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ABSTRACT 

˜ his r e p o r t  covers  t h e  t e s t i n g  and eva lua t ion  of  two d i f f e r e n t  heat 

p ipe  r a d i a t o r  elements; one intended for use with t h e  power conversion 

subsystem of t h e  NASA funded Nuclear Electric Propulsion (NEP) Spacecraft 

and one intended f o r  use with t h e  DOE funded Space Power Advanced Reactor  

(SPAR) system. 

The NEP r a d i a t o r  heat p i p e  was designed, fabricated and processed 

by Thermacore under JPL subcont rac t  955100. The s t a i n l e s s  steel/sodium 

h e a t  p ipe  was 4.42 meters  long and had a 2 cm diameSt;er. Thermal performance 

t e s t i n g  a t  920 K showed a non-limited power l e v e l  of 3560 watts,  well  i n  

excess  of t h e  design power of 2600 wat t s .  T h i s  t e s t  v e r i f i e d  t h e  app l i -  

c a b i l i t y  of sc reen  a r t e r i e s  for use i n  long radiator heat pipes. 

The SPAR radiator h e a t  pipe was designed and f a b r i c a t e d  by LANL 

under DOE sponsorship and subsequently shipped t o  Thermacore f o r  loading 

and processing.  The t i tanium/potassium h e a t  p i p e  rvas 5.5 meters long 

and had a semicircular  c ros sec t ion  with a 4 cm diameter.  Thermal 

performance t e s t i n g  a t  775 K showed a maximum power l e v e l  of  1.86 kW, 

somewhat s h o r t  o f  the  des i r ed  2.6 IcW beginning of l i f e  design requirement.  

The reduced performance was shotvn t o  be t h e  r e s u l t  o f  t h e  i n a b i l i t y  of  

the  evaporator  wall wick {shot  b l a s t e d  evapora tor  wal l )  t o  handle t h e  

requi red  l i q u i d  flow. 

I n  add i t i on  t o  t e s t i n g  t h e  r a d i a t o r  h e a t  p ipe s ,  Thermacorets A37 

computer code was improved s o  that t he  p red ic t ed  heat; p i p e  performance i s  

i n  equi l ibr ium with t h e  environment the heat p i p e  is in. The t e s t  d a t a  

f o r  t h e  NEP r a d i a t o r  hea t  p i p e  was c o r r e l a t e d  using A37. EANL's HTPIPE 

computer code was compared to Ti-kermacore's A37 and t h e  d i f ferences  



discussed with LANL. Both codes are very similar bu.1; A37 was shown to 

be more versatile and shows better agreement with test data. 
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I. INTRODUCTION 

This repor t  covers work done by Themacore, Inc. ,  Lancaster, PA, 

under Contract 955935, "The Study of  a Heat Rejection System f o r  the 

Nuclear E lec t r i c  Propulsion (NEP) Spacecraft. ' The work was 

performed between December 1980 end October 1981. 

The work e f f o r t  had t h r e e  i n t e r r e l a t e d  t a s k s ,  which a r e  presented 

as sect ions  of t h i s  report .  They are: (1) Performance t e s t i n g  of 

t h e  rad ia to r  hea t  p ipe  fabr ica ted  under Contract 955100, (2)  Heat 

pipe csmputer modeling a n d ~ t h e  comparison of computer code A-3'7 with 

L;rNLts HTPTPE Code, and ( 3 )  'Ilhe loading, processing and testing of a 

LANL supplied titanium heat p ipe  radiator element f o r  t h e  SPAR system. 



2. PERFORMANCE TESTING 

The 4.4 meter long s t a i n l e s s  s tee l / sod ium hea t  p ipe  f a b r i c a t e d  

under Contract 955100 i s  descr ibed  in d e t a i l  i n  t h e  JPL Subcontract  

955100 F i n a l  IIeportL. During t h e  performance t e s t i n g  described below, 

t h e  4.4 meter long hea t  p ipe  was i n a d v e r t e n t l y  opera ted  beyond t h e  

hea t  p i p e ' s  c a p a b i l i t y  f o r  the opera t ing  temperature .  This damaged 

t h e  evaporator  wick. Following unsuccess fu l  a t t empt s  t o  r e e s t a b l i s h  

f u l l  performance, t h e  test was terminated,  and work was begun on t h e  

f a b r i c a t i o n  of a second hea t  pipe.  Following t h e  f a b r i c a t i o n  of  an 

evapora tor  which was t o  e l lminu te  the  p o s s i b i l i t i e s  of evLporator 

hot  s p o t s ,  a s  had occurred wi th  the f i r s t  hea t  p ipe ,  t h e  development 

of t h e  second hea t  p ipe  was terminated at JPL's r eques t  a5  the program 

was r e d i r e c t e d  from a conduct ively ~ 0 ~ ~ l f 2 d  heat sou rce  t o  c o n l ~ e r t e r  

t o  a r a d i a t i o n  coupled system. The program o b j e c t i v e  was changed and 

work began on the load ing ,  processj.ng and t e s t i n g  of t h e  LANL suppl ied  

t i tanurn/potassium heat pipe. 

2.1 Background and Heat P i p e  Descr ip t ion  

The 4.4 meter long hea t  p ipe  wus f a b r i c a t e d  t o  demonstrate  

tect~nology rather tknn t o  r ep re sen t  a p a r t i c u l a r  NEP system r a d i a t o r  

element.  This p a r t i c u l a r  test was t o  q u a l i f y  t h e  des ign  of s c r een  

wick a r t e r i e s  and t h e  v a l i d i t y  oE t h e  computer model. For exsmple, 

if t h e  hea t  p ipe  was used with chermionics,  t h e  envelope m a t e r i a l  

would l i k e l y  be Niobium so a s  t o  i n t e r f a c e  proper ly  with t h e  c o l l e c t o r .  

A l t e r n a t i v e l y ,  i f  h i g h  temperature t he rmoe lec t r i c s  were the energy 

conversion devices,  then e i t h e r  d Niobium o r  s t a i n l e s s  s t e e l  envelope 

could b e  employed. If t h e  r a d i a t o r  temperature  was reduced 200 K t o  

720 K, then t i t an ium could be u s e d .  The choice of s t a i n l e s s  s t e e l /  

2 



sodium was made as a c o s t  e f f e c t i v e  and convenient means of demon- 

s t r a t i n g  t h e  screen  wick e r t e r y  technology. 

Likewise, t h e  a c t u a l  dimension of t h e  hea t  p i p e  was d i f f e r e n t  

than a t r u e  r a d i a t o r  element. The nominal des ign  of a r a d i a t o r  

element w a s  2 cm OD by 0.025 c m  wall by t h e  r equ i r ed  l eng th  f o r  t h e  

evapora tor ,  a d i a b a t i c  and condenser (2M t o  5M t o t a l )  s ec t ions .  The 

hea t  p i p e  fabricated f o r  t e s t i n g  used a 2.09 cm ID x 2.67 c m  OD 

envelope which was r e a d i l y  a v a i l a b l e .  The l eng th  was l imi t ed  by t h e  

e x i s t i n g  vacuum system 4.8 meters  long. 

The hea t  p ipe  is  seen i n  i ts  t e s t  rack p r i o r  t o  t e s t i n g  i n  

Figure 1. Figure 2 is  a close up of t h e  25 cm evaporator  end, and 

Figure 3 shows t h e  open a r t e r i e s  f n  t h e  condenser p r i o r  t o  f i n a l  

c l o s u r e  of the  hea t  pipe envelope. Table I g ives  t h e  d e t a i l s  of t h e  

hea t  p i p e  dimensions and wick s t r u c t u r e s .  The nominal e x t e r n a l  

evaporator  temperature of a t h i n  walled hea t  p i p e  is 920 K with  a 

20 K t o t a l  A.T at t h e  design power of 2600 wa t t s .  The as f a b r i c a t e d  

hea t  p i p e  had a 36 K AT at 2600 watts due t o  i ts  heavier  s t a i n l e s s  

steel wal l .  









, ' ORffiIMAL PAGE M' 
POOR QUALtlY 

HEAT PIPE RADIATOR ELENIlNI! DESIGN- 

Evaporator 28 cm 

Condenser 408 cm 

Outside Diameter 2.67 cm 

Inside Diameter 2.09 cm 

Wall Thickness 0.29 cm 

Materinl 3 0 4 ~  SS (3/4" IPS Sch 40) 

Wall Wick 2 wraps - 200 mesh 

Number of Arteries 2 

kt ery Wick 2 wraps - 200 mesh 

Fluid Sodium 

Nonrinnl Operating Temperatures at 2600 watts 

Evaporator - 935 K (920 K equivalent f o r  t h i n  w a l l  ~ b )  

Condenser High - 915 K (913 K equivalent f o r  t h i n  wall Nb) 

Condenser Low - 912 K (910 K equivalent  Tor t h i n  w a l l  Nb) 

Design Power - 2600 watts,A~ = 23 K (10 K) 

Elaxium Power - 5300 watts,&l! = 46 K (23~) 



2.2 Performance Testing 

The meaningful performance t e s t  r e s u l t s  a r e  seen i n  Table 2. The 

t e s t  numbers i n d i c a t e  the order  i n  which t h e  t e s t s  were c a r r i e d  but .  

For example, Tests 1-1 and 1-2 were performed w i t h i n  t h e  same time 
I 

f r a m e  where no changes were made t o  t h e  hea t  p ipe .  Following t e s t  

s e t  1, t h e  second set of t e s t  d a t a  w e r e  taken wi th  t h r e e  a d d i t i o n a l  

thermocouples placed on t h e  condenser. The t h i r d  set  was taken 

following t h e  cleaning of t h e  vacuum system and t h e  f o u r t h  and f i f t h  

s e t s  w e r e  taken a f t e r  all thermocouples were resecured t o  t h e  hea t  

pipe. A second group of thermocouples was placed on t h e  heat  p ipe  

f o r  t l i r  s i x t h  t e s t  set; hobever, they were unshfelded and the  RF 

i n t e r f e r e d  with t h e i r  readings ,  

Figure 4 shows t h e  Location of t h e  thermocouples on t h e  heat p i p e  

and t h e  l o c a t i o n  of t h e  hea t  p ipe  w i t h i n  t h e  water cooled ca lor imeter .  

Figure 5 shows t h e  best  f i t  curve f o r  t o t a l  p o w e r  t r a n s f e r r e d  by t h e  

heat pipe versus RF amps. 

Figure 6 shows t h e  vacuum system i n  which t h e  hea t  p i p e  was tested. 

Figure 7 shows the thermometers used t o  measure t h e  cool ing water 

temperature r i s e  on which c a l o r i m e t r i c  measurements were made to 
- 

e s t a b l i s h  the heat  power performance. 

Exact comparison of the measured t e s t  d a t a  t o  t h e  t h e o r e t i c a l  

design performance a t  t h e  design temperature is n o t  p o s s i b l e  because 

the combined radiating a r e a  and e m i s s i v i t y  of the h e a t  p ipe  was g r e a t e r  

than t h e  design condi t ion .  From Table 2 one sees t h a t  i n  t e s t s  2-3 and 

2-4 t h e  r a d i a n t  load  was 2635 and 2698 wa t t s  r c s p e c t i v e l y  a t  nominal 

minimum condanser temperatures  of 831K and 853K. The t o t a l  load w a s  

2735 and 2803 watts .  These two data points a r e  i n  excess  of the 



Fig. 4. Thermocouple, RF C o i l  And Calorimeter Locations 
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Figure 5 - Tota l  Heat Pipe Power vs RF Current 7 







TABLE 2 

4.4 METER LONG TEST DATA 

I 

3-2 170 504 - 55'7 540 519 494 5'11 576 512 492 474 485 bpb 
4-4 170 1823 92 1915 574 574 -538 '554 . 543 543 525 525 1 5 1 3  4 0 ~  4pa snR 

576 5bo , 
555 4-5 576 . 544 . 544 . 530 . 530 . 518 518 soo 503 170 2010 92 2102 '7 

5-2 170 2085 95 2180 581 582 ,555 550 556 550 . 547 541 530 570 ' 522 570 5?9 
547 . 546 6-2 170 2132 95 2227 581 581 561 '550 ' 55'1 541 5 '10 591 ' SP? 570 596 

---- 
I 

3-1 160 - 516 li?L - 508 ha? hRo 455 237 440 468 
L 

h-3 150 1443 - 1443 556 556 5 2 5  575 ' m  ?MI b61r_ L61 378 931 7 137 

3-1 150 553 ' 554 1570 575 ' 51b  m5 . . 417 h O  t39  
6-1 150 1448 - 1448 560 561 555 526 . 570 524 514 50-4 h7lr 46.; h?n 

' ,550 550 532 ' 514 518 518 8 4  490 a t l rn  01 hn 5-1 
--! 

4-1 130 976 - 976 582 542 529 927 507 507 482 478 176 239 17 17 17 

- -... 



r equ i r ed  rad iant  power a t  79 K and 59 K lower ope ra t ing  temperatures.  

Also, t e s t  Nd. 2-5 shows t h e  hea t  p ipe  a t  t h e  des i r ed  ope ra t ing  

temperature of 920 K t r a n s f e r r i n g  a t o t a l  of 3560 watts, of which 

3446 is  by r ad ia t ion .  Accordingly, one concludes t h a t  t h e  s c reen  

a r t e r y  hea t  p ipe  performed a s  designed,  and a s  w i l l  be  shown i n  

Sec t ion  3,  t h e  p red ic t ed  temperature p r o f i l e  f o r  a g iven  temperature 

and power i s  i n  good agreement with t h e  measured da t a .  

During the  t ak ing  of t h e  s i x t h  set of t e s t  da t a ,  t h e  h e a t  p ipe  

was operated a s  a v a r i a b l e  conductance device  i n  o rde r  t o  s e e  what 

e f f e c t s  t h e  presence of an  i n e r t  gas i n  t h e  heat p ipe  might have on 

t h e  a r t e r i e s .  During this t i m e ,  the temperature and power l e v e l  w a s  

increased  t o  near  900 C and 6 kW f o r  a 2 meter long hea t  pipe.  While 

a t  t h i s  condi t ion ,  t h e  i n e r t  gas  was inadve r t en t ly  pumped out  and t h e  

hea t  p i p e  e.vaporator d r i e d  out  and began t o  over hea t .  P r i o r  t o  

shutting down t h e  RF h e a t  i npu t ,  a s  t h e  sodium re tu rned  t o  t h e  

evapora tor ,  hfgh p r e s s u r e  pu l se s  of superheated sodium vapor pushed 

t h e  evaporator s c reen  wick away from t h e  wal l .  

Following cool ing  of t h e  hea t  p ipe ,  a l l  subsequent a t t empt s  t o  

r ega in  proper ope ra t ion  of t h e  hea t  p ipe  f a i l e d .  Accordingly, a new 

hea t  p ipe  was begun, 

2.3 Improved Evaporator Wick 

Normally, t o  prevent  l o c a l  ho t  s p o t s  i n  t h e  evapora tor ,  t h e  f i r s t  

l a y e r  of screen wick is  s i n t e r e d  o r  bonded t o  t h e  h e a t  p i p e  wall. 

Unless a sp l i t / expanding  mandrel i s  used i t  is  d i f f i c u l t  t o  bond t o  

a SS envelope. Sinc2 SS has a high thermal  expansion, an i n t e r n a l  

mandrel must have a g r e a t e r  thermal  expznsion. There are few such 



mate r i a l s .  Accordingly, a sinrered powder meta l  wick s t r u c t u r e  was t o  

be fabricated i n  l i e u  of the  f i r s t  l a y e r  of screen. A photograph of the 

evaporator  is  seen i n  F igure  8. Although a well s i n t e r e d  evaporator  

was made, no hea t  p i p e  was f a b r i c a t e d  using i t ,  as the emphasis of t h e  

program was s h i f t e d  ta processing and t e s t i n g  of RAD3, the 5 .5  meter 

long SPAR t i tan ium Radia tor  Heat Pipe. 

Along with s i n t e r i n g  a metal powder t o  the heat p ipe  wa l l ,  a heat 

p i p e  cleaning schedule was introduced which included a dry  hydrogen 

f i r i . n g { z  -100 C dew po in t )  at  900 C of t h e  h e a t  p i p e  evaporator .  

The hea t  p i p e  evaporator  was machined s o  t h a t  i ts  diameter was 

,030 inches l a r g e r  than t h e  rest of t h e  hea t  p ipe ,  Using 200 x 400 

mesh n i c k e l  powder, the I D  of the evaporator  was b u i l t  up t o  i ts  

o r i g i n a l  diameter by s i n r e r i n g  the  n i c k e l  powder i n  place i n  d ry  

hydrogen, This  wick s t r u c t u r e  was f e l t  t o  be  capable of providing 

a11 of t h e  c i r cumfe ren t i a l  l i q u i d  f low f o r  t h e  evaporator .  Thus, t h e  

a r t e r i e s  and their c i r cumfe ren t i a l  wick need only  makk nominal, contac t  

with t h e  a in t e red  nickel i n  order t o  assure l iquid distribution i n  the 

evaporator ,  and s i n c e  t h e  s i n t e r e d  wick would always be full, t h e r e  

would be no occurrence of hot spots due t o  poor f i t t i n g  of t h e  screen  

wick aga ins t  t h e  evaporator  wal l .  





3.  COMPUTER MODEL= 

Themacore 's  hea t  p i p e  computer code A-37 is  a comprehensive use r  

i n t e r a c t i v e  code f o r  u s e  i n  design a n a l y s i s  and empi r i ca l  c o r r e l a t i o n  

of h e a t  p i p e  t e s t  da ta .  The code includes t h e  most r ecen t  t h e o r e t i c a l  

formulat ion f o r  t h e  vapor flow regimes w i t h i n  t h e  evaporator ,  a d i a b a t i c  

and condenser zones. The code i n t e g r a t e s  over a user -spec i f ied  number 

of increments i n  each of t h e  t h r e e  zones, making adjustment i n  t h e  

physical  p r o p e r t i e s  of t h e  working f l u i d  and w a l l  and wick m a t e r i a l  as 

a func t ion  of temperature i n  each increment. One op t ion  inc ludes  t h e  

thermal equil ibr ium c a s e  where the  throughput down the heat p ipe  i s  

equal  t o  t h e  r ad ian t  and conductive load  of t h e  condenser a s  def ined  

by t h e  e x t e r n a l  condenser temperature and system parameters, 

Addi t iona l  i tems i d e n t i f i e d ,  but cur rer i t ly  no t  included i n  t h e  

program include:  non uniform heat loading  i n  t h e  evaporator ,  h e a t  

l o s s  i n  t h e  a d i a b a t i c  zone, and their e f f e c t  on power throughput and 

temperature p r o f i l e .  Bowever, as y i l l  be shown below, A-37 is  more 

Z 
comprehensive than LANL's hea t  p i p e  computer code HTPIPE . 

3 , l  A-37 Computer Code 

Appendix A con ta ins  copies  of t h e  inpu t  and output  statements f o r  

A-37. F igu re  A 1  i s  a copy of the i n s t r u c t i o n s .  Figure A 2  is  a copy 

of t h e  inpu t  d a t a .  Both the i n s t r u c t i o n s  and inpue d a t a  are s e l f -  

explanatory.  Following the  i npu t t i ng  of t h e  d a t a ,  c a l c u l a t i o n s  a r e  

made; by following t h e  p r in t ed  i n s t r u c t i o n s ,  t h e  r e s u l t s  can be p r in t ed  

out.  



A3 i s  a copy of the six different p ~ r f o r m a n c e  evaluations. Items 

1, 2 and 3 are ca l cu la t ed ,  u s+sg  t h e  best known m ~ t h e m a t i c a l  formula t ions  

for, t h e  vapor flow, i , e .  compressible e f f ~ c t s  on the vapor a r e  included by 

mathematical i n t e g r a t i o n .  Items 4 ,  5 and 6 use simple P o i s e u i l l e  flow 

equat ions  t h a t  are continuously numericu?ly i n t e g r a t e d  over a user- 

s p e c i f i e d  number of segments i n  each zone. 

The stop-off (I and 4) performance is  that at  a user-specif ied 

power, such as 2366 watts. The equi l ibr ium condi t ion  (2 and 5) is t he  

one power throughput a t  which 5r;e r a d i a t i v e  and conduct ive power removal 

from t h e  hea t  p i p e  condenser is equal  t o  t h e  power throughput f o r  t h e  

given beginning tempe?: t u r e .  

A-37 opera tes  by adding increments t o  t h e  user -spec i f ied  starting 

power u n t i l  i t  reaches a limit (e.g, viscous o r  s o n i c  vapor v e l o c i t y  

o r  c a p i l l a r y  l i m i t ) .  The non-limited perf  omance  (3 and 6) is t h a t  

power l e v e l  which is  one incremental  power u n i t  (5, 25, 100, 1000 w a t t s )  

less t han  t h e  power throughput which caused a l f m i t  t o  b e  reached. 

The d i f f e r e n c e  i n  ca l cu la t ed  performance ( AT and/or  power through- 

p u t )  shows t h e  e f f e c t  of i n t e g r a l  (1, 2 and 3) ve r sus  numerical ( 4 ,  5 and 

6) i n t e r g r a t i o n .  Experience has shown t h a t  the number of increments 

requi red  i n  each s e c t i o n  t o  achieve s t a b l e  r e s u l t s  is when t h e  AT i n  

a g iven  increment is  on t h e  order  of 1-3 degrees K. Addi t iona l  

increments can be used t o  c o r r e l a t e  experimental r e s u l t s ;  however, the 

accuracy of the  c a l c u l a t i o n  is unchanged. Accordingly, i f  t h e  h e a t  

p i p e  is opera t ing  i n  a mode where t h e r e  i s  a AT of more than  s e v e r a l  

degrees Kelvin observed i n  one of the three vapor zones, then t h e  

i n t e g r a t e d  r e s u l t s  should be  used f o r  the  b e s t  accuracy. 

Table A4 shows tho  temperature rrofile and va r ious  vapor pressure 



drops and power l e v e l s  f o r  t h e  Number 5 equi l ibr ium condi t ion .  I n  

t h i s  c a s e ,  one s e e s  t h a t  t h e  r a d i a n t  power Q1 from the  condenser 

varies from 106 w a t t s  i n  t h e  f i r s t  segment t o  104 wa t t s  i n  t h e  last  

segment. This d i f f e r e n c e  i n  r a d i a n t  power is  n o t  l a r g e ,  bu t  could be 

apprec iab le  i f  t h e  AT along t h e  condenser were l a r g e r .  Likewise; t h e  

s i g n i f i c a n c e  of t h e  129 watts (Q(I)) conductive power is more 

pronounced a t  lower temperatures.  

Table  A5 shows t h e  d e t a i l s  of t h e  hea t  p ipe  design,  and Table A 6  

shows i n  d e t a i l  t h e  sum of t h e  v a r i o u s  pressure  drops snd temperatures  

a t  the end po in t s  of each hea t  p ipe  zone. 

3.2 Cor re l a t ion  of Tes t  Data 

The d a t a  from t e s t  Numbers 4-6, 4-7, 5-3 and 5-4 of t h e  sodium 

s t a i n l e s s  steel heat  p ipe  were chosen t o  be c o r r e l a t e d  wi th  the  A-37 

code. These da ta  were chosen a s  they a r e  t h e  most c o n s i s t e n t  within 

themselves, as t h e  thermocouples were known t o  b e  held secu re ly  i n  p lace .  

Table  3 shows t h e  as taken and cor rec ted  test da ta .  The a s  taken 

d a t a  is  t h e  ex te rna l  hea t  p ipe  temperature,  whi le  the  cor rec ted  d a t a  

allows f o r  the A T  t h r u  t h e  w a l l  t o  ob ta in  t h e  vapor temperature.  

This is  done so  as t o  be  a b l e  t o  compare t h e  d a t a  t o  t h e  computer 

pr intor i t  of t he  i n t e g r a t e d  equ i l i b r ium case. 

The temperature p r o f i l e  along the length  of t h e  hea t  p ipe  f o r  the 

t e s t  d a t a  i n  T a t l e  3 i s  seen i n  F igu re  9 ,  along wi th  s e v e r a l  A37 and 

HTPIPE computer generated temperature p r o f i l e s  f o r  t h e  t e s t  conditions. 

Curves 81-4 used Thermacore'S sodium i n  A-37. Curve i / l  i s  for an e x t e r n a l  

evaporator temperature of 605 C and has a ca l cu la t ed  equi l ibr ium power 

throughput of 2275 watts. Curve /I2 is  for 603 C and 2232 w a t t s ,  curve 

#4 is  f o r  601 C and 2188 watts,  and curve i / 4  is  for 599 C and 2143 watts, 
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curve a5 was generated i n  A-37 using LANL's sodium for an  e x t e r n a l  

evaporator temperature of 605 C and ca l cu la t ed  an equilibrium power 

throughput of 2398 wat t s .  Curve C6 i s  from HTPIPE a t  605 C and 2398 watts.  

The l a r g e  d i f f e r e n c e s  seen between curve 1, 5 and 6 w i l l  be  

discussed i n  s e c t i o n  3.3. The computer c a l c u l a t i o n s  of Figure 9 were 

based on t h e  hea t  p ipe  des ign  of Table 1 and used an e f f e c t i v e  emis s iv i ty  

of 0.242 for  t h e  hea t  p ipe ,  and a  thermal  conductive load  wi th  an a rea  

2 t o  length  r a t i o  of 0.992 cm / c m  with  a cold end temperature of 50 C. 

Examination of Figure 9 shows reasonable agreement between t h e  t e s t  

d a t a  far  t h e  sodiumjstainLess s t e e l  h e a t  p ipe  and t h e  A-37 computer 

pred ic t ion .  Each t e s t  number's data p o i n t s  seem t o  f a l l  within a band 

of 2-3 K of t h e  predicted curve  wi th  s e v e r a l  no tab le  exceptions. A l l  

but one s e t  of these exceptions can be a t t r i b u t e d  t o  l oose  thermocouples 

which g ive  rise t o  lower readings ,  o r  even high readings  if t h e  TC picks 

up RF hea t ing  d i r e c t l y .  

The t e s t  data po in t s  a t  the  52 c m  l o c a t i o n  ( / I4 po in t  on condenser 

p r o f i l e  p r i n t o u t )  is s e t  of po in t s  t h a t  f a l l  ou t  of t h e  norm. All but 

one po in t  of e igh t  f a l l  o u t s i d e  of t h e  6 K computer generated temperature 

band. Fd r the r  examination of t h e  data would indicate t h a t  the two high 

points a r e  i n  e r r o r ,  perhaps due t o  the T C 1 s  picking up RF, and t h e  lower 

p o i n t s  a r e  r e a l  da ta .  Th i s  is  l o g i c a l  as it seems hard t o  reason t h a t  

seventy f i v e  percent of  t h e  data should come from l o o s e  thermocouples 

and be reasonably se l f - cons i s t en t .  

If one assumes that t h e  low TC readings  are r e a l ,  then  there must 

be an explana t ion ,  i,e.,a phys i ca l  phenomenon is  taking place t h a t  t h e  

computer does no t  account for. This phenomenon is probably t r anson ic  

flow i n  t h e  first few cent imeters  of t h e  condenser .   emm me^, at LANL 

measured t ransonic  v e l o c i t y  in a sodium hea t  p ipe .  Figure 10 shows 

~ e m e ' s  t e s t  data.  
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Fig, 10. Trans-sonic velocity conditions in a heat 
pipe. 



The ca l cu la t ed  Mach number i n  the vapor e x i t  ranged from 0,395 a t  

606 C e x t e r n a l  temperature t o  0.429 a t  599 C .  Thus one may ques t ion  the 

p o s s i b i l i t y  of t r anson ic  flow. However, a v a r i t f o n  of s e v e r a l  degrees 

K i n  s t a r t i n g  temperature and/or a i n c r e a s e  i n  power of 1 o r  2% can 

inc rease  t h e  Mach number from near  0.5 t o  1.0.  

I f  t r anson ic  f low d i d  occur ,  then  t h e  method by which t h e  computer 

p r e d i c t s  t h e  p re s su re  drop i n  t h e  evaporator  is i n c o r r e c t .  The cu r ren t  

computer code uses  ~ u s e e ' s ~  formulat ion t h a t  i nc ludes  a p re s su re  
L 

c o e f f i c i e n t ,  which varies from 7f i , e .  
-T- 

(1.234) a t  t h e  beginning of 

the  evaporatcr t o  1.111 a t  t h e  end of t h e  evaporator  a t  son ic  con- 

d i t i o n s .  This f o r m u l a t i o i  does not  a l low for vapor v e l o c i t i e s  greater 

than Mach 1. Accordingly new evaporator  and a d i a b a t i c  vapor flow 

c a l c u l a t i o n  r a t i o n a l e  w i l l  be requi red  f o r  the  p red ic t ion  of t r anson ic  

flow, poss ib ly  inc luding  t h e  evaporator  pressure  c o e f f i c i e n t .  

Prenger and ~enune~ a t  LAllL have shown t h e  need for us ing  a  p re s su re  

c o e f f i c i e n t  of 1.442, 1.558 and 2.719 i n  the evaporator  t o  get  analy- 

t i c a l  agreement wi th  measured t e s t  d a t a  on t h e  2 meter long SPAR soditrm 

hea t  p i p e  with a  long a d i a b a t i c  s e c t i o n .  Transonic f low was no t  observed 

s i n c e  the opera t ing  temperature was 1400 K. However, t h e  p re s su re  

drop i n  the evaporator  as in fe r r ed  by the  temperature drop d i d  exceed 

t h a t  c a l cu l a t ed  u s ing  Busse's pres su re  c o e f f i c i e n t .  

F igure  11 is from Btlsse's paper and shows a d d i t i o n a l  evidence of 

t r anson ic  flow wi th  immediate recovery,  followed by a decreas ing  condenser 

temperature with an a d d i t i o n a l  small  amount of recovery a t  t h e  f a r  end of 

t h e  condenser. The co ld  end on Busse 's  d a t a  was a t t r i b u t e d  t o  a non-con- 

d e n s i b l e  gas. 

Based on the above c i t e d  examples of t r anson ic  f low and t h e  need f o r  a 

d i f f e r e n t  pressure  c o e f f i c i e n t  c o r r e l a t i o n  t o  g e t  b e t t e r  agreement be- 

tween experimental d a t a  and a n a l y t i c a l  p r e d i c t i o n ,  t h e r e  i s  a good 
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FIG. 11. Temperature distribution along a radiation cooled 
Nb-lZr/Pb heat pipe of 10 rnm 0.d. and 500 mrn length. 



p r o b a b i l i t y  t h a t  t h e  d a t a  p o i n t s  i n  F igure  9 a r e  r e a l ,  and that t r anson ic  

flow was being observed. 

Figure 12  is a r e p l o t  of Figure 9, along ~ r t h  a d d i t i o n a l  d a t a  

p o i n t s  taken b e f o r e / a f t e r  t h e  t e a t s  of F igure  9.  F igure  1 2  is a 

p l a u s i b l e  r ep re sen ta t ion  of what the  a c t u a l  temperature p r o f i l e  may 

have looked l i k e .  The curves of Figure 12  look somewhat l i k e  the 

t r a n s o n i c  flow curves of Figures  10 and 11. The d i f f e r e n c e  between 

t h e  curves  of F igures  10 ,  11 and 1 2  is  t h e  f a c t  t h a t  a l l  used d i f f e r e n t  

types of hea t  s i n k s ,  which alter t h e  temperature p r o f i l e  from t e s t  t o  t e s t .  

I f  t h e  low measured temperature a t  t h e  f i r s t  condenser TC a r e  no t  

due t o  t r anson ic  flow o r  loose thermocouples, then a t h i r d  explana t ion  

may b e  t h e  r e s u l t  of a tu rbu len t  eddy caused by one of the pe r fo ra t ed  

c l i p s  used t o  hold the wick i n  p lace .  The exact l o c a t i o n  of a c l i p  i n  

t h e  a r e a  is  not known, b u t  t h e  presence of a  c l i p  i n  t h e  gcna ra l  

a r e a . i s  known. If t h e  c l i p  ended between the thermocouple l o c a t i o n s  

the f i r s t  TC may have seen a reduced temperature due t o  increased flow 

over t h e  c l i p ,  and t h e  second TC may have seen an  increased temperature 

due t o  pressure  recovery p a s t  t h e  c l i p .  

No at tempt  was made t o  a l t e r  t h e  c a l c u l a t i o n  r a t i o n a l e  o f  A-37. 

To inc lude  t h e  e f f e c t  of a c l i p  i s  r e l a t i v e l y  simple; however, t o  

inc lude  an increased pressure  coef f ic5ent  and/or  t r anson ic  flow should 

be based on a d d i t i o n a l  t h e o r e t i c a l  a n a l y s i s  and empir ica l  c o r r e l a t i o n  

of t h e  pressure  c o e f f i c i e n t  a long wi th  providing t h e  t h e o r e t i c a l  

equat ions  f o r  t r anson ic  flow and c a l c u l a t i o n  of the shock wave, a l l  of 

which a r e  i n t e r r e l a t e d ,  This  is  a recommended a r e a  f o r  f u t u r e  work. 

Considerable  t ime was spent  i n  g e t t i n g  agreement f o r  t h e  r e s t  of 

t h e  condenser temperature p r o f i l e ,  i,e., t h e  p re s su re  recovery a t  t h e  

end of the condenser. This was accomplished by t h e  modeling of 
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conduct ive hea t  sinks i n  add i t i on  t o  t h e  r a d i a n t  hea t  s i n k s  along t h e  

condenser a t  user -spec i f ied  l o c a t i o n ,  

3.3 Compariso~i of A-37 and HTPIPE 

Themacore 's  A-37 was compared t o  LANL's HTPIPE computer program 

by two methods. First, t h e  c a l c u l a t i o n a l  r a t i o n a l e  was examined s i d e  by 

side, followed by comparing a set of computer p r i n t o u t s  for equal  

heat pipes a s  seen i n  F igu re  9. 

A s i g n i f i c a n t  d i f f e r e n c e  between the t w o  programs is t h e  language 

and a c c e s s i b i l i t y .  A-37 is a u s e r  i n t e r a c t i v e  program f o r  use i n  

engineering design, d a t a  a n a l y s i s  and empirical c o r r e l a t i o n .  The 

language is BASIC. HTPIPE.is w r i t t e n  i n  For t r an  and r e q u i r e s  the use 

of a deck of punch c a r d s  o r  t ape  t o  i npu t  t h e  d a t a .  Accordingly, t o  

change a v a r i a b l e  a new card o r  tape change is required. A l t e r n a t i v e l y ,  

i f  a keyboard terminal i s  t o  be used, then  t he  program must be c ,~ l l ed  

i n t o  EDITOR, changes made and t h e  program recompiled. 

Technical ly ,  t h e r e  a r e  differences a l so .  A-37 u ses  as  an inpu t  

v a r i a b l e  t h e  beginning o u t s i d e  evaporator  temperature and assumes i t  

remains constant  f o r  d i f f e r e n t  power th::oughputs down t h e  h e a t  pipe. 

T h i s  i s  genera l ly  t h e  c a s e  in r e a l  s i t u a t i o n s ,  i . e . ,  t h e  evaporator  

temperature is f ixed .  HTPIPE fixes t h e  evaporator  - a d i a b a t i c  vapor 

temperature - a temperature that can only be  i n f e r r e d  by t h e  measurement 

of t h e  E-A wa l l  temperature.  However, by fixLng t h i s  temperature,  a l l  

other temperatures  vary as t h e  power varies; t h u s ,  t o  match a given 

des i r ed  power throughput a t  a given t r u e  e x t e r n a l  evaporator  temperature, 

many t r i a l  runs may be needed. 

In  add i t i on  t o  being u s e r  i n t e r a c t i v e ,  A-37 c a l c u l a t e s  a l l  desired 

information about a particular input  design without t h e  need f o r  



a d d i t i o n a l  i npu t ,  o t h e r  than  t h e  use r  answering a yes  o r  no ques t ion  

as t o  whether o r  not something should be c ~ l c u l a t e d  o r  p r i n t e d  ou t .  

Each segment of HTPIPE must b e  treated as a s e p a r a t e  computer run,  

i . e . ,  max.power c a p a b i l i t y  and temperatrsre p r o f i l e  a t  a given power 

a r e  ca l cu la t ed  i n  two d i f f e r e n t  po r t ions  of t h e  program, r equ i r ing  

s e p a r a t e  access  r a t h e r  than s imultaneously.  

Major d i f f e rences  a l s o  e x i s t  i n  c a l c u l a t i o n  r a t i o n a l e .  I n  A-37, 

t h e  p re s su re  drop i n  each increment i s  ca l cu la t ed  from which a new 

pressure  and temperature is  c a l c u l a t e d  f o r  t h e  beginning of t he  next  

i n ~ r ~ n e n t .  The computer moves down the p ipe  summing up the  AP 's , 

ca l cu la t ing  new pressures  and temperatures  u n t i l  t h e  end of t h e  p ipe  

i s  reached. D i f f e ren t  mathematical formulas a r e  used i n  each of t h e  

t h r e e  major s e c t i o n s ,  t h e  evapora tor ,  a d i a b a t i c  and condenser. HTPIPE 

c a l c u l a t e s  t h e  pressure  drop i n  t h e  evaporator  f o r  a g iven  power 

throughput. T h i s  AP i s  c a l c u l a t e d  us ing  Busse's equat ion.  From the 

E-A temperature,  a  beginning evaporator  p re s su re  and temperature is  

ca l cu la t ed ,  using t h e  ca l cu la t ed  AP. This  A P  is then  d iv ided  by the 

number of evaporator  increments,  and t h e  a c t u a l  va lue  of t h e  AP i n  

each increment i s  ca l cu la t ed  us ing  a  mathematical s e r i e s  based on t h e  

vapor flow through t h e  evaporator  wi th  uniform mass i n j e c t i o n ,  i.e., no 

compensation f o r  temperature changes t akes  p l ace  s i n c e  ~usse's equat ion 

assumes isothermal  f low.  However, s i n c e  d i s c r e t e  p re s su re s  a r e  ca l cu la t ed  

a t  each po in t ,  temperatures can be ca l cu la t ed .  A-37 uses t h e  same 

mathematical formula f o r  mass flow, but  a l lows a l l  t h e  phys i ca l  p r o p e r t i e s  

t o  vary a t  each poin t .  The use  of Bvisse's equat ion for c a l c u l a t i n g  the 

evaporator  pressure  drop is a very goad approximation, provided the 

vapor flow i n  the  evapora tc r  is  l e s s  thanbiach. 0.5. 

A-37 a l lows f o r  the pressure c o e f f i c i e n t  i n  t h e  evaporator  t o  



vary from 1.234 t o  1.11, as does XTPIPE. However, n e i t h e r  program 

i n t e r n a l l y  permits  t r a n s o n i c  flow t o  occur o r  has  a r a t i o n a l e  which 

calculates a l a r g e r  p r e s s u r e  coeffLcient  than  1.234. 

Fundamentally t h e  c a l c u l a t i o n  of t h e  p re s su re  drop fn t h e  a d i a b a t i c  

zone i s  t h e  same f o r  both programs. Hdwever, A-37 has  s e v e r a l  options 

a v a i l a b l e  which a r e  no t  i n  HTEIPE. The c a l c u l a t i o n  of t h e  p re s su re  

drop and/or  recovery i n  t h e  condenser is t r e a t e d  quite d i f f e r e n t l y  by 

t h e  two programs. In HTPIPE t h e  condener p r o f i l e  e i t h e r  shows 

pres su re  recovery o r  all pres su re  loss, s t a r t i n g  at t h e  beginning of 

the  condenser.  No p r o f i l e  l i k e  those  of F igure  9 can be c a l c u l a t e d ,  

i. e .  , f i r s t  a p re s su re  l o&,  followed by p re s su re  recovery. HTPIPE 

assumes uniform hea t  removal from the condenser. A-37 a l lows  f o r  

r a d i a t i o n  t o  a user -spec i f ied  environment along with t h e  a d d i t i o n  of 

conduction hea t  s i n k s  a t  any p l ace  on t h e  condenser. 

The p re s su re  p r o f i l e s  of Figure 9 a r e  a t t r i b u t e d  t o  t h e  water  

cooled h e a t  s i n k  a t  t h e  end of t h e  hea t  pipe. However, Busses 's  d a t a  

i n  F igu re  11 also show recovery a t  t h e  f a r  end of t h e  condenser under 

va r ious  condi t ions .  If one examines t h e  v i scous  and i n e r t i a l  p re s su re  

components i n  t h e  l a s t  increment of t h e  condenser, the  i n e r t i c l  

component will gene ra l ly  be larger t han  t h e  v iscous  components 

dependfng on the  s i z e  of t h e  increment. Thus, one assumes t h a t  there 

w i l l  always be a s m a l l  upturn i n  p re s su re  a t  t h e  far  end of t h e  

condenser as t h e  l a s t  few molecules of working f l u i d  s t r i k e  t h e  

condenser wall, u n l e s s  the hear p ipe  is  i n  the viscous  dominated range 

i n  which case  t h e  end temperature of t h e  hea t  p i p e  is  generally s e v e r a l  

hundred degress  co lde r  than  t h e  evaporator .  

HTPIPE c a l c u l a t e s  t h e  pressure  recovery i n  the condenser a s  

-n2 v t h e  same magnitude but oppos i t e  s i g n  as the  evapora tor .  
-3 



A-37 u s e s  e v2/ 2/8. The reason f o r  d iv id ing  by, r a t h e r  than  

mul t ip ly ing  by t h e  p re s su re  c o e f f i c i e n t  i s  t h a t  bo th  theory and 

experiment6 have shown that with  suc t ion  (condensation) r he p re s su re  

drop (recovery)  is less than with normal f l u i d  flow. Therefore,  t o  

ge t  a r educ t ion  i n  p re s su re  drop, t h e  p re s su re  c o e f f i c i e n t  must be  

reduced, which f o r  v a l u e s  near  one may, i n  fac t ,  be a r ec ip roca l .  The 

p r i n c i p a l  i n v e s t i g a t o r  of this program has spent  cons iderable  t ime 

examining t h e  d a t a  of Yuan and  inke el stein^ and bel!.evas t h a t  d i v i s i o n  

by the  p re s su re  c o e f f i c i e n t  has a  good t h e o r e t i c a l  foundat ion,  which 

appears t o  be  borne out  by the r e l a t i v e  good agreement of t h e  d a t a  end 

curves of Figure 9 c a ~ c u l a k e d  using A-37. 

A s i g n i f i c a n t  d i f f e r e n c e  between t h e  two programs are t h e  va lues  

used f o r  the  physical  p r o p e r t i e s  of the working f l u i d .  This is seen i n  

Figure 9. Some f l u i d s  agree q u i t e  we l l ;  o t h e r  f l u i d s  d i f f e r  by 

s i g n i f i c a n t  amounts. Other d i f f e r e n c e s  occur i n  t h e  fact t h a t  t h a t  i n  

HTPLPE t h e  phys ica l  p r o p e r t i e s  of t h e  p a r t i c u l a r  wick must be put  in ,  

i.e,, the th ickness ,  pore r ad ius  and permeabi l i ty .  An A-37 u se r  

need only spec i fy  a p a r t i c u l a r  wick s t r u c t u r e ;  t h e  proper r fes  a r e  then  

ca l cu la t ed  by a s e t  of equat ions  i n t e r n a l  t o  the program. If t h e  wick 

is  non s t anda rd ,  then t h e  wick propertPes can be put d i r e c t l y  in to  the 

program through the input s ta tements .  

A-37 uses  t h e  cpnserva.tive va lue  f o r  t h e  c a p i l l a r y  pore r ad ius  

7 
as f i r s t  def ined  by Ernst , i . e . ,  r = 1/2N where N = mesh number. 

C 

HTPLPE u s e s  t he  half width of t h e  opening between wi re s  i.1 a  mesh 

screen which can, a t  times, be  achieved but no t  on a r e l i a b l e  and 

repeatable bas i s .  The u s e  of o the r  wick s t r u c t u r e s  i n  which t h e  pore 

radius is w e l l  def ined o r  measured w i l l  no t  result i n  an ove rca l cu la t ion  

of Lbe c a p i l l a r y  f o r c e  i n  HTPIPE. Thus, t h e  expected performance of a  



screen w. .A heat p i p e  in HTPIf E (using LANL1s capil lary pore radius) 

may result  i n  an over-prediction of performance. 

Overall., A-37 and HTPIPE are very similar. For performance 

calculations in  a heat p i p e  with vapor flow l e s s  than 0 .3  rnach, the 

differences are minor. k t  high vapor flow (Mach-0.5). low vapor 

density (viscous range), and non-uniform heat removal from the condenser, 

A-37 provides a more comprehensive treatment. This is borne out by the 
t 

curves of Figure 9 where the sodium/stainless s t e e l  t e s t  data were 

compaired t o  the computer generated curves of A37 and HTPIPE. 



4 .  TITANIUM RADIATOR HEAT PIPE 

RAD-3 is t h e  f i r s t  l e n ~ t h  ti tanium-potassium r a d i a t o r  hea t  p i p e  

with a "D1' crossec t ion ,  b u i l t  by LANL, f o r  use wi th  t h e  c l o s e l y  

coupled (conductively) SPAR system. Although LANL had t h e  c a p a b i l i t y  

of f a b r i c a t i n g  t h e  heat pipe ,  they  d i d  not  have a vacuum system of 

s u f f i c i e n t  length  ( z 5 . 5 M )  t o  process  and t e s t  the hea t  pipe. 

Following t h e  t e s t i n g  of t h e  4.2 meter Sodium-SS Radiator  hea t  

pipe ( a s  designed, f a b r i c a t e d  and tested by  herm ma core), a t h r e e  way 

agreement was reached between Thermacore, NASA/JPL and IANL t o  have 

t h e  LANL f ab r i ca t ed  t i t an ium r a d i a t o r  h e a t  p i p e  envelope shipped t c  

Thermacore f o r  potassium loading ,  process ing  and t e s t i n g .  

Appendix B conta ins  a complete i eco rd  and d i scuss ion  of t h e  loading ,  

processj.ng and t e s t i n g  of RAD-3 a s  compiled a t  Thermacore, and w r i t t e n  

by Steve  P .  Girrens of LANL. P r i o r  t o  loading,  processing and t e s t i n g ,  

s e v e r a l  i tems needed t o  be  completed. They were: des ign  and bu i ld  a 

f i x t u r e  t o  s u p p o r t  and hold the  h e a t  p ipe  l e v e l ;  develop an  e f f i c i e n t  

RF c o i l  which coupled w e l l  t o  t h e  f l a t  ti:;anium heaf pipe;  and develop 

a means of connecting t h e  s t a i n l e s s  steel d i s t i l l a t i o n  pot t o  t h e  

t i t an ium hea t  pipe. 

4 . 1  RF C o i l  

RF heat ing was chosen as t h e  means of hea t ing  t h e  f l a t  bottom 

t i t an ium heat pipe  a s  i t  was the  only  method which allowed the 

evaporator  t o  b e  observed. A c l e a r  view of t h e  evaporator  was 

necessary t o  observe t h e  onset of hot  s p o t s  i n d i c a t i n g  t h e  heat p i p e  

l i m i t  a t  that operat ing condi t ion .  



Numerous RF c o i l s  were b u i l t  and t e s t e d .  Figure 13 shows n 

t e s t  of one of t he  c o i l s  on a  f l a t  t i t a n i u m  shee t .  Figure 14 shows 

t h e  s e l e c t e d  RF c o i l  design.  The c o i l  was made from rec t angu la r  wave- 

guide tubing.  It was 60 cm long, 5 cm wide and had f o u r  t u r n s  (8 

legs). Figure  15 shows t h e  Rl' c o i l  i n  p o s i t i o n  under t h e  hea t  p i p e  

i n  t h e  t e s t  rack. 

4.2 Test Rack 

Fab r i ca t i on  of the hea t  p ipe  was by wulding t h r e e  180 cm long 

sections toge ther .  Accordingly, t h e  hea t  p i p e  had a cons iderab le  

bow in i t .  Figure 1 6  shows t h e  t i t a n i u m  hea t  p i p e  as rece ived  by 

Themacore.  To proper ly  hold t h e  hea t  p i p e  i n  a level manner, a  

t e s t  fixture was designed and f a b r i c a t e d .  

Ceramic rods were used t o  support  the heat pipe ,  t h e  ceramics 

being supported by s t a i n l e s s  s teel  pos t s .  Support p o s t s  were placed 

every twenty cm in t h e  evaporator  and every meter in t h e  condenser.  

Figure 15 shows a t y p i c a l  support  p o s t  inc lud ing  t h e  lower support  used 

t o  hold t h e  RF c o i l  i n  p l ace ,  

Because of the l e n g t h  of t h e  hea t  pipe, hea t ing  of t h e  condenser 

was r equ i r ed  for process ing ,  Accordingly, ceramic beaded nichrome 

wire t r a c e  hea t e r s  were placed along t h e  l e n g t h  of t h e  hea t  pipe, These 

hea t e r s  and the Inconel sheathed thermocouples were held  i n  p l ace  

with SS s p r i n g  c l i p s ,  as  seen i n  F i g u r e  1 7 .  

4 . 3  Connection t o  D i s t i l l a t i o n  Pot 

Initially, a mechanical connect ion t o  t h e  1/4" OD t i t an ium 

evacuat ion t u b e  was Lo b e  made wi th  o carbon s teel  swagelock fitting. 

However, thermal e e s t i n c  of t h e  f i t t i n g  showed t h a t  i t  leaked while 

st temperature  and t h a t  a f t e r  s e v e r a l  c y c l e s  i t  leaked a t  room temperature. 

Accordingly, a t i t an ium t o  t i t an ium j o i n t  was required. 













Figure IP shows t h e  d i s t i l l a t i o n  s e t  up as o r i g h a l l y  configured.  

However, s i n c e  the s t e e l  swagelock f i t t i n g  t e s t s  leaked,  an elbow and 

seal-off  p a r t s  were machined out  of t i t an ium.  F igure  19 shows t h e  

t i t an ium parts f i t t e d  t o  the heat  p i p e  along wi th  t h e  d i s t i l l a t i o n  pot .  

To a s su re  t h a t  a f i n a l  seal-off  of t h e  h e a t  p ipe  could be made 

s a t i s f a c t o r y ,  s e v e r a l  tests sea l -o f f s  were made on the  t i tanium-t i tanium 

j o i n t .  F igure  20 shows t h e  j o i n t  p a r t s  p r i o r  t o ,  an  a f t e r ,  a t e s t  sea l -of f .  

4.4 Heat Pipe A r t e r i e s  

P r i o r  t o  f i n a l  assembly of the t i t an ium elbow and seal-off  t u b e  

t o  t h e  hea t  p i p e ,  d i s cuss ions  with LANL revea led  t h a t  t h e  a r t e r i e s  i n  

t h e  h e a t  p ipe  were "closed!' on both ends. Experience has shown that 

i f  t h e  a r t e r i e s  are se l fpr iming ,  then  i t  is  a good p r a c t i c e  t o  l e a v e  

the condenser end of t h e  a r t e r i e s  open. Accordingly, t h e  condenser 

end cap was c u t  o f f ,  t h e  a r t e r i e s  opened and the end cap rewelded on. 

F igure  21-shows t h e  open end of t h e  heat p ipe  wi th  an  a r t e r y  j u s t  

v i s i b l e  i n  t h e  corner .  

4.5 Potassium Loading and D i s t i l l a t i o n  

Following t h e  rewelding of the end cap on the condenser, the 

t i t an ium elbow and seal-off  tube  were welded t o  t h e  hea t  pipe. This  

weld was done ( a s  seen i n  Figure 2 2 )  in a glove bag, to reduce 

contamination, A f t e r  welding, t he  heat p i p e  was l e a k  checked, placed 

i n  the t e s t  rack, f i t t e d  with thermocouples and trace heaters, and 

placed i n  the vacuum system. F igure  23 is  the t e s t  rack  assembly and 

heat pipe p r i o r  t o  i n s e r t i o n  i n t o  the vacuum system. 

The d i s t i l l a t i o n  pot  and potassium capsules  were placed i n  a 

dry box and purged until the oxygen concent ra t ion  was less than 1 ppm 

as  v i s u a l l y  monftored by t h e  absence of an oxide film on liquid potassium. 
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Fig. 18. Initial Distillation Set Up 













Figure 24 shows t h e  loading of potassium i n t o  t h e  d i s t i l l a t i o n  p o t ,  

which a l s o  had hafnium and zirconium g e t t e r s  i n  i t .  Following t h e  

in t roduc t ion  of t h e  potassium, t h e  pot  was sea led  using a  n i c k e l  

gasketed "Conflat" flange. 

The d i s t i l l a t i o n  pot  was removed from t h e  glove  box and placed 

i n  p o s i t i o n  over t h e  hea t  p ipe  and t h e  e n t i r e  system evacuated. Tiie 
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pressure  i n  t h e  system was maintained below 5 x 10 Torr a s  hea t  

was app l i ed ,  f i r s t  t o  t h e  hea t  p ipe  t o  bake i t  out  and second t o  t h e  

d i s t i l l a t i o n  pot t o  outgas  it. 

With everything hot and t h e  p re s su re  a t  1 x Torr,  t h e  

temperature of t h e  d i s t i l l i t i o n  po t  was turned up t o  a  maximum of 

730 C ,  as shown i n  Figure 25. F igure  26 shows t h e  d i s t i l l a t i o n  pot  

with a "cold top" i n d i c a t i n g  t h a t  t h e  d i s t i l l a t i o n  was complete. 

Following i n i t i a l  t e s t i n g  of t h e  heat p ipe  t o  a s s u r e  proper wet t tng 

and f i l l ,  t h e  s e a l  tube was c losed  a s  seen i n  F igure  27. 

4 , 6  Tes t  Resul t s  - 60 cm Co i l  

Using t h e  RF c o i l  shown i n  F igure  14 ,  which was 60 c m  long, t h e  

r a d i a t o r  hea t  pipe was t e s t e d  t o  i t s  performance l i m i t  aga ins t  

g rav i ty  and with gravity a s s i s t .  F igure  28 shows the temperature 

p r o f i l e  a t  522 wat t s  f o r  t h e  hea t  pip: opera t ing  a g a i n s t  a 0.25 

degree g r a v i t y  tilt. Figure  29 shows the  temperature p r o f i l e  a t  826 

wat t s ,  w i t h  a 0.23 degree  g r a v i t y  a s s i s t  t i l t ,  

The s t a t e d  power l e v e l s  were measurzd by ca lo r ime te r  means, 

recording t h e  power i n  t h e  ca lo r ime te r  wi th  t h e  RF off and t h e  trace 

hea te r s  on, and then measuring t h e  power i n  t h e  ca lo r ime te r  wi th  t h e  

RF and trace hearers  on at t5e s t a t e d  condi t ions .  The 522 wa t t s  a g a i n s t  

2 
g rav i ty  corresponds t o  1 .4  watts/cm . An evaporator length  of 300 cm 

would be required t o  achieve 2600 wa t t s  without burnout; and a t  
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2 2.2 w/cm a length  of 190 cm would be requi red .  The test chamber, 

a s  b u i l t ,  could only accommodate a 137 cm locg evaporator  and s t i l l  

be a b l e  t o  observe t h e  sur face .  Accordingly, a 137 cm long c o i l  

was f a b r i c a t e d ,  

4 ,7  Tes t  Resul t s  - 137 c m  Co i l  

Considerable  d a t a  was taken wi th  t h e  137 cm long c o i l ,  and i s  

summarized here.  Addi t iona l  d a t a  i s  found i n  Appendix B. Figure  30 

is a p l o t  of t h e  s t a r t  up temperature p r o f i l e s  f o r  t h e  heat pipe .  

It is i n t e r e s t i n g  t o  n o t e  t h a t  the 228 and 440 watt power l e v e l s  were 

taken a t  0.25 degrees and 0.3 degrees  tilt a g a i n s t  g rav i ty .  F igure  

31 shows t h e  evaporator  sopic l i m i t  of t h e  hea t  p i p e  a t  start up 

powers, and Figure 32 shows the  d e p a r t u r e  from t h e  expected n ick ing  

l i m i t  due t o  t h e  poor performance of t h e  shot-blasted evaporator  wick. 

F igure  33 shows t h e  temperature p r o f i l e  a t  590 watts wi th  an 

aga ins t -gravi ty  tilt of 0.52 degrees.  This  curve is alinost an  exac t  

d u p l i c a t e  of t h e  curve i n  F igure  8, which i s  f o r  t h e  60 cm evapora tor ,  

with an aga ins t  g r a v i t y  tilt of 0.25 degrees.  The good agreement 

between t h e  curves of F igures  33 and 28 f o r  two d i f f e r e n t  t e s t  condi t ions  

show t h e  accuracy of t h e  t e s t  method t o  be wi th in  a 132 range. F igure  

34 shows t h e  temperature p r o f i l e  at 1.86 kw wi th  a 1.35" g r a v i t y  a s s i s t ,  

Th i s  was t h e  maximum power t r a n s f e r r e d  by t h e  hea t  p ipe  and corresponds 

t o  2 . 2  watts/etn2, which i s  t h e  sine va lve  a s  observed with t h e  60 cm c o i l .  

The d a t a  p o i n t s ,  which r ep re sen t  t h e  maximum power l e v e l  f o r  t h e  

heat p i p e ,  were determined by t h e  onse t  of ho t  s p o t s  i n  t h e  evaporator  

f o r  t h e  p a r t i c u l a r  ope ra t ing  condi t ion .  Photographs of t h e  evaporator  

hot spocs were taken, b u t  t h e  i n t e n s i t y  of t h e  s l i d e s  d id  no t  permit 

reproduct ion.  Figure 35 is a view of t h e  evaporator  a f t e r  t h e  heat 

pipe was removed from t h e  t e s t  s t a t i o n ,  showing a warping of t h e  f la t  

evaporator  as a result of t h e  ho t  spot s .  

54 
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r RAD-3 MEASURED START-UP POWERS 

Fig. 31. RAD 3 Evaporator Sonic L i m i t  Curve 
Courtesy, Steve Girtens, LANL 
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RAD-3 MEASURED OPERAT l NG POWERS 

Fig. 32. RlCD 3 Nicking L i m i t  Curve 
Courtesy, Steve Girrenz, LANL 
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5. CONCLUSIONS AND RECObfbfEflDATIONS 

Hetit P i p e  Performance 

- Liquid m e t a l  h e a t  p i p e s  with l a r g e  d iamete r - to - leng th  r a t i o s  can 

be des igned  t o  meet t h e  power requ i rements  of l a r g e  scale Ligh temper- 

ature spacecraft radiators. 

- Arterial  wicked l i q u i d  metal h e a t  p i p e s  cf circular and semi- 

c i r c u l a r  c r o s s e c t i o n  w i t h  l e n g t h  t o  d iamete r  e q u i v a l e n t  r a t i o s  o f  

220:l and 350:l respectively, have shown no a d v e r s e  o p e r a t i o n a l  e f f e c t s  

r e s u l t i n g  from start up wi th  the working f l u i d  f r o z e n  throughout  the 

h e a t  p i p e ,  o r  from prolonged o p e r a t i o n  with a p o r t i o n  of t h e  working 

f l u i d  f r o z e n  i n  t h e  condenser .  

C i r c u l a r  Crossectio; --- ------ 
- Non-bonded s c r e e n / a r t e r y  wicks can s u p p o r t  an e v a p o r a t o r  h e a t  

2 flux of 22 IJ/cm . Evapora to r  wick-to-wall bonding methods t o  in.- 

c r e a s e  t h e  e v a p o r a t o r  h e a t  flux l i m i t s  should be  pursued and 

i n c l u d e :  

- The u s e  of s i n t e r e d  powdered metal e v a p u r a t o r  wicks. 

- The u s e  of a lower the rmal  expansion heat p i p e  enve lope  

material thus e n a b l i n g  t h e  u se  o f  an ox id ized  o r  ceramic  

coaced SS t h e r m a l l y  expanded mandrel t o  bond n l aye r  of 

s c r e e n  t o  t h e  evaporator w a l l .  

- The development o f  a ceramic c o a t e d  E l e x i b l s  b l a d d e r  which 

i s  p r e s s u r i z e d  a t  bonding t e m p e r a t u r e ,  t h u s  permit t , ing t h e  

u s e  of SS h e a t  p i p e  envelopes .  

- Hear p i p e s  with mfnimum mass based on a minimum w a l l  thickness 

of 0.025 cm and c o n s i s t e n t  w i t h  the envelope m a t e r i a l ' s  column 

buckling s t r e n g t h  should be  d e s i g n e d ,  f a b r i c a t e d  and t e s t e d .  
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Semicircular-~rgsge&t&o~ ------ 
- Single layer sc reen  a r t e r i e s ,  perform a s  designed,  (wi th in  

the l i m i t s  of t h e i r  d i s t r i b u t i o n  wick). 

- Evaporator d f o t r i b u t f o n  wicks obtained by shot  b l a s t i n g  

t h e  inner  s u r f a c e  of t h e  hea t  p ipe  envelope are l imi t ed  i n  

t h e i r  a b i l i t y  t o  distribute t h e  working fluid over a l a r g e  area. 

2 - Linear hea t  fluxes of 3.2 ~ - c m / c m ~  and 5.1 W-cm/cm were 

achieved f o r  a r t e r y  ope ra t ion  against and wi th  g r a v i t y  

2 
r e spec t ive ly .  These hea t  fluxes are 1 .4  W/cm x 2.29 cm and 

2 . 2  w/crnL x 2.29 cm where the  h a l f ,  d i s t a n c e  between adjacent 

a r t e r i e s  is  2.29 cm.  

- Increased performance of t h e  s h o t  b l a s t ed  d i s t r i b u t i o n  wick 

cou ld  be achieved by increas . ing the depth  of pene t r a t ion  and 

s i z e  d i s t r i b u t i o n  o f  t h e  s h o t  p a r t i c l e s  and/or  i nc reas ing  t h e  

number of a r t e r i e s  s e rv i c ing  t h e  wick, thus  reducing l a t e r a l  

f l o w  r e s i s t ance .  

- Al te rna t e  methods t o  incre*.:.se the performance of the semf- 

c i r c u l a r  c ros sec t ion  hea t  p i p e  include:  

- Sintered powder metal wicks. 

- Bonded sc reen  wicks. 

Heai P i p e  Process ing  - 
- The d i s t i l l a t i o n  of the working f l u i d  i n t o  a clean, well out-gassed 

and heated heat  p ipe ,  followed by ope ra t ing  t h e  he.at p ipe  a t  design 

temperature and the  i n s i t u  seal off  o f  the heat pipe, produces a l i q u i d  

metal hea t  p i p e  which shows e x c e l l e n t  wetting and rewetting of t h e  wick 

structure by t h e  working fluid. 

- The use of a male/fernale connect ion between t h e  d i s t i l l a t i o n  p o t  
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and h e a t  p i p e ,  which a l s o  serves as t h e  vacuum p o r t  and u e n l  o f f  s i t e ,  

p e r m i t s  s e p n r n t e  h a n d l i n g  of  t h e  h e a t  p i p e  and d i s t i l l a t i o n  p o t .  This 

s e p a r a t i o n  a l lows  f o r  all welding t o  b e  done b e f o r e  t h e  l i q u i d  metal 

is i n t r o d u c e d  i n t o  t h e  d i s t i l l a t i o n  p o t  and does n o t  r e q u i r e  t h e  u s e  of 

mechan ica l  f i t t i n g s  on the heat p i p e  s i d e  of t h e  seal o f f .  )hechanical  

f i t t i n g s  on t h e  d i s t i l l a t i o n  p o t  s i d e ,  when used f o r  convenience ,  can 

t o l e r a t e  o  s m a l l  vacuum l e a k  because  both s i d e s  of  t h e  sys tem arc 

evacua ted .  

- F l u i d  f i l l i n g  methods commensurate w i t h  volume p r o d u c t i o n  of heat 

p i c e n  shou ld  be i n v e s t i g a t e d .  P o s s i b l e  methods i n  a d d i t i o n  t o  d i s t i l -  

l a t i o n  i n c l u d e  d i r e c t  i n j e c t i o n  of the  f l u i d  and t h e  u s e  of r u p t u r n b l e  

f l u i d  c a p s u l e s .  The f i r s t  approacir i n c l u d e s  dl- .  i n j e c t i o n  of 

p i ~ r i f i e d  working f l u i d  i n t o  a  pre-outgassed rvbt Csd h e a t  p i p e  w i t h  

subsequen t  s e n 1  o f f .  It might  be  n e c e s s a r y  t o  o p e r a t e  t h e  hent p i p e  

a t  t e m p e r a t u r e  p r i o r  t o  s e a l  o f f .  The second approach i n c l u d e s  t h e  

development of o t h i n  w a l l e d  z i rcon ium and/or hafnium c a n i s t e r  which i s  

p r e f i l l e d  with p u r i f i e d  working f l u i d ,  and i s  i n s e r t e d  into the h e n t  

p i p e  p r i o r  t o  t h e  l a s t  end cap weld. Foll.owing o u t g a s n i n g  of t h e  h e a t  

p i p e  the c a n i s t e r  would be  ruptured by h e a t i n g  t o  n p r e s c r i b e d  

t empera tu re .  The can i s t er  titen would r c n u i n  i n  t h e  h e a t  p i p e  and a c t  

ns a  g e t t e r .  Subsequent o p e r a t i o n  and s e a l  off would f o l l o w .  

Computer Model.- 

- Thermacore computer pragrom A37 was shown t o  have b e t t e r  agreement 

w i t h  low tempern tu rc  sodium h e a t  p i p e s  then HTPIPE. T h i s  s t ems  from 

the  use of d i f f e r e n t  t i rarmophysicnl  data for sodium n t ~ d  t h e  use  of 

improved c n l c u l n t i o n  r a t i o n a l e  i n  A 3 7 .  

- A 3 7  is c u r r e n t l y  l i m i t e d  LO t e m p e r a t u r e  p r o f i l e  p r e d i c t i o n s  f o r  
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t he  cases where the end of the condenser has reached the temperature 

equivalent  t o  o r  g r e a t e r  t han  a working f l u i d  vapor p re s su re  of 

approximately 0 .1  Torr . 
- Improved modeling could bs achieved by the  i n c l u s i o n  of:  

- Variable hea t  i npu t  t o  t h e  evaporator .  

- Heat l o s s  i n  the "adiabatic1'  zone. 

- Transonic vapor f low modeling a t  t h e  en t r ance  t o  t h e  condenser. 

- Improved vapor f low modeling for the condenser i n  t h e  v iscous  

and t r a n s i t i o n  t o  i n e r t i a l .  flow regimes and their e f f e c t s  

on p re s su re  recovery.  

- Improved thermophysical proper ty  d a t a  f o r  working f l u i d s  from 

room temperature t o  the c r i t i c a l  temperature.  

Improved computer modeling i s  necessary  for implementation of 

system s t u d i e s  f o r  space power systems l i k e  NEP, SPAR and SP-100. 

The cu r ren t  DOE sponsored SP-100 system and NASA/DOD sponsored TASP 

prcgram have high temperature molybdenum a l l o y  h e a t  p ipes  r a d i a t i n g  t o  

t h e  hoe side of t he rmoe lec t r i c  genera tors .  These h e a t  p ipes ,  wh i l e  capable 

of t r a n s f e r r i n g  the r equ i r ed  power wi th  a su f fLc ien t  s a f e t y  margin a t  

design temperature,  must also be capable G€ t r a n s f e r r i n g  sufficient 

thermal power on start up t o  knable t he  the rmoe lec t r i c s  t o  come up t o  

temperature.  That is, t h e  system must "boot sC :apt' i t s e l f  up t o  opera t ing  

condit ions.  I 

Analysis  of these heat p ipe  s t a r t  up cond i t i ons  w i l l  require A37 

p red ic t ions  i n  the  low temperature range, thus  the  need for improved 

computer modeling. Also t o  achieve full system tmpl i ca t ions ,  t h e  

thermoelec t r ics  must b e  modeled as tbe h e a t  s ink t o  which the hea t  

pipe i s  r a d i a t i n g .  This  w i l l  inc lude  t h e i r  thermal capac i ty ,  t r a n s i e n t s  



and r a d i a t i o n  t o  space.  This modeling could be included i n  A37 o r  could 

be part: of a system program which inc ludes  t h e  improved A37. 

Based on the above conclusions and comments the  fol lowing 

recommendation a r e  made. 

A mult iphase Technology Development Program should be undertaken 

t o  e s t a b l i s h  t h e  h e a t  p i p e  a s  a v i a b l e  hea t  t r a n s f e r  t o o l  f o r  use i n  

space nuc lea r  power subsystems. Th i s  e f f o r t  should begin wi th  t h e  

development of a comprehensive computer program which models t h e  hea t  

pipe from room temperature t o  opera t ing  temperature ss a . 3n 

of i t s  i n t e r a c t i o n  w i t h  t h e  hea t  source and hea t  s ink .  Computer program 

A37 should be expanded t o  make t h i s  poss ib l e .  

A s  p a r t  of t h i s  computer modcling, hea t  p ipes  r e p r e s e n t a t i v e  

of t h o s e  being modeled should b e  designed, f ab r i ca t ed , and  tested under 

cond i t i ons  s imulat ing system start up and opera t ing  condi t ions .  The 

results of these t e s t s  should b e  used t o  v e r i f y  t h e  computer modeling 

and/cc adjustments made so good c o r r e l a t i o n  is  achieved between 

experimental d a t a  and p red ic t ed  heat p i p e  performance. 

A second and p a r a l l e l  e f f o r t  should be  undertaken t o  i n v e s t i g a t e  

the e f f e c t  s eve ra l  parameters have on t h e  l i f e  of a heat p ipe  envelope- 

working f l u i d  combination. The parameters of i n t e r e s t  inc lude  f l u i d ,  

envelope and wick impuri ty  l e v e l s ,  f a b r i c a t i o n  and processing techniques ,  

opera t ing  temperature,  r a d i a l  and a x i a l  hea t  f l u x e s  and f l u i d  c i r c u l a t i o n  

r a t e s .  A matr ix of t e s t s  should be designed and c a r r i e d  out  and t h e  

r e s u l t s  of t hese  t e s t s  should be used t o  develop a l i f e  expectancy model 

which can then be used f o r  s e l e c t l ~ g  t h e  proper  h e a t  p i p e  f o r  a given 

a p p l i c a t i o n .  

A s  system design s t u d i e s  progress  and a p a r t i c u l a r  system i s  s e l e c t e d ,  

the hear  pipes f o r  that system should b e  designed us ing  t h e  above computer 
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modeling and life expectancy data, followed by the fabrication and 

testing,of prototypes. 
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PROGRAM A37 ORIGINAL PAGE 13 1 : 3 P + * 8/24/82 

NEED INSTRUCTIONS ( Y / N )  --- ?Y 
OF rnoR pu~W 

F L U I D  COIE 

1 AMMONIA 
2 EMTHANOL 
3 ETHANOL 
4 WATER 
5 DOWTHERM A 
6 MERCURY 
7 CESIUM 
8 RUBIDIUM 
9 POTASSIUM 

$0 SODIUM 
If. L ITHIUM 
12 LASL SODIU 
13 LASL L ITHX 
14 ACETONE 
IS BENZENE 

-79 TO 
-20 TO 

10 TO 
5 TO 

150 TO 
2 5 0  TO 
375 TO 
ZOO TO 
400  TO 
4 5 0  TO 
8 0 0  TO 

WICKS: 0 = WICKLESS 
I = 150x270 N I  
2 = 200X400  N I  
3 = ELMET325 MO 

FLUID CODE TEMP ( C )  

16 TOLUENE 
17 FREON l i  2 0  TO 1 4 0  
18 FREON 12 -40 TO SO 
19 FRCQN 13 -110 TO 20 
20 FREON 13Bi -40  TO SO 
21 FREON 21 -40 TO 5 0  
22 FREON 22 -40 TO 30 
23 FREON 113 -30 TO 50 
24 FREON 1 t 4  -70 TO 100 
25 FREON 502 -40  TO 50 

OR 99 TO INPUT SPECIAL WICK CHARACTERISTICS 

OR MESH NUHBERS L ISTED BELOW: 

MEEH # 
2 0  
40 
60 
100 
140 
2 0 0  
270 
400 

MESH # WIRE DIAi'l+(INCHES) 
30 +013 
5 0  ,009 
GO + 0055 

120 + 0037 
170 * 0024 
230 * 0 0 1 8  
325 + 0 0 1 4  

WALL & WICK MATERIALS: 1 = ALUMINUM 6 = MOLYBDENUM 
2 = COPPER 7 = NIOBIUM 
3 = 304 STAINLESS 8 = COPPER-NICKEL 
4 = HASTELLOY-X 9 = A D M I R A L T Y  BRASS 
5 = NICKEL 10 = LOW CARBON STEEL 

A37 CONTAINS THE FOLLOWING F I L E S :  

F I L E  DATE I~ESCRIPTION 
-----------------------------"---,*------------------------------------ 

ANL-2 3/30/82 ARGUNNE P I P E  2b375 I N  D I A  28 I N  LONG 

AHP-2 2 /  5 / 8 2  ARTICULATE11 NH3 HP AL/SS ART 

JPL-2 5/24/82 JPL-2 FINAL REPORT 



UANT EXISTING KtRTA* DISPLAYED (Y/N) --- ?Y 

JF'L-2 FINAL REPORT 

INITIAL CONDITIONS: MEASUREMENTS IN CENTIMETERS 

LINE 0 GRAVITY MULTIPLIER = L LOCATION = EARTH 

LINE 1 E-LENGTH A-LENGTH C-LENGTH 
28 0 407 CH 

LINE 2 FLUID WETTING ANGLE EVAP TEMP M A X  DEL-T 
12 0 662 IrEG C 500 DEG C 

LINE 3 

LINE 4 

LINE 5 

LINE 6 

LINE 7 

LINE 8 

LINE 10 

LINE 11 

LINE 12 

LINE 13 

LINE 1 4  

LINE IS 

EUAP O + D t  ADB 0+De CONO Otnt 

2.667 . 2 * 667 CM 

WALL THICKNESS 
,287 CM 

EVAP GRAVITY ANGLE 
Q DEG 

INITXAL POWER STOPOFF POWER 
2000 2366 t 37 WATTS 

* 

EVAP ADB ' COND 
2 2 
200 200 

WRAPS 
MESH 

EVAP WIRE AIIB WIRE COND WIRE STD IiI-AM? 
Y Y 

WALL MATL = 3 WICK MATL = 3 

# BENDS = 0 

2 ARTERIES 2 WURKING *39  CM ARTERY Q t D +  

2 WRAPS 2QQ MESH ARTERY 

Y ARTERY MESH I S  O F  STD DIAMETER 

1 ADIABATIC VAPOR FLOW IN ADE SECTION 

1 EVAP SONIC EQ* USES , 4 7 4  BUSSE ISQTHERMAL 

EVAP 
4 

ADB 
i SEGMENTS 

LINE 16 EMISSIVITY = ,263 COND AREA FACTOR = 100 X 

CONDENSER RADIATES TO SPACE 

L I N E  17 HEAT SINK # 1 ALONG CONDENSER 

BEGINS AT 404  CM ENDS AT 405 CM FROM A-C 
X-SECTNL AREA 7e56 CM2 LENGTH 7 . 6 2  CH 
HEAT SINK MATL = 3 COOL END OF HEAT S I N K  = 50 DEG c 

CHANGE WHICH LINE ( 9 9  TO RUNT STOP TO Q U I T )  --- ??P 

A2 



BEGINNING A ~ ~ I N C  CALCULATIONS Now t t c  

AT A STOPOFF FOWER OF 2 3 6 6 t 3 7  UATTSY DELTA-T = 22,6724 DEO C 

CONTINUE TO ULTIMATE POWER (Y/N) --- 'f Y 

RESULTS WITHOUT INTEGRATING: 

5100 WATTS CAUSES ------ EVAP C A P I L L A R Y  L I H I T r  DPV 3 DPL 

1 STOFQFF 2 E Q U I L I B R I U H  3 HON-LIMITED 

TRANSFER POWER (WATTS) 2 3 6 6 t  37 3335 + 82 5000 

RADIATED POWER (WATTS) 3554 186 3355+14 265E1.29 

TOTAL DELTA-T (UEG C )  2 2 t 6 7 2 1  38 4 3899 109.86  

(8) 

WANT TO CALCULATE PY INTEGRATING ( Y / N I  --- ?Y 

AT A STOFOFF POWER OF 2 3 & 6 t 3 7  'WATTSY DELTA-T = 20t3936 DEG C 

CCNTXNUE TO ULTIHATE POWER ( Y I N )  --- ?Y 

RESULTS OF INTEGRATING 4 1 32 SEGMENTS: 

5400 WATTS CAUSES ------ EVAP SONIC L I M I T  

4 STOFOFF 5 ERUILIBRXUM 6 NON-LI i4ITEn 

TRANSFER POWER (WATTS) 2366 t 37 3477 + 65 5300 

RADIATEIl POWER (WATTS) 3572 + 93 3476 t?3 2804+97 - 
TOTAL DELTA-T (DEG C )  20 t 394 35 + 155 85 t 6 1 6  

WANT TO SEE ANY SEGMENT BY SEGMENT DETAILS ( Y / N )  --- ? Y  

WHICH INTEGRATED POWER ( 4 ~  5 OR 6 )  --- ? 4  

ENTER Y Y Y s  Y N Y T  ETCt TO SEE DETAILS OF E Y  A P  C --- P Y Y Y  

ORIGINAL PAGE IS 
OF POOR QUALITY 



3477+&5 WATTS OVER 4 SEGMENTS 7 CM LONG IN EVAPORATOR 

3477*65 WATTS OVER 32 SEGMENTS 12,7188 CM LONG IN CONDENSER 

SEG TEMP IN UEL-T VAPR IN IIEL-V DPI DPU 

WANT TO SEE ANY SEGMENT B Y  SEGMENT :lETAILS ( Y / N )  --- TN 
WANT TO SEE ANY DETAILS (Y /N )  --- ? f 

ORIGINAL PAGE F8 
PRINT RUN CCINDITIONS (Y/N)  --- ? 't OF: POOR QaALITII 



ORIGINAL PAGE 
OF POOR QUALI'FY 

RUN CONUITIONS: FOR A37 1:17 P,M+ 8,'24/82 

FILE NAME - JPL-2 JPL-2 fINAL REPORT 

LOCATION = EARTH 

SaNIC LIMIT IN THE EVAPORATOR I S  BASED ON ISOTHERMAL (BUSSE) VAPOR FLOW 

ARTERY HEAT FIFE 
G R A V I T Y  ANGLES 

FLUID = LASL SODIU WETTING ANGLE = 0.00 DCIEG EVAF Q.00 DEG 
EVAP TEMP = 662 MAX DELTA-T = 500 DEG C 
WALL HATL = 3049s COND 01 00 DEG 
WICK MATL = 304SS 

EVAF LENGTH 28*0000 IN  28,0000 CM EVAY QID* 2,6670 I N  2.6670 UP; 
COND LENGTH 40710000 I N  40710QOO CM CONn O*n* 2,6670 TN 2*667Q CM 
TOTAL LENGTH 435+00QO I N  435+0000 CM 

WALL THKNESS 0,6870 I N  012870 Chi 

--- WICK THICKNFS8 --- WRAPS .WICK MESH WIRE D I A M  
EUAP WICK 040093 I N  010237 CM 2 200 MESH STANDARD 
CQND WICK 040093 IN 01G237 CH 2 200 MESH STANDARD 

ARTERIES 0,0093 I N  0.0237 CM 2 200 MESH STANDARD 

ARTERY U + D *  011535 I N  0*3900 CM 2 ARTERIES ( 2 WORKING) 

AKl'ERY SPACING 0*0850 I N  292478 CM I N  EVAP 
ARTERY SPACING Qt885Q I N  2*2478 CM I N  COND 

4 SEGMENTS I N  EVAF 1 SEGMENTS I N  ADB 32 SEGMENTS I N  COND 

HEAT SINK NO* 1 IS MADE O F  30435 WITH COOL END TEMP QF 50 DEG C 
BEGINS AT i59*0550  IN 404+0000 CM FROM A-C 
ENDS AT 15944490 I N  405,0000 C i l  FRUM A-C 
CROSS-SECTN 715600 IN2 745600 CM2  
LENGTH 716200 I N  7,6200 CM 

PIPE WALL EMISSIVITY = ,263 COND AREA FACTOk = 100 X 

CONDENSER RADIATES TO SPACE 

SELECT DETAILS S ORDER TO PRINT ( i r 4 5 6 ~ 2 5 ~ E T C 1  OR Q=NONE) ---- 75  

WHICH DETAILS (A4LL.y N=NONE? T=TEMPEKATURES ONLY) --- ? A  
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ARTERY HEAT P IPE - JPL-2 FINAL REPORT 
OF POOR QLJALm 

5 INTEGRATED DETAILS FOR THERMAL EQUILXBRIUM FOWEH OF 3477e65 WATTS 

PE FE- A F'R-C PC 
61311 551557 35657 52038 DYNES/CM2 

EVAF ADS COND 

DFV VISCOUS 398 0 
DPV INERTIAL 5295 
D P t  MESH ( C I R )  1433 
DPL ARTEFzY 45 0 

DPC 
DPG 
IlPD 

TOS'L CAPILLARY 37i21 0 
TOTL 9F'U f BFL 7131 0 

LEFTOVER CAP 29'990 3'7309 37309 DYNES/CM2 

EVAF TEMP COND TEMP IIELTA-T 
662 626 + 845 35 + 155 DEG C 

TE TE-A TA-C TC 
639 n SOf 632 + 932 642 * 932 628,422 DEG C 

DELTh-T VALUES: 

EVAP WALL EVAP W I C K  EVAPORATXQN 
20  + 7989 r 799 188 t 70Qir84 DEO C 

VAPOR ( E )  VAPOR ( A )  VAPOR ( C )  
6 t 56P09 0 4 t 50977 DEG C 

CONDENSATTOt; COND W I C K  COND WALL 
+482042E-01 +bI33445E-01 .t + 45029 DEG C 

LOCATION MACH # SONIC LIMIT ENTRAINMENT 
EVAP t 224952 8342 13500 WeSTTS 
E-R + 224952 6342 WATTS 
ADR t 224952 6342 0 WA'T'TS 
A-C t 224952 15460 WATTS 
COND I :SO0 WATTS 

EVAF 
POWER SENST'iY 15 

COND A X I A L  !AT EVAPI 
1 623 WATTS/CM2 

E A REY # A A REY # C A REY # 5 R REY 9 C R REY 
2779 0 1G7 22 3 

COLD FLUID CHARGE 215+Q3 GRAHS 1 4 4 . 5 1  C1'13 
ARTERIES 56 .56  GRAMS 
MESH WRAP t57+68  GRAMS 
PIPE WALLIENBCAPS 7425+ 05 GRAMS 

TOTAL MASS 7854 + 32 GfiAMS 
A6  
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FILL AND TESTING OF RAD-3 (5 .5m Ti/K) RADIATOR HEAT PIPE 

by 
S.  P .  Girrens 

BACKGROUND AND DESCRIPTION 
RAD-3 is the first titanium radiator experimental heat pipe built to actual 

design length. The hea?, pipe was constructed to verify perfor4mance o f  a 360 
stringer heat pipe design radiator with the fol lowing design characteristics: 

Beginning o f  mission power/heat pipe 2.65 kW by 360 pipes 
End o f  miss ion power/heat pipe ' 2.97 kCJ by 321 pipes 
Length 

Total cross-sectional area 

Flat side (armor) thickness 6.60 rnm 

Curved side thickness 0.60 mm 

RAD-3 has a semi-circular cross-section of radius 2.0 Em. The flat section is 

6.2 cm wide. The pipe has two, single layer 50 mesh Ti screen arteries each 
2 12 mrn i n  cross-section. The arteries were open on the fill tube end. The 

entire inner surface was shot-blasted for the distribution wicking sjstem. 
The length dimensions are as follows: 

Yeat pipe: 5.47 rn 

Fill tube: 0.24 rn 
Total : 5.77 rn 

The screen arteries for this pipe were formed over a mandrel and then spot 

welded to the flat section before welding the flat and curved sections to- 

gether in order to control artery dimension. Curved section wall thickness i s  
0.056 cm (0.022') and the f l a t  section thickness is 0.07 cm (0.028"). The 5.5 

m w r v e d  section was asserabled by butt-welding three approximately 2 rn long 

sections together. The screen arteries and flat section are continuous 

lengths, The approximate cross-sectional area available for vapor flow is 6.3 
2 cm . 

On February 6, 1981 i t  was agreed t h a t  Thermacore, Inc., principal inves- 
tigator Dun Ernst, would fill and test RAD-3 under JPL contractf A test plan 

*EDITORS NOTE: JPL SUB CONTRACT 955935 



and procedures was established between Thermacore and Los Alamos in March. 

The titanium heat pipe container was also shipped to Thermacore in Lancaster, 

Pennsylvania in March. 

TEST OBJECTIVE5 

The test objectives established for RAD-3 incSuded t h e  following: 
1. fill and wet-in with arteries (flat side) down orientation; 

2. successful start-up; 

3. operation at 5 0 0 ~ ~  in vacuum at l o w  power (run a t  maximum uncoated 
power) and measure axial A T ' S ;  

4. operation at 500'~ in a low pressure atmosphere (run inert gas 
atmosphere to increase heat transfer) at maximum uncoated power and 
measure axial AT'S;  

5 ,  vary evaporator area and/or input heat flux to obtain dry out limits 

on shot blast distribution wick. 

HEAT P I P E  FILL 
Calculations made on the amount of potassium required to fill RAU-3 re- 

sulted in an estimate o f  250 cc or 213 g at room temperature. Therefore, i t  

was decided to load the fill pot with 260 g of potassium f o r  transfer by dis- 

tillation into the pipe. 

Actual fill operations began on Monday, October 19, 1981. The system had 

been outgassing a1 1 weekend at 200 C. Potassium was taken to 200 C the night 
before to initiate molten outgassing stage. A t  817 slowly started increas~ng 

pot temperature from 250 to 650 C. At 1050 began to observe potassium moving 
through snivvy by both currenx fluctuation in snivvy and visual observation. 

From 1130 t o  1345 pot was maintained at 650 C. At 1345 pot temperature was 

increased to 710 C and maintained until 1615. At 1615 the pot temperature was 

again increased to 730 C and maintained until 1655. As can be seen in the 

temperature c h a r t  in Appendix 1 ,  at 1655 T C Z s  21 and 22 crossed over indicat- 

ing  that t he  potassium distillation was complete. Approximate total transfer 

time was 6 hours. 

WET-IN AND ARTERY FILL: 
Heat was s u p p l i e d  t o  the heat p i pe  by t w o  devices, ( 1 )  the trace heaters 

(hichrome wir. insulated with ceramic beads) which were lying along the 



arteries were conffrmed t o  be functioning excel1entfy in t h a t  several times 
the input power was increased, allowing a hot s p o t  t o  deve1,-!J, and then re- 

duced t o  observe d i s t r i b u t i o n  wick recovery. The largest heat pipe power 
o b t a i n e d  f o r  the 60 cm e v a p o r a t o r  was 826 W w i t h  gravity a s s i s t  and the tem- 
perature profile i s  shown in Fig.  5. In order to prepare for heat pipe seal 
or burn-off the trace heaters were turned o f f .  Figures 6-8 are temperature 
profiles o f  -the pipe operating with gravity and the trace heaters o f f .  The 
heat pipe was successfully sealed at the end of the day. 

After  the events o f  the 23rd, we came to the conclusion that the  shot- 
blasted distribution wick would not support the input heat flux o f  7 w/cP2 
required to operate the heat pipe a t  500 C against gravity, It was also cal- 

7 
culated, based on a maximum input flux of 1.4 W/cmm, that an evaporator o f  

length 230 cm was requi'red to operate the heat pipe against gravity at 500 C. , 

Based on these observations, we decided to construct a new rf c o i l  737 crn long 
i n  order to get mre power i n t o  t i e  pipee. The new coil length of 137 crn was 
selected because t h i s  was the length o f  vacuum chamber which was constructed 
wfth sufficient viewing ports allowing visible observation of hot spots. The 
new c o i f  conf iguratfan selected was a 3-turn, 3/16 in.. copper t u b i n g ,  1/8 in.  
gaps between tubes, mitered corners design . The trace heaters wou 1 d continue 
t o  be used . i n  order to artificially increase heat p i p e  operati.ng temperature. 

Work on the new coi 1 was performed during the weekend. Other work 
included cleaning the bell j a r  o f  thedistillation apparatus and and . 
f i 11 ing residue, ~elocating the heat pipe on the support structure t o  faci 1 i- 
t a t e  easier tank tilting which also put the heat p ipe completely Into the 

calorfmeter jacketed area. 

Upon disasse~ling the distillation p o t ,  nc potassium w2s evident 

therefore conf trming t r a n s f e r  o f  a11 2bU g o f  pctassium into the pipe. Obser- 
v . . t ions o f  the heat  pipe showed s l i g h t  material distortians i n  areas where hot 
spots occurred and a concave inward shape o f  the f l a t  section ind ica t ing  a 
vacuum t i g h t  fill tube seal.  System modifications were completed Monday, 
gctober 26 arid the pipe and new rf ~ q i l  were reassembled into the vacuum test 
chamber. The trace heaters were turned on to 10A and a pressure of 4 x loo5 

torr was soon at ta ined i n  the chamber." The tank and pipe orientation was 
,524 w i t h  g r a v i t y  t o  fac i l i ta te  artery fill and wet-in o f  the new evapora tor  

section. 



length of the heat p ipe  on the curved section, and (2) a four-turn rf coil 
(constructed o f  0.64 cm wide f ' tat  traveling-wave tube) which was oriented ap- 
posite the flat section at one end of the heat pipe simulating the heat source 
f o r  the evaporator. The rf coil was 60 cm in length. 

Tuesday and Wednesday, October 20 and 21, were spent performing wet-in and 

artery fill operations. Throughout these operations, the trace heaters were 

maintained between 11-12A. An axial temperature profile o f  t h e  heat pipe with 

only the trace heaters providing . > a t  input at 11A i s  shown in Fig. 1. As the 
rf coil power was increased, hot s ~ o t s  would develop at various locations in 
the evaporator. The first hot  spot occurred 6-11 cm from t h e  end of  the evap- 
ora tor  along the edge o f  the pipe next to artcry #I. (Since there are two 

arteries, they will be distirguished by referring to them as artery N1 or #2 

with artery #2 being located on the heat pipe side adjacent the side vacuum 

tank vlewing parts.) The orientation o f  the p l p e  at t h i s  time was a 1.0' 
1 

ti1 t gravity assist (evaporator lower than condercer), and the rf current was 

65A. In an effort to increase overall heat pipe te:ycnature for wet-in, it 

was f e l t  that increasing the gravity assist bv  lovering the vacuum tank would 
a1 low higher rf powers. T h i s  process of  lowering the tank and then increasing 

rf power was continued to a p o i n t  where the arientation was 2.s0 gravity 

assist at an rf current o f  115A. The highest  wet - in  temperatures were attained 
st this point and an axial profile i l l u s t r a t i n g  ikzse temperatures i s  shown i n  
F i g .  2 .  

Since the p i p e  was taken to a relatively good wet-in temperature by lower- 
ing the vacuum tank, it was next decided to f i l l  the ar te r ies .  The orienta- 

t i o n  seiected for artery fill was a slight gravity assist angle of 0.31°. 

Tc fill the arteries, the rf coil would be turned on only occasianally while 

the trace heaters would be on continually. Thus, t he  trace heaters would drive 

potassium by evaporatian to the evaporator section and intermittent rf power 
would redistrTibute the working fluid. A f t e r  performing this operation for 

about 6 h , the heat pipe was brought up to horizontal to verify artery opera- 

tion. At an RF current o f  80A a not spot again developed by artery #I at the 

same location described earlier. The heat pipe was again returned to the 

0.31~ down orientation for refill o f  arteries. After 2.5 h of rewet the 

p i p e  was raised to horizontal at an rf current o f  70A. T h i s  time a hot spot 
was observed to start in the center o f  the flat at t h e  end of the evaporator 

and move towards the arteries and towards the beginning of the evaporator. 



This phenomena suggested that the arteries were filling but then becoming 
drained due to some type of dry-out. It was established that the best artery 
fill orientation for the remaining o f  the experiment would be the 0.31' down 
orientatjon and trace heaters on 12A. 

HEAT PIPE TESTING 
Actual heat pipe testing began Thursday, October 22. Durbing the previous 

n i g h t ,  the pipe was maintained in the 0.31' down orientation with trace heat 
orr1,y at 12A. A ,calorimeter measurement was taken to get a datum for how much 
heat the trace heaters were inputing into the system. Once the datum was es- 

tab1 ished, increases in measured amounts of heat during rf operation would 
indicate heat pipe power. The primary objective of the day was to determine 
if the arteries were filled ~ n d  operating. To perform this test, the rf coil 
was turned on to 70A which was measured to be 720 W. The heat pipe was then 
raised to a horizontal orientation. Almost as soon as the tank was raised, 
the heat pipe would develop localized hot spots, indirated by an arange glow 
in the titanium container, which would continue to gro,, or get brighter until 
rf power was shut o f f .  This operation o f  raising the pipe at 70A rf was per- 
formed twice. It was also determined t h a t  a minimum of 2 h was required to 
refill the arteries after allowing a local artery hot spot to occur. Even 
though we felt the arteries were working, the events o f  the day were not con- 
cl usive far  confirming artcry operation. 

On the 23rd, a new procedure for determining artery operation was per- 
formed. First, t he  trace heaters were turned up to their maximum allowable 
current o f  15A. After allowing time for the system to stabilize, temperatures 
and calorimeter measurements were made and illustrated in Fig. 3. The rf was 
then turned on to 55A. Next, the tank was raised to a .25' against gravfty 
orientation. The heat pipe was operating with no visible hot spots. The rf 
power was then increased *in 5 A  jncremects and after each increase allowed t a  

stabilize. A t  70A a hot spot developed i n  the middle o f  the evaporator flat, 
approximately 25 cm frcm the end o f  the hezt pipe. Upon turning the rf power 

back down to the 55A levcl, t h e  hot spot would disappear indicating heat pipe 

recovery. After allowing the system to stabilize at the 65A rf pmer level, 
* 

temperature and power measurements were made and shown in F I g .  4. Thc heat 
pipe was transporting 522 W against gravity. Apparently, the distribution 

2 wick had reached a dry-out 1 imit at about 1.4 W/cm input heat flux. The 



Testing resumed Tuesday the 27th with the trace heaters being turned up t b  

11.8A and a stabilized temperature and calorimeter measurement obtained for a 
datum condition. Figures 9-12 contain temperature prof i les and power levels 

for the longer evaporator condition operating against gravSty. Figure 13 s h o w s  
the temperature profile and power level obtained while the heat pipe was 
actually being tilted to operate against gravity. Upon increasing the rf coil 

power to 75A a hot spot developed in the center of the flat evaporator section 
71 cm from the end of the pipe. T h i s  location is 1 1  cm into the new evapor- 
ator region. When the rf power was reduced the heat pipe distribution system 
recovered and the hot spot disappeared. When the rf power was again increased, 

the hot spot returned at 60A which was lower than the previously attained 67A. 
The vacuum chamber was then tilted to allow the heat pipe to operate with 

gravity. The trace heaters were also turned up to 14A to attain higher tem- 
peratures. Figures 14 and 15 illustrate the powers and temperatures reached 

after the first day of t es t ing  the longer evaporator configuration. 
On Wednesday, the day again started by obtaining a datum trace heat power 

at 11.8A. The temperature profile for this datum condition is shown in Fig. 

16. The rf was then turned on to 55A and the pipe was tilted to operate at 
0.5' against gravity. Figures 17 and 18 are the temperatures and powers 
obtained i n  this orientation. What Is of interest i s  that the data presented 
in Fig. 78 i s ,  within acceptable measurement error, a reproduc,ion of the data 

presented in F i g .  12 taken one day earlier. Upon increasing the rf to 85A, a 
hot spot developed 2gain i n  the center of the flat evaporator section approxi- 

mately 71-81 cm from t he  end o f  the heat pipe and slowly spread both towards 
t h e  arteries and axially along the pipe. The hot spot was also confirmed by 
#I thernrocouple which indicated a 80 C temperature increase 72 cm from the end 
of the h e a t  pipe i n  the evaporator section. The hot spot could be eliminated 
and reproduced by decreasing and then increasing the rf power again indicating 

distribution wick recovery and artery operat ion. The highest heat pSpe power 
measured bciyore dry-out was 888 W which computes to an input f l u x  of 1.1 

w/crn2 which i s  lower than the previously measured and computed 1.4 W/cm 2 

froin the 60 crn evaporator tests. Having established heat pipe operation 
against gravity it was next decided to test for ~ ' r x i m u m  power and temperatures 

utilizing gravity assist to reduce distribution wick dry-out problems. The 
p i p e  was tilted down to a 1.35' gravity a s s i s t  orientation and the trace 
heaters were turned ub to 14A. As the rf power e.;: increased, the entire 



evaporator began to turn orange Sn color. Since the evaporator was apparently 
increasing in temperature uniformly it was ~ssumed that excess potassium, free 
flowing down the f l a t  section, was aiding evapor=tive fluid distrihution. 
Figures 19-27 show temperature profiles and powers attained during this testing 

phase. Figure 20 contains data taken for the maximum power, 2383 W, trans- 
ported by the heat pipe. Testing during the remainder of the day involved 
turning off the trace heaters and manipulating the rf input to obtain a few 

power shut down temperature profiles. These data are presented in Figs. 22-24. 
The final day and morning o f  testing, October 29 and 30, were spent 

obtaining temperature start-up profiles for both against and with gravity 

orientations. The data taken during this testing phase i s  presented in Figs. 
25-34. Figure 28 shows the temperature profile measured when the heat pipe 

transported the highest power recorded of 1003W while operating against 

gravity. Figure 29 shows the data recorded for an actual rf power-up while 

the heat pipe was orientated against gravity. 

DISCUSSION OF TEST RESULTS 
The primary problem encountered testing RAD-3 was the low limiting values 

f o r  heat flux into the flat evaporator section of the pipe. Because o f  this 
distribution wick dry-out limit the trace heaters were used to e f f x t i v e l y  

reduce the condenser radiative heat rejection flux in order to allow the  con- 
denser to reach axially uniform temperature profiles. The dry-out problem was 

also reduced by allowing the heat pipe t o  operate in a gravity assist orienta- 

tion thus utilizing the free flowing excess liquid to attain higher evaporative 

f luxes .  

Another problem arose in that the thermocouples near the rf coil would 
occassionally pick up rf and give observable erroneous measure- 
ments. T h i s  i s  evident by comparing temperature profile data with the rf off 

lo data with the rf on. 

The start-up profiles are interesting in t h a t  while the heat pipe is 
beginnin5 to operate at low powers, the working f l u i d  contained in the arlsries 

towards the  end of the condenser remains at ambient temperatures. 
Computer calculations using the  HTPIPE code were performed on t h e  RAD-3 

heat pipe conf iguratlon. Due to the irregu!ar shape o f  RAD-3, cross-sectional 
artery and vapor shape dimensions were difficult to obtain. In order t o  make 
analytical performance calculations, the artery radii were assumed at 0.19 cm 



2 and t h e  vapor passage area a t  6.3 cm . As i s  shown i n  Figs. 35 and 36, a 

f i r s t  comparison o f  the computed predic t ions wi th the measured resuf ts i n d i -  

cated a performance discrepancy i n  t h a t  measured powers exceeded even the sonic 

l i m i t .  This was due t o  the 'act t h a t  since the e n t i r e  heat p ipe was contained 

instde the water jacketed vacuum tank, heat re jected f rom the evaporator was 
a lso  included i n  the calor imeter measured power, The operat ing powers com- 

puted by the theore t ica l  analysis p red i c t  the maximum amount o f  heat which the  

p ipe  i s  able t o  t ransport  through the  evaporator-condenser interface. " -e- 
fore,  i n  irrder t o  compare the experimental data w i th  the performance analysis, 

ca lcu la t ions  were made t o  determine the amount o f  heat re jec ted  i n  the evapor- 

a t o r  and then the measured power was reduced by the computed resu l t .  Two 

methods were used t o  determine the  reduced operating powers. When the t race 

heaters were on, the measured power was reduced by the r a t i o  o f  evaporator 

r a d i a t i n g  area t o  t o t a l  rad ia t i ng  area since the  e n t i r e  heat pipe was operat- 

i n g  a t  nearly isatherma1 temperatures. The power reduct ion area r a t i o  was 

calcu lated t o  be 0.22. The star t -up and t race  heaters o f f  power measurements 

were reduced by c a l c ~ l a t i n g  the  r a d i a t i v e  heat re jected i n  the  evaporator by 

ut i 7 i z i n g  an average evaporator temperature and then subtract ing t h i s  power 

f rom the  calorimeter measured power. This d i f f e ren t  power reduct ion method 

was used f o r  the start-up and t race  heaters o f f  operating condit ions because 

as i s  evident i n  the temperature p ro f i l es ,  1 arge ax ia l  temperature var ia t ions 

i n  the  condenser sect ion make the  area r a t i o  method in feas ib le .  Table I con- 

t a i n s  a l i s t i n g  o f  the measured powers and the calculated reduced powers f o r  

a l l  the 13: cm evaporator data. Figures 37-39 i l l u s t r a t e  the  excellent cor- 

re1 a t  ion obtained between ths  an6 ly t i ca l  predictions and the  reduced operat ing  

power data. Appendix I I  contains a 1, ist ing o f  the input  and resu l t s  obtained 

f rom the HTPIPE computer ca lcu lat ions.  As i s  evident i n  Figs. 37 and 38, a 
good perf urmance r e  presentat1 on of data was obtained cover l a g  a wide temperature 

ooetatjng range o f  180 C. The maximum power obtained was 1.86 kW a t  an evaporator 

e x i t  temperature of 480 C. The average condenser temperature a t  this power l eve l  
was 487 C. This  data p o i n t ,  63% of dez.: power, was 2 s i g n ~ f  icant  r e s u l t  when 
considering the heat input dry-out l im i ta t ion .  The attainment o f  design power 

was no t  expected f o r  these experiments because o f  t he  uncoated condi t ion ( tha t  

i s ,  a high emiss iv i ty  coating i s  required on the condenser e x t e r i o r  f o r  the 
t e s t i n g  of performance l i m i t s )  of the  heat  p i p e .  Figure 39 shows tha t  the 
s t a r t - u p  capab i l i t y  o f  the heat p i pe  i s  very stable and predic table i n  the low 

power range. 



SUMMARY 

The testing of RAD-3 should be regarded as a successful step in the devel- 

opment of very long, 1 ight-weight, high-temperature heat pipes for space ap- 
pl i c a t  ions. Significant experimental procedures and results obtained include 

the following accomplishments. 

1. Successfu7 filling and wet-in procedures developed for very long, 
thin-walled heat pipe structures. 

2. Successful start-upof very long arterial liquid metal heat pSpes 

demonstrated. 

3. Needed data obtained on radtator heat pipe operation at fractional 
power 1 eve1 s. 

4. 590 W o f  heat transported against gravity, demonstrating successful 

artery operation. 

5. 1860 W of heat transported at 487 C f n  gravity-assist mode, demon- 
strating overall capability of  the pipe. 

2 6. A low input heat f l u x  dry-out limit of 1.1-1.4W/cm for the shot- 
blasted distribution wick showing the necessity for wire screen sup- 

plementation in the evaporator section o f  the heat pipe. 

7 .  Excel lent correl at ion between analytical predicted performance and 
actual test data. 

No further testing of RAD-3 is budgeted at this time. 



Number 

35 

36 
37 

TABLE I 
COMPARISON OF MEASURED AND REDUCED OPERATING POWERS FOR 

137 CM EVAPORATOR DATA 

Evaporator E x i t  
Temperature ( C  ) 

325 
347 
344 
357 
363 
406 

439 

35 I 
373 

469 
480 

465 
338 
352 

362 
320 
330 
336 

346 
338 
350 

357 

349 

365 

319 

Measured 
Power ( W )  

316 
534 
584 

Reduced 

246 

417 
456 
525 

590 

98 1 

1393 

309 

583 
7655 

1859 
1682 . 

359 
515 

71 3 

246 

344 
440 

568 

447 

648 

763 

684 

9 10 

228 



RAD-3 AX l A 1  TEMPERATURE PROF l LE 
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Fig. 1. Wet-in temperature profile w i t h  trace heat only. 



RAD-3 AX I A 1  TEMPERATURE PROF I LE 

LOCAT 1 ON (rnm) 

Fig .  2. Temperature profile a t  highest wet-in temperature condition. 
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RAD-3 AX I AL TEMPERATURE PROF I LE 

Fig.  3. Datum temperature p r o f i l e  fo? t race heaters a t  maximum. 
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Fig .  4. Temperature profile for data record number 29. 
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Fig. 5. Temperature profile for data record number 30. 
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Fig .  6. Temperature p r o f i l e  for data record number 31. 
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Fig.  5. Temperature profile for data record number 33. 
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Fig .  9. Temperature profile f o r  data record number 36. 
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Fig.  10. Temperature profile for data record number 37. 
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Fig .  11. Temperature p r o f i l e  f o r  da t3 record number 38. 
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Fl'g. 12. Temperature p r o f i l e  for data record number 39. 
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Fig. 13.  Temperature p r o f i l e  for data record number 35. 
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Fig. 14. Temperature p r o f i l e  for data record number 40. 
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Fig. 15. Temperature profile for data record number 41, 
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Flg.  16. Datum : temperature p r o f i l e  for trace heaters 
a t  11.8 A. 
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Flg. 17. Temperature p r o f t l e  for data record number 43. 
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Fig. 18. Temperature profile for data record number 44. 
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Ff g. 19. Temperature prof i le  for data record number1 45. 
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Fig .  20. Temperature profile for data record number 46. 
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Fig.  21. Temperature p r o f i l e  for data record number 47. 



RAD-3 AX l AL TEMPERATURE PROF l LE 

LOCAT 1 ON (mm) 

550 t I 

F ig.  22. Temperature profile f o r  data record number 48. 
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Fig .  23. Temperature profile f o r  data record number 49. 
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Fig. 24. Temperature prof i t  e f o r  data record number 50. 
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LOCAT l ON (mm) 

Fig.  25. Start-up temperature p r o f i l e  for data record 51 . 
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Fig. 26. Start -up temperature profit e for data record number 52. 
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Fig. 27. Start-up temperature p r o f i l e  for data record 53. 
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Fig .  28. Start-up temperature p r o f i l e  for data record 54. 
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Fig. 29. Start-up temperature profile for data record 60. 



RAD-3 AX l AL TEMPERATURE PROF I LE 

LOCATION (mm) 

Fig. 30. Start-up temperature profile for data record 55. 
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F i g .  31. Startup temperature profile for data record 56. 
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Fig .  32. Start-up temperature profile for data record 57. 



RAD-3 AX l AL TEMPERATURE PROF I LE 

Fig.  33. Start-up temperature p r o f i l e  for data record 58. 
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Fig.  34. Start-up temperature prof i le  for data record 59. 
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Fig. 36, Measured heat pipe pawer vs evaporator e x i t  temperature 
durirtg start-up. 
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Fig. 37. Heat pipe power vs temperature after reduced power correction. 
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Fig. 38. Expanded scale o f  reduced power vs temperature. 
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APPENDIX I I  - OUTPUT OF RAD-3 ANALYTICAL PERFORMANCE PREDICTIONS USiNG HTPIPE 

NO. ~f WTERIES O~ERATIHC. a 
ARTERY DIMti5IOn . . 1 M + W  
MTERV PlWIW RADIUS - .eS4WE-91 
MTERV CEOCYTRY i CIRWLM 
NO. OF IVlT. MOT WERClt fHG-  + 
WTERY sCnfEti THICKHESS .2@32OE-QL 
DISTRIB. SCREEN THICKNES5- ,12780E-l1 
EUWWRTOR EWOTH . 137WEM3 
IDIRBClTIC LEMK;TH - @. 
CDHW(!XR LENGTH I *liW#€+@3 
MCLE F R M  WORIZONIIIL I 6. 

sat 1. 
7127. 

9141. 
L W *  

M 4 t .  
e m .  
6BEl. 
@ma. 
6783. 
5519. 

-3238. 
S818. 743. 

9. 785. 
-3699. 

OCJS* 763. 
b. 793. 

-3869. 
mss. -4. 

I. mi. 
-4119. 
LO7l. w* 

@+ 840. 
-41!1. 
una. oa9. . on. 

-4149. 



PO, 
38 XJ i 


