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STUDY OF ALUMINA-TRICHITE REINFORCEMENT OF A NICKEL-BASED MATRIX BY MEANS

OF POWDER METALLURGY

A. Walder

A. Hivert

Engineers at ONERA

Research has been conducted for the purpose of reinforcing nickel-based

matrices with alumina trichites by using powdex metallurgy. Alumina

trichites previously coated with nickel are magnetically aligned. The felt

obtained is then sintered under a light pressure at a temperature just below

the melting point of nickel. Mechanical testin,,i has shown an appreciable

reinforcing effect which is, nevertheless, much less than the theoretical

maximum.

The matrix of nickel/al,imina trichite felts can then be transformed into

a nickel-chromium alloy through a halogenated transfer of the chromium.

The sintering under pressure is performed at a temperature slightly less

than the alloy liquidus.	 Its mechanical properties are unfortunately

relatively poor, which can be partially explained by an attack of the

surface of the trichites, revealed through scan#ling electron microscopy

and for which chromium appears to be .responsible.

The relatively poor adherence at the trichite/matrix interface and a certain

breakage of the fibers during hot compaction also explain the poor

mechanical properties.

A technique for aligning the trichites by calendering has also been tried.

Nwnbe'rs in margin indieato pagination of foreit n toxt.
1
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1. GENERALITIES

Currently, when referring to trichites, we mean monocrystal filaments

which are highly perfect crystals. Indeed, the major imperfection and

generally the only one is an axial dislocation which is at the origin of

the growth of the trichite.	 In addition, certain imperfect trichites

display corner dislocations perpendicular to the axis.

Natural trichites were observed and reported in 1575 by L. Erker (Reference

1) in copper and silver sulphides.

The formation of artificial trichites was discovered in 1940 in an

unexpected manner since it was at the origin of short-circuits in

miniaturized circuits.

In 1552, Herring and Galt (Reference 2) of Bell Telephone Laboratories

showed that the strength of tin trichites is close to that predicted by

the theory of perfect crystals. Their high strength is attributed to the

perfection of their structure and to their small size which limits the

number of defects rosponsible for the drop in the mechanical properties

of the materials when taken in a solid mass.

Since then, a very large assortment of trichites has been prepared. Among 	 A

others, we can mention: Si, C, Fe, Ni, Ag, Cu, Sio 2 , Au, Zn, Cr, Cd, Sn,

B4 C, Al 2 0 3 , B, Beo, Si C, Si 3N 4 ..* but this list is not limiting and,

often, a new type of trichite is prepared.

For the reinforcement of metals that are to be used at high temperatures,

the most interesting materials are, of course, those with a high melting

point but, in addition, they must absolutely respect a compatibility rule

which has, as the primary criterion, an absence of chemical reactivity or

2
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solubility in the presence of the associated metals. Of the currently known

and available trichites, only compounds formed at a high temperature, such

as BeO and Al203,meet this requirement. The Standard formation temperatures

are respectively:

Deo	 AHo = -146 Kcal/gram atom of oxygen
f

Al 203 QHo = -133 Kcal/gram atom of oxygen

We fee that beryllium oxide is more stable than alumina but its toxicity

properties make it unacceptable, a priori. Moreover, BeO trichites are

only manufactured in small quantities, at the laboratory level. On the

other hand, alumina trichites are prepared in large quantities by several

companies among which we can mention:

- in the United States : Thermokinetic Fibers Inc.

Horizons Incorporated

- in France	 : Compagnie Franpise Thomson Houston.

In its sintered form, alumina is a well-known remarkable refractory

product. The high temperature at which it is formed gives it an excellent

chemical stability and an excellent thermal stability. Its high melting

point, 2,050 degrees C, and its mechanical properties retained at high

temperatures -indeed, sintered alumina as well as trichites retain at 1200

degrees C 50% of the mechanical strength at normal temperature - make its

use possible within a large temperature range.

Moreover, its rather low mass per unit volume, 3.96 g/cm3, is suitable to

the manufacture of a compound to be used in an aeronautical application.

But this very interesting material displays a major disadvantage: its highly

fragile nature when exposed to thermal and mechanical shocks.

3
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Figure 1 - Tensile Strength as a Function of Temperature

In order to correct these flaws, we thought about bonding it to a metal

or an alloy so as to form a metal/ceramic mixture. Research led to the

1

	 creation of chromium/alumina mixtures in France (Reference 3) and to

chromium/:molybdenum/alumina mixtures in the United States.

These materials with a ceramic structure thus show a double continuum,

metallic on the one hand, ceramic on the other. The mechanical properties

are excellent. Figure 1 shows breaking strength curves as a function of

temperature for alumina, for a chromium/alumina mixture made with fine

chromium with a 1p micron grain size, and for an identical mixture except

that it was made with electrolytic chromium with a 25pmicron grain size.

We note that it is only after a temperature of 1,050 degrees C that the

alumina/chromium mixture (Cr 1u micron) sees its mechanical properties drop

below those of alumina and, despite that, at 1,200 degrees C, its breaking

strength is still greater than 10 hb.

The thermal shock resistance is good as the presence of the chromium

4
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provides a good thermal conductivity. Figure 2 shows the test results for

temperature differences of ©T. We have expressed the ratio of the breaking

strength of a given material subjected to a thermal shock of AT to the

breaking strength of the lama material that has not undergone the same

treatment; as a function of the thermal shock AT. Alumina lo ges its
f

strength quickly and it reaches the zero value at ©T= 6 0 0 ° .. 	 The

threshold below which no degradation is observed is u0 degrees C for the

chromium/alumina mixture whereas it is onlv 50 degrees C for alumina.

Creep resistance is excellent but leads to an unpredictable failure without

any appreciable elongation. 	 Finally, resistance to mechanical shock is

poor, close to that of alumina.

...... alumina
chromium alumina 50 50 Cr lit
chromium alumina Cr 25p

i

I- I200	 300	 4C0	 500	 _ 5^,*, J1?

Figure 2 Resistance to Thermal Shock

These last observations led us to abandon this material for applications

in turbojet engines.

Reinforcement using trichites excludes the formation of a continuous ceramic

phase. From this, we can hope to avoid the mechanical fragility that

100

/2.
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results from the self-propagating nature of a crack that starts in the

alumina.

It appears necessary to us to recall beforehand the principles and the

conditions for reinforcing a material with fibers.. In a general manner,

the applied stress is mainly sustained by the fibers. The matrix only keeps

the fibers together, transmits the stress from one fiber to another through

shear ) and protects the surface of the fibers.

For a coated fiber inside a matrix stressed mechanically in the direction

of the fiber:

- the shear stress t is maximum at the ands and equal to zero at the center;

- the tensile stress is equal to zero at the ends and maximum starting at

a distance jc/2 from the ends (1c is the critical length of the fiber).

Figure 3 graphically describes these two facts.

L

Figure 3. Distribution of the

stresses in a composite material

with aligned fibers, according

to Petrasek

C 5.39919

We can mention a certain number of conditions necessary to the reinforcement

of a material with fibers (Reference 4).

1.	 The resistance and the modulus of the fiber must be much higher than

6
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those of the matrix. This is true for the Ni-1112 0 3 couple.

at 25 degrees C: Ni 	 E = 22,000 hb	 or = 50 hb

	

Al 0 E x 50,000 hb	 ar x1,000 hb

This difference only increases with temperature.

at 1,000 deg. C: Ni 	 E	 10,000 hb	 cr :	 3 hb

	

Al, O E = 30,000 hb	 or	 420 to 74P hb

2. The volumetric fraction VF of fibers must be sufficiently high in order

to have reinforcement.

If we show, in the same diagram, the stress-deformation curves for the

matrix and the fibers (Figure 4), we then see that when the fibers break

for a stress with a rather low deformation, the matrix breaks for the

same deformation, under a stress %c less than its maximum breaking

strength, at least from a macroscopic standpoint. We can then plot the

diagram of Figure 5 which shows the variation of the breaking strength of

the composite as a function of the volumetric fraction of the fibers.

Figure 4. Comparison of

the stress-deformation

diagrams of a ceramic

fiber and of a metallic

matrix.

^trefiR

!	
cr a

s4	 vr' Breaking Strength of Fibero Q'­ Breaking Strength of Matrj, pc^? I r-,, Elastic Limit of Matrix
T-c Critical Stress of Matrix

I	 cTmr	 m`triXr._orresponding to the
I Tme	 ^^ elongation at rupture

of the fiber
{	 PmC 1
`
1 	 I 
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r
f
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Figure 5. Determination	 !Stress)	 Stressl1 R

of the critical volume
f

of fibers in a composite	
1	

v.`

according to Richard H.

Knock.
Me `Weakenings

^of the
I	 Matrix - l Reinforcement'>,

!of the Matrix •>,.1	 - 4-t	 -1 o0 10 20 30 9#9C61  V 3aVme0 0 0 F1bar8
V:4 94 On TO 60 50 40 30 20 10 0

Immediately, we see two important points in the diagram the minimum volume

of the fibers which corresponds to a composite having a minimum breaking

strength (lower than that of the matrix by itself) and the fiber critical

volume which corresponds to the limiting volume beyond which the strength

of the composite is greater than that of the matrix alone.

In the case of chromimum and alumina, the critical volume is rather low.

if we assume the nickel at a normal temperature 
omc 

= 6 hb and amr = 32hb,

for fibers having o,,- 350 hb, Vcrit = 7.33 % and for fibers having

OF= 700 hb, Vcrit = 3.63%.

3. The length of the fibers must be greater than a minimum value below

which reinforcement is negligible.

4. The fiber-matr.,c binding must be solid and resilient. It is necessary

for the wetting between the matrix and the fiber to be good.

Papers published on this subject indicates poor wetting of alumina by molten

nickel. Research work performed by Sutton (Reference 5) and Ritter

(Reference 6) using the molten drop on an alumina monocrystal approach has

shown that small additions of chromium, titanium or zirconium to nickel

increase the wettability but seriously alter the alumina surface. The

8
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aggressiveness level increases in the chromium-titanium-zirconium direction.

5. The coefficients of expansion must be rather close to each other. For

nickel and alumina, we have, respectively, 12 x 10 "6/dogree and 6 x 10-6

/degree. Therefore, they are appreciably different. Nevertheless ) it is

certain that it is difficult to find metals with coefficients of expansion

close to that of ceramic. Only the refractory metals such as tungsten and

molybdenum have this characteristic but they display poor oxidation

characteristics.

6. The fiber must be stable at its normal temperature and at a high

temperature.	 It must keep a large portion of its mechanical strength at

a high temperature. For alumina, it is true since up to 1 ) 200 degrees

Centigrade, it retains 50% of its mechanical properties round at a normal

temperature.

7. The Fibers must be suitably oriented in one direction to optimize the

reinforcement in this direction and must be regularly distributed.

Figure 6 is a curve proposed by Petrasek (Reference 7) which shows the

variation in tensile strength of the composite as a function of the

misorientation of the fibers.
d

.Tensile Rupture in Fiber

Tensile Rupture in
Figure 6 .	 Effect of the A ,,	 Matrix

.r Shear Rupture
alignment of the fibers on

4
I	 at the Fiber-

? Matrix Interfa4re
the strength of a composite

;,)
;, ..

according to Petrasek. r,

rd ,alignment of Fibers Relative to

0
the Tension Axis, 0 degrees

E
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We see that for small misalignments of the fibers, not only the mechanical

properties of the composite decrease greatly but the type of rupture

changes.

8. an approximate computation makes it possible to predict that,

theoretically, with 20% of the volume composed of fibers, and by assuming

the contribution by the metal to be negligible to the reinforcement, at

1,100 degrees C, an alumina trichites-nickel composite should provide a

breaking point of 125 hb. This potential strength of the metals reinforced
i

by alumina trichites explains the interest created by this type of binding. a

We will see that we are still far from it.

2. SELECTION OF THE METHOD FOR PREPARING THE ALUMINA TRICHT_TES-NICKEL

COMPOSITE

The major methods that we can envisage to prepare a composite are the

following:

- infiltration of a structure of oriented trichites in a liquid phase.

This has been used by Sutton (Reference 8) to make-up alumina

trichites-silver composites,

- deposit of the metal through decomposition of a volatile compound,
d

- electrolytic deposit of the metal on trichites oriented by means of a

liquid flow or centrifugation

- powder metallurgy.

The first two techniques are difficult to implement. The third (electrolytic

deposit; has the advantage of coating the trichites without causing their

deterioration but the volume of fibers that can be incorporated remains

10
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low. Moreover, metals such as chromium are hard to add (Reference 9).

Powder metallurgy has already been used by several authors, inclu,11-

Parratt (Reference 10). Metal powder was dispensed with trichites in

appropriate liquids. 91e whole was filtored and then sintered. The 	 /k

trichites are distributed at random but parallel to the plane of

filtration. Preferably, it is necessary for the diameter of the powder

to be close to that of the diameter of the trichites. Instead of a mixture

with a powder, a prior coating of the trichites with the metal should

eliminate this requirement and, in addition, in the case of nickel, it

should make it possible to have a magnetic alignment. it is by starting

with th i g idea that the experiment    has been undertaken.

3. DESCRIPTION OF THE METHOD USED

3.1. Reinforcement Base Material.

These are types of alumina trichites, with the Al203formula, that have the

following mechanical characteristics;

- tensile strength a  = 1,000 to 1,200 hb at 25 degrees C,

- elongation at rupture A = 2% elastic for temperatures lower than 1,000 	 /5

degrees C;

- modulus of elasticity E = 50,000 hb.

Their length is between 3 and 10 mm and their "diameter" between 0.5 and

10 microns. The cross-section is either hexagonal or parallelepipedal

depending on the growth direction.

Figure 7 is a picture of a felt of alumina trichites as delivered, taken

with a scanning electron microscope. Figure 8 shows a similar one made

11
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Figure 7 - Alumira trichites ohservod with the help of a scanning electron

microscope.
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Figure 8 - Alumin • i trichite with an hexagonal cross - section ( s imilar one

made of carbon)

of carbon mAdo with a trichit- hiving a hexagonal cross -section as wen

w'.;.h an electron microscope.
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3.2. Nickel-coating the trichites

The Canadian company Sherritt Gordon has perfected a process for coating

various particles with nickel or cobalt. The operation takes place at about

200 degrees C inside an autoclave under a hydrogen pressure through

reduction of a salt of the metal to be deposited. Alumina is mentioned

among the products likely to be coated using thi3 method. We will check

it on alumina particles of a poly-crystal nature. Unfortunately, the

single-crystal	 trichites behave much worse, probably because of the

reticular perfection of their surfaces. In this case, the nickel deposit

is partial and hardly sticks. To overcome this difficulty, we had to resort

to a trick. It consisted of previously making a deposit of pyrolytic carbon

on the trichite felts; this deposit lends itself to a proper coating and

can later be eliminated in moist hydrogen. Figure 9 shows the appearance

of the nickel deposit over a trichite (observation made with the help of

the scanning electron microscope).

This method makes it possible, to a certain extent and by modifying the

thickness of the nickel deposit, to modify the volume of the fibers inside

5	 11

y	
4,.

J

r^^	 , j ^^II ^^►y

Wei

the matrix.

Figure 9 - Nickel-coated

alumina trichites (scanning

electron microscope)
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We have seen that, in order to optimize reinforcement, it is necessary to

align the fibers in one direction. The trichites being coated with nickel,

we have used a magnetic method of alignment. It includes an ultrasonic

tank inside which the nickel-coated trichites are maintained in suspension

in some ethyl glycol. Using a siphon ) they are carried into a sedimentation

tank placed inside the air gap of a magnetic circuit. The glycol is

recycled into the ultrasonic tank by a pump.

The felt obtained is then dried in an oven then sintered and decarbonized

in moist hydrogen. The concentration in residual carbon is about 500 ppm.

In that manner, we obtain a rigid structure with high porosity.

3.4. Sintering Under Pressure

strips measuring 5 mm in width are cut from the felts, stacked in a graphite

matrix which has all six faces covered with alumina plates designed to

prevent carburization during the high-temperature treatment.

The apparatus for sintering under pressure is composed of an oven,heated

by means of HF and operating in a secondary vacuum. The pressing is done

at a temperature of 1,430 e :gees C, slightly below the melting point of

nickel. The pressure applied is about 35 kg/cm2.

This openration provides a material with a residual porosity in the order

of 5 to 7% a.Ad a fiber volume of 18%.

Figures 10 ai.i 11 are, respectively, longitudinal and transversal cross-

sections of such a material.

S
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Starting with the rods obtained through compression, we extract tension

test specimens with threaded heads. Figure 12 shows one of these test

specimens.

Tension tests are conducted on an Adamel machine in a vacuum at several

temperatures , 25, 500, 800 and 1,100 degrees Centigrade.

Standard test specimens are prepared from ex-carbonyl nickel sintered using

the same technique.

Oi
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Figure 12 - Tension Test Specimen.
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In a general sense, we can say that:

- tension strength of the composite is slightly less than that of nickel

at normal temperature for an elongation at rupture of about 1%

- tension strength of the composite is about twice that of nickel at 1,100

degrees C. Elongation at rupture is from 8 to 11 %.

Figure 13 shows the stress-deformation curves for nickel and for the nickel-

alumina trichite composite at a temperature of 1,100 degrees C.

b Tension Test at 1,100°C
e^	 ;

Figure 13 - Stress-Deformation	 '	 ^.-- 	 Ni-Alumina Trichites
(18 % by volume) ,

Curves for pure nickel and for 	
a /

a nickel-alumina trichite 	 </E

composite at 1 ,,100 degrees C. 
	

Pure Ni

rnp?
	 s	 a	 a	 i^,i,}

Figure 14 depicts the variation of the breaking strength as a function of

temperature for nickel and for the composite.

i
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Figure 14 - Variation of the	 \

yield strength as a function

of temperature for nickel and

for the nickel-alumina tri-
Ni-Alumina

chitee composite.	 \	 ,Trichites
1\(181 by Vol: )

•	 _	
Pure Ni

f.	 Jr'	 .n1	 M1	 wY•	 r.. f

The composite has a breaking strength that is leas than that of nickel at

low temperatures.	 This is not well explained and may be due to phenomena

associated with interfacial bonding or to fibers breaking.

Photographs of the fracture have been taken with a scanning electron

microscope and Figure 15 shows trichites coming out of the matrix.

Figure 15 - Photograph of the fracture

of a composite material (scanning

electron microscope)
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3.6 - Other Method for Aligning Trichites, by Calendering

I'his method avoids pre-coating the trichites with the metal used in the

rr.atrix.	 In addition, it makes it possible to align trichites in a metal

that we cannot deposit on the fibers or that we can deposit but that is

not ferromag tic.

Trichites and powder from the metal are scattered inside a plastic and the

whole is calendered.	 The plastic is then eliminated. The manufacturing

process is then the same as before.

Mechanical tests have given a breaking strength of 7 hb at 1,100 deg. C,

but a fragility in the material appeared and could not be explained. In

Figure 16, we see the trichites aligned using this technique inside a nickel

matrix.

rr jA

T.^
KY..

t	 ^ yr

,hl

Figure 16 - Trichites Aligned

Through Calendering

Q	 I }A;

4. MAKING A CHROMIUM 80-20/NICKEL MATRIX

Chromium is needed to give the material a good resistance to oxidation.

It is alto needed to increase the adherence qualities at the matrix/fiber

18
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interface (work by Sutton, Ritter). They have shown that nickel with 1%

of chromium added sticks well to an alumina monocrystal. With 8% chromium,

it is no longer possible to detach the metallic drop and, sometimes, we

split the alumina crystal. It is possible that this good bonding is done

through a lesion of the crystal of the surface. This is not recommended

for trichites.

To make a chromium 80/20-nickel matrix, we Y,, ve followed the same path as

for the nickel matrix:

- nickel-coating the trichites

- magnetic alignment

- decarburization, primary sintering.

The felts obtained are then chromated by immersion in a porous granulated

mixture of nickel and chromium in a suitable proportion. The transfer of

chromium takes place at about 900 degrees C by means of a halogenated

gaseous phase.

Hot-pressing takes place in a vacuum at a temperature of 1,380 degrees C,

slightly less than the solidus of the alloy (1,400 degrees C).

Results of mechanical tests are rather disappointing. We have found 5.3hb

at 1 ,1 00 degrees C.

Observations performed with scanning electron microscopy have shown etching

of the surface of the trichites. Pressing tests at temperatures lower than

1,380 degrees C have also revealed an attack that decreases as a function

of temperature but that still exists at 1,100 degrees C.

Figures 17, 18 and 19 show the appearance of the surface of the trichites,

observed with scanning electron microscopy, for composites subjected,

respectively, to temperatures of 1,100, 1,200 and 1,250 degrees C. We 	 19
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Figure 17 - Appearanc e of the

Surface of a Wichite Subjected

to Ileat at 1,100 degrees C in a

Nickel-Chromium Matrix (scanning

electron microscope)

Figure IS - Appearance of the

Surface of a Irrichite Subjected

to Heat at 1 20n degrees C in a

Nickel-Chromium Matrix (scanning

electron microscope)
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l
ip...-	 ap-	

T^Figure 19 - Appearance of the

Surface of a Trichite Subjected 	 +

to Heat at 1,250 degrees C in a	 1

Nickel-Chromium Matrix ( scanning	 ^.
►.  	 •'.^:

electron microscope)	 ti	
t

y	 ,

already notice an attack at 1,100 degrees C. This partly explains the poor

mechanic l properties and it is likely that chromium is responsible for

this etching.	 It would appear necessary to consider protecting the

triehites with a laver that would prevent the chromium from reaching the

trichite but that would be advantageous from the standpoint of adherence

at the interface.

Identical observations have been made with alumina triehites that had been

coated with titanium before being incorporated into a nickel matrix by

electrolytic	 means	 (work	 by	 M.	 Marchal	 at	 Compagnie Fra N aise

Thomson-Houston). Figures 20 and 21 are views, taken with scanning electron

microscopy, of the surface of such triehites inside a composite heated to

800 degrees C.	 We note the analogy between the attacks attributable to

chromium and titanium and we observe that for an approximately equivalent

etching, the temperature is lower for titanium. All of these facts confirm

the observations made by Sutton, performed on an alumina

/7

/8

21



a ;	 '	 ! .

,'t' -W

y it +

, •

•

ORIGINAL PAGE 19
OF POOR QUALITY

• i	 ,	 i.	 l ..
Figure 20 - Appearance of the	 ^y	 •w_^ ^ 	 ^ f

"urface of a Trichite Pre-Coated	 * 	 r

with Titanium Heated to 800 deg. C

in a nickel-alumina trachite 	 .A

composite ( scanning electron scope) x	 •.^,

A,

4

Figure 21 - Same Observation as

Far Figure 20 on Another Area

of the '.creak

^	
^^'`.	 tp ^1	

( Ii
t+"f. 4

monocrystal during studies on adherenco. 	 Sutton has also suggested the

creation of a carbide layer of titanium, vanadium or zirconium to protect

and wet the surface of the alumina trichites.
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CONCLUSION

To obtain composite materials composed of a metallic nickel-baned matrix

reinforced with alumina trichites i a procedure has been imagined and

perfected. There are several advantages.

It can be transferred to cobalt without difficulties. Thanks to the

halogenated atmosphere technique, it makes it possible to incorporate a

large number of additive elements such as chromium ) titanium ) zirconium)

tantalum, niobium ) aluminum ) etc.. It does not appear that going from

laboratory-scale to a semi-industrial scale in production would create any

major problems.

On the other hand, the process presents certain disadvantages,

If we wish to avoid high pressures, sintering under pressure has to take

place in the neighborhood of the melting point of the alloy and it

facilitates reactions between alumina and certal- additive elements.

During this operation, the one-dimensional shrinkage is very important and

risks causing the breaking of trichiteso hence decreasing their

effectiveness.

With respect to mechanical teats, they show that the high temperature

strength that can be theoretically obtained is far from being reached.

Examinations using scanning electron microscopy have shown that acquiring

the optimum properties of the material encounters two contradictory

limitations.

They are: either insufficient adherence at the interface which does not

make it possible to transfer the load entirely to the fibers; orp if this

flaw is corrected by an appropriate additive, an alteration of the surfaces

of the trichites causing their weakening.
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The first disadvantage has been encountered with the pure nickel matrix; the

second with the nickel-chromium or nickel-titanium matrixes. Between the

two stumbling blocks, the maneuvering range of the research is particularly

restricted.

fbwever ) we can conceive several approaches for solving the problem, such

as interposing an intermediate layer. However ) we must not conceal that

major research work ) both technological and basic ) will be necessary. Under

theso conditions ) the perspectives for the applications of a material of

this type are not within reach.
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