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OPTIMAL FEEDBACK STRATEGIES FOR PURSUIT-EVASION AND INTERCEPTION IN A PLANE
N. Rajan* and M. D. Ardema

Ames Research Center
SUMMARY

Variable-speed pursuit-evasion and interception for two aircraft moving in a
horizontal plane are analyzed in terms of a coordinate frame fixed in the plane at
termination. Each participant's optimal motion can be represented by extremal tra-
jectory maps. These maps are used to discuss suboptimal approximations that are
independent of the other participant. A method of constructing sections of the
Barrier, Dispersal, and control-level surfaces and thus determining feedback strate-
gies is described. Some examples are shown for pursuit-evasion and the minimum-time
interception of a straight-flying target.

INTRODUCTION

The problems of aircraft pursuit-evasion and interception are complex because
the aircraft dynamics are nonlinear and of high dimension. Pursuit-evasion in a
horizontal plane has five state variables and two control variables per aircraft. It
is presently impossible to derive a feedback solution in a closed form for this prob-
lem. However, a feedback solution is essential for onboard flightpath management.
Hence, in the past, three classes of methods for determining feedback strategies for
pursuit-evasion have been explored.

The first class consists of methods that rely on computational techniques
(refs. 1, 2) to solve the two-point boundary-value problem of determining the optimal
controls from a given initial state. The techniques have then been combined with a
discretization of the state-space to yield a '"'mear-optimal" feedback solution to
pursuit-evasion. To keep the computational effort at a practical level for a flight
computer, the aircraft models utilized in the above studies have been relatively
simple. Also, a fixed-time terminal miss-distance formulation of pursuit-evasion was
used to obviate difficulties with singular surfaces (ref. 3).

A recent study (ref. 4) which can be considered to fall in the first category of
methods, employs parameter optimization to determine optimal evasive strategies
against a pursuer flying pure pursuit. The duration of the engagement is left open;
it is one of the parameters of the optimization problem. The aircraft are modeled as
point-masses moving in three dimensions with realistic 1lift, drag, and thrust func-
tions. This work is limited by the assumption regarding the pursuer's behavior and
by the fact that a large amount of computation is required to determine the optimal
controls from a single initial state.

In the second class of methods, an attempt is made to obtain an approximate
closed-form feedback solution. Forced singular-perturbation techniques (refs. 5-8)
use the time-scale separation inherent in some aircraft maneuvers to reduce the order
of the problem and to obtain an analytical solution. The latter serves as an approx-
imate guid-nce law that can be readily implemented on board. These methods are
limited by the assumptions made in separating the time scales. The domain of validity
of the solution can be determined by comparison with exact solutionmns.

The third class of methods for the interception/pursuit-evasion problem proceeds
by flooding the state-space with extremals. Since the terminal manifold has a
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dimension of four, finding the extremal that passes through a given initial state
requires a large amount of computation. However, since for a feedback solution the
optimal controls have to be determined all over the state-space, flooding provides a
feasible solution. Also, the computational effort can be reduced by assuming that all
the extremals are of sufficiently long duration to permit the aircraft to accelerate
to maximum speed. If this assumption is made, all trajectories include cruise arcs
that are straight dashes flown at the upper speed 1limit. The extremals are then a one-
parameter family and the initial conditions can be matched through a one-dimensional
search. The study of turns to a line or a point reported in reference 9 is based upon
the assumption of a cruise arc. In this paper, it is not assumed that all extremals
include cruise arcs.

For interception and pursuit-evasion, the construction of a feedback solution by
flooding is complicated by singular surfaces, such as Barrier and Dispersal surfaces.
In situations in which the evader can escape from the pursuer for some initial condi-
tions, the Barrier bounds the region of the state-space in which the evader can be
captured. Where the evader/target can be captured regardless of the initial condi-
tion, the Barrier is an open surface across which the time~to-capture is discontinu-
ous. Along a Universal (ref. 3) surface, one aircraft employs a singular control.

On a Dispersal surface, the gradient of the time-to-capture is discontinuous. At a
point on a Dispersal surface, one aircraft can choose between two distinct strategies
and still get the same payoff. These surfaces are an inherent part of the feedback
solution.

Barrier sections for variable~speed pursuit-evasion in a plane were reported in
references 10-13. The analysis proceeded by describing the game in a coordinate sys-
tem fixed in the plane, with the origin at the pursuer's final position at capture
and the x-axis along the terminal line of sight (LOS). This led to a decoupling of
the equations into two disparate sets, one for each aircraft. By giving different
values to the terminal-velocity vector, a map of extremals is generated for each air-
craft independent of the other. This extremal trajectory map (ETM) can then be used
to study any planar encounters in which the given aircraft participates. A method of
computing Barrier cross sections by directly iterating on the aircraft's terminal
speeds to match the given initial speeds and relative heading was developed, and
example cross sections were presented for the case in which both aircraft had the
same capability but the pursuer had an initial turn-rate advantage. The above analy-
sis was applied to minimum-~time interception in the horizontal plane in reference 14
where a method of locating Barrier and Dispersal points by drawing isochrone (constant
minimum-time-locus) sections was developed.

The previous studies in pursuit-evasion concentrated on solving the game of kind
(ref. 3), which consists of determining the regions of the state-space from which the
evader can be captured. The game of degree (ref. 3), which describes the strategies
within the capture region, was not studied. The work on interception (ref. 14) exam-
ined sections of the Barrier and Dispersal surfaces; control-level surfaces were not
studied.

In this paper, the ETM idea is explored further, especially in terms of its
potential as a tool for developing approximations to the optimal interception strat-
egy. The ETMs are drawn for given times-to-go and initial speeds. The construction
of a feedback solution for pursuit-evasion and interception by drawing isochrone sec-
tions is explained. Example sections and trajectories in the plane are presented.
Extremal trajectory maps are examined in the next section, as well as a discussion of
cruise arcs. The synthesis of a feedback solution from ETMs is described and examples
are given in the third section.



EXTREMAL TRAJECTORY MAPS

Definition

In references 10-14, the equations of motion for pursuit-evasion and minimum-
time interception are written in a system of coordinates that has its origin fixed
at the pursuer/interceptor's terminal position and has its x-axis along the terminal
line of sight (fig. 1). For the backward integration of extremals, this decouples
the pursuer/interceptor's motion from that of the evader/target. Each set of extrem-—
als is a family characterized by all possible values of the corresponding terminal-
velocity vector. The family is generated by integrating the equations (° = d/drt,
where T = tg - t)

X = -M cos B (1)
vy = -M sin B (2)
g = -£(Du 3)
M= BM) + CMw? - AQ)T (4)
Py = —cos B — (py + H)dM/dM - y dB/dM (5)

subject to the initial conditions (at t = tf)
x:y:m:O (6)

B=3f, M=Mf (7)

In these equations, the heading 8 1is measured relative to the x-axis, M 1is the
Mach number, py 1is a normalized speed adjoint, and § is a Kuhn-Tucker multiplier
accounting for the constraint on the Mach number M € [M,M], where M 1is the stall
speed at zero bank angle and M is the maximum velocit§ placard limit (ref. 9). The
throttle setting m and the bank control w are chosen such that 7w € [0,1] and

we [-1,1].

The description of aircraft motion in equations (1)-(4) is the same as that given
in reference 10. The functions f, B, C, and A represent the maximum instantaneous
turn rate, the zero-bank drag, the lift-induced drag at maximum bank, and the maximum
thrust. The interception/pursuit-evasion problem is formulated with time-to-capture
as payoff, with capture occurring when the terminal line-of-sight separation between
the aircraft equals a constant R (fig. 1) and is shrinking.

In reference 10, where the ETM idea was first derived, it is shown that the opti-
mal controls 7 and w in equations (1)-(5) are given by the expressions

m™=1
’ for py + 1 <0 (8)
w = sat{-fy/[2C(py + N)1}
m=0
} for py + >0 9)
w = sgn(y)



An extremal trajectory map consists of extremals satisfying equations (1)-(5)
integrated backward in time for a fixed time-to-go 7t¢. The terminal heading B¢ is
the parameter characterizing the extremals. For each §Z; value, the value of Mg
is searched iteratively until the Mach number at 1 = tf equals a specified value
M, - The coordinates (x5, y¥o), the heading B,, and the strategies (m, w) are noted
and stored. Although extremals can be integrated backward from the origin for all
values of Rf Dbetween 0° and 180°, in practice, the extremals for which Bo 1s much
more than 180° are generally not globally optimal (discussed in the following section),
because there is usually a lower cost extremal passing through the given initial state.

Given the ETMs of the pursuing and evading aircraft, each pair of extremals (one
from each map) can be put together to yield a candidate minimax optimal trajectory for
the pursuit-evasion encounter (fig. 2). If the relative velocity component along the
terminal LOS is negative, that is, if

MPf cos Bpf - Mef cos Bef <0 (10)

((Mpf, Bpf) and (Mef, Bef) are the terminal-velocity vectors of the pursuer and

evader, respectively) and if the extremal does not cross any singular surface (ref. 3)
of the game (the following section, Feedback Solution), then the extremal is globally
optimal. All the extremals that an aircraft may follow in any encounter are included
in the ETM. The ETM is thus a good framework within which to study the optimal
behavior of a given aircraft model and to explore suboptimal approximations to the
extremal.

General Features

From the necessary conditions and as a result of experience with numerous exam-
ples, the general behavior of the extremals with variation in {f can be deduced.
It is determined that they are symmetric with respect to the =x-axis for positive and
negative values of Rf; positive values involve banking to the right and vice versa.
For Bf = 0°, the extremal is full-throttle, level flight along the negative x-axis.
For B¢ values below B, defined as

B, & tan™!(2c/fM) (11)

the bank control w starts out partial and increases in retrograde time to unit mag-
nitude. From equation (8), all partial-bank arcs are flown with full throttle. Once
w saturates, the throttle may later be switched to zero if the Mach number is above
M (Mach number corresponding to the corner velocity (ref. 9); at M, the load factor
and 1ift limitations on the normal acceleration are equal). When Bf increases
beyond g,, the extremals emanate from the origin with full bank. All full-bank seg-
ments of the extremals are generated using trajectory templates (ref. 10) (precomputed
and stored long-duration trajectories flown at full bank). For g¢ > 90°, the ter-
minal controls are full-bank and zero throttle. In between Bf = 90° and 100°, the
throttle may be switched to 1 and back to O in retrograde time. If an extremal inter-
sects the x-axis with py > 0, from equation (9) w changes sign (fig. 3(a)). 1If,
however, py < O as the extremal approaches the x-axis (fig. 3(b)), then equation (8)
holds and w changes graduglly from +1 to -1 (or vice versa) over the intersection.
The latter occurs if Mg < M.

Since the Hamiltonian is linear in the throttle setting 1, intermediate values
of = are singular controls. For the aircraft model (ref. 9) used in this



investigation (an F-4C), partial thrust and zero bank are optimal only at the upper
speed bound (ref. 10). Partial-thrust and full-bank singular arcs were not encoun-
tered in the computations.

Extremals and Approximations

A typical map of intermediate-duration extremals is shown in figures 4 (a)-4(d)
for the F-4C aircraft, flying at an altitude of 6.1 km. In all cases, the change in
heading over the last 25 sec of flight is less than 6° (fig. 4(a)) and the bank con-
trol increases from about -0.1° to near zero (fig. 4(b)). The extremals can thus be
described as consisting of a turning phase followed by an accelerating phase. During
the first phase, the aircraft changes to the required heading, decelerating in the
process (fig. 4(c)). Then in the second phase, the aircraft accelerates to the speed
required for capture. In this particular family, both phases are of about equal dura-
tion. but as the time-to-go increases, turning occupies a smaller percentage of the
time and vice versa. For large values of 1y, the turning phase can be considered as
a boundary layer, and singular perturbation approaches (refs. 5-7) can be successfully
applied.

At the start of a turn, the throttle may be zevo; however, it is switched to full
a few seconds into the turn. For this aircraft example, on extremals that last 20 sec
or more, zero-throttle segments take up relatively small portions of the flight time
and can be safely ignored. The Mach number variation (fig. 4(c)) over the full-bank
segments is less than 0.1; in this speed range the turn rate is inversely proportional
to the Mach number and changes by less than 10%Z. Since full-bank segments are read
off trajectory templates, they require very little computation time.

The acceleration phase consists of essentially straight flight at full throttle.
The Mach number increment varies from 0.188 over 50 sec for B¢ = 0° to 0.236 over
35 sec for B = 0.003°. The difference in acceleration is due to the increase in
drag at supersonic Mach numbers. The acceleration phase could be approximated by
flight along a straight line that makes a small angle with the final LOS.

The possibility of approximating intermediate-duration extremals by separating
them into turning and acceleration phases can be further explored by looking at
extremals with the same initial speeds and turn angles but different duration. In
figure 5 an extremal lasting 50 sec is compared with two others generated for 20 sec.
In 20 sec, the turn angle for the long-duration extremal is 142° and the Mach number
is 0.952. The other two extremals are chosen such that one (B¢ = 0.6°) matches the
Mach number and the other (Bf = 0.7°) the turn angle of the original extremal. The
endpoints of these extremals are close to the 20-sec point of the original extremal.

For the remaining 30 sec, the flightpath is almost straight. If extremals that
consist mainly of turning flight are approximated closely, the suboptimal approxima-
tions to extremals of longer duration are simply the short-duration approximations
plus straight flight. The full-bank segments of turning extremals are read off tem-
plates. The partial-bank segments can be approximated by a number of fixed-bank seg-
ments (fig. 6) which can also be generated using templates.

The above example also suggests that beyond a duration of 20 sec, an error in
the initial guess of the duration of the encounter is not crucial. Given the initial
speeds and relative heading of the vehicles in an encounter, an estimate of the time-
to-capture is the first step in generating the optimal flightpaths. This can be
determined by inspecting plots of the turn angle, Mach number increment, and distance



covered against the time-to-go. Example plots for an initial Mach number of 0.9 are
shown in figures 7(a)-7(c). 1In these figures, straight-flight extremals have their
starting points on the zero-bank curve, those starting with w = 0.5 in magnitude
fall on the half-bank curve, and those starting with w just saturated fall on the
bank-saturation curve. Thus, in between the zero bank and half-bank curves, lie all
the extremals with the initial « between 0 and 0.5; between half-bank and bank
saturation, lie all extremals with « initially between 0.5 and 1.0; and outside the
bank-saturation curve lie all the extremals that have a finite-duration initial full-
bank arc. The values of By at the different times-to-go for figure 7 are shown in
table 1.

For larger values of By than those shown in table 1, the entire extremal is
flown at full bank. The characteristics of such extremals are given in table 2.
The turn angles for these would be above the bank-saturation curve in figure 7(a);
the Mach number increment and distance traversed would be below the bank-saturation
curves in figures 7(b) and 7(c). From the table, the turn angle for the 15-sec
extremal is 166° and it is greater than 200° for the 20~sec extremal. For capture
times greater than 20 sec, the above extremals are not globally optimal because they
fall beyond Dispersal points (ref. 14).

Thus, the vast majority of the extremals that appear in planar encounters have
both full-bank and partial-bank segments. For extremals with the same capture times,
an increase in the duration of the full-bank arc means an increase in the turn angle
but reductions in the Mach number increment and distance traversed. The turn angles
of extremals with full-bank arcs will be above the bank~saturation curve in fig-
ure 7(a); their Mach number increment and distance traversed will be below it in
figures 7(b) and 7(c). Thus, if the turn angle is to be about 60° and the distance
to be traversed by the aircraft about 6 km, the time-to~go must be at least 20 sec
(fig. 7(c)). The condition on the terminal velocities at capture, equation (10),
gives a lower bound on the acceleration to be achieved. For extremals of duration
greater than 20 sec, termination is usually a tail-chase, with Bpf and Bef ~ 0°,

making equation (10) a condition on the terminal speeds Mpf and Mef- If a nonevad-

ing target flying in a straight line at Mach 1.0 is to be intercepted, the intercep-
tor's turn angle equals the target's initial heading relative to it, and its Mach
number increment must be at least 0.1 (initial interceptor Mach number = 0.9).
Starting from the lower bound on capture time that meets the requirement on the turn
angle and speed increment, the capture time is increased until the extremal that sat-
isfies tlie initial conditions and leads to capture of the target is found.

As the duration of the extremal increases, the termingl heading Bf tends to
zero and the terminal Mach number Mg increases towards M. Once Mg reaches M,
the extremals consist of an initial accelerating turn, a very short circular arc at
constant speed ﬁ, and a straight dash at M (fig. 8(a)). The circular arc and the
straight dash are together called a cruise arc (ref. 9). Extremals that end in
cruise arcs are characterized by a single parameter, the heading Bg (fig. 8(a)).
Thus, matching the initial conditions can be done by a one-parameter search. Typi-
cally, the turn angle and initial speed are matched. Then the length of the straight
dash is adjusted to match the initial position. The development of necessary condi-
tions for cruise arcs is detailed in reference 9. The only difference is that for an
interception, there is no requirement for a final turn from the cruise arc, as there
is for turns to a line or point with specified final heading. An example trajectory
is shown in figure 8(b); the interceptor's initial Mach number is 1.3 and the flight
direction is 150 sec. The duration of the circular segment is extremely short, and
is closely approximated by a spike in heading of about 1078 deg. In retrograde time,



the unconstrained arc in such an extremal starts with M =_ﬁ, decelerates to some
Mach number below M, and then once again accelerates to M. The intermediate Mach
number decreases with a decrease in the magnitude of gg; however, for Bg < 107" deg,
there is a loss of significance in the computation. This is overcome in reference 9
by computing the heading and Mach number on the unconstrained arc 1 sec away from the
junction, approximately. Since the turning phase in these extremals occupies a small
percentage of the time, they can as well be approximated by a full-bank turn and a
straight dash (refs. 10, 13).

THE FEEDBACK SOLUTION

Taken together, the extremal trajectory maps of the two aircraft taking part in
an encounter contain all the possible optimal paths in the plane. However, any given
pair of extremals, taken one from each map, need not lead to a globally optimal
saddle-point encounter. Firstly, the reachability condition on the relative velocity
at termination, equation (10), may not be met for the assumed value of the time-to-go
Tf, the initial state is then beyond the Barrier. Secondly, the initial state may
lie on the wrong side of a Dispersal surface so that there are extremals of shorter
duration passing through it. The location of Barrier and Dispersal points is hence
an inherent part of the solution; those locations have been discussed in reference 14.

Once the Barrier and Dispersal points are determined, the control strategies
have to be mapped for the different regions of the state-space. Since the state-
space dimension is four or five, the mapping of strategies is presented by sectioning:
cross sections are taken with the initial interceptor/pursuer and target/evader speeds
and relative heading held constant. The sections are then plotted relative to the
interceptor/pursuer and become curves in the plane of the encounter. Within each
section, the controls are mapped by drawing sections of the isochrones (constant-
time-to-go loci). On each isochrone section, the points where the initial bank con-
trol w 1is zero, half (half-bank point), or just saturates (bank-saturation point)
are marked. The curves linking such points on the isochrone sections for different
times-to-go are sections of the bank-level surfaces. The bank strategy changes across
these surfaces. The construction of isochrones leads to the mapping of Dispersal,
Barrier, and control-level surface sections. The construction of isochrones for
planar pursuit-evasion and interception is discussed next.

Construction of Isochrones

Assume that the pursuer and evader ETMs are as shown in figures 9(a) and 9(b),
respectively. Each map consists of extremals generated for the same time-to-go, with
the terminal headings Bpf (Bef) as a parameter. For each extremal, the initial Mach

number is Mpo (Meo) and the initial heading measured relative to the terminal line

of sight equals Bpo (Beo). The isochrone section being constructed has M, , M

Po €o?

and B, specified, where B, 1is the initial relative heading

Bo = Bp, = Be, (12)

For any given pair of terminal headings Bpf, Bef, the terminal Mach numbers Mpf

and M have already been iterated to match the starting Mach numbers M, , M. .
es Po’ €0



For matching the relative heading, Bpf is taken as a fixed parameter and Bef is

determined by searching in the evader's ETM. In the construction of a point on the
isochrone, figure 9(c), the pursuer's extremal is first laid off as PA. The ter-
minal LOS is AB. Since the evader's terminal heading has been determined, its
extremal can be laid off as shown, EB. The point E is the point on the locus,
provided the terminal LOS rate is negative; that is, equation (10) is satisfied.

Different values of Bpf give other points on the isochrone section. The val-
ues of Bpf are selected such that all significant points on the section are mapped.

These include the zero-, half-, and full-bank points (the bank at start is zero,
half, and full, respectively), as well as any points where the bank angle or throttle
switch. For any given section, some of the above points may not appear, either
because the reachability condition is not satisfied or because they fall beyond a
Dispersal point. All these points depend on only one aircraft's terminal heading,
either Bpf or Bef- Once marked in an ETM, mapping them on any isochrone section

requires only a search of the other aircraft's ETM. A Dispersal point occurs if, for
either of the aircraft, two extremals with different values of the terminal heading
pass through the same point in reduced space.

In interception, the target's motion is known in advance. Only the orientation
of its terminal-velocity vector relative to the terminal line of sight changes in the
selected coordinate system. Therefore, the target's ETM consists of the same path
rotated through different terminal headings. For any given value of ¢, the target’'s
turn angle AB 1is constant, independent of the terminal heading. The latter is com-
puted such that equation (12) is met for the B8, value specified for the section.
Unlike the pursuit-evasion problem, searching of the other aircraft's ETM is
unnecessary.

Examples

An isochrone section for pursuit-evasion is shown in figure 10. The initial
speeds of the pursuer and evader are Mach 1.2 and 0.9, respectively. The same air-
craft model is used for both players. The capture radius is 316 m, a typical value
for an engagement in which the pursuer uses only guns. The section is drawn for a
time-to-go of 50 sec and an initial relative heading of 180°. The encounter at D
is depicted in the plane in figure 11. The sections for B, = *180° intersect at D,
which is a Dispersal point because the evader can choose to turn left or right and
still be captured in the same time. The aircraft trajectories from the starting
points C,;, C, C,, and B on the B, = 180° section of figure 10 are shown in fig-
ures 12(a)-12(d). Figures 13(a)-13(c) show the variation of Mach number, heading,
and bank control with time-to-go along the extremals flown from the points D to B.
The values of the terminal-velocity vectors are given in table 3.

At D, the pursuer's initial bank angle is half its maximal value. The pursuer
gradually levels out, turning 31.5° (figs. 11, 13) to align itself with the evader's
anticipated heading and accelerates to Mach 1.377. The evader banks fully for
7.45 sec, then reduces bank angle and accelerates to Mach 1.184. 1In the first 8 sec
it turns through 90°; its total turn angle over the 50 sec of flight is 148.5°. Of
all the points on the isochrone section this is the farthest from the pursuer because
the latter has to turn relatively little and can employ his speed advantage to cover
more ground than the evader.



From D to B, the pursuer's turn angle increases, and its terminal Mach number
and distance traversed fall; the reverse is true for the evader. At C (fig. 12(b)),
the pursuer banks fully to the left for 7 sec and then gradually straightens out; its
bank value falls below 0.1 after 20 sec of flight. Out of the total heading change
of 118°, the turn through 112° is accomplished during the first 20 sec of flight.
The evader accelerates continuously from Mach 0.9 to Mach 1.24, turns right through
62°, reducing its bank control from 0.86 at start to near zero at termination. The
distance traversed by the two aircraft is approximately the same at C, which is the
point nearest to the pursuer on the locus. The reachability condition is just met at
B, so that B is a point on a Barrier section with MPo =R 25 Meo = 0.9, By = 180°.

The pursuer banks fully for 10 sec, slowing down to Mach 1.06 (figs. 12(d) and 13(a))
before accelerating once again. Its turn angle is 145° (fig. 13(b)). At this initial
separation, the lateral distance between the pursuer and evader is sufficiently large
to permit the evader to continue almost along its initial heading and accelerate. The
pursuer is forced to turn around and then give chase. The terminal Mach numbers of
the aircraft are very nearly the same. Beyond B, the evader escapes by simply flying
straight ahead, accelerating all the time. Since both aircraft are identical, the
evader will attain its maximum speed before the pursuer is able to close the gap.

The encounters starting from C, and C are symmetric in that the turn angles of
the pursuer and evader at C, are almost the opposite to those at C. At C,, the
encounter terminates at a position beyond the evader's initial position (increasing
y). The distance traversed by the pursuer decreases and that by the evader increases
in the direction C;CC,. For capture in the same time, the evader must, therefore,
start closer to the pursuer and the points on the segment C;C are in fact nearer to
P. At C, the encounter terminates behind the pursuer's initial position. For cap-
ture in the same time, the points to the left of C must be farther away from P
than C, which explains the kink in the isochrone at C.

From table 3, the value of Bpf is seen to increase from B to D. For Bpf

greater than that at D, the candidate points are nonoptimal, for they fall on the
wrong side of the Dispersal point D. The y-axis is the axis of symmetry and the
isochrone section of figure 10 for a relative heading of By = -180° 1is the mirror
image of BCD along it. It is interesting to note from figure 13(c) that in this
example, there are no starting points on the isochrone for which the initial bank
control is less than half.

Isochrone sections for interception for capture times ranging from 5-60 sec are
shown in figure 14. The interceptor is initially at Mach 0.9 and has the target head-
ing toward it. The target flies in a straight line at Mach 1.0. For all the points
on the sections, the interceptor uses full throttle throughout. The y-axis is the
zero-bank line; for initial target positions along this line, the interceptor heads
straight toward the target. The half-bank and bank-saturation loci were obtained by
linking the half-bank and bank-saturation points on each section. The sections for
5-20 sec end when the reachability condition is no longer met for the given terminal
conditions. Their endpoints delineate the Barrier section for MIo = 0.9 and

Bo = 180°. The sections for 30-60 sec terminate on the opposite side of the Barrier,
so that there is a discontinuity in the value across the Barrier section. Two inter-
ceptor trajectories from initial points just separated by the Barrier section are
shown in figure 15. The shorter trajectory involves a turn through 137° and decel-
eration to Mach 0.87 in 15 sec of flight. The longer trajectory requires a near 180°
turn and acceleration to Mach 1.01 in 40 sec.




DISCUSSION

In the above, a method of constructing the feedback solution for pursuit-evasion
and interception has been described. From the ETMs of the two vehicles, points on
the isochrone (constant minimum-time loci) are obtained. Typically, each isochrone
section drawn has a Dispersal point, a point where the controls assume specified
levels, and Barrier points marked on it. Drawing several isochrones and linking the
Dispersal points, control-level points, and points on the Barrier give sections of
the corresponding surfaces. The construction of an isochrone section is demonstrated
for pursuit-evasion and a section of the feedback solution is shown for interception.

In contrast to the isochrone section for pursuit-~evasion, zero-bank points also
appear on the section for interception. A target coming head-on without taking any
evasive action can be captured in minimum time by heading straight toward it at full
throttle. An active evader approaching head-on will try to turn around and flee.

The pursuer turns to match the evader's anticipated final heading and accelerates to
close in. Again, because the target to be intercepted does not vary its speed, a
larger portion of the interceptor's ETM is globally optimal. Also, once the control-
level surface sections are plotted for one value of B,, they can be mapped for other
values by rotation through the difference in g,. The major computational effort
required is in the generation of the vehicles' ETMs. Once these are available, the
computation of points on the isochrone requires coordinate transformation plus a one-
parameter search for pursuit-evasion, both of which require relatively little compu-
tational effort.

The ETMs for a given airplane are the same in any encounter in which that air-
plane participates. This makes the ETM an attractive tool for analyzing these
encounters. Suboptimal approximations to the extremals on an ETM can be evaluated
by comparing the approximate isochrone sections against those constructed exactly.

CONCLUSIONS

A geometric method of mapping the feedback solution by drawing isochrone sections
was presented. The method is applied to pursuit-evasion and interception. For
pursuit-evasion, it requires a one-dimensional search of the evader's ETIM to match
the initial relative heading to the specified value. In interception, the target's
motion is known a priori and the additional search is avoided. In both cases, points
on the Barrier and Dispersal surfaces and points on the control-level surfaces are
located. The method permits the evaluation of suboptimal approximations by comparing
approximate isochrone sections against the exact sections. Currently efforts are
under way to extend this analysis to three dimensions through use of the energy-state
approximation.
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TABLE 1.- TERMINAL HEADING FOR THE EXTREMALS

COMPRISING FIGURE 7

Tgs Sec | B (|| = 0.5), deg Be (|o] = 1), deg
5 1.62 3.49
10 <33 .83
15} .09167 .206
20 .03 .065
30 .00487 .00917
40 .00096 .00176
50 .00024 .00042
60 .000065 .000114
TABLE 2.- FULL-BANK, FULL-THROTTLE
ARCS
Tgs S€C AB, deg AM R, km
5 58.12 -0.052 | 1.32
10 112.94 -.08 228
15 165.74 -.096 272
20 2174 —.105 | 2.62

TABLE 3.- TERMINAL-VELOCITY-VECTOR VALUES
[Relating to fig. 10]

B8 B
: Pf ef
Point (x10_3) Mpf (X10—3) Mef
D -0.7 1,377 1.06 1.184
C, -1.1 1.343 .68 1.205
C -1.8 1,285 .38 1.24
c, =252 1.263 .26 I
B -2.3 1.259 229 1.252

12




Po (Xp (1), ¥p (to)

M
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>