is linear in the 
states, then 

y = Hx + v 

An estimate of the state can be obtained by 

x = Fx + Gu + K(y - Hx) , 

and K is obtained by solving a Riccati equation. 
(See the next section on controller simplification 
for a desirable algorithm in the case where some 
but not all of the measurements are noise free.) 

(4.39) 

(4.40) 

2. Frequency-shaped control law: As shown in Appendix 
A, the control weightings can be made functions of 
frequency. By making the control weighting matrix 
an increasing function of frequency and the state 
1'.e i ght i ng a decreas i ng funct ion of frequency, the 
control activity can be concentrated in the mid
frequency range. The display will then have a 
minimum of high-frequency components. This shaping 
will also reduce the effect of neglected states 
with high natural frequency [9]. 



4.3 CONTROLLER SIMPLIFICATIONS 

The controllers based on the LQR approach are simple and 

usually do not need to be simplified. LQG controllers involve 

a dynamic state estimator and are generally of the form 

x = F x + K c c c y 

= Cx + D Y c c 
(4.41) 

The controller, therefore, has the same form as the system itself, 

except that: (1) the roles of input and output are switched, (2) 

the controller state vector depends on the choise of frequency 

shaping, and (3) K and C are known exactly (unlike G and 

H in the design model). Controller simplification is, therefore, 

similar to model reduction (see Section 4.1). 

Noiseless Measurements and Reduced Order Compensators 

The combination of the regulator and estimator can be viewed 

as a compensator for the open lOop plant, where the compensator 

transfer functions are given by 

u(s) = 

u(s) = - C(sI - F + FC + KH)-l Kz(s) (4. 42) 

This transfer function can be written in modal form as a parallel 

bank of first and second order equations. 

If some of the measurements are free of white noise, a 

reducL'cl order compensator can be determined. Parti tioning the 

measurements 

zT = H sc that the white-noise-free ones are at 

z~ 1, the computed estimator gains are 

the bottom, 

K = [K1 : 01. 
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Tlwse gains result from the reduced order Ric('ati solution 

(4.43) 

which can be solved for directly with recent stable and reliable 

'llVflrjtl:ms [4,5]. 

The compensator feed-through term, D , c where 

u(s) = [-C(sl - F + GC + KH)-l K + Dc l Z(x) , (4.44) 

can be computed from z2 which has no error, by considering 

that 

~ 

x + v , and u = -C~ (4.45) 

The requested feedback gains are decomposed into 

C = 

with Cn that portion explained by the noise-free measurements 

z2 = H2 x. CD is the intersection of the row space of H2 with 

the row space of C. I f the intersection is zero there is no 

feed through, if the intersection is all of C then the dynamic 

compensation portion 

u(s) 

feedthrough 

c y 
is zero. 

is solved from the linear equations, 

3E 

The feed-forward portion, 

(4.46) 

(4.47) 
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All unobservable or uncontrollable modes of the controller 

should be dropped, since they have no effect on controller perfor

mance. In addition, poles with small residues can also be dropped. 

Note that the residues are physical matrices representing force 

or moment applied per unit error. 

Further selection of modes or states which should be retained 

in the low-order controller is a difficult problem. One approach 

is to drop one or two states at a time to determine the set of 

states which may be eliminated without loss of performance. To 

minimize computation time, a stepwise search procedure is needed. 

A modal cost function could be used in the search [10]. 
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SECTION 5 

ZOOM AND PUSHOVER ALGORITHM DEVELOPMENT 

This section describes the maneuver modeling, development 

of a reduced order linear design model, control design results, 

their evaluation on the full order linear evaluation model and 

demonstration in the nonlinear simulation. The next section 

documents how this flight test trajectory controller can be 

implemented for the zoom and pushover maneuver. 

5.1 TRAJECTORY MODELING 

The zoom and pushover trajectory has been designed to 

maximize the time at the target angle-of-attack, or alternatively 

maintain a constant vertical acceleration (with zero horizontal 

acceleration). 

A parabolic flight path with apex at Zo has the property 

that 

tan y = tan(e - n) = ~(z - zo)1/2 , (5.1) 

where y is the flight path angle and ~ is a constant of pro

portionality, which defines the size of the parabola. An approxi

mate model can be written as 

(8-n) « 90° . (5.2) 

In addition, the following conditions must hold 

~ = 0 . (5.3) 
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M and a are given at the apex. Our controller design will try 

to achieve the speed time history of a ballistic trajectory, such 

that the thrust nominally balances drag. With such a time history, 

the thrust would be automatically stabilized for the target angle

of-attack with desired Mach number and altitude at the apex of 

the parabola. Thus, the Mach number at any altitude is given by: 

(5.4) 

where c is the speed of sound which is assumed constant on the 

trajectory (a variable value can also be accommodated). The 

equation can be linearized as 

2(M - M)M = ~ (z - z ) 
o 0 2 0' 

(5.5) 
c 

or 

M - M = --g- (z - z ) • 
o M c 2 0 

o 

Note that the correct value of the speed will be reached at the 

apex because when z = zo ' M will be forced to Mo. 

~ is selected such that the lift defined by Mach number and 

angle-of-attack at the apex exactly balances gravity and the cen

trifugal force. A large value of ~ will be needed when the 

target angle-of-attack or Mach number is small and vice versa 

(because small lift will require a tighter curve). It can be 

shown that with vertical acceleration a z and speed V at apex, 

~ can be selected as: 

V2 ~2 
= g - a (5.6) 2 z 

since the radius of curvature at the apex is 2/~2. 
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Zoom and pushover is defined with a-a and M as func

tions of altitude and the bank angle held at zero. a-a and M 

time histories are two of several outputs of interest 

y = [az , a, q, y, M] , 

which can be generated from a linear model as. a function of time 

(see sect ion 3). 

Since the thrust is stabilized, the exact final altitude 

cannot be achieved in the presence of gusts, hence we program 

yc(t) and Mc(t) as functions of time rather than altitude. 

On a parabolic trajectory (z - zo)~ is linear in time. Since 

the trajectory command is open loop (due to the stabilized thrust 

constraint), the nonlinear relation between yet) and M(t) can 

be used as shown below. The commanded output is then 

yc(t) = a (t) = a = Pl z 0 c 
a (t) ac(az ,yc,M,qoo) c . c 
qc(t) 0 P3 

yc(t) - y./t f + y. 
1 1 Yit/P6 - y. 

1 

M (t) ~gR Mo ]112 (P7y~(t) + p2)1/2 c 
c 2o [Yc(t)]2 + 5 

The angle-of-attack is not arbitrary since it is determined by 

the commanded a z and y and the actual Mach and dynamic 
~c c 

pressure. The flight path angle is programmed from an initial 

value to zero at the apex. 

A summary of the zoom and pushover maneuver algorithm 

development is: 

1) Choose a, a desired apex angle-at-attack, and o 
zo' the desired apex altitude. 
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(2) Trim the aircraft at the apex altitude and angle 

of attack. 

(3) Find a final Mach number Mo (which must be slower 

than the trimmed value to be on a parabola at the 

apex). This value cannot be arbitrary since the 

lift and drag are also functions of velocity. The 

force balance equations are: 

= - L - T sin a + W , 

o = - n + T cos a 

We seek the apex velocity and thrust from 

+ cLPs 
V2 m sin 2 + R' + a. 

0 
0 

w 
= 

- cnPs T cos a. 
2 0 

o 

The acceleration V2 /R specifies the shape of the o 0 

parabola and hence the constants in yc(t) and 

Mc (t) • 

(4) Chose either the initial altitude or the time of 

flight (within an altitude range of approximately 

constant speed of sound, one specifies the other). 

(5) Find the initial flight path angle and Mach number 

for the desired initial altitude, zi' from 

Mi ~ [ :~ (zo - Zi) + M~l! , 
1. 

tan y. = ~(z - Z.)2 
1 0 1 

(6) Regulate (az - a z ), (a. - o.c(t», q, (y - yc(t», 
o 

and (M - Mc(t» about zero with a robust linear 
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5.2 ZOOM AND PUSHOVER (ZAPO) LINEAR MODELS 

This subsection describes linear models for: 1) the F-15 

aerodynamics, MCS/CAS, and sensor dynamics; and 2) the piloted 

aircraft with reduced order models for both. 

The trimmed condition of the F-15 used in the simulation 

SIMII is shown in Table 5-1. 

Altitude h 
0 

32,000 ft. 

Angle of Attack cx.o 11° 

Pitch Angle 8 11° 
0 

Mach Number M 
0 

.4775 

Velocity Vo 470.9 ft/sec 

Thrust To 6270 lb f 

Weight Wo 40,700 lbf 

Stabilator o SB -4.76° 
0 

-Dynamic Force qs 55,821.1 lb f 

Table 5-1. ZAPO Trim Condition* 

*Pitch, roll, and yaw CAS on, flaps up, with autopilots off. 
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The six nondimen$ional aerodynamic coefficients and their 

associated dimension stability derivatives reflected into the 

appropriate body fixed axis are given below in Table 5-2. 

The MCS/CAS equations (ignoring servos at 30, 60, and 100 

radians/sec) from Figure 3-3 are 

5
SB 

= 
1 

· 6SB = 
2 

· 
°SB = 

3 

= 

· 
°SB = 

. 
-.330SB + 15.5q + 15.5q 

1 

-5. °SB + 11. 49 ce 2 

. 
.882q + .4 a z 

.882q + 5.85 (a - q) 

-20.0SB + 20/57.3(oSB 
1 

+ ~SB 
2 

+ .6832q - 4.4760 ) • e 

The sensor and thrust equations are 

6M = -.HM + .1~cV) 
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Angle of attack 
Pitch rate 
Vertical velocity 
Vertical acceleration 
Angle of attack rate 
Total velocity 
Velocity along Ale nose 
Elevator 
Sideslip 
Roll rate 
Yaw rate 
Lateral velocity 
Aileron 
Rudder 
Differential rudder 

~S~DI~EN3IONAL CL,CH,CH,CD,C~F~,:¥ 0 

-2.15(i07E-13 -i.28433E-0: :.~4:40E-vc :,lO:37E-'.jJ ~,,:j545E-01 4.44847H.~ 

~L~O~I:M CNBGDY CD :LFT CfBODi 
11:.:" . ' .• 3,,7·.:,7E-i): -':';,lS745E+Oi -'.:,22~'84E-03 -0.61949H02 -0.165'18E+03 0.15015E-02 
G .J. OOO'~IOE +00 -0.91294Et00 O. OOOOOE+0(i iJ. 00000£+00 Ii .000';)0£+00 0.00000£+00 
W -O.76929E-05 -0.32319E-02 -0.47492E-06 -0.19277E+00 -0.31498E+00 0.31297E-05 
ME O.OOOOOEtOO -0.22116E-02 O.}Jo}OOEtOO iJ.i:0OC'('jEtOO -0.30735E-Ol O.OOOOOE+OO 
Ai.. FIt (,.,jJ:>OOOEH,v -0.76451[-(,1 0.00000E+00 o).OOOOOEtOO O.OOOooHOO O.OOOOOHOO 
liELG -0.35605[-06 0.23407E-03 -0.33363E-')7 -0.18301E-02 -0.40951E-02 0.50076E-06 
IJ 0.:4954E-05 0.637Q4E-03 0.92315E-07 O.37470E-Ol (i.61226E-Ol -0.60835E-06 
Dii \~.~0000E+OO -O.3aOi:EH)~ -0.421401£-05 -O.12220Et02 -v.25475Et02 0.00000ETOO 
~Ei A -i).1 ;j314E t!}2 -O.30038E-G6 0.10660£ E1 ') .O'JOOO£+OO O.i!OOOOEtOO -(i,~2589EttJ:: 
F -0.91636E+\l0 O.;)oOOOE+OO -0.90524E-02 G.'})OOOEtOO O.'}OOOOEtOO 0.00000E+00 
R oJ. h~81 E +0 1 O. OOOOOE +00 -0. 2592SEtO(i O. OOOOOE tOO ;j. 00000£+00 O. OOOOOE +00 
!J -O.83963EtOI -O.26201H)6 0.21168£+00 O.OOOOOEtOO 0.00000£+00 -0.37148H02 
iiI< O,::5~;76E+Ol 0.74124E-09 0.10425£-01 O.OOOOOEtOO ').OO'JOOEtOO 0.10509EtOO 
DE -".23370E+00 -0.58042E-0'7 -0.1t)~99EtOI O.')OOOOEtOO O.OOOOOH·jO -0.82293[+')1 
n 0.33509E+01 -0.:7136E-07 0.45272E+':l0 0.00000H00 O.OOOOOE+OO -O.3847~Ebl 

Table 5-2. F-15 Aerodynamic Model 



The matrices of the linear model 

x = Fx + Gu + rw 

y = H x 
Y 

z = H x + v z 

are given below where the states 

.". 

x = 
[ OV, 00., q, 08, 0SB' 0SB' 0SB' 0SB' oM, 

1 2 3 

.'''' 

are velocity, angle-of-attack, pitch rate, pitch, four MCS/CAS 

states, lagged Mach number, and lagged thrust. The inputs 

u = [Oe oT c /M ] T , w = a. gust, 

and w = N , (0. ,-4 2 ) 
.1125 rad -sec 

are commanded elevator, thrust acceleration, and angle-of-attack 

gust. The outputs 

y ~ [oaz • on. q. oy. OM] T 

are acceleration, angle of attack, pitch rate, flight path angle 

(08 - 00.), and Mach number. The measurements 

z ~ [oaz • on. q. 0 e. OM] T . 

are acceleration, angle-of-attack, pitch rate, pitch, and Mach 

number with 

( [ 
2 3 \ -6 2 

V = N 0, diag .2588 ft /sec ,7.62 rad -sec 

\-6 2 ,,-4 2 
1. 755 rad / sec, .1493 rad -sec, 

,-6 ] ) 2.5 -sec 

The equations are scaled so that all angles, angular rates, and 

angular accelerations are in units of (.01) radians; velocities and 
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accelerations are in feet, with seconds the time unit. Mach 

number is scaled in units of (.001) Mach. 

The linear system matrices are 

F _. 

COLUMNS 1 THRU 8 
-0.0019 -0.3072 0.0000 -0.3220 0.0000 O. ':>000 0.0000 
-0.0009 -0.3420 1.0000 0.0000 0.0000 0.000':) 0.0000 

0.0235 -1.5480 -0.9890 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 o t v'.)GO 
0.3643 -23.9940 0.1705 0.0000 -0.3330 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 -5.0000 0.0000 
0.0156 -3.3660 -0.8723 0.0000 0.0000 0.0000 0.0000 
0.0056 -0.3692 -0.2359 0.0000 0.3490 0.3490 0.3490 
0.1014 0.0000 0.0000 0.0000 0.0000 0.0000 0.000<) 
0.0000 0.0000 0.0000 0.0000 0.0000 0.000(: 0.000;' 

COLUMNS 9 THRU 10 
0.0000 0.9816 
0.0000 0.0019 
0.0000 -0.0001 
0.0000 0.0000 
0.0000 0.0000 
0.0000 0.0000 
0.0000 0.000', 
0.0000 0.0000 

-0.1000 0.0000 
0.0000 - 0 • 10 (Hj 

G -
0.0000 0.0000 
0.0000 0.0000 
0.0000 0.0000 
0.0000 0.0000 
0.0000 0.0000 

11 .4900 0.0000 
0.0000 0.0000 

-1.5620 0.0000 
0.0000 0.0000 
0.0000 0.1000 

-0.122::' 
-0.0541 
.. 3. B000 

0.0000 
-58.'1000 

0.000(' 
-·.L6681 

-20.906:5 
0.0000 
O.OO()(I 
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G~l 

GM 

-0.30n 
-0.3420 
-1.5480 
0.0000 

-23.9940 
0.0000 

-.3.3660 
-0. 369:~ 

O,001.\IJ 
'J.OOiiC 

HY 

COLUMNS 
-0.0041 

('.0000 
0.0000 
0.0000 
0.0000 

COLUMNS 
0.0000 
0.0000 
0.0000 
0.0000 
1.0000 

HZ :.: 

COl.UMNS 
-0.0041 

0.0000 
0.0000 
0.0000 
0.0000 

COLUMNS 
0.0000 
0.0000 
0.0000 
0.0000 
1.0000 

4C 

1 fHRU 
-l.t,l l)S 

1.0000 
0.0000 

-1.0000 
0.0000 

9 THRU 
0.0000 
(i.0000 
0.0000 
0.0000 
0,0000 

1 THRU 
-1.6105 

1.0000 
0.0000 
0.0000 
0.0000 

0 THF:U I 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

8 
0.0000 0.0000 0.0000 0.0000 0;0000 -0.2548 
0.0000 0.0000 0.0000 0.0000 0.0;)1.;0 0,0000 
1. ')000 0.0000 0.0000 0.0000 0.0000 'l.'JOOC 
0.0000 1.0000 0.0000 O.oooc. 0.0000 0.00')(-
(!.OOOO 0.0000 0.0000 0.0000 ~) • 0000 0.0000 

10 

8 
0.0000 0.0000 0.0000 0.0000 :). ')000 -0.2548 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
1.(;000 0.0000 0.0000 0.0000 0.0000 0.0(000 
0.0000 1. 0000 0.0000 0.0000 0.0000 0, (,000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

10 



Table 5-3 shows the eigenvalues of the aerodynamics alone 

as well as the aerodynamics as modified by the MCS/CAS. For 

level flight (the final condition at the apex of the ZAPO 

maneuver) at such a high angle-of-attack, the MCS/CAS (without 

the autopilot) makes the phugoid mode unstable. The time 

constant is on the order of the maneuver flight time, however, 

and the flight test trajectory controller (FTTC) will compensate 

it as well. 

Aerodynamics, sensor lag 
and MCS/CAS Aerodynamics alone 

0.0000 + O.OOOOi -0.0042 + 0.0399'l 
0.0)178 + O.0259i -0.0042 - O.039"! 
oJ.017S -- 0.0259i -0.6622 L l.l988i I 

--0.1000 + 0.00001 -,0.6.522 -- l.19881 
-0.1000 + O.OOOOi 

.... 
',," 

-0.3298 + O.OOOOi 
-,1.2223 + 1.2490i 
-1.2223 - 1.2490i 
-3.0000 + O.OOOOi 

-,19.8335 + O.OOOOi 

Table 5-3. Eigenvalues for ZAPO Linear Model 

5.2.1 Nine State Aircraft Model 

Since the thrust is stabilized in the zoom and pushover 

model, the engine lag state, and thrust control will be dropped 

in the subsequent analyses. 

Frequency responses of the five outputs to sinusoidal 

elevator inputs are shown in Figures 5-1 and 5-2. 
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The a(s)/oe(s) transfer function has the dip at low 

frequency because of zeroes produced by the MCS/CAS which 

attempt to mitigate the phugoid mode (see Figures 5-3 and 5-4). 

The high phase response is caused by the unstable phugoid 

mode. 
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Th~ residues of these transfer functions are given below in 

Table 5-4. 

Eigenvalues azJoe a/a e q/a e y/a 
e 

M/o 
() 

0.0000 + O.OOOOi 0.0000 0.0000 0.0000 0.0000 i).0000 
0.0178 + 0.0259i -0.0026 0.0018 0.0006 0.0150 0.0183 
0.0178 - 0.0259i 0.0009 0.0002 -0.0002 0.0110 -0.1753 

-0.1000 t O.OOOOi 0.0000 0.0(,100 0.0000 0.0000 -Ci.0163 
-0.3298 + O.OOOOi -0.0003 0.0002 0.0000 -0.0002 -0.0001 
-1. 2223 + 1.2490i -0.0800 0.0441 0.0879 -0.0203 -0.0020 
-1.2223 - 1.2490i -0.1557 0.0999 -0.1441 -0.0063 0.0010 
-5.0000 + O.OOOOi 0.0104 -0.0607 0.3012 0.0004 0.0000 

-19.9335 + O.OOOOi 0.4704 0.0146 -0.3897 0.0050 0.0001 

Table 5-4 Residues of Elevator Transfer Functions 
(Nine State Aerodynamics and MCS/CAS) 

These residues indicate that a good model can be achieved 

with five states, by including the phugoid and short period modes 

and the control system lag at 5 radians/sec. Such a model would 

be useful for flight test trajectory control signals fed directly 

into the aircraft control system through the autopilot. This 

reduced order model is detailed in the next subsection. 

5.2.2 Five State Aircraft Reduced-Order Model 

The nine state model of the previous subsection, reduced 

to match at zero frequency by the method of Section 4.1 gives 

the following equations 

x = Frxr + Gru + rW , r 

y = H x + J u u 
Yr r r 

z = H x + J w w z r r r 

with the matrices given by 
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0.0178 
-0.0259 
0.0000 
'.0000 
0.0000 

0.2905 
-0.0541 

Gr -0.1374 
0.0904 

12.1783 

0.5516 
0.1872 

r r = 2.0404 

H = 
Yr 

= 

-0.734S 
0.0000 

-0.0092 
0.0060 
0.0021 
0.0431 
•• 1693 

-0.'''' 
0.0012 

-0.0197 
-0.0002 
-0.1611 

0.0259 
0.0178 
0.0000 
0.0000 
0.0000 

-0.0014 
-0.0017 
0.0004 

-0.0459 
0.5720 

0.0000 
0.0000 

-1.2223 
-1.2490 
0.0000 

-O.lHO 
0.1101 

-0.9280 
0.0822 
0.0133 

0.0000 
0.0000 
1.2490 

-1.2223 
0.0000 

-1.0S81 
0.6546 

-0.4379 
-0.0998 
-0.0014 

-0.0092 -0.0014 -0.1140 -1.0581 

= 

= 

0.0060 
0.0021 
0.0371 
0.1693 

0.4187 
-1.B776 
0.0034 
2.1376 

-2.5110 

-0.0017 
0.0004 

-0.0442 
0.5720 

0.1101 
-0.9280 
-0.0279 
0.0133 

0.6546 
-0.4379 
-0.7544 
-0.0014 

0.0000 
0.0000 
0.0000 
0.0000 

-5.0000 

0.0009 
-0.00:50 
0.0247 
0.0000 
0.0000 

0.0009 
-0.0050 
0.0247 
0.0050 
0.0000 

The frequency response of this five state model is shown in 

Figure 5-5. The model is only good up to about 4-12 Radians/sec 

and only up to .1 radians in the mach response which is primarily 

due to its own lag at .1 second which was not included in the 

model. 
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5.2.3 Thirteen State Piloted Aircraft Model 

The four state pilot model of Section 3.5 is for a 1/s2 

plant. The pilot adapts his own gain to make the plant look like 

the dynamics he wants. At this point we can ignore the gain 

question of the pilot until after the compensator has been 

designed, then adjust the compensator gain to simulate the 

pilot's action. 

The unreduced design model is given by 

y = [H 0] 
YA/C 

z = [H 
zA/C 

0] + v • 

[ 
XA/cj + [0 j + [r 0 ][agustj 

xp Gp 0 r p wp 

The magnitude and phase responses of the five outputs to dis

played elevator inputs are given by Figure 5-6 and 5-7. These 

frequency responses are not surprising when looking at transfer 

function of the linear pilot model (see Figures 5-8 and 5-9). 

The response of this thirteenth order system to gust inputs 

is shown in Figure 5-10. 

The residues of the elevator transfer functions are the 

basis for model reduction. They are shown in Table 5-5. 

The pilot model dominates, so these 4 modes together with 

the unstable phugoid mode comprise the reduced order design 

model described in the next subsection. 
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Table 5-5 Elevator Residues - Thirteen State Piloted Aircraft 

Eigenvalues a 18 aloe q/o y/oe M/oe 
z e e 

0.0000 + O.OOOOi -J.7851[1-32 -3.1477Ir-17 -8.6754[1-31 -1.1798£1-1;' 8. 47BOO-1 ~, 

0.0178 + O.0259i 6.70040-06 -4.8157[1-06 -1.5159[1-06 -·1.0116[1-05 -3 .1957D-0~, 

0.0178 - 0.0259i -2.6021Ir-06 -2.7827[1-07 6.7240Ir-07 -2.7340Ii-05 -it 5871 Ir-04 

-0.1000 + O.OOOOi -3.8206Ir-21 2.5099[1-21 2.0833Ir-21 2.75310-20 3.5578[i-(.':} 

-0.3298 + O.OOOOi 3.2125[1-07 -2.1251[1-07 1.8614D-09 2.06S7II-07 :1.6295II-08 

-1.2223 + 1.2490i 1.2471[1-03 -9.0742Ir-04 1.3152[1-03 3.3311D-CiS -1.0549[1-05 

-1.:!~23 - 1.24901 -8.3688[1-04 4.7492[1-04 6.0570D-04 -1."7944Ii-04 -1.5656[1-05 

-5.0000 + O.OOOOi - 2.7288[1-04 1.5872D-03 -7.8779[i-03 -1.1590[1-05 4.15040-07 

-8.0000 t O.OOOOi -1.0129D+00 -4.0442[1-01 3.4505DtOO -2.6886I!--02 -8. :i858[1--04 

-9.5240 + O.OOOOi 1. 2567D+01 2.79900+00 -2.9326Dt01 2.B021D-Ol 7.16130-03 

-10.0000 t 0.00001 -1.32820+01 -2.55250+00 2.8345DtOl -2.8205[1-01 -6.8'J69l'-03 

-14.0000 + O.OOOOi 2.2990DtOO 1.7493[1-01 -2.9372[1tOO 3.4872£1-02 ~.818~D-04 

-19.8335 + O.OOOOi -5.72430-01 -1.7783D-02 4.7425[1-01 --6.1291D-03 -7.1::S7D-,:'5 
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5.2.4 Six State Piloted Aircraft Reduced-Order Model 

The reduced piloted aircraft model is of the same form as 

the equations of Section 5.2.2, with the following matrices 

F = 

0.0178 
-0.0259 

0.0000 
0.0000 
0.0000 
0.0000 

1.0D+04 * 
0.0000 

0.0259 
0.0178 
0.0000 
0.0000 
0.0000 
0.0000 

G = 0.0000 

r = 

0.0985 
-4.2976 
-0.1120 

0.3172 

0.5576 -16.2773 
0.1872 
0.0000 
0.0000 
0.0000 
0.0000 

'-0.0092 
0.0060 
0.0021 
0.0431 
0.1693 

1.6135 
0.0398 

-1.2966 
0.0208 

-0.0192 

-0.0092 
0.0060 
0.0021 
0.0491 
0.1693 

2.9859 
0.0000 
0.0000 

44.2543 
0.0000 

-0.0014 
-0.0017 
0.0004 

-0.0459 
0.5720 

-0.0014 
-0.0017 

0.0004 
-0.0476 

0.5720 

1.5377 6.8958 
-0.9490 -2.0947 

J w = 0.0185 -7.2272 
-0.5339 -1.3389 
-2.5096 9.2763 

0.0000 
0.0000 

-8.0000 
0.0000 
0.0000 
0.0000 

0.0577 
0.0230 

-0.1965 
0.0015 
0.0000 

0.0577 
0.0230 

-0.1965 
0.0246 
0.0000 

0.0000 
0.0000 
0.0000 

-9.5240 
0.0000 
0.0000 

0.0164 
0.0037 

-0.0383 
0.0004 
0.0000 

0.0164 
0.0037 

-0.0383 
0.0040 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 

-10.0000 
0.0000 

--0.6655 
-0.1279 
1.4202 

-0.0141 
-0.0003 

-0.6655 
-0.1279 

1.4202 
-0.1420 
-0.0003 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

--14.0000 

-0.0407 
--0.0031 
0.0520 

-0.0006 
0.0000 

-0.0407 
-0.0031 

0.0520 
-0.0037 
0.0000 



,-... 
.:n 

0+J 
Q) . ..-1 
r/) c: 

;:j 

The frequency magnitude response to elevator inputs for this 

sixth order reduced order model is given in Figure 5-11. This 

mod(~l is considerably different from the -I inear lJvalualioll 

(thirteenth order) model above one radian per second. However, 

the model information at low frequency is quite good and, with 

frequency shaped control methods, can be used to develop a robust 

flight test trajectory controller. Reducing the thirteenth order 

model at a higher frequency does not significantly improve the 

flight path angle response which can be observed in Figures 5-12 

and 5-13. Figures 5-14 and 5-15 show the response of this reduced 

order design model to gusts and pilot motor noise. 
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Figure 5-11 Magnitude Response to Displayed Elevator Command -
Six State Reduced Piloted AIC Model (Reduced at 
Zero Frequency) 
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5.3 FLIGHT TEST TRAJECTORY CONTROL (FTTC) COMPENSATOR 

Using the reduced order design model of the piloted aircraft 

from the previous section, a standard linear quadratic regulator ~ 

could be designed with the following quadratic costs on outputs 

and inputs, 

A = diag [.01, .01, .01, 10, 1] ,B.l' = 1 • 
y ue 

This yields the following control gains and closed loop regulator 

eigenvalues shown below, 

C = [1.4068 -1.7544 .0011 .0003 -.0106 -.0006] , 

-12.511 ± 1.8195i 

-8.0244 ± .9075i 

-.0210 ± .0280i • 

The closed loop regulator response to incremental elevator is 

shown in Figure 5-16. 

The poor knowledge of the plant at high frequency as shown 

in Figure 5-16 cannot be overcome with regulator design. The 

next subsection shows a frequency shaped controller which uses 

the high fidelity of the model at low frequency, gives acceptable 

performance at mid~requency where the pilot works, and rolls off 

the controller at high frequency. 

5.3.1 Regulator Design 

A more robust controller with respect to the reduced order 

modeling errors can be obtained by using frequency shaped control 

concepts as described in Appendix A. The following performance 

index 
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lim fw t At2 2 + (.Ol+w
2

) Bo ] dw , 
(l+w ) e 

-w w-+oo 

can be implemented by the following equations 

x F 0 0 0 

zl GH Fl G1Ju 
0 

d a z a dx + -
dt = z u 

u 0 0 F2 G2 

where Fl = [_1 -~] G1 = [:] F2 = -.1 , G2 = 

and F, G, H a z 
and Ju are given in Subsection 5.2.4, a 

z 

with the performance index as 

T 

(zi1 + ii2 ) dt lim 1 f 2T 
T-+oo 0 

The control law is given by 

with feedback gains and closed loop regulator eigenvalues as 

follows: 

COLU~S 1 THRU a 

. 1 , 

14.2516 -14.5265 0.0000 0.0000 0.0000 0.0000 0.0009 0.0003 
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rn 
-+-> 
OM 
I:! 
;=j 

(i) 
:> 

OM 
-+-> 
U 
(i) 
0. 
rn 
(i) 
~ 

I:! 
OM 
'-" 

Z 
H 

< 
t-' 

Ai (FA -G A C A) = -14.0000 - a.OOOOi 
-9.5240 - O.OOOOi 

-10.0000 - O.OOOOi 
-8.0000 - O.OOOOi 
-1.0000 + 0.0032i 
-1.0000 - 0.0032i 
-0.0671 + 0.25291 

-0.0671 - 0.25291 
-0.0014 + O.OOOOi 

The control law for u can be obtained from the ninth state 

of the compensator as shown in Subsection 5.3.3. Our control 

u = 0e is primarily used to control flight path angle. By 

rolling off the acceleration, the derivative of flight path 

angle, at high frequency, the controller achieves good roll off 

in all of the outputs as shown in Figure 5-17. 
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.01 
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E-t 
;::J .0001 
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E-t 
;::J 
0 

FREQUENCY (rad/sec) 

Figure 5-17. Closed Loop Regulator Response to Gust 
(Six piloted Ale states with three shaping states) 
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5.3.2 Estimator Design 

An estimator can be designed for the six state piloted air

craft model with the gust and measurement power spectral densities 

given in Subsection 5.2.3. Using all five measurements and 

wet) = a gust input the performance index is 

J = E[WT(t)Q-1W(t) + VT(t)R-1V(t)] 

yielding an estimator feedback gain matrix K to implement the 

filter equations 

. x = Fx + Gu + K(z-H x J u) 
z u 

The gains and filter closed loop eigenvalues are shown below. 

~; 

0.1409 -0.2728 0.2119 0.5487 -'J,0320 
0.0486 -0,1244 -0.0345 -0.3664 0.1011 
O,vOOO 0,0000 0,0000 oJ.OOOO 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 oJ.OOOO 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 

A. (F-KH ) = 
1 Z 

-0.0294 t O.0295i 
-0,0294 - 0.0295i 

-14.0000 + O.OOOOi 
-8.0000 + O,OOOOi 
-9.5240 t O.OOOOi 

-10.0000 t 0.00001 
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5.3.3 Reduced Order Compensator 

The full state compensator is given by 

x F-kH 0 G-kJu H x k z z c 

d GHa F1 G1Jua + 0 Cit zl = zl z 
z z 

u -G2C1 -G2C2 F2-G2C3 u 0 

with Hc = [0 0 1] . 

The feedforward of the control into the measurements requires 

a negative feedback in the compensator. The residues of this 

transfer function are given below in Table 5-6 

Eigenvalues Un/a Un/a Un / q Un / y Un / M 
z 

-0.0793 + 0,00001 -0.2075 0.5248 0.1258 1.4533 -0.4092 
-0.0807 + 0.22891 0.2074 -0.5247 -0.1259 -1.4536 0.4093 
-O.~807 - 0.2289i -0.5675 0.9060 -1.5388 -5.7511 0.8434 
-1.0000 t 0.00331 0.0000 0.0000 0.0000 0.0000 0.0000 
-1.00~0 - 0.00331 0.0005 -0.0007 0.0014 0.0053 -0.0008 
-8.371? + v.6590i -0.0005 0.0008 -0.0013 -0.0049 0.0007 
-8.3719 - O.6590i 0.0019 -0.0030 0.0052 0.0193 -0.0028 
10,9263 + o.OOOOt 0.0006 -0.0010 0.0017 0.0065 -0.0010 

-1~.8433 + O.OOOOi -o.OOO! 0.0002 -0.0003 -v.0012 0.0002 

Table 5-6. Full State Compensator Residues. 

*Un is displayed control (elevator) command 
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This compensator can be well approximated with a three state 

I compensator using modal reduction just as the original model was 

reduced (see Section 4.1). The reduced order compensator is 

I given by 

. 
x = F x + G z c c c c 

with 

Fe 

-1.93380-01 2.55360-01 
-2.3696D-01 2.07630-01 
-5.5726[1-01 3.01080-01 

GC =c 

-8.9338£1-01 1.5645£1+00 
-1.19240+00 2.2681D+00 
-5.9027D-Ol 8.0340[1-01 

He =c 

4. 4421D-01 -2.4oo0D-01 

u = H x c c 

1.34220-01 
6. 475HHi2 

-2.5491£1-01 

-1. 7311£1+00 -6. 5153D+00 
-1.9376D+00 -5.3908D+00 
-2.0951D+00 -8. 5362D+00 

-1.8743D-01. 

8.1542D-01 
4.2135D-01 
1.3927D+00 

The magnitude and frequency responses of these five transfer 

functions are shown in Figures 5-18 and 5-19. On the same scales 

the ninth order frequency response plots are indistinguishable as 

, would be expected from the size of the residues. 

,5.3.4 Controlled Plant Dynamics 

The compensator can be further analyzed by investigating 

the effect of the dynamic compensator on the full thirteen state 

aircraft and MCS/CAS model, G(s). Viewing the pilot as a 

compensator, P(s), for this system, we are interested in the 

transfer function from the aircraft stick to the displayed 

elevator command to which he responds (see Figure 5-20 below). 
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The 

Aircraft FTTC 
~ 

G(s) C(s) 

Pilot 

UC(s) 
P(s) 

UD(s) 

Figure 5-20. Controlled Plant Dynamics 

state equations 

x 
c 

xAc 

U
D 

= H x . c c 

= 

for the 

F c 

0 

controlled plant are 

G H x 0 
c zAc c 

+ 
FAc xAc GAc u 

The frequency response of the controlled plant is shown in 

Figures 5-21 and 5-22. In the region of .5-2 radians/sec the 
2 plant is k1/s and in the region of 2.-20 radians/sec it is 

approximately k2/s3. A k/s3 plant is clearly harder to 

control than a k/s2 plant, however the plant gain at the 

upper range of these frequencies is so low (shown on the log-log 

scale here) that the change in dynamics is not significant. The 

pilot model is based on negative feedback, hence the phase of the 

-1 
~ plant should ideally remain close to zero, and as shown in 
s 
Figure 5-22 remains between -20 0 to -50 0 in the .5-2 radian/sec 

frequency range. 
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5.4 LINEAR CONTROL LAW EVALUATION 

Before evaluating the compensator in the nonlinear simulation 

the compensator must meet linear evaluation tests for stability, 

disturbance rejection, and other desirable controller properties. 

The effect of sampling rates can be evaluated much more inexpen

sively on the linear model than with extensive nonlinear simulation. 

5.4.1 Stability 

Stability evaluation of the compensator can be systematically 

checked by computing the eigenvalues of 

1) the full-state compensator and design model (these should 
be the regulator and estimator eigenvalues) 

2) the full-state compensator and evaluation model 

3) the reduced order compensator and the design model, and 

4) the reduced order compensator and the evaluation model. 

In each case an augmented dynamics matrix is formed 

and the eigenvalues computed. The eigenvalues for the second and 

final tests are shown in Table 5-7 below. 

5.4.2 Disturbance Rejection 

The performance of the regulator alone assuming full state 

feedback in rejecting gust disturbances can be evaluated with the 

following equations 
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22nd Order 
Evaluation 

Model 

-19.8241 + O.OOOOi 
-14.0000 + O.OOOOi 
-5.0023 - O.OOOOi 
-1.2176 + 1.2470i 
-1.2176 - 1.2470i 
-1.0000 - 0.0033i 
-1.0000 + O.0033i 
-0.0666 - O.2403i 
-0.0666 + 0.2403i 
-0.3298 - O.OOOOi 
-0.1208 - O.OOOOi 
-0.0272 - 0.0271i 
-0.0272 + 0.0271i 
-0.0024 + O.OOOOi 

-14.0000 - O.OOOOi 
-10.0013 + O.OOOOi 
-9.5222 - O.OOOOi 
-8.0000 + O.OOOOi 

-10.0000 + O.OOOOi 
-9.5240 - O.OOOOi 
-8.0000 - O.OOOOi 

i).VOOO + O.OOOOi 

16th Order 
Evaluation 

Model 

-19.8241 + O.OOOOi 
-14.1338 - O.OOOOi 
-9.8726 t 1.0553i 
-9.8726 - 1.0553i 
-7.6555 + O.OOOOi 
-5.0024 - O.OOOOi 
-1.2176 f 1.2470i 
-1.2176 - 1.2470i 
-0.0668 + O.2410i 
-0.0668 - 0.2410i 
-0.3298 - O.OOOOi 
-0.1206 t O.OOOOi 
-0.0270 + O.027Ii 
-0.0270 - 0.0271i 
-0.0025 f O.OOOOi 
0.0000 + O.OOOOi 

Table 5-7. Closed Loop Eigenvalues 
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The rms values are the square roots of the diagonals of Y, 

shown below with a gust spectral density of .0369 deg2-sec: 

YRHS 

1.0737D-01 
1.3364D-01 
4.8379D+00 
8.9651[1-02 
1 .0981[1+00 

g 
deg 
deg/sec 
deg 
.001 Mach 

0.5074D-02 inches (Longitudinal st ick mot ion) 

This control law has not been optimized but can be improved 

with additional design iterations. 

5.4.3 Sampling Rate Effects 

The effect of sampling rates can be evaluated by discretizing 

the aircraft model as well as the pilot model and FTTC compensator, 

at the least common multiple of all the sampling rates involved. 

The dynamics augmented with two delays for the display update and 

fifteen delays for the sensor update and the appropriate discrete 

feedback compensation, can then be evaluated for average behavior 

by solving the discrete form of the symmetric Lyapunov equation. 

The discrete model for the compensator (1/~ = 160 Hz) is, 

where these matrices are given by 
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9. 9871B-Gl 1. 5969D-03 3. 3799[H)4 
-1.4818£1-03 1.0013[1+00 4.04020+' 
-3.4794[1-03 1.8787D-03 9.9841[HI1 

GD .-

-5.5877[1-03 9.7859D-03 -1. 2077[1-02 -4.':'I745D-·02 5.0991[1-03 
-7. 4538D-03 1.4178D-02 -1.2112[1-02 -3.3695[1-02 2.6332D-03 
-3.6836D-03 5.0136D-03 -1.3074[1-02 -5.3270[1-02 8.6910[1-03 

HII = 

~.4421D-Ol -2.4000D-Ol -1.B743IH;1 • 

The eigenvalues in the z-plane of the compensator are: 

9.9949D-01 +1.4343£1-031 
zi = 9.9949It-Ol -1.4343D-03i 

9.9951D-Ol -3.B201D-211 • 

The discrete model for the pilot (1/~ also 160 Hz) is 

HI 

9.3941D-Ol -2. 1628D+00 -6.8223[1-03 -1. 3613II-05 
O.OOOODtOO 9. 9996IHil 6. 2375D-03 1. 8290D-05 
O.OOOOD+OO -1.9510D-02 9.9408D-Ol :;.6609[;-03 
O.OOOOD+OO -6.0384D+00 -1. 8396D+00 8. 1562[1-·d 

GIl -

5.4052[1-03 
5.8515[1-04 

-1.2520D-02 
2.2370[1-01 

HD ~ 

-5.6103[1+-)1 O.OOOOD+OO O.OOOOD+OO O.OOOOD+OO 

with z-plane eigenvalues, 

9.3941I1-OI +O.ooOOD+OO, 

z. = 9.5123[1-01 -3.3148D-171 
1 9.4221[1-01 +5.6503IH7i 

9.1622D-Ol -1.9440D-171 
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5.5 NONLINEAR SIMULATION CONTROL LAW EVALUATION 

After linear evaluations, the control law can be more signi

ficantly evaluated by demonstration in the nonlinear simulation. 

This required closing the control loop of the simulation; the 

controls no longer need to be open-loop commands, but rather 

can be feedback from the simulation outputs, corrupted by a 

desired noise level. The details of how this FTTC simulator 

can be invoked are given in the next section. 

The zoom and pushover control law developed in this section 

was implemented on the modified version of NASA Dryden's SIMII 

simulation. Following the algorithm development steps outlined 

in subsection 5.1: 

Steps (1)-(2): The F-15 trim values were chosen for the 

desired apex conditions 

a o = 11 degrees 

Zo = 32,000 feet 

Steps (3)-(4): Assume an acceleration of V~/Ro= 10 feet 

per second to climb a thousand feet in approximately 

15 seconds. Thus, the radius of curvature is approxi

mately 20,000 feet (for a V~ that is 90% of the trimmed 

value). 

The relations in Section 5.1 give Vo = 406 feet/second and an 

initial flight path angle of Yi = 17.55°. This is a little 

too far away from the linearization of the aerodynamics at 11°. 

Fixing Yi at 11 degrees gives the trajectory parameters shown 

in Table 5.8. The linear model trim condition is approximately 

half way in the maneuver velocity, and hence dynamic pressure 

range. 

78 



TABLE 5-8 

z - z. 
0 1 

R 
0 

~ 

Vo 
M 

0 

T 
0 

(g an) 

to - t. 
1 

y. 
1 

V. 
1 

M. 
1 

ZOOM AND PUSHOVER DEMONSTRATION 
TRAJECTORY PARAMETERS 

1000 feet 

52,933. feet 

6.14710 - 3 

442. feet/sec 

.4491 

5544.6 Ib f 
3.706 feet/second2 

23.23 seconds 

11. 0 

510.4 feet/second 

.5175 

To simplify the ac(t) command we keep it constant while 

decreasing the flight path angle linearily in time under a stabi

lized engine power lever angle condition. The thrust itself is 

l10t stabili7ed because.it is also a function of Mach, as the 

aerodynamic~; are. This maneuver is an acceleration initial 

condition response, shown in Figure 5-28 through 5-32. 

The loss of velocity (see Figure 5-32) causes a higher angle

of-attack and acceleration seen in Figure 5-28 and 5-29. The 

velocity is lost because it is difficult to trim the aircraft in 

a conctition where the zoom and pushover can begin. The ballooning 

effect, seen in the flight path angle response together with the 

variation of the thrust with velocity accounts for the loss of 

energy. It reaches a stable angle-of-attack condition. Initial 

trim would provide near perfect response. 

Use of throttle would give considerably better control, and 

we·uld also enable modeling the trajectory commands as a linear 

system so that all the control loops could be closed. Random 

walk states could also be appended to model the effects of changing 

dynamic pressure and thrust. MIMO servomechanism control could 

also be used since the response is influenced by the trajectory 

commands significantly. 
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5.6 ZOOM AND PUSHOVER ALGORITHM SUMMARY 

The development of a performance index and trajectory 

commands with the necessary initial for the zoom and pushover 

maneuver was described in trajectory modeling se~tion. Reduced 

order models for the aircraft and piloted aircraft were described 

and a linear compensator synthesized to regulate about the 

necessary trajectory commands. This compensator was reduced 

to three modes, and its stability and disturbance rejection 

properties evaluated with the full order linear model (thirteen 

states). 

The compensator and pilot models were discretized and imple

mented in the nonlinear simulation as described in the next 

section and the FTTC User's Guide (Appendix C). The initial 

condition response illustrates the desirability of closing the 

loop on the trajectory commands as well. This demonstration 

used an open loop trajectory command generator, since the thrust 

was stabilized. 

The particular control law, the linear compensator and the 

chosen trajectory command generators, is not optimized but 

illustrates all the aspects of the systematic design approach 

including the maneuver modeling, linear model development, linear 

control design, linear evaluation, and nonlinear evaluation with 

simulation. 
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SECTION 6 

ZOOM AND PUSHOVER ALGORITHM DOCUMENTATION 

The zoom and pushover maneuver FTTC is shown in block 

diagram form in Figure 6-1. The inputs and outputs used by each 

block are given along with references to sections of this report 

which document the equations implemented by each block. 

For the zoom and pushover with a sensor data rate of 10 Hz 

and display update rate of 53-1/3 Hz, the simulation can be inte

grated at the least common multiple of the sampling rates, in 

this case 160 Hz. The discrete compensator equations are updated 

every sixteen aircraft integration steps and the display is up

dated every three steps. (Note that the multiple of integration 

time step fer the sensors and displays can be input to accommodate 

general multirate systems.) 

The compensator can have arbitrary structure including dyna

mics and feed forward gains. The pilot model is actually four 

independent models which affect the four pilot controls: elevator, 

aileron, rudder, and throttle. Any or all of these can be acti

vated and can have identical or different structure and/or param

eters which are defined with input data (see Appendix C). 

Neglecting for a moment the dynamics of the compensator, the 

corresponding regulator control law is of the general form 

u = - c (x - x - x ) + u + x T c T 

where xT are the trim states and Xc are the commanded states 

from the trajectory generator. The overall flight test trajectory 

controller is a linear feedback compensator, with set point control, 
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and an open loop command generator. If we generated the trajec

tory commands as outputs of a linear system, these loops could 

bp clospct as well in a MIMO servomechanism. On the zoom and 

pushuv~r maneuver, however, it is the constraint of stabilized 

thrust that requires the open loop trajectory commands. 

This FTTC structure can be used for general simulation tasks 

as well. For example, the pilot model could be bypassed with 

pure feed forward unity gain, the sensors disconnected, and 

pure feed forward on the compensator to use the trajectory gener

ator to input an open loop control function, such as a swept 

sine wave. 

The flowchart for demonstrating the FTTC in the zoom and 

pushover maneuver, and any other maneuver, in a modified version 

()j the SIMII simulation, is shown in Figure 6-2. The flowchart 

shows the sequence of operations in controlling a flight test 

maneuver and how the FTTC is interfaced with the NASA DRC 

simulation SIMII. The subroutine FTTC integrates the functions 

described in the block diagram (Figure 6-1). FTTC is called 

by the subroutine CNTRL when flight test trajectory simulation 

is requested, otherwise CNTRL implements an open loop control 

law, entered as segments of a time history. Only the subroutine 

associated with a particular sensor configuration (SENSOR) and 

a particular trajectory generator (TRAJGN) need to be recompiled 

for a different maneuver. All the others have a general structure 

suitable for all trajectories. These subroutine listings are 

given in Appendix D. 

The outputs from the various blocks of the FTTC are shown 

in Table 1 of Appendix C. These user-accessible variables can 

be output from the simulation with other time history variables 

of interest. 
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SECTION 7 

SUMMARY 

Recent extensions to Linear-Quadratic-Gaussian (LQG) 

synthesis theory (Appendix A) applied to meaningful linear models 

(Section 5.2) with sufficiently flexible software tools (Appen

dix B) provide powerful techniques for designing Flight Test 

Trajectory Controllers (FTTC). The effort reported here has 

adapted and developed the necessary software and models to 

implement the zoom and pushover trajectory controller in the 

NASA-DRC batch simulation SIMII. The FTTC structure described 

in this report is sufficiently general to be used for other 

maneuvers, with the aid of the FTTC User's Guide [App<'ndix Cl. 

The zoom and pushover maneuver controller design (Section 5) 

provides a detailed roadmap for the design procedure described 

in Section 4. This procedure involves a significant yet reason-

able amount of engineering effort given sufficiently powerful 

software tools. Subsequent paragraphs summarize conclusions on 

the FTTC synthesis procedure, the linear models, the contro] 

design on the zoom and pushover maneuver, technical problems 

encountered and recommendations for further research. 

7.1 SYSTEMATIC METHODS FOR FTTC DESIGN 

The principal steps for systematic development of flight 

trajectory controllers can be summarized as planning, modeling, 

designing, and validating a trajectory controller. An important 

part of the planning is the trajectory specification. Major 

classes include single-vehicle and multiple-vehicle trajectories. 

Subclasses include constraints on combinations of load, speed 
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and altitude. General mOdels suitable for trajectory control 

were demonstrated for the major subsystems, aerodynamics, kine

matics, (!ngines, sensors and pilot, by linearizing about the 

flight path. The control-design procedure consists of model 

reduction of the linear models where possible, design of a con

trol law with a regulator/estimator or output feedback controller, 

and reduction of the controller complexity where possible for 

more robustness. 

7.2 LINEAR MODEL DEVELOPMENT 

Having access to a complete set of dimensional stability 

derivatives based on a detailed nonlinear F-15 aerodynamic model 

at arbitrary flight conditions is highly desirable. The specifi

cation of flight condition cannot be made completely arbitrary, 

however, because of the requirement to trim the aircraft, dis

cussed further below. These dimensional stability derivatives 

are projected onto both stability and body axes. The longitudinal 

MCS/CAS, reduced to a fourth order model, is dependent on only one 

trim condition simulation parameter. To control high bank 

turn maneuvers the simulation has been extended to automatically 

trim in a steady coordinated turn. The significance of this 

maneuver is the difficulty for the pilot of maintaining alti~ude 

under high g-loads. 

The simple linear pilot model represents the magnitude 

and phase response of a previously studied control-theoretic 

model of optimal human behavior. However, this is the most 

unreliable and variable part of the control loop. Suggestions 

for further research are given below. 

7.3 CONTROL DESIGN FOR THE ZOOM AND PUSHOVER 

Several conclusions can be made about design on a reduced 

order model. Significant feed forward terms result when there 

90 



a number of mid-frequency poles in which the designer is not 

strongly interested (e.g., the pilot model). Frequency shaped 

control methods are extremely helpful where the middle and high 

frequency model is obscured by model reduction. The feed forward 

term of the control into the sensor model is realized as a feed

back loop in the compensator, and can have a significant effect 

on compensator dynamics. 

Manipulation of models in a loop where each block is a 

linear system requires a flexible design program to form different 

block matrix equations which result from breaking the loop at 

different points. The abilities to quickly compute eigenvalues 

and frequency response plots are extremely helpful for catching 

modeling or equation errors, particularly once the physical 

interpretation of the model is obscured by model reduction. 

7.4 TECHNICAL PROBLEMS 

Since the validity of the linear models relies on a trimmed 

condition, the ability to get the SIMII simulation to trim near 

a desired flight condition can be a significant problem. Since 

the maneuvers of interest are all far from straight and level 

flight, a significant number of simulation runs were made to 

Lrim. A trimmed condition for the high bank turn necessary to 

obtain linear models for the level and windup turn maneuvers was 

not achieved during the contract. Hence, the linear control design 

methods have all been illustrated on the zoom and pushover maneuver. 

Changes to SIMII to help facilitate more efficient trim solution 

are described in the FTTC User's Guide (Appendix C). Further 

simulations, or identification not requiring trim, can provide 

these models. 

The controlled plant transfer function is approximately 
2 .05/s. Yet increasing the pilot gain by 20. is too much to 

keep the low frequency dynamics from going unstable. Hence, 

additional work on pilot modeling and this gain adaptivity would 

be desirable. 
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7.5 RECOMMENDATIONS FOR FURTHER RESEARCH 

Although robust controllers can be designed with existing 

pilot models, their lack of fidelity does not parallel detailed 

knowledge of the aircraft and its control system. This situation 

can in some sense be remedied by changing the structure of the 

FTTC to feed forward directly into the autopilot as well as 

through the pilot by driving a display. The task can be separated 

by frequency, giving the pilot his most favorable frequency band 

and letting the autopilot handle low and high frequency control. 

Such a controller can be developed by frequency weighting these 

two portions of the gain inversely with the general shape of the 

pilot model in a wide enough range that one has effectively, 

"safely" inverted a poorly known pilot in the loop to get higher 

performance with the controller. 

Both the difficulty in achieving trim and all the engineering 

effort involved in modeling an MCS/CAS system can possibly be 

alleviated using linear identification and the known structure 

of the plant, identifying the aerodynamics involved in the 

maneuver and parameters of an assumed structure for the MCS/CAS. 

It would be very desirable to validate an FTTC for a 

difficult maneuver, such as a high bank turn in a manned simulator 

after sufficient optimization of the controller in the batch 

simulation. Data could be collected in such a study for identi

fication of the pilot model as well. 
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APPENDIX A 

FREQUENCY-SHAPING OF COST FUNCTIONALS 

Consider state-variable model of the form 

x = Fx + Gu + w , (A.1 ) 

with s1 ate vector x, input vector u, and state-noise vector 

w. In steady-state LQG designs, a cost functional of the 

following form is minimized: 

J = lim ¥ (T (xTAx + uTBu) dt . 
T+oo Jo (A.2) 

A iSl positive-semidefinite matrix and B is a positive

defini~e matrix. In the frequency domain 

where 

x. A 

spec i ' 

frequE 

J = JC: (x*Ax + u*Bu) dw , (A.3) 

x in 

anp 

ies an 

lcies. 

B 

Eq. A.3 is the Fourier transform of time domain 

are the sarre as in Eq. A.2. Note that Eq. A.3 

equal penalty for states and inputs at all 

1 Ie problem with the time-domain approach is that it is 

not pc ;si ble to speci fy frequency-dependent penalties. There

fore, n Ref. [9], the concept of frequency-shaping was developed 

in the frequency domain. He can make A and B functions of 

freque cy in Eq. A.3. A t.=chnique for designing contr01 laws 

for ra- lonal functional weightings has been developed [9]. The 

procedl,re requires appending additional states in LQG design 

problems. Instead of showing the mathematical details of the 

design approach, we will d?monstrate it by an example. 
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Example: Consider a one-mode, undamped oscillator with 

state equations 

We shall select a frequency-shaped weighting function of the 

form 
lID 

(A.4) 

J = !(x*ax + u*bu) d ., . (A. 5) 

_co 

1 a = 
w2 + 4 ' 

2 
b = w + 1 . 

Defining 

x • 
Z = jw + 2 ~ Z + 2z = x , 

- . 
u = (jw+l)u = u + u , 

the co~t functional becomes 

ex: 

J = !CZ*Z+U*U) dw= 
-co 

1 
lim T 
T-HO 

(A.6) 

(A.7) 

(A.-8 ) 

(A.9) 

dt . , (A.I0) 

The appended state equations are a combination of Eqs. A.4, A.8 

and A.9: 

x 0 1 0 0 x 0 . . 
d x -4 0 0 1 x 0 - (A.l1) 

elt = + u 
u 0 0 -1 0 u 1 

z 1 0 0 -2 z 0 
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Standard LQG methods may be used to develop control laws for 

this modified problem. The designed controller will take the 

following form: 

. 
u = C1x + C2x + C3z + C4u . (A.12) 

The implementation will use the equations obtained by substituting 

Eq. A.12 into the 1ast two terms of Eq. A.ll~ 

(A.13) 

Note that the controller is a low-pass filter. Thus, the region 

where the penalty on the state is small and the penalty on the 

control is high has reduced control activity. This behavior 

is typical of frequency-shaped control laws. 

Notes: 

1. The positive-semidefinite matrices A and B, 
provided they are functions of w2 , may always be 
decomposed to convert a frequency-shaping problem 
into a modified LQG problem. 

2. A standard Riccati equation needs to be solved to 
obtain the solution to the frequency-shaping 
problem. 

3. The resulting controllers are usually dynamic and 
have memory. In fact, frequency-shaping is achieved 
through this memory. 

4. The frequency shapes allowed by the techniques of 
Ref. [9) are a ratio of the polynomials in w2 . A 
wide class of shapings may be approximated by such 
functions. 

5. The frequency-shaping techniques shown above for 
the control design problem may also be extended for 
state estimation (see the following section). 
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A.1 ROBUSTNESS TO MODELING INACCURACY 

Effects of inaccurate open-loop models on the closed-loop 

performance is mtnaged by injecting minimum control power at 

natural frequencies of unmodeled modes. We will discuss proce

dures for controlling model inaccuracies in the high-frequency 

region, although similar techniques are applicable for other 

regimes. 

The high-frequency robustness can be accomplished by modi

fying the state of the control weighting. The state weighting 

A(jw) may be made a decreasing function of frequency. Three 

of the possible forms for A(jw) are shown in the following: 

A(jw) 
1 A = 2 , (A.14) (1) 

w 

4 

(2) A( jw) 
Wo 

A = 
(W~+w2)2 

(A.15) 

A( jw) 
(w~+w2)2 

A w
1 

> Wo = 
(2 2)2 

, 
Wo + w 

(3) (A.16) 

To treat the frequency shaping of Eq. A.14, we define additional 

states x as follows: 

x = x (A.17) 

The performance index is 

(A.18) 

The c0ntrol law will be of the form 

u = (A.19) 
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The control gain C2 will ensure that the high-frequency 

response is minimized. This formulation resembles integral 

control. However, the weighting matrices used in the design 

are different. 

Spillover may also be reduced by placing high control 

weighting at high frequency. Examples of B(jw) which reduce 

high-frequency spillover are as follows: 

( 1) B(jw) = B , (A.20) 

(2) B(j w) = B , (A.21) 

(3) (A.22) 

The frequency-shaped parts of these weightings are reciprocals 

of the frequency-shaped parts of state weightings. To implement 

the weighting function of Eq. A.20, we define a vector u as 

(A.23) 

The performance index takes the form 

(A.24) 

The feedback control law will be 

or 

(A.25) 

99 



This control law is shown schematically in Figure A.1. 

During maneuvers and in other missions, there is often a 

need to not excite a particular mode at woo Minimization of 

model errors at one frequency Wo is achieved by: 

or by 

A( j w) = ( w2 - 2)2 
Wo 

B(j w) 
B = . 2 2)2 (w - Wo 

co 'tIAHD + 
p p SYSTEM 

+ 

! 
- Cilo(sI +IDOo-C2)rlCl STATE ~ [STI""TOR 

Figure A-1. A Frequency-Shaped Controller to Reduce 
High-Frequency Model Errors 

A.2 ROBUST STATE ESTIMATION 

(A.26) 

(A.27) 

The discussion will again address the estimation of low

frequency states when the high-frequency modes are not modeled. 

Extensions to other cases is straightforward. ~ 

In the linear systems of Eq. A.1, a linear transformation 

can be used to place all errors cause by unmodeled modes into 

the measurement equations. Note that when high-frequency modes 

are not modeled in the state equations, measurement errors in 

the modified system are also at high freqency. Therefore, the 

lumped modeling error at high frequency represents a high

frequency noise measurement with many peaks. 
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To derive a filter with desirable high-frequency behavior, 

we consider optimal estimation as the output of an optimization 

problem with the following performance index: 

J lim 
T-.ac 

T 

1 IT" T (w qw + v Rv) dt 
o . 

Again, conversion to frequency domain gives the following 

performance index: 

co 

J = I (w*Q(jw)w + v"R(jw)v) dw . 

_CIC 

(A.28) 

(A.29) 

The problem of model invalidity at high frequency is solved by 

making Q and R functions of frequency. 

Since all errors associated with model truncation are 

incorporated in t he measurements, we wi 11 consider fr('quency 

shaping only in R. High-frequency measurement spillover is 

controlled by increasing R(jw) at high frequency. We may 

select R(j(;) as: 

(w 2 + 2) 
Wo 

R( j w) = 2 R . (A.30) 

We can 

and 

where 

define a new 

y + W Y o = 

Wo 

measurement 

y 
= Hx + v , 

x + J:' x o = 

y as 

(A.31) 

(A. 32) 

(A.33) 
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The state estimator is of the form: 

x = Fx + Gu = K(y - Hx) 

x = -w x Wo x + w K(Y Hi) 
0 + o . 

y = -w oy + woy . (A.34) 

This filter is shown schematically in Figure A~2. Note that 

a standard filter is obtained by setting K to zero and 

w /(s + lli) to one. In this formulation, filtered measurements o 0 

are compared with filtered states. The eigenvalues of the closed-

loop system are, in general, in the low-frequency region. Low

freque~cy, closed-loop eigenvalues reduce excitation of high

frequelicy modes through feedback in the state estimator. The 

filter shapes may be modified to provide any desired roll-off. 

The fi ter, of course, becomes more complex as faster roll-off 

is obt ,ined. Note also that the trans::er function between the 

estima ed state and the measurements has at least two more poles 

than z -rose This filter has wide applicability in the design 

of pra -t ical st ate est imators. 
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A.3 DISTURBANCE REJECTION IN FLIGHT VEHICLES 

Aircraft and rotorcraft are subject to high disturbance 

levels caused by engines or moving subsystems during in flight 

reconfiguration. In addition, turbulence, thrust variations, 

and density variations are external disturbance sources. These 

sources are nonwhite. Frequency-shaping methods may be applied 

to minimize the effect of these disturbances on the aircraft. 

Procedures for realizing disturbance rejection are shown in the 

following. 

Consider a configuration transition of the F-111. The 

primary disturbance produced by the transition is at one frequency 

(typically the rotational frequency) and possibly its harmonics. 

Let the disturbance frequency be w. Suppose we wish to minimize 

the effect of this disturbance on output y. This disturbance 

rejection can be realized by including the following term in 

the performance index: 

1 T 
2 -2 2 Y Ayy 

(vJ - w ) 
(A.35) 

Note that the output penalty goes to infinity at the disturbance 

frequency. Thus, the impact of disturbance on the output is 

minimized. 

The implementation of this frequency-shaped weighting 

requires definition of additional states as follows: 

The performance index will take the form 

J = lim 
T 

(A.36) 

(A.37) 
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and the control law is 

u = 

The flowchart for this control law is shown in Figure A-3. 

The control formulation given above may be extended to 

include disturbance at other frequencies or over a frequency 

band. In each case, as shown in Figure A-3, there is memory 

in the control portion of the feedback. 

A.4 SUMMARY 

The application of frequency-shaping methods to flight 

vehicles leads to a linear controller with memory. However, 

the additional states needed to emulate frequency-dependent 

weights increase controller order. Software needed for these 

controller designs is similar to that for standard LQG problems. 

CO!ofo'A'i D + u 

+ 

SYSTEM 
y 

STATE 
ESTl~TOR 

Figure A-3. A Frequency-Shaped Controller to Eliminate the 
Effect of Disturbance at w on Output y 
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APPENDIX B 

MATRIXX: A DATA ANALYSIS, SYSTEM IDENTIFICATION CONTROL 

DESIGN AND SIMULATION PROGRAM 

Robert Walker, Charles Gregory, Jr., and Sunil Shah 

MATRIXX is an interactive software system to perform a com

plete cycle of steps starting from data analysis to system iden

tification, contr.ol design, simulation and evaluation. It is 

built on a user-friendly interpreter incorporating powerful 

matrix operations. State-of-the-art algorithms for linear 

system analysis, differential equation solutions, and Fourier 

transformation are included and can be called from the interpreter 

by simple commands. The package offers four major features 

(1) Powerful interpreter, simple command structure, good 
graphics capability with most "book-keeping" chores 
handled by the software, 

(2) State-of-the-art numerical algorithms, which allow 
solutions to high order problems, 

(3) User transparent file management with uniform and 
consistent format, and 

(4) Efficient implementation with a stack to require minimum 
memory and computation resources. 

Basic algorithms for linear system solutions, eigensystem 

decomposition (including reliable determination of the Jordan 

form), singular value decomposition (SVD), QZ decomposition, 

and matrix algebraic operations are implemented as language 

primitives. Many of the primitives are inherited from MATRIXX's 

predecessor MATLAB, developed by Moler. 
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The interpreter can execute higher level constructs called 

macros and command files enabling construction of multi-level 

hierarchical structures. The command files are typically less 

than ten lines long and consist of interpreter primitives or 

other higher level constructs. Creation and modification of 

specific design and analysis procedures is easy because of the 

rich set of primitives and the hierarchical structure. 

A set of command files and macros provide specific environ

ments, such as data analysis and identification, control design 

and analysis, and simulation. 

Data analysis and identification can be performed very effi

ciently and easily in MATRIXX' Tied with a flexible graphics 

package, MATRIXX provides a production environment for batch and 

recursive identification methods. A universal interface with 

external simulations is provided to facilitate data transfer. 

Data can be censored, detrended and analyzed in MATRIXX' Batch 

procedures include the standard regression methods with analysis 

of variance and step-wise regression. State-space and nonlinear 

batch maximum likelihood procedures are also available. Recursive 

algorithms such as the recursive maximum likelihood, extended 

Kalman filter with Ljung's modification, and recursive instru

mental variable method are implemented. All covariance factori

zations and updates are in U-D form for numerical reliability. 

Non-parametric batch and semi-batch methods using the FFT are 

provided for auto/cross covariances/spectras. Lattice updates 

for ARMAX systems are available. Adaptive control algorithms 

for multivariable systems using U-D updates can be designed 

using simple commands. 

In MATRIXX' control design can be based on any of the 

following: 

(a) Linear Quadratic Gassian (LQG) approach, 

(b) Methods based on A-B invariant subspaces, 
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(c) Eigenstructure assignment and zero placement, and 

(d) Classical methods such as Nyquist and Bode. 

For the LQG problem, the algebraic Riccati equation is 

solved from extended Hamilton equations avoiding inverses, which 

are troublesome in the singular case. The equations are row 

compressed with an orthogonal transformation followed by the 

QZ pencil decomposition and a backward stable ordering of the 

eigenvalues. 

Meaningful extensions to LQG methods require inclusion of 

dynamics of reference, disturbances, sensors, and actuators. 

Appending of dynamics in frequency-shaped control design or 

model-following techniques involves forming augmented equations, 

which is easily accomplished with MATRIXX primitives. Use of 

frequency-shaped costs, with singular value plots for robust

ness evaluation, allow incorporation of engineering judgment 

in the control design. 

Evaluation tools for linear systems include frequency 

response, power spectral density plots, time reponses, trans

mission zeroes and individual transfer function zeroes. The 

principal vector algorithm (PVA) primitive for numerically 

reliable extraction of the Jordan Form (with discriminatory 

rank deflation of root clusters) is very useful in modal analy

sis of open-loop systems of vehicles and structures. PYA 

permits computation of residues or partial fraction expansions 

of multivariable systems. Extraction of the Kronecker indices, 

supremal (A,B) invariant subspaces and the Kalman decomposition 

is performed using the SVD, QR and the QZ algorithm. 

Simulation of stiff differential equations is performed 

with Gear's software. Linear system responses are computed 

efficiently from the residues. 

Use of "chopped arithmetic," i.e., using various effective 

machine word-lengths can provide performance evaluation of 

on-board small word-length control system implementations. 
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Numerical reliability and stability are important in all of 

the analysis environments described above. Primitive matrix 

operations are based on the best available numerical software 

drawn from EISPACK, LINPACK, and recent research in numerical 

techniques. 

Reporting and control of numerical errors is performed in 

several ways: Estimates of the problem condition number and 

the algorithms condition number are available for many of the 

primitives in MATRIXx. When requested, MATRIXx provides an 

estimate of the problem condition, the algorithm condition and 

the solution accuracy when such an analysis has been presented 

in the current literature. If an error analysis has not been 

performed rigorously, condition estimates using varying word 

length arithmetic and perturbed initial data can be requested. 

The program is coded in ANSI-77 FORTRAN and will run on 

any system allowing interactive execution of FORTRAN. The few 

machine dependent features are implemented separately for most 

popular operating systems. An implementation with 250K double

precision complex elements is available for VAX 11/780. System 

orders up to 150 can be handled easily within the storage 

capacity of the computer and numerical accuracy of the algorithms. 

Most algorithms access memory in a linear fashion, so that page

swapping is not unduly increased in the virtual memory implemen

tation. 

In summary, MATRIXX provides a system which minimizes engi

neering and programming resources required for the complete 

cycle of system identification, control design, and validation, 

yet provides the flexibility needed in an applied research 

environment. 
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APPENDIX C 

FLIGHT TEST TRAJECTORY CONTROLLER USERS' GUIDE 

AUTOTRIM CAPABILITIES 

In the version of the NASA-Dryden Simulation SIMII modified 

for flight test trajectory control (FTTC), the autotrim function 

is quite important since the linear models depend on achieving 

trim. The previous four autotrim options are available with two 

new autotrims for steady coordinated turns. Level turns require 

a type of dynamic trim, since there are constant body angular 

rates, rather than zero angular rates. One of the turn t)"ims 

specifies attitucte, effective roll angle and angle of attack, 

adjusting the turn rate and velocity to achieve trim. The second 

turn trim is vice versa, specifying turn rate and velocity, 

adjusting the effective bank angle and angle of attack to achieve 

trim. A summary of constrained and adjusted variables for all 

six trim conditions is shown in Table 1 below. 

Table 1 SIMII Trim Options 

Trim Type Program Constrained Adjusted 
Mnemonic Variables Variables 

Normal 
NORMAL. also V PLA,a,S 
,~~~~~~' 

Throttle THRP PLA V,a,8 

Angle-of-Attack ALP a PLA,V,S 

Sideslip BTA 8 a,V,</l 

. PLA,a, Turnrate PSIDOT l./Jo'V </lL(=>l./J,8,</l) 

Effective roll 
angle ( angle of 

. 
lift vector from PHILFT a,</lL(=>l./J,8,</l) PLA,V,l./J 

the vertical) 
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The gains which adjust the unconstrained variables at each 

autotrim iteration can be entered as input. Table 2 shows the 

appropriate user input variable and the associated default value 

for zero input. 

Table 2 Autotrim Adjustment Gains and Input Parameters 

~ 
Adjusted 

0 

V . bl Variables Normal Throttle a (3 1/J <PL arla e 
Location 

UX(73) PLA( .005) PLA PLA PLA 
0 

UX(74) a,(3(.Ol) a a 1/J 

UX(75) V(l. ) V 

UX(76) a,(3(.l) (3 <P(.1) <P I· 

UX(77) V(.3) I V 
I 

UX(79) Starting value for PLA (Default = 0) 

UX(80) Maximum number of iterations (10,000) 
0 

UX(89) 1/J o (Turn rate trim option) => p ,q ,r 
000 

UX(90) <PL (Effective bank angle opt ion) , 

a => 1/J ,e ,<p o 000 

The trim values can be preset to desired values without 

going through the autotrim iterations with the subroutine TRMSET. 

Values of the UX array are used as input. The association of 

variables and locations of UX are documented in this subroutine, 

included in Appendix D. 

A summary of the user logical flags useful in FTTC design 

and evaluation are given below in Table 3. 
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Table 3 SIMII-FTTC Option Flags 

Logical Input Flag Option 

LX(20) = T Find Stability Derivatives (see 
Aerodynamic Linearization section) 

LX(21) = T Stop SIMII after finding stability 
derivatives 

LX(22) = T Bypass trim but set all trim values 
(invokes subroutine TRMSET) 

LX(23) = T Print out intermediate autotrim 
convergence data 

LX(24) = T FTTC closed loop simulation (additional 
inputs required (see Tables 4 and 5) 

LX(25) - LX(28) = T Invoke a pilot model for, respectively, 
the Aileron, Elevator, Rudder, and 
Thrust commands 

AERODYNAMIC LINEARIZATION 

When the simulation SIMII has been trimmed, all the stability 

derivatives can be requested as follows: 

LX(20) = T 

LX(21) = T 

Computes all the stability derivatives, 

Stops the simulation after the stability 
calculations 

The six aerodynamic force and moment coefficients and the inde

pendent variables that affect them are shown in Table 5-2, the 

zoom and pushover trimmed example. Both stability axis and 

body axis variables are shown. The equations in SIMII are imple

mented with the force coefficients in the stability axes and 

moment coefficients in body axes. The linearization procedure 

perturbs the appropriate combinations of variables in stability 

axes to get the body axes derivatives. The effect of a center

of-gravity shift is included and the divided differences of the 

nondimensional coefficients are converted to dimensional stability 

derivatives before output. 
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The subroutine STABDR outputs the trimmed nondimensional 

coefficients along with the dimensionalizing coefficients (for 

checking total force and moment balances), sets up consistent 

velocity perturbations, and calls the routine SDCALC for each 

state variable of interest. SDCALC saves the initial coefficients 

in another six element vector, perturbs the passed state variable 

of interest, recalls the SIMI! routine CCALC to find the per

turbed six coefficients, finds the divided differences, appro

priately dimensionalizes these stability derivative approximations, 

and prints out the state variable with its six stability deriva

tives. 

FTTC INPUT AND OUTPUT 

FTTC simulation is invoked by inputting LX(24) = T, with 

the necessary inputs summarized in Tables 4 through 6. Of the 

various blocks of the flight test trajectory controller (see 

Figure 6-1), the FTTCOM common block is used for linear models 

and the UX array is used to store the outputs of the various 

stages of the controller. Thus, time histories of the internal 

variables of the controller can be output for plotting. 

Table 4 FTTC Input and Output Variables 

Variable Storage Location 

Aircraft Model Trim Values US (11) - US(25) 

Sensor Noise Standard Deviations US(26) - US(40) 

Trajectory Constants US(41) - US(55) 

Compensator to SIMII Unit Conversions US(56) - US(59) 

Sensor Outputs UX(11) - UX(25) 

Trajectory Command Generator Outputs UX(26) - UX(40) 

Compensator Inputs UX(41) - UX(55) 

Compensator Outputs UX( 56) - UX(59) 
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The input for the compensator and pilot models is accom

plished by FTTCIN, a subroutine called where the control input 

data is read, CNTRIN. Thus the FTTC input comes immediately 

after Group 11 data cards, the autotrim variables. The necessary 

FTTCIN cards are given in Table 5 below. 

Table 5 FTTC Linear Model Input 

Card Column Format Description 

1 1-5 215 Dimension of the compensator dynamics 
6-10 matrix (Fc) , and the number of com-

pensator inputs (Le. , NZ the number 
of sensors) 

2 1-60 3D20.13 Fc , Gc ' Hc , J c , by rows (Gc by 
columns) , a new card for each row 
(column). Note that there are four 
compensator outputs for the four--
principal controls 

3 1-5 15 Dimension of the first pilot model 
(e.g. , FPA) . 

4 1-60 3D20.13 FPt' GPt' HPA, JPA by rows (G by 
co umns , a new card for each row 
(column). Note that each pilot model 
is an independent SISO system 

5 

· Additional pilot models . . . . 
· 
· 

Immediately following the FTTC linear system input, the 

necessary FTTC constants are input as shown in Table 6. 

I 

! 
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Table 6 FTTC Input Parameters 

Card Column Format Description 
Variable 

Type Number Locations 

1 1-5 215 Sensor and pilot model NSAMPZ, 
6-10 sampling intervals (Le. , NSAMPP 

multiple of simulation 
integration step) 

2 1-50 5El0.3 Aircraft trim values, US(ll) -
YT(NZx 1) trim values plus US(25) 
four control trim values 

3 1-50 5El0.3 Sensor noise standard devia- US(26) -
tions (assuming uncorrelated US(40) sensors) 

4 1-5 15 The number of trajectory NTRAJP 
parameters 

5 1-50 5El0.3 Trajectory parameter US(41) -
constants US(55) 

6 1-50 5El0.3 Compensator to SIMII control USC 56) -
unit conversions US(59) 
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APPENDIX D 

FORTRAN LISTINGS FROM SIMII-FTTC 

The new or significantly changed subroutines of the NASA 

DRC F-15 SIMII simulation are listed by function below. Their 

calling sequence and function are shown in Figure 6-2. The 

FORTRAN listings follow chronologically. 

Autotrim Capabilities 

AUTOTR 

TRMCHK 

TRMSET
1 

Adjust variables to achieve desired initial 
condition 

Check force and moment balances 

Set all trim values to desired variables 

Aerodynamic Linearization 

STABDR1 Perturb each state variable of interest 

SDCALC1 Compute six stability derivatives for each 
state variable 

FTTC Simulation 

FTTC1 Integrate flight test trajectory control law 

SENSOR1 Extract SIMII variables and add sensor noise 

TRAJGN1 

PROPAG 

MATRIXX 

MTOSIM 

SIMTOM 

Trajectory command generator 

Propagate discrete compensator and pilot models 

Control Design Program Interface 

Translate MATRIXX data files with compensator 
and pilot linear models to SIMII-FTTC compatible 
file format 

Translate SIMII time history file to MATRIXX 
compatible file format for plotting 

lIJjsting attached to this report 
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SUBROUTINE TRHSET 
Hlf'LICIT DOUBLE PRECISION (A-H,Q-Ii 
LOGICAL LX 

C ---- TRHSET SIHULATES A TRIKMED CONDITION BY SETTING THE VALUES 
C FROM UX(21)-UXi6a, 
C 

COKMON /'iAR[IAT / UX (90), LX (50 i 
COilMON IDilVOUTI F(l3)'DF(13) 
CDillION /SIMOUTl AMCH,OBAR,GKA,DEl,UB,VB,WB,VEAS,VCAS 
COIIMON /CONTRl/ D(uDAR,[IAL,DFF ,DH,DHR,DHL,DT ,DR,DSB, THRST, THR,OHGc: 
COtItlON /CLCOUT/ Cl,CtI,CN,CD,CLFT,CY 
COKMON /CONPOS/ F1(9),DSBP,DFP,F2(4) 
COItKON iENG1i5F'/ F'OSNZL,POSNZR,RPHL ,RPHR , TEMPL , TEMF'F: , 

FFLOWL,FFlOWR,FONTYl 
LOGICAL FOUT,NOWC 
COIII'ION IENGINFI FONTY,FFLOW,D,FOUT,NOWC,SINETA,COSETti 
DAr" IITR/.0174S32/ 

---- UX :1-46 ARE F,DF 

F'; II ~ UX(20tI) 
10 DFlIi = UXi33tI) 

C ---- CONVERT TO INTERNAL UNITS ON ANGLE STATES 
IIO 20 1=6110 

:0 F(1).: FIII*IITR 
C ---- CONPOS VARItiBLES UX 48-56,57-60 

[10 30 1=1,9 
30 FI(I) ~ UXi47+Ii 

no 40 1=114 
40 F2(II = UX(S6tli 

C ---- CONTROL POSITIONS UX 01-64 
DA ~ UX (611 *DTR 
IIH = UX(6~)*IiTR 
DT .: UX(63)*IITR 
DR .: UX(64)*DTR 

C ---- ENGINE PARAMETERS UX 65-68 
FFLOW = UXi6S) 

c 

THRSl o UX(b6) 
FFLOWl .: UX(67) 
FFLOWR ~ UX(68) 

HI'ICH ~ uxm, 
VEAS ::; UX(72i 
RETURN 
END 
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SUBROUTINE STABDR 
IHPLICIT DOUBLE PRECISION (A-H,O-Z) 
LOGICAL NORHAL,lOHGIT,LATDIR,LEVEL 
COHHOH ISIMOUTI AHCH,OBAR,BMA,DEL,UB,VB,WB,VEAS,VCAS 
COHMON IAlTFUN/ (ilRHO,G,PA 
COHHON /SIMTYPI HORHAl,lOHGIT,LATDIR,LEVEL 
COHMON IliRVOUT/ F(ll) ,[IF(13) 
COHMON ICLCOUT / CL, CIII CN, CD, ClFT , C,( 
COMMON /CONTRlI [lA,DAR,DAL,DFF,DH,DHR,DHL,[lT,DR,DSB,THRST,THR,OMGE 
COMMON ISII'lACC/ AX,A'(,AZ,ANX,ANY,AHZ,AN 
COHI10N IFMCOEF I FlU 39) 
COMMON ITRIGFNI SIHALP,COSALP,SIHBTA,COSBTA,SIHPHI,COSPHI,SIHPSI, 

COSPSI,SIHTHA,COSTHA 
COMHON IDA TAl HI S,B,CBAR,AHSS,AIX,AIY,AIZ,AIXZ,AIXE 
COMMON ISTABCN/ QS,QSB 
EQUIVALENCE (T , F( 1)), 

(f' , F( 2»,(0 , F( 3»,(R , F( 4)), 
IV , F( 5)l,(ALP , F( 6»,(BTA , F( 7», 
(THA , F( B»),(PSI , F( 9»,(PHI , F(10»), 
iH , F(11»,(X , F(12),(Y , F(ll») 

C ---------- STABILITY VARIA8LE PERTURBATION VALUES 
IiA TA CVDEL, tiLPltEL, BTADEL,PDEl,QDEl ,RDEL, UDEL , VDEL,WDEL ,ANZDEl, 

ADOTDL,[lSBDEL,IiADEL,DRDEL,DHIlEL,DTDEL/16*.OOl/ 
DATA CVNAM,ANAM,BNAM,PNAH,DNAH,RNAH,UNAH,VHAM,WNAH,AZNAM,ADNAH, 

DSBNAH,DANAH,IIRNAH,IIHNAM,DTNAHI'VELO',/ALPA','BETA/,'P I, 
'Q ' ,. R I , 'U', , V ' , , W', , AtIZ I,' ALFD' , 'DSB " 
I Dr! I , I £iF: I , 'IIH I , , DT ';' 

C ---------- FIND DIMENSIONAL CONSTANTS 
QS = QBAR*S 
[I5B =- asnl 
wRITE(3,a,OO) AHSS,QBAR,QS,QSB 

3900 FORHATe/,' AMSS,QBAR,QS,QSB = ',4(lX,lPE12.5),/) 
WRITE(3,8910) CL,CH,CN,CD,CLFT,CY 

8910 FORMAT(' HONDIHENSIONAL CL,CH,CN,CD,CLFT,CY = ',/6(lX,lPE12.5),/) 
WRITE(3,8920) (FM(Ii,I=1,39) 

a920 FORMATeh' CONSTITUENT COEFFICIENTS-SEE COMHON FHCOEF' Il, 
. 16(1X,lPE12.5») 

C ---------- SET Uf' VELOCITY PERTURBATIONS 
CVDEl = V*VDEL 
UDEL = CVDEL 
VDEL = CVDEL 
IIDEL = CVDEL 
AK[lEL = CVDELI Ii 

C ---------- NOTE THAT STABILITY DERIV. ARE IN THE APPROPRIATE AXES 
WRITE I 3,9000) 

9000 FORHAT{/lDIHEHSIONAL STABILITY DERIVATIVES FOR',I, 
• 9X, 'CLBOD'( I, 7X, 'CM', llX, 'CHBOD'(', lX, 'CD', llX, 'ClFT' ,9X, 'CYSODY') 

C ---------- FIND LONGITUDINAL DERIVATIVES 
IFILATDIR) GO TO 100 

C ----AlPHA DER. 
CAlL SDCALC(Cl,ALPDEL,ALP,AlPDEL,Vl,Dl,.FALSE.,OrAHAK) 
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[ --.- Q DER. 
CAll SDCAlCiCL,GDEL,G,GDEL,Vl,Dl,.FALSE.,v,GNAH) 

C ---- W [lER. 
CALL SDCHLCiCL,WDEL,V,Dl,AlP,D2,.TRUE.,2,WNAH) 

C ---- AHZ [lER. 
CALL SDCALC(CL,AHZDEL,ANZ,AHZDEL,V2,D2,.FALSE.,0,AZNHH, 

C ---- ALPHADOT DER. 
CALL SDCALC(CL,ADOTDL,DF(6l,ADOTDL,V2,D2,.FALSE.,O,ADNAH) 

C ---------- DERIVATIVES FOR BOTH LONGITUDINAL AND LATERAL DER. 
100 CONTINUE 

C ---- VELOCITY DER. 
CALL S[lCALCiCL,CVDEL,V,CVDEL,AKCH,AKDEL,.TRUE.,O,CVNAHi 

C ---- U DER. 
CALL SIiCALC(CL,UDEL,V, [1!rHLP,D2,. TRUE. rl,UNAI1) 
---- DH [tER. 
CALL SDCALC( CL,DHDEL ,DHrDHDEL,DSB,DHDEL,. TRUE. ,O,IIHNAl1i 

C --•. ------- COMPUTE STRICTLY LitTERAL DERIVATIVES 
IFILONGIT) GO TO 200 

C ---- BETA DEF. 
CALL S[iCALC(CL,BTADEL ,BTA,BTADEL,V2,D2, .FALSE. ,O,BNAtO 

C ---- P DER. 
CALL S[lCALC(CL,P[lEL,P,PDEL,V2,D2,.FALSE.,O,PHAHl 

C ---- R DER. 
CALL 3DCttLC(CL,RIIEL,R,RDEL,V2, D2, .FALSE. ,·J,RNAIt) 

C ---- V DER. 
CALL SDCALCICL,VDEL,BTA,Dl,V2,D2,.FALSE.,3,VNAIt} 

C ---- [lA [lHi. 
CALL SnCALC(CL,DADEL,DH,DADEL,V2,D2,.FALSE.,I),DANAIt) 
---- [IF: DU .• 
CALL 3DCALC (CL, DRIIEL, DR, DRDEL, V2, D2, • FALSE. , I), DRNAH i 

C ---- DT DER. 
CALL SnCALC(CL,DTDEL,DT,DTDEL,V2,D2,.FALSE.,O,DTNAHi 

200 RETURN 
ENII 
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c ---------------------------------------------------------------------------
SUBROUTINE SDCALC(C,DElTA,VAR1,DELTA1,VAR2,DELTA2,HUlVAR,IBODY 

,NAHE> 
IHF'lICIT DOUBLE PRECISION (A-H,O-z) 
LOGICAL HULVAR 
INTEGER NAHE,IBODY 

C ---- /'IUlVAR :: F => ONLY ONE VARIABLE IS PERTURBED 
C T => PERTURB TWO VARIABLES 
C 
C ---- IBOIlY ,,0 => USE STAB. AXES FOR STAB. VAR. AND BOD'( AXES FOR BODY VAR. 
C 1 => PERTURB VT AHD ALPHA FOR U 
C 2 => PERTURB VT AND ALPHA FOR II 
C 3 =) PERTURB VT ANII BETA FOR V 
C 

DIMENSION C(6),CSAVE(bi,DC(6i 
COHHON ICGSHFTi DELX,DELY,DElZ 
COHMON IDRVOUTI F(13i,DF(13l 
COHMON iDATAINi S,B,CBAR,AHSS,AIX,AIY,AIZ,AIXZ,AIXE 
COHHON ISTIiBCNI as,QSB 
COHMON ITRIGFNI SINAlP,COSALP,SINBTA,COSBTA,SINPHI,COSPHI,SINPSI, 

COSF'SI ,SINTHA ,COSTHA 
EQUIVALENCE IV ,FiS)) 

C ---------- REINITAlIZE AND SAVE COEFFICIENTS 
CALL CCALC 
DO 10 I=-l,o 

10 CSAVEll) = C(I) 
C ---------- PERTURB VARIABlESWNE OR TWO) 

IF(IBODY .Ea. 0) GO TO 15 
GO TO(ll.12,13),IBOIlY 

C ---------- PERTURBATION FOR U---NOTE THAi V IS TOTAL V(VT) 
J.1 DELTAl = COSALF'fDElTA 

[lEU A2 :: -SINALF"DELT AI (V*COSBTA) 
GO TO 15 

12 fUTAl = SINAlP.DELTA 
DELTA2 = COSAlP.DELTA/(V*COSBTA) 
GO TO 15 

13 DELTAl = DELiA/COSBTA 
15 !JARl :: VARl + DELTAl 

IFi.NOT./'iULVAR) GO TO 20 
VAR2 = VAR2 + DElTA2 

20 CAll CCAlC 
C ---------- FIND DIVIIIED DIFFERENCES 

DO 30 1=-1,6 
30 DC(I) = (C(Ii-CSAVE(Ii)/DElTA 

C ---------- PREPARE TO ADD EFFECT OF C. G. SHIFT 
TERH = ([lC(4)'COSBTA'SINALP t DC(6i*SINBTA.SlNAlP + DC(S>*COSALPa 

US 
TERH3 = QS*(DElX*(DC(4).SINBTA - DC(b)lCOSBTA) -

• DEl)'*iDCW.COSBTA*COSALP t DCW.SIHBTA.COSALP - DC(5)*SINALPi) 
C ---------- MAKE DERIVATIVES DIKEHSIONAL 

DC(1) =- (DC(l)'USB + TER/'I.DELY)/AIX 
DC(2! 0 (DC(2)lQStCBAR - TERH*DELX)/AIY 
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De(3) : (DC(3)IOSB + TERH3)/AIZ 
1IC(4) : -DCWlOSiAHSS 
DC(~) = -DC(S)'QS/AHSS 
{lCW = DC (6).OS/AHSS 

L ---------- TRANSFORM Cl AND CD TO BODY AXES 
1F(I80DY .EO. 0) 60 TO 40 
DClB = COSAlP'DC(S) - SINALP'DC(41 
DCD = SINALP'DC(S) + COSAlP'DC(4) 
DC(S) = DClB 
DC(4) = DCD 

C ---------- RESTORE THE INITIAL VALUES 
4i,) DO 50 I=lr6 
50 C(l) ~ CSAVE(I) 

VAR1 = VARI - DElTA1 
IF(HULVAR) VAR2 = VAR2 - DElTA2 

C ---------- PRINT OUT STABILITY DERIVATIVES 
WRITE(3,,000) NAHE,DC 

~OOO FORHHT(1X,A4,6(1X,E12.S» 
RETURN 
EIUI 
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SUBROUTINE FTTCCITIKE) 
IHPLICIT DOUBLE PRECISION (A-H,O-Z) 
INTEGER ITIHE 
COHliON iFTTCOH/FTT(200),IFC{3),IGC(3),IHC(3),IJC(3), 

IFPA(3),IFPE(3),IFPR(3),IFPT(3),IWK(3i, 
HSAHPZ,NSAHPP 

C FTTC IHPLEHENTS A FLIGHT TEST TRAJECTORY CONTROL LAW AT 
C INTEGRATION INTERVAL ITlliE 
c 
C COMPENSATOR liND PILOT HODElS ARE STORED IN ARRAY FTT WITH 
C POINTER INDICES 
C I.E. IFC(U ROW DIMENSION OF FC (COMPENSATOR IIYNAHICS) 
C IFC(2) COL DIMENSION OF FC 
C IFC(3) LOCATION IN FTT WHERE FC IS STORED 
C 
C 
C 
C IFF'T(l) ROW DIH. OF FPTH(PILOT DYNAKIC HODEL FOR THRUST) 
C IFPTi2) COL DIM. OF FPTH 
C IFPT(3) LOCATION IN FCC WHERE FPTH BEGINS 
C NOTE: FOR THE FIVE LINEAR KODELS THE CONVENTION IS TO STORE 
(; F,G,H,J,X,,{ (HODEL STATE AND OUTPUT> IN COItMOH FTT 
C 
C rlSAHF'Z TIHE INCREHENT FOR UPDATING HEASUREHENTS 
C NSAHPP TIME INCREIiENT FOR UPDATING PILOT HODEL 
c 
c 
c 

c 
C 
c 
C 
C 
C 

c 

HIRCRHFT HODEL TRIH VALUES 
SENSOR NOISE STANDARD DEVIATIONS 
TRAJECTOR'{ CONSTANTS 
UNIT CONVERSIONS (COHPENS. TO SIHII) 

SENSOR OUTPUTS 
TRAJECTORY COHHAND GENERATOR OUTPUTS 
COMPENSATOR INPUTS 
COMPENSATOR OUTPUTS 

usc 11 )-US(25) 
US(26)-US(40) 
US(41i-USC5S) 
US(S6)-US(S9i 

UX (11)-UX (25 i 
UX(26)-UX(40) 
UX(41)-UX(S5) 
UXCS6)-UX(59) 

COIlIiON /CONPOSI [lAP, FLAT, DATRIIt.I1EP,FLDthDETRIH,DRP,FPED,DRTRIIh 
DSBP,DFP,PLAPL,PLAPR,THSL,THSR 

COHMON IVARIIAT/ UX(90)'LX(SO) 
COHHON IVARSIII/ US(90),LS(50i 

C ---------- INITIALIZE INPUT/OUTPUT HISTORY VARIABLES 
IFiITIHE .Gi. 1} GO TO 10 
[10 5 1;'11,59 

~ UX(J)" 0.[10 
10 CONTINUE 

C ---------- GENERATE TRAJECTORY COMMANDS 
C 

IF(MOD(ITIIIE-l,NSAHPZ) .ED. OJ CALL TRAJGN(US(41),UX(26» 
C ---------- UPDATE HEAS 
C 

c 
C 

IF(HOD(ITIHE-l,NSAMPZ) .ED. 0) CALL SENSOR(UX(11i,US(11),UX(26), 

---------- PROPAGATE THE CO~ENSATOR 



C 
30 IX=IJC(3) t IJC(I)'IJC(2) 

IY=IX t IFC(1) 
CALL PROPAG(FTT(IFC(3»,IFC(I),FTT(IGC(3»,IGC(2),FTTiIHC(3I), 

IHC(I),FTT(IJC(3»,FTT(IX),UX(41),FTT(IY),FTT(IWK(3»)) 
C 
C ---------- SAMPLE AND HOLD THE COHPENSATOR OUTPUT 
C 

IF(HOlI(ITIHE-l,NSAI1PP) .NE. 0) GO TO 40 
DO 35 1=1,4 

35 UX(SStI) = FTT(IY-ltI) 
C 
C ---------- PROPAGATE THE PILOT MODELS 
C 

40 IF(.NOl. LX(2S» GO TO SO 
C ---------- AILERON PILOT MODEL 

I& = IFPA(3)tIFPA(I)'IFPA(2) 
IH = IG t IFP"(I) 
IX = IH t IFPA(I) + 1 
IY = IX t IFPA(l) 
CALL F'ROPAG(FTTlIFPA(3», IFPA( 1) ,FTTI IG),1 ,FTT (IH), lIFH (IX-I), 

FTT(IX),UX(S6),FTT(IY),FTT(IWK(3») 
C ------ ADD AIC TRIM TO COMPo OUTPUT 

DAP = FTT(IY)'US(56) t US(11tNZ) 
C 

50 IF(.NOT. LX(26» GO TO 60 
C ---------- ELEVATOR PILOT HODEL 

16 = IFPE(3)tIFPE(1)'IFPE(2) 
IH = IG t IFPE(l) 
IX = IH t IFPE(l) + 1 
IY = IX t IFPE(l) 
CALL f'ROPAG(FTTI IFPE(3» ,IFPE(1) ,FTTI IG), lIFTT< IH),1 ,FTT<IX-l), 

FTT(IX),UX(S7),FTT(IY),FTT(IWK(3») 
C ------ ADD A/C TRIH TO COMPo OUTPUT 

DEP = FTT(IY)'US(S7) t US(12tNZ> 
C 

60 IF(.NOT. LX(27» GO TO 70 
C ---------- RUDDER PILOT HODEL 

IG = IFPR(3)tIFPR(1)'IFPR(2) 
IH = 16 t IFPR(li 
IX = IH t IFPR(l) t 1 
IY = IX t IFPE(I) 
CALL PROPAG(FTT{IFPR{3»,IFPR(I),FTT{IG),I,FTT(IH),I,FTT(IX-1), 

FTT(IX),UX(SS),FTT(IY),FTT(IWK(3») 
C ------ ADD AiC TRItt TO COHF'. OUTPUT 

DRP = FTT(IY)au5(S8) + US(13tNZ) 
C 

70 IF(.NOT. LX(2S» GO TO SO 
C ---------- THRUST PILOT MODEL 

16 = IFPT(3)tIFPTil)'IFPT(2) 
IH = IG t IFPT(l) 
IX = IH t IFPT(l) + 1 
IV = IX t IFPT(l) 
CALL PROPAGiFTT(IFPT{3»,IFPT(li,FTT(IG),I,FTT(IH),1,FTT(IX-1), 

FTT(IX),UX(S9),FTT(IY),FTT(IWK(3») 
C ------ ADD AIC TRIM TO COHP. OUTPUT 123 

THRP = FTT(IY)tuS(S9) + US(14+NZ) 



124 

C 
80 CONTINUE 

C 
RETURN 

C 
ENTRY FTTCIN 

C 
C ---------- READ COMPENSATOR HATRICES 
c 

C 

c 

READ(1,lOl) IFC(l),16C(2) 
101 FORHAT(lbIS) 

IFC(2i = IFCm 
16C(1) = IFC(1) 
IFC(3) = 1 
IGC(3) : 1 t IFC(l)*IFC(2) 
IHC(1) = " 
IHC(2) = IFC(1) 
IHC(3i = 16C(3) tI6C(1)*16C(21 
IJC(1) == " 

IJC (2 I ~ IGC! 2) 
IJC(3) = IHC(3) t IHC(1)*IHC(2) 
lolA = IFC(1) 
NZ = 16C(2) 
CALL READHA<FTT ,NA,NA,NA,. TRUE., / (3D20.13) '} 
CALL READHA(FTT(I6C(3}),NA,NA,I6C(2),.FAlSE.,/(3D20.13i 
CALL READHA(FTT(IHC(3)),4,4,NA,.TRUE.,'(3D20.13) ') 
CALL REA[lHA(FTH IJC(3)),4,4, IGC(2},. TRUE.,' (3D20.13) ') 

WRITE(3r103) 
103 FORHAT(/,' ----- FTTC COMPENSATOR HODEL') 

CALL WRITHA(FTT,NA,NA,NA,'FC ') 
CALL WRITMA(FTTiIGC(3),NA,NA,IGC(2},'6C ') 
CALL WRITHA(FTH IHCm lr4,4,NA, 'HC ') 
CALL WRITHA(FTT(IJC(3)),4,4,I6C(2),'JC ') 

.RITE(3,B900) (LX(24tl),1=1,4) 

I' 
I 

8900 FORHAT (/,' PILOT HODELS tiRE ACTIVE FOR THE FOLLOWING CONTROLS- / ,;, 
.5X,;DAP ',L1,/,SX,'DEP I,L1,/,5X,/DRP ',Ll,l, 

C 

.5X, 'THRf' ',Ll) 
1ST = IJC(3)tIJC(l)*IJC(2)tIFC(1)t4 

IF(.NOT. LX(25)) GO TO 90 
WRITE(3,9010) 

9010 FORHAT!;,' ---- AILERON CONTROL PILOT HODEL HATRICES') 
READ(1,l01) IFPA(l) 
NA = IFPA(1) 
IFF'A(2) = HA 
IFF'A(3) = 1ST 
CALL READHA(FTT<ISTl,NA,NA,NA,.TRUE.,'(3D20.13) 'i 
CALL WRITKA(FTT(IST),NA,NA,NA,'FPA 'i 
H2 = NA*NA 
CALL READHA(FTT(IST+N2),NA,NA,1,.FALSE.,'(3D20.13) '} 
CALL WRITHA(FTT(IST+N2),NA,NA,1,/6PA ') 
CALL READHA(FTT(ISTtN2tNAi,1,1,NA,.TRUE.,'(3D20.13) 'I 
CALL WRITHA(FTT(ISTtN2tNAi,1,1,NA,/HPA ') 
CALl READKA(FTT<ISTtN2t2*NA)' 1, 1,1,. TRUE.,' (3D20.13) 'i 
CAll WRITHAIFTT(ISTtN2t2lHA),1,1,1,'JPA ') 



C 

c 

1ST: ISTtN2tltNAt2 

90 IF(.NOT. LXi26}) GO TO 100 
WRITE i 3, 9020) 

9020 FORHAT(/,' ---- ELEVATOR CONTROL PILOT HODEL HATRICES') 
READ<1110li HA 
IFPE(1) : NA 
IFPE(2i : NA 
IFPE(3) := 1ST 
CALL READHA(FTT <IST),H{hNA,NA,. TRUE.,' (3D20.13) ') 
CALL WRITHA(FTT(IST),NA,NA,NA,/FPE ') 
,,2 = HAlNA 
CALL READHA(FTT(ISTtH2),NA,NA,1,.FAlSE.,'(3D20.13i ') 
CALL WRITKA(FTT(ISTtN2),NA,HA,1,'GPE ') 
CALL READHA(FTT(ISTtH2tNA),1,1,NA,.TRUE.,'(3D20.13) ') 
CALL WRITHA(FTT(ISTtN2tNA),1,1,NA,'HPE ') 
CALL READHA(FTT(ISTtH2tNA*2),1,1,1,.TRUE.,'(3D20.13) ') 
CALL WRITHA(FTT(ISTtN2t2.NA),1,1,1,'JPE ') 
1ST = 1ST tN2t3*HAt2 

100 IFi.NOT. LX(27» GO TO 110 
WRITE i 3,9030) 

9030 FORHAT(/,' ---- RUDDER CONTROL PilOT HOIlEl HATRICES') 
READ( 1 dOl) NA 
IFPR(1) = NA 
IFF'R(2i : NA 
IFf'R(3) = 1ST 
CALL READHA(FTT(IST),NA,NA,NA,.TRUE.,'(3D20.13) ') 
CALL WRITKA(FTT(IST),NA,NA,NA,'FPR ') 
N2 = NA.NA 
CALL READHA(FTT(ISTtN2),NA,NA,1,.FAlSE.,/(3D20.13) ') 
CALL WRITKA(FTT (ISHH2),NA,NA,lr 'GPR') 
CALL READHA\FTT(ISTtN2tNA),1,1,MA,.TRUE.,'(3D20.13) ') 
CALL WRITHA(FTT(ISTtH2tNA),1,1,NA,/HPR ') 
CALL READKA(FTT(ISTtN2t2*NA),1,1,1,.TRUE.,' (3D20.13) ') 
CALL WRITHA(FTT(ISTtH2t2*NA),1,1,1,'JPR ') 
1ST = 1ST + N2t3*HAt2 

C 
110 IF(.NOT. LX(2B») GO TO 120 

WRITE(3,9040i 
9040 FORHAT(;,' ---- THRUST CONTROL PILOT HOIlEL HATRICES') 

READil dOl) NA 
IFf'T<ll = NA 
IFPT(2) : NA 
IFPT(3) = 1ST 
CALL READHA(FTHIST),HA,NA,NA,. TRUE.,' (3D20.13) ') 
CALL WRITKA(FTT(IST),NA,MA,NA,'FPT ') 
N2 : NA*MA 
CALL READKA(FTT(ISTtH2),NA,NA,I,.FAlSE.,'(3D20.13) ') 
CALL WRITHA(FTT(ISTtN2),NA,NA,I,/GPT ') 
CALL READHA(FTT(ISTtN2tNA),I,I,NA,.TRUE.,'(3D20.13) ') 
CALL WRITKA(FTT(ISTtN2tNA),1,I,NA,'HPT ') 
CALL READHA(FTT(ISTtH2t2.NA),1,1,1,.TRUE.,'(3D20.13) ') 
CALL WRITHA(FTT(ISTtN2t2*NA),1,1,1,'JPT ') 
1ST = ISTtN2tNAl3t2 

C 125 
120 CONTINUE 
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1111(3) = 1ST 

c 
C ---------- FTTC INPUT PARAHETERS 
C 

C 

c 

c 

c 

READ(1,101) NSHHPZ,NSAHPP 
WRITE(3,108) HSAHPZ,NSAHPP 

108 FORHAT(/,' ---- SAHPLING KULTIPLES OF INTEGRATION TIHE FOR THE',/ 
COMPENSATOR AND PILOT',lOX,2IS) 

WRITE(31109) 
109 FORMAT(/,' ---- AIRCRAFT TRIM VALUES') 

CALL READHA(US(11),1,1,NZ+4,.TRUE.,'(SEI0.3) ') 
CALL WRITHA<US<11ir1rl,NZ,'YTRH') 
CALL WRITHA(US(11+NZ),1,1,4, 'UTRH') 

WRITE(3rlO7> 
107 FORHATU,·· ---- SENSOR NOISE STANDARD DEVIATIONS') 

CALL READHA(US(26),1,1,NZ,.TRUE.,'(5EI0.3) ') 
CAll WRITHA(U5(26),1,1,NZ,'RZ ') 

READil,101) NTRAJP 
WRITE(3,106) 

106 FORHAT(/,' ---- TRAJECTORY PARAHETERS') 
CAll READHA(US(41),1,1,NTRAJP,.TRUE.,'(5EI0.3) ') 
CAll WRITHA(US(41),1,1,NTRAJP,'TRAJ') 

WRITE(3r10S) 
lOS FORHA T (;" ---- CONTROL UNIT CONVERS IONS (COHP. TO SI HII ) , ) 

CAll READHA(US(S6),1,1,4,.TRUE.,'(SEI0.3) ') 
CALL WRITHA(US(S6),1,1,4,'UNIT'} 

C ---------- INITIALIZE FOR SENSOR NOISE 
N = 0 

C 
5T = GRAHD(N) 

RETURN 
END 



C 

SUBROUTINE SENSOR(Z,ZTRIH,ZC,EC,RZ,NZ) 
IMPLICIT DOUBLE PRECISION (A-H,D-Z) 
DIMENSION Z(l),ZTRIH(l),ZC(l),EC(l),RZ(l) 
COHMON /DRVOUT/ F(13lrDF<13) 
COHMON /SIMOUTI AHCH,QBAR,GMA,DEL,UB,VB,WB,VEAS,VCAS 
COMHON /SIKACCI AX,Al,AZ,ANX,ANY,ANZ,AN 

C Z(I) ~ UX(10fl) 
C 
C ZTRIM(I) = US(10fI) 
C ZC(I) = UX(2Sfl) 
C ECm " UX(40H) 
C RZ(I) = U5(2SfI) 
C 
C 
C ---------- OBTAIN SPECIFIC MEHSUREKENTS HERE FROH SIHULATION 
C OUTPUTS 
C ---------- START SPECIFIC ZAPO CODE HERE (SEE FTTC RFT SEC 5)----
C UNITS-- FT/SEC ANli .01 RAD, RAD/SEC, ETC. FOR 
C THE LINEAR ZAPO KODEL 
C 
C Z(l) -- VERT. ACC. 
C Z(2) -- ANGLE OF ATTACK 
C Z(3) -- PITCH RATE 
C Z(4) -- PITCH ANGLE 
C Z(S) -- KACH 
C 
C 
C --------- FORM SENSOR MEASUREMENTS IN SIMI I UNITS 
C 

Z(l) ~ ANZ + COS(F(S»'COS(F(10» 
Z(2) = F(6i 
Z(3) ::; F(3) 
Z(4) :. F(S) 
Z(S) = AMCH 

C ---------- FORM ERROR SIGNAl IN COMPENSATOR UNITS 
EC(l) ::; (Z(l) -ZTRIH(l) - ZC(1»*32.174 
EC(2i = (Z(2) -ZTRIM(2) - ZC(2»*100. 
EC(3) ::; (Z(3) -ZTRIH(3) - ZC(3»*100. 

C ------ TURN GAKKAC INTO THETAC 
EC(4) ::; (Z(4) -ZTRIH(4) - (ZC(4)+ZC(2»)'100. 
EC(S) ::; (Z(S) -ZTRIH(S) - ZC(S»'1000. 

C ---------- END SPECIFIC ZAPD CODE HERE ----
C 
C ---------- ADD HEASUREMENT NOISE ( MUST HAVE COMPENSATOR UNITS:) 

DO 10 I=l,NZ 
ST ::; GRAND(N) 

C ---------- TEMP HOD TO SEE NOISE IN UX(61)-UX(6S) 
10 Z(I)::; Z(I) + ST.RZiI) 

RETURN 
END 

127 
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c ----------------------------------------------------------------------

C 

SUBROUTINE TRAJGH(TRAJV,ZCJ 
IHPLICIT DOUBLE PRECISION (A-H,O-Zi 
DIMENSION TRAJV(l),ZC(l) 

C TRAJGH GENERATES THE TRAJECTORY COKHANDS AND STORES THE 
C COHKANDED OUTPUTS IN ze 
C 

C 

COHHON IDRVOUT I F <13" DF (13) 

COMMON ISETICS; FHl3i 

C ---------- THE FOLLOWING CODE MUST BE MODIFIEII FOR I1IFFERENT 
C CLASSES OF MANEUVERS 
C 
C ---------- START SPECIFIC ZOOM AND PUSH OVER CODE 
C (SEE FTTC FINAL REPORT SECTION S.lJ 
C 
C TWO CONSTANTS AND THE DESIRED BIAS VALUES ARE THE 
C 7 TRAJECTORY VALUES 
C TRAJV(lJ = AZO 
C (2) = ALPHAO 
C (3) = 00 
C (4J = GAKKAO 
C (S) = 1'10 
C (bJ :. TFINAL 
C (7) = G*RO/C**2 
C 

C 

ZCIl) = TRAJVll) 
ZC(2) :. DALPHA*FI1J/TRAJV(6) tTRAJV(2) 
ZC(3) = TRAJVI3J 
ZC(4) :. -GAKAIC*F(lJ/TRAJVlb) + TRAJV(4) t GAKAIC 
ZC(S) = I1S0RT(TRAJV(7)*ZCi4)**2 t TRAJV(S)**2) 
RETURN 

C ---------- DO TRAJECTORY PARAMETER SETUF 
c 

c 

ENTRY TRAJ5T 
GAKAIC :. FI(S)-FI(o) 
DALPHA = TRAJV(2) - FIlbl 

C ---------- STOP ZAPO SPECIFIC CODE 
c 

RETURN 
END 
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