FINAL REPORT
(April 10, 1980 through July 31, 1981)

on

ULTRAPURE GLASS OPTICAL WAVEGUIDE
DEVELOPMENT IN MICROGRAVITY
BY THE SOL-GEL PROCESS
(JPL CONTRACT 955710)

to

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY

January 15, 1982

"This work was performed for the JET PROPULSION LABORATORY, California Institute of Technology sponsored by the National Aeronautics and Space Administration under Contract NAS7-100".

by

S. P. Mukherjee, J. C. Debsikdar, and T. L. Beam

BATTELLE
Columbus Laboratories
505 King Avenue
Columbus, Ohio 43201
TABLE OF CONTENTS

INTRODUCTION .. 1
SUMMARY .. 3
PART IA. GENERAL EXPERIMENTAL PROCEDURES FOR GEL-DERIVED GLASSES. 6
 Choice of Composition ... 6
 Preparation of Gels .. 8
 Starting Compounds .. 8
 Homogeneity of the Solution and the Gelling Process. 10
 Removal of Organic Groups 10
 Crystallinity of Gels 11
 Gel Preparation Procedures 11
 Thermal Treatment of Gels 11
 Characterization of Gels 12
 Conversion of Gels to Glasses by Melting 13
 Characterization of Glasses 13
PART IB. EXPERIMENTAL WORK AND RESULTS: COMPOSITION 1 14
 Choice of Composition ... 14
 Gel Preparation Procedures 14
 Thermal Treatment of Gels 16
 Removal of Organics From the Gels 16
 Removal of Hydroxyl Groups From the Gels 17
 Characterization of Gels 19
 Color of Gels .. 19
 Carbon Content .. 19
 Crystallinity ... 21
 Surface Areas .. 21
TABLE OF CONTENTS

(Continued)

<table>
<thead>
<tr>
<th>Conversion of Gels to Glasses by Melting</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting of Gel Powders for Studying the Molecular Structure of the Gel-Derived Glasses</td>
<td>25</td>
</tr>
<tr>
<td>Melting of Gel Powders for Studying the Removal of Hydroxyl Groups</td>
<td>25</td>
</tr>
<tr>
<td>Characterization of Glasses</td>
<td>30</td>
</tr>
<tr>
<td>Infrared Spectroscopic Studies</td>
<td>30</td>
</tr>
<tr>
<td>Raman Spectroscopic Studies</td>
<td>30</td>
</tr>
<tr>
<td>Determination of Hydroxyl Content</td>
<td>33</td>
</tr>
<tr>
<td>Phase Separation With Thionyl Chloride Treatment</td>
<td>33</td>
</tr>
</tbody>
</table>

PART II. GEL-DERIVED GLASSES FOR RAYLEIGH SCATTERING STUDIES

(EXPERIMENTAL RESULTS: COMPOSITION 2)

<table>
<thead>
<tr>
<th>Choice of Composition</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting Compounds</td>
<td>36</td>
</tr>
<tr>
<td>Gel Preparation Procedures</td>
<td>36</td>
</tr>
<tr>
<td>Thermal Treatment of Gels</td>
<td>37</td>
</tr>
<tr>
<td>Characterization of Gels</td>
<td>39</td>
</tr>
<tr>
<td>Color of Gels</td>
<td>40</td>
</tr>
<tr>
<td>Thermogravimetric Analysis</td>
<td>40</td>
</tr>
<tr>
<td>Melting of Gels and Conversion to Glasses</td>
<td>45</td>
</tr>
<tr>
<td>Preparation of Glass Samples</td>
<td>45</td>
</tr>
<tr>
<td>Rayleigh Scattering Experiments</td>
<td>49</td>
</tr>
</tbody>
</table>

PART III. GEL-DERIVED GLASSES FOR STUDYING PHASE SEPARATION BEHAVIOR

(EXPERIMENTAL RESULTS: COMPOSITION 3)

<table>
<thead>
<tr>
<th>Gel Preparation Procedures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drying and Melting</td>
<td>51</td>
</tr>
<tr>
<td>Microstructural Studies</td>
<td>52</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

(Continued)

<table>
<thead>
<tr>
<th>DISCUSSION OF TOTAL PROGRAM</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of Gels.</td>
<td>59</td>
</tr>
<tr>
<td>Removal of Organics From Gels.</td>
<td>59</td>
</tr>
<tr>
<td>Removal of Hydroxyl Groups From Gels</td>
<td>62</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>65</td>
</tr>
<tr>
<td>REFERENCES.</td>
<td>66</td>
</tr>
</tbody>
</table>

APPENDIX

| Details of Gel Preparation Procedures | A-1 |
| Publications | A-7 |

LIST OF TABLES

Table 1. Composition of Glasses.	7
Table 2. Color of Gels After Heat Treatment.	20
Table 3. Crystallinity of Gels After Various Thermal Treatments	22
Table 4. Surface Areas of the Gels Prepared by Different Procedures After One Half Hour Heat Treatment at Different Temperatures	23
Table 5. Surface Areas of Gel Samples After Different Thermal Treatments	24
Table 6. Effect of Time and Temperature on the Removal of Residual Carbon During the Melting of Gels Prepared by Procedure 1-I	26
Table 7. Effect of Time and Temperature on the Removal of Residual Carbon During the Melting of Gels Prepared by Procedure 1-II	27
Table 8. Effect of Time and Temperature on the Removal of Residual Carbon During the Melting of Gels Prepared by Procedure 1-III	28
Table 9. Characteristics of the IR Absorption Bands Due to Si-O-Si Stretching of Different Glasses	31
LIST OF TABLES
(Continued)

Table 10. Melting Histories of the Samples for the Raman Spectroscopic Studies .. 32
Table 11. Hydroxyl Content in Composition 1 Glasses ... 34
Table 12. Results of Thermal Treatment in Terms of Removal of Organics .. 41
Table 13. Initial Heat Treatment of Composition 2 Gels in Presence of Oxygen .. 43
Table 14. Initial Heat Treatment of Composition 2 Gels .. 44
Table 15. Melting of Gels Dried by 48 Hours Heating Schedule ... 46
Table 16. Melting of Gels Dried by 200 Hours Heating Schedule ... 47
Table 17. Melting Data of Composition 2 Gel Glasses for Rayleigh Scattering Studies 48
Table 18. Thermal History of the Samples for Rayleigh Scattering Studies .. 50

LIST OF FIGURES

Figure 1. Na$_2$O-B$_2$O$_3$-SiO$_2$ Ternary Diagram Showing the Projection of the Immiscibility Surface at Different Temperatures .. 9
Figure 2. Vertical Flow Dehydration Apparatus .. 18
Figure 3. Scanning Electron Micrograph of the Glass Obtained From the Gel Prepared by Procedure 3-I Without any Heat Treatment ... 53
Figure 4. Scanning Electron Micrograph of the Glass Obtained from the Gel Prepared by Procedure 3-I After Heat Treatment at 600 C for 4 Hours .. 54
LIST OF FIGURES
(Continued)

Figure 5. Scanning Electron Micrograph of the Glass Obtained From the Gel Prepared by Procedure 3-II Without any Heat Treatment .. 55

Figure 6. Scanning Electron Micrograph of the Glass Obtained From the Gel Prepared by Procedure 3-II After Heat Treatment at 600 C for 4 Hours 56

Figure 7. Scanning Electron Micrograph of the Glass Prepared From the Conventional Glass Batch Without any Heat Treatment .. 57

Figure 8. Scanning Electron Micrograph of the Glass Prepared From the Conventional Batch After Heat Treatment at 600 C for 4 Hours 59
INTRODUCTION

The melting of glass in a terrestrial environment involves an obstacle to maintaining high purity levels due to contamination by container walls, a problem which can be alleviated by containerless melting in the space environment. The ultimate objective of the present research program is to take advantage of the containerless melting of glasses in space for the preparation of ultrapure homogeneous glass for optical waveguides. However, the homogenization of the glass using conventional raw materials is normally achieved on earth either by the gravity induced convection currents or by the mechanical stirring of the melt. Because of the absence of gravity induced convection currents, the homogenization of glass using conventional raw materials will be difficult in the space environment.

Multicomponent, homogeneous, noncrystalline oxide gels can be prepared by the sol-gel process and these gels are promising starting materials for melting glasses in the space environment. The sol-gel process referred to here is based on the polymerization reaction of alkoxy-silane with other metal alkoxy compounds or suitable metal salts. Many of the alkoxy-silanes or other metal alkoxides are liquids and thus can be
purified by distillation. The use of gels offers several advantages such as high purity and lower melting times and temperatures. Hence, the present research program aims at the utilization of the sol-gel process for the preparation of multicomponent, ultrapure glass batches for subsequent containerless melting of the batches in space to prepare glass blanks for optical waveguides.

Prior to "space readiness", however, several critical control points must be carefully evaluated on earth. Hence the present ground based program comprises two major phases; Phase 1 and Phase 2.

Phase 1 involves the following activities:

- Selection of the best multicomponent glass system suitable for optical waveguides.
- Choice of composition in a particular system.
- Preparation of gels in the chosen multicomponent system (with reagent grade chemicals) by different procedures.
- Thermal treatment of gels for removal of volatiles and water.
- Characterization of gels.
- Melting of gels prepared by different procedures.
- Characterization of the resulting glasses in terms of properties relevant to optical waveguide applications.

Phase 2, to be initiated in a follow-on effort, plans to concentrate on the following activities:

- Preparation of ultrapure gels by using ultrapure chemicals and a Class 100 clean room.
- Melting of ultrapure gel pellets using both a container and containerless melting.
- Characterization of glasses in terms of trace level transition metal impurities and absorptive losses.

Some of the activities of Phase 1 were performed during 1979 (JPL Contract 955361) and have been reported in the Final Report...
to Jet Propulsion Laboratory, dated February 22, 1980. Further Phase 1 activities were performed in 1980 and are summarized in an Interim Report dated January 15, 1981. The latter work consisted of the following activities:

(a) Preparation of gels in the alkali borosilicate system by different procedures developed during the initial period of the program.

(b) Evaluation of the physico-chemical nature of gels prepared by different procedures.

(c) Investigations of the structure of glasses obtained by the melting of gels prepared by different procedures.

(d) Effects of the melting history (e.g., time and temperature) on the structure of glasses obtained from gels.

(e) Thermal treatment for the removal of hydroxyl groups from gels.

In this Final Report, Phase 1 has been completed and represents work carried out through July 31, 1981. In this period, emphasis was placed on gel preparation procedures and compositions to show that the physico-chemical nature of the gels are strongly influenced by the process parameters.

SUMMARY

Our primary objective is the utilization of the sol-gel process for the preparation of multicomponent, ultrapure glass batches for subsequent containerless melting to prepare glass blanks for optical waveguides. The objectives of the completed first phase of the work were as follows:

- Selection of a multicomponent glass system for optical waveguide applications.
- Development of gel preparation procedures for the chosen multicomponent system (with reagent grade chemicals).
Thermal treatment of gels for removal of volatiles and water.
Characterization of gels.
Melting of gels prepared by different procedures.
Determination of water content of the resulting glasses.
Rayleigh scattering studies of the glasses prepared by the melting of different gels.
Comparison of the microstructures of the phase separated glasses obtained from the gels prepared by two different procedures.

The glass system chosen in the first task of the program was the Na$_2$O-B$_2$O$_3$-SiO$_2$ system. The intrinsic attenuation of the glass was originally of interest in the visible and near infrared region (0.80 to 0.9 µm) of wavelength. The alkali borosilicate system was acceptable in this first operating wavelength region. This glass system was investigated for optical waveguide applications. Consequently, some properties of this system relevant to the optical waveguide application were available. So, the soda borosilicate system is an ideal system for the development and understanding of the gel preparation procedures and also for the characterization of the gel-derived glasses because the physico-chemical properties and structures of the glasses in this system are available in the literature.

The results of this research project completed in July, 1981, can be summarized as follows:

Gels of different compositions in the sodium borosilicate system were prepared by three different procedures using three different sources of Na$_2$O. The influence of various process parameters (such as chemical nature of the reactants, the pH of the medium, the concentration of water and the reactants) on the gelling process were investigated. The results show that the physico-chemical nature of gels and gel-monoliths are strongly influenced by the process parameters.

The removal of organics for the gel powders were related to the gel preparation procedures and the compositions of the gels. The different
time and temperature required for the removal of organics from the different
gels might be explained in terms of entrapping of the residual organics
in the pores which would depend on the nature of the porosity and the rate
of closing of the pore during the thermal treatment cycle. The difference
in the physico-chemical nature of the gels could be explained in terms of
the anticipated mechanics and kinetics of the gelling processes that take
place under the experimental conditions in each procedure used. Infrared
absorption spectra of the gels prepared by the different procedures indicate
some finite differences in the molecular structure of the gels. However,
the melting of gels at higher temperatures (>1200 C) results in near equi-
librium in the melts for each of the gels. The microstructures of the
phase separated glasses obtained from the gels prepared by the different
procedures were found to be different. Most likely, the difference is
due to the presence of different concentration of hydroxyl groups which
influence the phase separation. The hydroxyl groups from the porous gel
powders were reduced to a great extent by passing dry oxygen or reactive
gases through the porous gels at temperatures below the cl\m of the
pores. The hydroxyl content of glasses obtained by the melting of gels
prepared by the different procedures were also found to be different.
Further removal of hydroxyl groups was achieved by bubbling dry N\sub 2 through
the glass during melting. The hydroxyl content of the glasses after
bubbling with dry N\sub 2 was in the range of 10 to 20 ppm. No further sys-
tematic investigation was carried out to get a minimum value. It may be
noted that the proper choice of temperature, time, and reactive gas
during the chemical treatment of the gel powders would further reduce
the hydroxyl content of the glass. The glass composition we used con-
tained a high concentration of B\sub 2O\sub 3, and consequently, it required highly
controlled experimental conditions for the further reduction of hydroxyl
groups from these glasses. Rayleigh scattering studies of the glasses
obtained from the gels prepared by different procedures were made. The
results of these Rayleigh scattering measurements indicate that the homogeneity
of gel-derived glasses is much higher than that of the glass prepared by the
conventional technique. The results also indicate that there is a difference in
homogeneity of the glasses prepared by different gel preparation procedures.
PART IA. GENERAL EXPERIMENTAL PROCEDURES FOR GEL-DERIVED GLASSES

The experimental procedures of the present work have been divided into the following activities:

- Choice of composition.
- Preparation of gels.
- Thermal treatment of gels.
- Characterization of gels.
- Conversion of gels to glasses by melting.
- Characterization of glasses.

Choice of Composition

The objective of the initial work was to establish the procedures required to prepare multicomponent glasses via the gel route and evaluate phenomena likely to be important in melting and characterization of glasses. Three different compositions were chosen to study the various aspects of the present investigation. The compositions are given in Table 1.

Composition 1 lies outside the metastable liquid-liquid immiscibility zone of the ternary Na₂O-B₂O₃-SiO₂ system. It was selected to establish the gel preparation procedures and to investigate the removal of hydroxyl groups from the gels before melting, and subsequently from the glass during melting. Moreover, it was presumed that the preparation of gels with such high alkali content would encounter more difficulties associated with non-uniform distribution of Na⁺ ions.

Composition 2 was chosen for preparing glasses for the Rayleigh Scattering studies. This composition was chosen because some previous work (2) on Rayleigh Scattering has been done with this composition prepared by conventional methods and, as such, it would be possible to compare the results of the gel-derived glasses with those of the conventional glasses.
TABLE 1. COMPOSITION OF GLASSES

<table>
<thead>
<tr>
<th>Composition No.</th>
<th>SiO₂ (Weight Percent)</th>
<th>B₂O₃</th>
<th>Na₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60.0</td>
<td>15.0</td>
<td>25.0</td>
</tr>
<tr>
<td>2</td>
<td>55.0</td>
<td>25.0</td>
<td>20.0</td>
</tr>
<tr>
<td>3</td>
<td>60.0</td>
<td>30.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>
Composition 3 which falls within the liquid-liquid immiscibility zone in the Na₂O-B₂O₃-SiO₂ system was chosen to study the phase separation behavior of gel-derived glasses.

The locations of the above compositions in the Na₂O-B₂O₃-SiO₂ ternary diagram is shown in Figure 1.

Preparation of Gels

The development of the gel preparation procedures has been considered in terms of several factors which are important for fulfilling the objectives of the present research program. The following factors have been considered.

- Chemical nature of the starting compounds and the purity attainable with the starting compounds.
- Homogeneity of the multicomponent solution and the gelling process.
- Removal of volatile organic or inorganic compounds by thermal treatment.
- Crystallinity of gels.

Starting Compounds

The following starting compounds have been used as sources of different oxides in the different procedures.

<table>
<thead>
<tr>
<th>Oxide</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>Tetraethyl Orthosilicate</td>
</tr>
<tr>
<td>B₂O₃</td>
<td>Boric Acid</td>
</tr>
<tr>
<td></td>
<td>Trimethyl Borate</td>
</tr>
<tr>
<td>Na₂O</td>
<td>Sodium Methylate</td>
</tr>
<tr>
<td></td>
<td>Sodium Nitrate</td>
</tr>
<tr>
<td></td>
<td>Sodium Acetate</td>
</tr>
</tbody>
</table>
FIGURE 1. Na$_2$O-B$_2$O$_3$-SiO$_2$ TERNARY DIAGRAM SHOWING THE PROJECTION OF THE IMmiscibility SURFACE AT DIFFERENT TEMPERATURES
Note that the compounds that are commercially available in ultrapure conditions are:

- Tetraethyl Silicate
- Boric Acid
- Sodium Nitrate

Though trimethyl borate is not available on the market it can be, in principle, purified to ultrapure condition by distillation.

Homogeneity of the Solution and the Gelling Process

Since the homogeneity of gels in terms of cation distribution is an important objective of the present work, the preparation procedures have been critically judged in terms of homogeneity. Thus, the stability of the solution on addition of different constituents and the homogeneity that could be achieved were considered.

The homogeneity and the stability of the solution are influenced by various process parameters such as the nature of the reactants, the pH of the medium, the concentration of the reactants, and the presence of minor additives. A qualitative assessment of the above factors have been made.

Removal of Organic Groups

The removal of residual organic groups from the gel by the low temperature (<500°C) thermal treatments is a complex process and appears to be also related to the gel preparation procedures. The primary concerns were to prevent carbonization during the thermal treatments, and to have an understanding of the relation between the gel preparation process and the removal processing of the organic groups.
Crystallinity of Gels

The primary concern was to prepare gels without any crystallinity and to examine the crystallinity, if any, developed after thermal treatments.

Gel Preparation Procedures

Gel preparation procedures based on two different approaches have been developed. The first approach consists of the reactions of all or most of the reactants in nonaqueous solvents. Initially, all or most of the reactants were allowed to mix and react with each other in the presence of a catalyst. Subsequently, the gelation was initiated by one of the following ways: (a) adding a limited amount of water, and (b) by exposing the final solution to atmospheric moisture.

The second approach is based on the initial partial hydrolysis of tetraethyl orthosilicate by the addition of a limited amount of water and an acid catalyst before the addition of other constituents. Subsequently, aqueous solutions of the other constituents were added for the reaction and gelation.

The gel preparation procedures developed for the compositions selected for the present investigations are described separately for each composition in a later section of this report.

Thermal Treatment of Gels

The main objective of the thermal treatment is to remove the volatile organic or inorganic compounds or groups (such as alcohols, nitrates, hydroxyl groups and alkoxy groups) by volatilization and decomposition, and thus to transform the gel to homogeneous non-crystalline oxides. After the preparation, the gel may be visualized as a system of solid character in which the macromolecules are dispersed in a solvent and somehow constitute a coherent structure. Thus, it contains the solvent, the alcohols produced by the reaction, chemically bonded unreacted residual alkoxy groups, and residual unreacted water. Hence, the following phenomena might occur during the thermal treatment.
• Removal of solvents and the release of free alcohols at a lower temperature.
• Hydrolysis of the chemically bonded alkoxy groups with the atmospheric moisture or with the excess water incorporated during the preparation of gel.
• Oxidation and removal of organic molecules as CO₂ and H₂O at a later stage of thermal treatment. The presence of oxygen is beneficial at this stage.
• Formation of micropores with highly reactive surfaces after the removal of solvents and residual organic groups.
• Collapsing the pores to form a dense structure or to form closed pores.

The main concern for the thermal treatment in the present work is to develop a procedure which would secure the maintenance of gel purity. Hence, a time-consuming thermal treatment procedure is not desirable. To realize this objective various combinations of steps involving humidity treatment, heating in steps and different rates of heating were used. The thermal treatment procedures followed for removal of organics from the gels of the compositions selected for the present investigation are described separately for each composition.

Characterization of Gels

The physico-chemical nature of gels is controlled by the method of preparation. Hence, attempts were made to characterize gels prepared by different procedures to know the physico-chemical properties of the gels after thermal treatments. The following aspects were examined.
• Color.
• Carbon content.
• Crystallinity.
• Specific surface areas.
Conversion of Gels to Glasses by Melting

The melting of gels were done to achieve the following:

- Time and temperature required to obtain glasses free from melting defects.
- Reduction of hydroxyl content of the glass.
- Gels of one composition but prepared by different procedures were melted in order to determine the Rayleigh Scattering loss in relation to the method of preparation and the heat treatment of the glasses. Also, one glass sample was prepared by conventional techniques using the same composition for comparison.
- Gels of one composition but prepared by different procedures were melted to investigate the phase separation behavior of gel-derived glasses.

Characterization of Glasses

The glasses obtained from gels prepared by different procedures were characterized with respect to the following aspects:

- Melting defects (i.e., bubbles and particles)
- Microstructures evaluated by Electron Microscopy and Small Angle X-ray Scattering
- Homogeneity evaluated by Light Scattering (Rayleigh Scattering)
- Molecular Structures evaluated by
 a. Infrared Spectroscopy
 b. Raman Spectroscopy.

The Raman spectroscopic measurements were performed at the Materials Research Laboratory of the Pennsylvania State University. Small angle x-ray scattering was carried out at the Jet Propulsion Laboratory, Pasadena, California. Rayleigh Scattering studies were performed at the Vitreous State Laboratory of Catholic University of America, Washington, D.C.
PART IB. EXPERIMENTAL WORK ON AND RESULTS OF COMPOSITION 1

The experimental results of the present work have been divided into the following activities:
- Choice of composition.
- Gel preparation procedures.
- Thermal treatment of gels.
- Characterization of gels.
- Conversion of gels to glasses by melting.
- Characterization of glasses.

Choice of Composition

The objective of the initial work was to develop the gel preparation procedures and to characterize glasses obtained from those gels. A composition containing a high proportion of alkali oxide and being outside the metastable liquid-liquid immiscibility zone was selected for the present study. The composition was as follows (in weight percent)
$\text{SiO}_2: 60; \text{B}_2\text{O}_3: 15; \text{Na}_2\text{O}: 25$.

Gel Preparation Procedures

Several preparation procedures were developed during the initial period (Final Progress Report, JPL Contract 955361) of this program. Three preparation procedures using three different sources of Na$_2$O were selected from the procedures developed earlier. However, some modifications of the procedures were made during the present work. The preparation procedures are described below.

Procedure 1-1. Starting Compounds: Tetraethyl Orthosilicate
Boric Acid
Sodium Methylate
Tetraethyl orthosilicate was mixed with about 1/2 its volume of anhydrous ethanol. The solution was heated to 40°C, and after 10 minutes tetraethyl orthosilicate was partially hydrolysed with a small proportion of acidified water [2 mol H₂O/mol of Si(OC₂H₅)₄]. The pH of the solution was five after the addition of acidified water. A small volume of acetylacetone (3 ml/100 ml of Si(OC₂H₅)₄) was added after the addition of acidified water. After stirring the solution for 1/2 hour, boric acid dissolved in boiling methanol (30 g/100 ml) was added to the solution. The pH of the solution was about six. After 1 hour, sodium methylate dissolved in methanol was added to the mixture. The pH increased to about 10. The solution was stirred for 45 minutes. After 45 minutes, a mixture of water and ethanol (1:4 ratio) was added to the solution to introduce more water for further hydrolysis and gelation. The amount of water added was 5.8 mols per mol of Si(OC₂H₅)₄. The solution gelled within 5 minutes on addition of the alcohol water mixtures.

Procedure 1-II. Starting Compounds: Tetraethyl Orthosilicate
Boric Acid
Sodium Nitrate

Tetraethyl orthosilicate was mixed with about 1/2 its volume of anhydrous ethanol. The solution was heated to approximately 40°C. After 5 minutes, a requisite amount of water acidified with dilute HCl was added for the partial hydrolysis of tetraethyl orthosilicate. After stirring for 1/2 hour, boric acid dissolved in methanol (30 g/100 ml) was added to the solution. The solution was stirred for about 1 hour. Finally, a dilute aqueous solution of sodium nitrate was added to the mixture. The total amount of water added with the sodium nitrate was several times the amount of water required for the complete hydrolysis of tetraethyl orthosilicate. The proportion of water was 20 mols per mol of Si(OC₂H₅)₄.

Procedure 1-III. Starting Compounds: Tetraethyl Orthosilicate
Trimethyl Borate
Sodium Acetate

Tetraethyl orthosilicate was mixed with 1/2 its volume of anhydrous ethanol. The mixture was heated to 40°C, and was hydrolysed in excess water in the presence of an acid catalyst with a pH of approximately
2. The amount of water added was about 11 mols per mol of \(\text{Si(OC}_2\text{H}_5)_4 \). After stirring for 1/2 hour, trimethyl borate was added and the mixture was stirred for 45 minutes. Finally, a sodium acetate solution was added rapidly to the solution with continuous stirring. The gelation took place after 1/2 hour.

Thermal Treatment of Gels

The thermal treatment of gels was carried out to achieve the following two objectives:

- The removal of organics.
- The removal of hydroxyl groups.

Treatment for the Removal of Organics From Gels

The thermal treatment procedure used for the removal of organics consisted of heating in steps and a slow rate of heating.

The thermal treatment procedure consisted of the following steps:

1. Drying in air under an infrared lamp (\(\leq 60 \text{ C} \)) for 2 to 3 days.
2. Drying in an air oven at approximately 150 C for 48 to 60 hours.
3. Heating from 150 C to 600 C at the rate of 10 C/hour.
4. Holding at 600 C for about 20 hours.

It was observed that the spraying of water during the initial thermal treatment under the infrared lamp was beneficial for the removal of organic groups during the firing cycle. Initial thermal treatments of "as prepared" gels in a humidity chamber were also beneficial for the removal of organic groups.
Treatment for the Removal of Hydroxyl Groups From the Gels

The following steps were taken for the removal of hydroxyl groups:

1. Baking in an oven.
2. Passing dry O_2 through the porous gels at elevated temperatures.
3. Passing thionyl chloride ($SOCl_2$) vapor carried by dry oxygen through the porous gels at elevated temperatures.
4. Passing carbon tetrachloride (CCl_4) vapors carried by dry oxygen through porous gels at elevated temperatures.
5. Subsequent melting of the thionyl chloride treated gels.

Experimentation involving dehydration procedures were designed to remove as much water (hydroxyl groups) as possible at low temperatures before melting. Initial experimentation involving Composition 1 gel powders utilized a horizontal tube furnace while passing either dry oxygen only (dewpoint: -60°C), or dry oxygen bubbled through liquid thionyl chloride vapors, for varying time periods. These procedures reduced the OH^- content in the subsequently melted glasses, but thionyl chloride treatment caused an extensive liquid-liquid immiscibility in the melts.

Subsequently, the procedures were modified and a closed vertical flow apparatus was used for dehydration. A diagram of this system is shown in Figure 2. The vertical flow column was packed with gel powder while dry oxygen or dry oxygen-carrying thionyl chloride or carbon tetrachloride vapors was forced upward through the packed column. This allowed for a more intimate contact between the gel powder and the dry gases. The temperature within the furnace was raised at a rate of 50°C/hour to optimal dehydration temperatures (300°C for Procedure III...
FIGURE 2. VERTICAL FLOW DEHYDRATION APPARATUS
powders, 200 C for Procedure I and III powders). Powders that were kept at these temperatures, with the longest period of dry oxygen flow, produced glasses of the lowest OH content. As in the earlier experimentation, gel powders treated with thionyl chloride vapor showed a definite liquid-liquid immiscibility in the melts. The thionyl chloride treatment was therefore discontinued. The gel powders treated with only dry oxygen or dry oxygen carrying carbon tetrachloride vapors produced clear melts of reduced OH content. Results of dehydration experimentation and hyd determination are recorded in Table II appearing later in the report.

Characterization of Gels

Color of Gels

The results of thermal treatments at various temperatures and times and their effect on color are summarized in Table 2. It is evident from the results that the removal of organics from gels is related to the gel preparation procedure as well as to the thermal treatment procedures.

Carbon Content

The total carbon content of gels prepared by different procedures and heat treatment at 600 C for 40 hours was analyzed. The results are given below:

<table>
<thead>
<tr>
<th>Gel Preparation Procedure</th>
<th>Total Carbon Content (wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-I</td>
<td>0.1</td>
</tr>
<tr>
<td>1-II</td>
<td>0.1</td>
</tr>
<tr>
<td>1-III</td>
<td>0.6</td>
</tr>
</tbody>
</table>
TABLE 2. COLOR OF GELS AFTER HEAT TREATMENT

<table>
<thead>
<tr>
<th>Gel Preparation Procedure</th>
<th>Heat Treatment</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-I</td>
<td>150°C for 48 hours</td>
<td>Tan</td>
</tr>
<tr>
<td>1-I</td>
<td>150°C for 48 hours and 600°C for 5 hours</td>
<td>Grey</td>
</tr>
<tr>
<td>1-I</td>
<td>150°C for 48 hours and 600°C for 40 hours</td>
<td>Grey</td>
</tr>
<tr>
<td>1-II</td>
<td>150°C for 48 hours</td>
<td>White</td>
</tr>
<tr>
<td>1-II</td>
<td>150°C for 48 hours and 600°C for 5 hours</td>
<td>White</td>
</tr>
<tr>
<td></td>
<td>150°C for 48 hours and 600°C for 40 hours</td>
<td>White</td>
</tr>
<tr>
<td>1-III</td>
<td>150°C for 48 hours and 600°C for 40 hours</td>
<td>Black</td>
</tr>
<tr>
<td></td>
<td>150°C for 48 hours and 600°C for 5 hours</td>
<td>Black with grey particles</td>
</tr>
<tr>
<td></td>
<td>150°C for 48 hours and 600°C for 40 hours</td>
<td>"</td>
</tr>
</tbody>
</table>
Crystallinity

Gel samples after thermal treatments at 600 C for different time periods were examined by x-ray powder pattern techniques. The results are given in Table 3.

Surface Areas

The surface areas of gels prepared by different procedures were measured on a micrometric instrument over a range of temperatures to get an idea about the change of surface area with temperature.

Two sets of experiments were performed to study the change of surface area as a function of temperature. In the first series of experiments, the surface areas were measured on a micrometric instrument over a range of temperatures in situ. The gels were held at each rising temperature for 1/2 hour before the measurement of surface area. The heating was done while the samples were under the micrometric instrument. In this series of experiments, the fresh gel sample was heat treated inside the micrometric instrument and was evacuated after the heat treatment, and, subsequently, the surface area was measured. Consequently, the surface was not exposed to the atmosphere after the heat treatment and surface pores were cleaned under vacuum after the volatilization of the solvents. Moreover, the time was short, so the time may not have been long enough for reaching the equilibrium surface area at that temperature, because at higher temperatures the formation of pores as well as the closing of pores might occur simultaneously. Results of the first set of experiments are shown in Table 4.

In the second series of experiments, the gels were heat treated at different temperatures for different time periods in a furnace under air atmosphere. The samples were then taken out, and stored in atmospheric conditions. Subsequently, the surface area of the heat treated gels were measured. Moreover, the period of heat treatment was longer than that of the first set of experiments. Consequently, the heat treatment at higher temperatures for longer time periods might have caused opening as well as closing of the pores. Results of these experiments are shown in Table 5.
<table>
<thead>
<tr>
<th>Gel Preparation Procedure</th>
<th>Thermal Treatment</th>
<th>Crystallinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-I</td>
<td>13 Hours at 500 C</td>
<td>Noncrystalline</td>
</tr>
<tr>
<td>1-I</td>
<td>24 Hours at 500 C</td>
<td>Noncrystalline</td>
</tr>
<tr>
<td>1-I</td>
<td>2 Hours at 600 C</td>
<td>Noncrystalline</td>
</tr>
<tr>
<td>1-I</td>
<td>40 Hours at 600 C</td>
<td>Noncrystalline</td>
</tr>
<tr>
<td>1-II</td>
<td>After Air Dryup</td>
<td>Crystalline, (Due to NaNO₃)</td>
</tr>
<tr>
<td>1-II</td>
<td>2 Hours at 500 C</td>
<td>Crystalline</td>
</tr>
<tr>
<td>1-II</td>
<td>2 Hours at 600 C</td>
<td>Crystalline</td>
</tr>
<tr>
<td>1-II</td>
<td>40 Hours at 600 C</td>
<td>Crystalline</td>
</tr>
<tr>
<td>1-III</td>
<td>13 Hours at 500 C</td>
<td>Noncrystalline</td>
</tr>
<tr>
<td>1-III</td>
<td>24 Hours at 500 C</td>
<td>Noncrystalline</td>
</tr>
<tr>
<td>1-III</td>
<td>2 Hours at 600 C</td>
<td>Noncrystalline</td>
</tr>
<tr>
<td>1-III</td>
<td>40 Hours at 600 C</td>
<td>Noncrystalline</td>
</tr>
</tbody>
</table>
TABLE 4. SURFACE AREAS OF GELS PREPARED BY DIFFERENT PROCEDURES AFTER ONE-HALF HOUR HEAT TREATMENT AT DIFFERENT TEMPERATURES

<table>
<thead>
<tr>
<th>Gel Preparation Procedure</th>
<th>Temperature of Treatment</th>
<th>Surface Area m²/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-I</td>
<td>150 C</td>
<td>40.00</td>
</tr>
<tr>
<td>1-I</td>
<td>300 C</td>
<td>42.00</td>
</tr>
<tr>
<td>1-I</td>
<td>500 C</td>
<td><0.00</td>
</tr>
<tr>
<td>1-II</td>
<td>150 C</td>
<td>6.00</td>
</tr>
<tr>
<td>1-II</td>
<td>300 C</td>
<td>6.00</td>
</tr>
<tr>
<td>1-II</td>
<td>400 C</td>
<td>6.00</td>
</tr>
<tr>
<td>1-II</td>
<td>500 C</td>
<td><0.00</td>
</tr>
<tr>
<td>1-III</td>
<td>150 C</td>
<td>2.00</td>
</tr>
<tr>
<td>1-III</td>
<td>300 C</td>
<td>25.00</td>
</tr>
<tr>
<td>1-III</td>
<td>400 C</td>
<td>100.00</td>
</tr>
<tr>
<td>1-III</td>
<td>500 C</td>
<td>11.00</td>
</tr>
<tr>
<td>Gel Preparation Procedure</td>
<td>Heat Treatment Temperature (°C)</td>
<td>Period of Heat Treatment (Hours)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>1-I</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>1-I</td>
<td>200</td>
<td>4</td>
</tr>
<tr>
<td>1-I</td>
<td>250</td>
<td>2</td>
</tr>
<tr>
<td>1-I</td>
<td>250</td>
<td>4</td>
</tr>
<tr>
<td>1-I</td>
<td>250</td>
<td>6</td>
</tr>
<tr>
<td>1-I</td>
<td>300</td>
<td>2</td>
</tr>
<tr>
<td>1-I</td>
<td>300</td>
<td>4</td>
</tr>
<tr>
<td>1-I</td>
<td>300</td>
<td>6</td>
</tr>
<tr>
<td>1-II</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>1-II</td>
<td>200</td>
<td>4</td>
</tr>
<tr>
<td>1-II</td>
<td>275</td>
<td>2</td>
</tr>
<tr>
<td>1-II</td>
<td>275</td>
<td>4</td>
</tr>
<tr>
<td>1-II</td>
<td>275</td>
<td>6</td>
</tr>
<tr>
<td>1-II</td>
<td>350</td>
<td>2</td>
</tr>
<tr>
<td>1-II</td>
<td>350</td>
<td>4</td>
</tr>
<tr>
<td>1-II</td>
<td>350</td>
<td>6</td>
</tr>
<tr>
<td>1-III</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>1-III</td>
<td>200</td>
<td>6</td>
</tr>
<tr>
<td>1-III</td>
<td>300</td>
<td>2</td>
</tr>
<tr>
<td>1-III</td>
<td>300</td>
<td>4</td>
</tr>
<tr>
<td>1-III</td>
<td>400</td>
<td>2</td>
</tr>
<tr>
<td>1-III</td>
<td>400</td>
<td>4</td>
</tr>
<tr>
<td>1-III</td>
<td>400</td>
<td>6</td>
</tr>
</tbody>
</table>
Conversion of Gels to Glasses by Melting

Gel powders were melted to address the following objectives.

- To study the molecular structure of gel-derived glasses.
- To study the effect of process parameters of melting on the removal of hydroxyl groups.

Melting of Gel Powders for Studying the Molecular Structure of Gel-Derived Glasses

The gels prepared by different procedures were heat treated up to 500°C to remove organic matters and were subsequently melted at 1000°C to obtain clear glass by eliminating residual carbons. The results are summarized in Tables 6, 7, and 8.

Melting of Gel Powders for Studying the Removal of Hydroxyl Groups

Initially, Composition 1 gel powders having no dehydration treatments were melted. These melts were used for comparison after determination of OH content in the dehydrated melts. For this, gel powders were placed in a platinum crucible and left for approximately 16 hours at 500°C. The temperature was then raised quickly to 1200°C and held for 5 hours. After melting, clear glass patties were made by pouring the melt onto a hot stainless steel plate and annealing for 1 hour at 580°C.

Dehydrated gel powders were treated at optimal dehydration temperatures, then the temperature was raised to 500°C with continued dry oxygen flow. These powders were kept at 500°C for approximately 16 hours, then raised to melting temperatures quickly (with no dry oxygen flow). Pouring and annealing procedures of these melts were the same as for the others. Gel powders having thionyl chloride treatment showed a liquid-liquid immiscibility in the melts. Gel powders having only dry
TABLE 6. EFFECT OF TIME AND TEMPERATURE ON THE REMOVAL OF RESIDUAL CARBON DURING THE MELTING OF GELS PREPARED BY PROCEDURE 1-1

<table>
<thead>
<tr>
<th>Experiment No.</th>
<th>Thermal Treatment Prior to Melting</th>
<th>Melting Temperature (°C)</th>
<th>Melting Time (Hours)</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>After Infrared Drying</td>
<td>1000</td>
<td>2</td>
<td>Grey Colors, Transparent Numerous Bubbles</td>
</tr>
<tr>
<td>(2)</td>
<td>After Infrared Drying</td>
<td>1000</td>
<td>3</td>
<td>Colorless and Transparent, Less Number Bubbles</td>
</tr>
<tr>
<td>(3)</td>
<td>After Infrared Drying</td>
<td>1000</td>
<td>4</td>
<td>Colorless and Transparent, much Less Bubbles</td>
</tr>
<tr>
<td>(4)</td>
<td>After Infrared Drying</td>
<td>1000</td>
<td>5</td>
<td>Highly Transparent, Bubble Undetected</td>
</tr>
<tr>
<td>(5)</td>
<td>After Infrared Drying</td>
<td>1100</td>
<td>2</td>
<td>Quite Transparent and Colorless, no Detectable Bubbles</td>
</tr>
<tr>
<td>(6)</td>
<td>After Infrared Drying</td>
<td>1100</td>
<td>3</td>
<td>Highly Transparent Colorless, no Bubbles</td>
</tr>
<tr>
<td>(7)</td>
<td>After Infrared Drying</td>
<td>1200</td>
<td>1</td>
<td>Transparent Colorless, no Bubbles</td>
</tr>
<tr>
<td>(8)</td>
<td>After Infrared Drying</td>
<td>1200</td>
<td>2</td>
<td>Transparent Colorless, no Bubbles</td>
</tr>
<tr>
<td>(9)</td>
<td>After Thermal Treatment up to 500 C</td>
<td>1000</td>
<td>5</td>
<td>Transparent Glass after 5 Hours</td>
</tr>
<tr>
<td>(10)</td>
<td>After Thermal Treatment up to 500 C</td>
<td>1100</td>
<td>3</td>
<td>Transparent Glass</td>
</tr>
<tr>
<td>(11)</td>
<td>After Thermal Treatment up to 500 C</td>
<td>1200</td>
<td>2</td>
<td>Transparent Glass</td>
</tr>
</tbody>
</table>
TABLE 7. EFFECT OF TIME AND TEMPERATURES ON THE REMOVAL OF RESIDUAL CARBON DURING THE MELTING OF GELS PREPARED BY PROCEDURE 1-II

<table>
<thead>
<tr>
<th>Experiment No.</th>
<th>Thermal Treatment Prior to Melting</th>
<th>Melting Temperature (°C)</th>
<th>Melting Time (Hours)</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Thermal Treatment up to 500 °C</td>
<td>1000</td>
<td>1</td>
<td>Transparent</td>
</tr>
<tr>
<td>(2)</td>
<td>Thermal Treatment up to 500 °C</td>
<td>1000</td>
<td>2</td>
<td>Transparent</td>
</tr>
<tr>
<td>(3)</td>
<td>Thermal Treatment up to 500 °C</td>
<td>1000</td>
<td>4</td>
<td>Transparent</td>
</tr>
</tbody>
</table>
TABLE 8: EFFECT OF TIME AND TEMPERATURE ON THE REMOVAL OF RESIDUAL CARBON DURING THE MELTING OF GELS PREPARED BY PROCEDURE 1-III

<table>
<thead>
<tr>
<th>Experiment No.</th>
<th>Thermal Treatment Prior to Melting</th>
<th>Melting Temperature (°C)</th>
<th>Melting Time (Hours)</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Thermal Treatment up to 500 C</td>
<td>1000</td>
<td>1</td>
<td>Transparent with some Black Residue</td>
</tr>
<tr>
<td>(2)</td>
<td>Thermal Treatment up to 500 C</td>
<td>1000</td>
<td>2</td>
<td>Transparent with some Black Residue</td>
</tr>
<tr>
<td>(3)</td>
<td>Thermal Treatment up to 500 C</td>
<td>1000</td>
<td>4</td>
<td>Transparent</td>
</tr>
<tr>
<td>(4)</td>
<td>Thermal Treatment up to 500 C</td>
<td>1200</td>
<td>1</td>
<td>Transparent with some Residue</td>
</tr>
<tr>
<td>(5)</td>
<td>Thermal Treatment up to 500 C</td>
<td>1200</td>
<td>2</td>
<td>More Transparent</td>
</tr>
<tr>
<td>(6)</td>
<td>Thermal Treatment up to 500 C</td>
<td>1200</td>
<td>4</td>
<td>Transparent</td>
</tr>
</tbody>
</table>
oxygen or dry oxygen-carrying carbon tetrachloride vapor during dehydration produced clear melts with reduced OH content.

Further attempts at the removal of hydroxyl groups of Composition 1 gel glasses were made during the melting process. During the melting process, a platinum crucible containing glass made from dehydrated gel powders was placed in a furnace. The platinum crucible was covered with an inverted high purity alumina crucible to isolate the gel glass from atmospheric water and oxygen. Two tubes extended through the top of the furnace, through the "bottom" of the inverted alumina crucible into the isolated area. These tubes consisted of:

1. A platinum tube reaching into the contents of the platinum crucible, for bubbling dry nitrogen (dewpoint ~59 C) through the glass during melting.

2. An alumina tube reaching only inside the isolated area for the passage of dry nitrogen to produce a dry nitrogen atmosphere over the melt.

In addition, a thermocouple was placed in this isolated area to monitor the temperature near the melt. Before these melting procedures took place, the entire furnace set-up was heated to approximately 500 C to remove surface absorbed water from the materials of the set-up just described. The melting procedure was as follows: the furnace was at room temperature during loading, for safety purposes. The temperature of the furnace was raised to 500 C in 1 hour. At this time, both flows of dry nitrogen were started: i.e., flow through the contents of the platinum crucible, and dry nitrogen flow above the melt. The temperature was raised to 1300 C in approximately 3 hours. The dry nitrogen flows continued at 1300 C for 4 hours. Finally, the tubes were removed and glass patties were poured and annealed for 1 hour at 580 C. Transparent bubble-free glasses were obtained by this procedure. The hydroxyl content of these glasses were far superior to the OH content of the earlier gel glasses.
Characterization of Glasses

The molecular structure of glasses obtained from gels prepared by different methods were investigated by Infrared Spectroscopy and Raman Spectroscopy.

Infrared Spectroscopic Studies

The infrared spectra of the glasses were taken by the KBr pellet technique; the results showing the change in the position of the absorption band due to Si-O-Si stretching (ν cm⁻¹) are given in Table 9.

Raman Spectroscopic Studies

The Raman spectra of glass samples in the fiber form were measured in the 200-to-1300 cm⁻¹ region. This region contains the characteristic vibrations of the glass structure. The Raman spectroscopic measurement was done at the Materials Research Laboratory of the Pennsylvania State University. The work was done by T. Furukawa under the supervision of Professor W. B. White. The melting history of glasses sent for the Raman spectroscopy are given in Table 10.

The instrument used for the Raman spectroscopic studies was an Spex Model 1401. The excitation source was a 514.5 nm green line, 400-700 MW.

The results of the Raman spectroscopic studies can be summarized as follows:

1. All the glasses produce similar Raman spectra.
 - A weak band at 1475 cm⁻¹; B-O stretching.
 - A strong band at 1090 cm⁻¹; Si-O (nonbridging) stretching.
 - A fairly sharp peak at 630 cm⁻¹; may be due to some boroxy group or borosilicate group.

2. Samples 4 and 6 seem to have a slightly stronger 1090 cm⁻¹ band compared to the others, which indicates more Si-O nonbridging bonds.
TABLE 9. CHARACTERISTICS OF THE IR ABSORPTION BANDS DUE TO Si-O-Si STRETCHING OF DIFFERENT GLASSES

<table>
<thead>
<tr>
<th>Gel Preparation Procedure</th>
<th>Melting Temperature (C)</th>
<th>Melting Time (Hours)</th>
<th>Position of Absorption Band due to Si-O-Si Stretching (ν cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-I</td>
<td>1000</td>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>1-I</td>
<td>1000</td>
<td>3</td>
<td>1000</td>
</tr>
<tr>
<td>1-I</td>
<td>1000</td>
<td>3</td>
<td>1000</td>
</tr>
<tr>
<td>1-I</td>
<td>1100</td>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>1-I</td>
<td>1200</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>1-I</td>
<td>1200</td>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>1-I</td>
<td>1200</td>
<td>4</td>
<td>1020</td>
</tr>
<tr>
<td>1-I</td>
<td>1400</td>
<td>2</td>
<td>1080</td>
</tr>
<tr>
<td>1-III</td>
<td>1200</td>
<td>1</td>
<td>1020</td>
</tr>
<tr>
<td>1-III</td>
<td>1200</td>
<td>2</td>
<td>1040</td>
</tr>
<tr>
<td>1-III</td>
<td>1200</td>
<td>4</td>
<td>1040</td>
</tr>
</tbody>
</table>
TABLE 10. MELTING HISTORIES OF THE SAMPLES FOR THE Raman Spectroscopic Studies

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Gel Preparation Procedures</th>
<th>Melting Temperature (°C)</th>
<th>Melting Time (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-I</td>
<td>1200</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1-I</td>
<td>1200</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1-II</td>
<td>1000</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1-II</td>
<td>1000</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>1-II</td>
<td>1200</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1-II</td>
<td>1200</td>
<td>3-1/2</td>
</tr>
<tr>
<td>7</td>
<td>Conventional Glass Batch</td>
<td>1000</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Conventional Glass Batch</td>
<td>1200</td>
<td>6</td>
</tr>
</tbody>
</table>
(3) No bands due to H₂O or OH were detected.
(4) All the mixtures luminesce in the red region.

Determination of Hydroxyl Content

Composition 1 glass samples were used for determining the hydroxyl content. The glass samples were ground and polished to a thickness of 2 to 4 mm for taking infrared spectra. The influence of water as a polishing fluid was compared to the glass samples polished with kerosene. Infrared spectra was taken at room temperature and at 200 °C to determine the effect of heating the sample. It was observed that heating the sample to 200 °C showed no difference in the intensity of the spectra.

The Lambert-Beer Equation was used to calculate the hydroxyl content of the glasses. Absorbance values were determined from the infrared spectra using the baseline method. The extinction coefficient was taken from the work of Pearson et al. (4), who determined the extinction coefficient due to hydroxyl groups at 2.73 μm in the alkali-borosilicate glass of the composition: SiO₂:45; B₂O₃:35; Na₂O:20 (mole percent). This extinction coefficient is the only one available for our use in hydroxyl determination. Taking into account the density of Composition 1 glass (2.27 g/cm³), the hydroxyl contents in ppm were calculated. These results are reported in Table 1.

Phase Separation With Thionyl Chloride Treatment

The melting of thionyl chloride vapor treated gels resulted in the separation into two liquids - a highly fluid top layer and a highly viscous bottom layer. The top layer became completely white and opaque upon cooling, the bottom layer remained transparent. The distribution of silicon, sodium, sulfur, and chlorine in the two layers were determined by the EDAX technique. The results showed that the top layer had a high proportion of sodium and sulfur and traces of chlorine. The bottom layer had mostly silicon and a small amount of chlorine. It is evident that sodium ions and sulfur, present as sulfate ions, partitioned into the top layer which was practically devoid of silica. Whereas, the
TABLE 11. HYDROXYL CONTENT IN COMPOSITION 1 GLASSES (ALL THE SAMPLES WERE DRIED IN OVEN AT 150°C FOR 48 HOURS BEFORE DEHYDRATION TREATMENTS)

<table>
<thead>
<tr>
<th>Gel Preparation Procedure</th>
<th>Dehydrating Agent Used</th>
<th>Dehydration Temperature (°C)</th>
<th>Dehydration Time (Hour)</th>
<th>Melting of Dehydrated Gel Powders Temperature (°C)</th>
<th>Melting of Dehydrated Gel Powders Time (Hour)</th>
<th>Atmosphere</th>
<th>OH(^-) Concentration Moles/Liter</th>
<th>PPM d=2.27gm/L</th>
<th>Sample Temperature During IR Measurement (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>-</td>
<td>500</td>
<td>48</td>
<td>1300</td>
<td>4</td>
<td>Air</td>
<td>.04</td>
<td>299.5</td>
<td>20</td>
</tr>
<tr>
<td>1-1</td>
<td>-</td>
<td>500</td>
<td>48</td>
<td>1300</td>
<td>4</td>
<td>Air</td>
<td>.04</td>
<td>299.5</td>
<td>200</td>
</tr>
<tr>
<td>1-1</td>
<td>Dry O(_2)</td>
<td>200 and 500</td>
<td>1</td>
<td>1200</td>
<td>5</td>
<td>Air</td>
<td>.027</td>
<td>202.5</td>
<td>20</td>
</tr>
<tr>
<td>1-11</td>
<td>Dry O(_2)</td>
<td>200 and 500</td>
<td>1</td>
<td>1300</td>
<td>4</td>
<td>N(_2)</td>
<td>.00165</td>
<td>12.3</td>
<td>20</td>
</tr>
<tr>
<td>1-11</td>
<td>-</td>
<td>500</td>
<td>48</td>
<td>1200</td>
<td>4</td>
<td>Air</td>
<td>.068</td>
<td>509.2</td>
<td>20</td>
</tr>
<tr>
<td>1-11</td>
<td>-</td>
<td>500</td>
<td>48</td>
<td>1200</td>
<td>4</td>
<td>Air</td>
<td>.068</td>
<td>509.2</td>
<td>200</td>
</tr>
<tr>
<td>1-11</td>
<td>O(_2)</td>
<td>300</td>
<td>5</td>
<td>1200</td>
<td>4</td>
<td>Air</td>
<td>.0254</td>
<td>190.3</td>
<td>20</td>
</tr>
<tr>
<td>1-11</td>
<td>O(_2)</td>
<td>300</td>
<td>5</td>
<td>1200</td>
<td>4</td>
<td>Air</td>
<td>.0259</td>
<td>194.2</td>
<td>200</td>
</tr>
<tr>
<td>1-11</td>
<td>Dry O(_2), SO(_2)(_2) Vapor</td>
<td>300</td>
<td>1</td>
<td>1200</td>
<td>4</td>
<td>Air</td>
<td>.0703</td>
<td>152.4</td>
<td>20</td>
</tr>
<tr>
<td>1-11</td>
<td>Dry O(_2)</td>
<td>300 and 500</td>
<td>1</td>
<td>1200</td>
<td>5</td>
<td>Air</td>
<td>.0175</td>
<td>130.8</td>
<td>20</td>
</tr>
<tr>
<td>1-11</td>
<td>Dry O(_2)</td>
<td>300 and 500</td>
<td>1</td>
<td>1200</td>
<td>5</td>
<td>Air</td>
<td>.0175</td>
<td>130.8</td>
<td>20</td>
</tr>
<tr>
<td>1-11</td>
<td>Dry O(_2), CCl(_4) Vapor</td>
<td>300 and 500</td>
<td>6</td>
<td>1200</td>
<td>5</td>
<td>Air</td>
<td>.0156</td>
<td>116.7</td>
<td>20</td>
</tr>
<tr>
<td>1-11</td>
<td>Dry O(_2)</td>
<td>300 and 500</td>
<td>1</td>
<td>1290</td>
<td>5</td>
<td>N(_2)</td>
<td>.000786</td>
<td>5.9</td>
<td>20</td>
</tr>
<tr>
<td>1-11</td>
<td>-</td>
<td>500</td>
<td>48</td>
<td>1300</td>
<td>5</td>
<td>Air</td>
<td>.0418</td>
<td>313.2</td>
<td>20</td>
</tr>
<tr>
<td>1-11</td>
<td>-</td>
<td>500</td>
<td>48</td>
<td>1300</td>
<td>5</td>
<td>Air</td>
<td>.0418</td>
<td>313.2</td>
<td>200</td>
</tr>
<tr>
<td>1-11</td>
<td>O(_2)</td>
<td>300</td>
<td>5</td>
<td>1300</td>
<td>5</td>
<td>Air</td>
<td>.0376</td>
<td>281.4</td>
<td>20</td>
</tr>
<tr>
<td>1-11</td>
<td>Dry O(_2)</td>
<td>200 and 500</td>
<td>1</td>
<td>1790</td>
<td>5</td>
<td>N(_2)</td>
<td>.0188</td>
<td>140.7</td>
<td>20</td>
</tr>
<tr>
<td>Conventional Glass</td>
<td>-</td>
<td>500</td>
<td>48</td>
<td>1300</td>
<td>5</td>
<td>Air</td>
<td>.0297</td>
<td>222.2</td>
<td>20</td>
</tr>
<tr>
<td>*Conventional Glass</td>
<td>Dry O(_2)</td>
<td>300 and 500</td>
<td>1</td>
<td>1300</td>
<td>5</td>
<td>N(_2)</td>
<td>.000399</td>
<td>2.98</td>
<td>20</td>
</tr>
</tbody>
</table>

*During melting of these batches, dry nitrogen gas was bubbled through the melt.
bottom layer was devoid of sodium ions and had silica as its major constituent. The determination of the distribution of boron was not possible with this technique because of its low atomic weight.

A large liquid-liquid immiscibility gap\(^{(5)}\) exists in the system SiO\(_2\)-Na\(_2\)O-Na\(_2\)SO\(_4\) at 1200 C. Presumably, thionyl chloride during the dehydration treatment reacts with the sodium ions and residual water to form sodium sulfate which causes the liquid-liquid separation during melting. The presence of a large proportion of sulfur and sodium in the top fluid layer substantiate the explanation suggested.
PART II. GEL-DERIVED GLASSES FOR RAYLEIGH SCATTERING STUDIES (EXPERIMENTAL RESULTS)

The experimental results of the present work on Rayleigh Scattering studies have been divided into the following activities.

- Choice of composition.
- Choice of starting compounds.
- Preparation of gels.
- Thermal treatment of gels.
- Characterization of gels.
- Melting of gels and conversion to glasses.
- Preparation of glass by conventional method (for comparison).
- Preparation of glass samples for Rayleigh Scattering.
- Rayleigh Scattering studies.

Choice of Composition

The following composition was selected for the Rayleigh Scattering studies: SiO₂:55; B₂O₃:25; Na₂O:20 (weight percent). This composition, designated as Composition 2, was selected because some previous work on Rayleigh Scattering had been done with this composition prepared by the conventional technique. Thus, we were in a position to compare the results of the gel-derived glasses with those of conventional glasses.

Starting Compounds

The following starting compounds were used as sources of different oxides in the different procedures. Reagent grade chemicals were used for the present investigation.
Oxide Source

SiO₂ Tetraethyl Orthosilicate
B₂O₃ Boric Acid
Na₂O Trimethyl Borate

Sodium Methylate
Sodium Nitrate
Sodium Acetate

Gel Preparation Procedures

Gel preparations by three procedures using three different sources of Na₂0 were based on the procedures developed earlier. However, some modifications of the procedures were made to achieve more homogeneity in the gels and also to remove a maximum amount of organics during initial heat treatment (~500 C). The preparation procedures are described below.

Procedure 2-I. Starting Compounds: Tetraethyl Orthosilicate
Boric Acid
Sodium Methylate

Tetraethyl orthosilicate was mixed with three times its volume of anhydrous ethanol. The solution was stirred for approximately 5 minutes and then a small amount of 1N. HCL \([0.0002 \text{ mole HCl/mol Si(OC}_2\text{H}_5)_4]\) was added followed by the addition of acetyl acetone \([5 \text{ ml/100 ml Si(OC}_2\text{H}_5)_4]\). The solution was partially hydrolyzed for a period of about 1 hour by stirring the solution continuously. The pH of the solution was 3.6. The solution was cooled to room temperature, boric acid dissolved in boiling methanol (30 g/100 ml) was added, and stirring was continued for about 2 hours. The pH of the solution was 3.6. To this mixture sodium methylate and/or anhydrous methanol (1:1 by volume) was added. The pH increased to about 10. The solution was stirred for about 45 minutes and then a requisite amount of anhydrous ethanol was added to obtain a concentration of approximately 40 grams silica per liter of the solution. After the addition of anhydrous ethanol the solution was stirred for a further period of about 1/2 hour. The solution gelled in 3 hours.
Procedure 2-II. Starting Compounds: Tetraethyl Orthosilicate
Boric Acid
Sodium Nitrate

Tetraethyl orthosilicate was mixed with three times its volume of anhydrous ethanol. The solution was stirred for approximately 5 minutes and then approximately 0.5 mol water [per mol Si(OC₂H₅)₄] acidified with HCl [0.0004 mole HCl/mol Si(OC₂H₅)₄] was added for partial hydrolysis of tetraethyl orthosilicate. The solution was heated to approximately 40°C and stirring was continued for about 1 hour. The pH of the solution was 2.8. Boric acid dissolved in anhydrous methanol (approximately 30 g/100 ml) was added to the partially hydrolyzed tetraethyl orthosilicate, and stirring was continued for 1 hour. The pH of the solution was 2.4. Finally, a dilute aqueous solution of sodium nitrate (approximately 17 g/100 ml) was added to the mixture and stirring was continued for 3 hours. The concentration of the solution was approximately 70 grams silica per liter. The pH was 3.2. The solution was slowly evaporated at approximately 40°C to gel in 3 days.

Procedure 2-III. Starting Compounds: Tetraethyl Orthosilicate
Trimethyl Borate
Sodium Acetate

Tetraethyl orthosilicate was mixed with three times its volume of anhydrous ethanol. The solution was stirred for about 5 minutes and then one molar ratio of water acidified with concentrated HCl [0.02 mol HCl/mole Si(OC₂H₅)₄] was added for partial hydrolysis of tetraethyl orthosilicate. The solution was heated to approximately 40°C and stirred for about 1 hour. The pH was 0.2. The solution was cooled to room temperature and a requisite amount of trimethyl borate was added and the mixture was stirred for another 3 hours. The pH was 0.4. Finally, a buffer solution of 0.5M sodium acetate (prepared by dissolving crystalline sodium acetate in water to which acetic anhydride had been added) was added and the solution was stirred for 2 to 3 minutes. The concentration of the solution was approximately 45 grams silica per liter and the pH was 5.5. The solution gelled in about 1 hour.
Thermal Treatment of Gels

The behavior of Composition 1 gels towards thermal treatment indicate that the removal of organics from the gels is related to the gel preparation procedure as well as to the thermal treatment procedures. Because the glass composition chosen for Rayleigh Scattering studies was different and some modifications were made in the gel preparation procedures, it was considered necessary to examine the behavior of gels so produced towards thermal treatment. Besides, some modifications were made in thermal treatment procedures to achieve the maximum removal of organics. The thermal treatment procedures used for the removal of organics consisted of humidity treatment, heating in steps and a slow rate of heating. The thermal treatment procedures consisted of different combinations of the following steps:

1. Humidity treatment at 70°C and RH 95 percent for 12 hours and 24 hours.
2. Drying in air under infrared lamp (approximately 60°C) for 2 to 3 days.
3. Drying in a microwave oven.
4. Heating up to 500°C at the rate of 100°C/hour and holding at 500°C for 12 hours; making a total heat treatment of 17 hours.
5. Heating up to 500°C in steps and holding at 500°C for 4 hours, making a total heat treatment of 48 hours.
6. Heating up to 500°C in steps and holding at 500°C for 8 hours (making a total heat treatment of 96 hours) in the presence of O₂.
7. Heating up to 500°C in steps with occasional moistening of the samples with water from time to time. This heating schedule covered a total period of approximately 200 hours.
The results of thermal treatment are summarized in Tables 12, 13, and 14. It was observed that:

(a) The use of microwave oven drying as a step in the heat treatment procedure was not helpful for the removal of organics.

(b) Humidity treatment was beneficial for removing organics from the gel prepared by Procedure 2-I. However, the same effect was not apparently evident in Gels prepared by Procedure 2-III.

(c) Heat treatment for longer periods in the presence of oxygen was beneficial, but not very effective for complete removal of organics.

(d) Occasional spraying of the samples with water was found to be more beneficial for removing organics from the gel. However, complete removal of organics was not achieved with this procedure.

Characterization of Gels

Gel powders were characterized after the thermal treatments. The following aspects of the physico-chemical nature of the gels were examined.

Color of Gels

The results of thermal treatments at various temperatures and times are summarized in Tables 12, 13, and 14. It is evident from the results that the removal of organics from the gels is related to the gel preparation procedure as well as the thermal treatment procedures.
TABLE 12. RESULTS OF THERMAL TREATMENT OF GELS FOR REMOVAL OF ORGANICS

<table>
<thead>
<tr>
<th>Gel Preparation Procedure</th>
<th>Heat Treatment</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-I</td>
<td>Humidity treatment/12 hours, IR dry/2 days, Heated to 500°C/48 hours heating schedule</td>
<td>Whitish grey, some black particles</td>
</tr>
<tr>
<td>2-I</td>
<td>Humidity treatment/24 hours, IR dry/2 days, Heated to 500°C/48 hours heating schedule</td>
<td>Mixture of white, whitish grey and greyish black particles</td>
</tr>
<tr>
<td>2-I</td>
<td>IR dry/2 days, Heated to 500°C/48 hours heating schedule</td>
<td>Mixture of grey and black particles</td>
</tr>
<tr>
<td>2-III</td>
<td>IR dry/2 days, Humidity treatment/12 hours, Microwave oven drying, Heated to 500°C/17 hours heating schedule</td>
<td>Black</td>
</tr>
<tr>
<td>2-III</td>
<td>IR dry/2 days, Humidity treatment/12 hours, Microwave oven drying, Heated to 500°C/48 hours heating schedule</td>
<td>Black</td>
</tr>
<tr>
<td>2-III</td>
<td>Humidity treatment/12 hours, Microwave oven drying, Heated to 500°C/17 hours heating schedule</td>
<td>Black</td>
</tr>
</tbody>
</table>
TABLE 13. INITIAL HEAT TREATMENT OF COMPOSITION 2
GELS IN PRESENCE OF OXYGEN

<table>
<thead>
<tr>
<th>Gel Preparation Procedure</th>
<th>Heat Treatment Schedule</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-I</td>
<td>Humidity treatments/12 hrs IR dry/2 days. Heated to 500 C/96 hrs heating schedule.</td>
<td>Mixture of white, whitish grey and black particles.</td>
</tr>
<tr>
<td>2-I</td>
<td>Humidity treatment/24 hrs IR dry/2 days. Heated to 500 C/96 hrs heating schedule.</td>
<td>Mixture of white, greyish white and some black particles.</td>
</tr>
<tr>
<td>2-I</td>
<td>Humidity treatment/24 hrs Heated to 500 C/96 hrs heating schedule.</td>
<td>Mixture of white, whitish grey and some black particles.</td>
</tr>
<tr>
<td>2-III</td>
<td>Humidity treatment/12 hrs IR dry/2 days. Heated to 500 C/96 hrs heating schedule.</td>
<td>Mixture of grey and black particles.</td>
</tr>
<tr>
<td>2-III</td>
<td>IR dry/2 days. Heated to 500 C/96 hrs heating schedule.</td>
<td>Mixture of grey and black particles.</td>
</tr>
<tr>
<td>Gel Preparation Procedure</td>
<td>Heating Schedule</td>
<td>Appearance</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>2-I</td>
<td>Humidity treatment/24 hrs, IR day/2 days, Heating upto 500 °C/ ~200 hrs heating schedule.</td>
<td>Dirty white particles.</td>
</tr>
<tr>
<td>2-I</td>
<td>Humidity treatment/12 hrs, IR dry/2 days, Heating upto 500 °C/ ~200 hrs heating schedule.</td>
<td>Dirty white particles.</td>
</tr>
<tr>
<td>2-III</td>
<td>IR dry/2 days, Heating upto 500 °C/ ~200 hrs heating schedule.</td>
<td>Mixture of dirty white, grey, and a few black particles.</td>
</tr>
<tr>
<td>2-III</td>
<td>Humidity treatment/12 hrs, IR dry/2 days, Heating upto 500 °C/ ~200 hrs heating schedule.</td>
<td>A mixture of dirty white, grey, and a few black particles.</td>
</tr>
</tbody>
</table>
Thermogravimetric Analysis

Thermogravimetric analyses were done on IR dried samples prepared by Procedures 2-I, 2-II, and 2-III under air atmosphere up to 500 C. The rate of heating was maintained at 10 C/hour. The sample prepared by Procedure I showed a total loss of about 14 percent. The loss was complete at about 350 C. The sample prepared by Procedure II showed a total loss of about 18 percent and the loss was complete at about 400 C. The sample prepared by Procedure III, however, showed a continuous loss in weight up to the heating maximum (i.e., 500 C) and the total loss up to 500 C was found to be 22 percent.

Melting of Gels and Conversion to Glasses

The gel powders obtained after initial heat treatment up to 500 C were melted in a vertical-type furnace at different temperatures and times. The results of these melting experiments with gels obtained after two different heat treatment schedules have been summarized in Tables 15 and 16. Based on the results of melting experiments, efforts were directed towards the preparation of glass samples involving the least amount of heat treatment, and the lowest melting temperatures and times. One batch was melted in a fused silica crucible in order to avoid contamination due to the dissolution of platinum. Results of this work are shown in Table 17.

Preparation of Glass Samples

Glass samples melted in crucibles were core-drilled using a 3/4 inch drill and annealed for an additional 2 hours at 580 C. All samples used for Rayleigh Scattering studies were polished in kerosene to a path length of 1 cm.
TABLE 15. MELTING OF GELS DRIED BY 48 HOURS HEATING SCHEDULE
(HEAT TREATMENTS WERE DONE UNDER AMBIENT ATMOSPHERE)

<table>
<thead>
<tr>
<th>Gel Preparation Procedure</th>
<th>Temperature (°C)</th>
<th>Soaking Time (Hours)</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-I</td>
<td>800</td>
<td>4</td>
<td>Shows sign of melting, black</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>4</td>
<td>Black melt</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>8</td>
<td>Black particles in the melt</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>24</td>
<td>Some grey particles in the melt</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>2</td>
<td>Some grey tinge in the otherwise clear melt</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>4</td>
<td>Clear melt</td>
</tr>
<tr>
<td>2-III</td>
<td>800</td>
<td>4</td>
<td>Shows sign of melting, black</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>4</td>
<td>Black melt</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>8</td>
<td>Black particles in the melt</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>24</td>
<td>Black particles in the melt</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>2</td>
<td>Some grey particles in the melt, otherwise clear melt</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>4</td>
<td>Clear melt</td>
</tr>
<tr>
<td>Gel Preparation Procedure</td>
<td>Temperature (°C)</td>
<td>Soaking Time (Hours)</td>
<td>Appearance</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>2-II</td>
<td>1000</td>
<td>4</td>
<td>Black particles in the melt</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>8</td>
<td>Black particles in the melt</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>24</td>
<td>Black particles in the melt</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>2</td>
<td>Some grey particles</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>4</td>
<td>Clear melt</td>
</tr>
<tr>
<td>2-III</td>
<td>1000</td>
<td>4</td>
<td>Black particles in the melt</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>8</td>
<td>Black particles in the melt</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>24</td>
<td>Black particles in the melt</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>2</td>
<td>Some grey particles</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>4</td>
<td>Clear melt</td>
</tr>
<tr>
<td>Gel Powder Preparation Procedure</td>
<td>Gel Powder Thermal Treatments</td>
<td>Melting Procedures</td>
<td>Appearance of Melt</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>I</td>
<td>IR dry, 48 hrs 150 C-48 hrs</td>
<td>1200 C-5 hrs uncovered</td>
<td>Grayish-black, no bubbles</td>
</tr>
<tr>
<td>I</td>
<td>70 C, RH 95%-24 hrs heating schedule</td>
<td>1200 C-4 hrs covered</td>
<td>Black, no bubbles</td>
</tr>
<tr>
<td>I</td>
<td>70 C, RH 95%-24 hrs heating schedule</td>
<td>1300 C-4 hrs uncovered</td>
<td>Clear, slight bluish tint, no bubbles</td>
</tr>
<tr>
<td>II</td>
<td>IR dry, 48 hrs</td>
<td>1000 C-2 hrs uncovered</td>
<td>Clear, many small bubbles</td>
</tr>
<tr>
<td>II</td>
<td>IR dry, 48 hrs</td>
<td>1100 C-2 hrs* uncovered</td>
<td>Clear, no bubbles</td>
</tr>
<tr>
<td>II</td>
<td>IR dry, 48 hrs</td>
<td>1000 C-2 hrs 1100 C-2 hrs uncovered</td>
<td>Clear, few small bubbles</td>
</tr>
<tr>
<td>II</td>
<td>IR dry, 48 hrs 150 C-48 hrs</td>
<td>1000 C-2 hrs* uncovered</td>
<td>Clear, no bubbles</td>
</tr>
<tr>
<td>II</td>
<td>IR dry, 48 hrs heating schedule</td>
<td>1200 C-4 hrs covered</td>
<td>Clear, few bubbles</td>
</tr>
<tr>
<td>II</td>
<td>IR dry, 48 hrs 150 C-48 hrs</td>
<td>1000 C-1 hr* covered</td>
<td>Clear, bubbles</td>
</tr>
<tr>
<td>Conventional batch</td>
<td>IR dry, 49 hrs heating schedule</td>
<td>1200 C-4 hrs covered</td>
<td>Clear, no bubbles</td>
</tr>
</tbody>
</table>

*Melted in a fused silica crucible.

IR = Infrared.
Glass samples to be used in Rayleigh Scattering studies were sent to the Vitreous Sate Laboratory of the Catholic University of America in Washington, D.C. for investigation. The thermal history of the samples sent for Rayleigh Scattering studies are shown in Table 18. Three of the glasses were made by the sol-gel technique and the fourth was made by the conventional technique described previously.

The purpose of the examination was to determine the relative levels of Rayleigh Scattering in these glasses and to correlate these results with the method of preparation of each sample. An approximate Rayleigh Scattering attenuation coefficient was also determined for the glasses by making a comparison of the absolute scattering intensity found in these glasses with a standardized fused silica reference.

The method of making the scattering measurements was that originally suggested for glasses by Rich and Pinnow(6) and used by Schroeder, et al(7) to examine a number of optical glasses. In brief, that method is to measure the Landau-Placzek ratio, R_{LP}, for the samples. R_{LP} is defined as $I_R/2I_B$ where I_R and I_B are the Rayleigh and Brillouin intensities respectively. In making the measurement the sample is illuminated by a focused laser beam and the light scattered at 90° is collected by a collimating lens. The light is spectrum analyzed by a Fabry Perot.
Table 18. Thermal History of the Samples Sent to Naval Research Laboratory for Rayleigh Scattering Studies

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Gel Preparation Procedure</th>
<th>Thermal Treatment of Gels</th>
<th>Melting Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-I</td>
<td>Humidity treatment at 70°C and RH-95%/24 hrs, IR dry/48 hrs, Heated to 500°C/48 hrs heating schedule</td>
<td>1300°C/4 hrs (uncovered), Annealed at 580°C/2 hrs</td>
</tr>
<tr>
<td>2</td>
<td>2-II</td>
<td>IR dry/48 hrs, 150°C/48 hrs</td>
<td>1000°C/2 hrs (uncovered), Annealed at 580°C/2 hrs</td>
</tr>
<tr>
<td>3</td>
<td>2-II</td>
<td>Humidity treatment at 70°C and RH-95%/12 hrs, IR dry/48 hrs, Heated to 500°C/48 hrs heating schedule</td>
<td>1200°C/4 hrs (covered), Annealed at 580°C/2 hrs</td>
</tr>
<tr>
<td>4</td>
<td>Conventional Batch</td>
<td>IR dry/48 hrs, Heated to 500°C/48 hrs heating schedule</td>
<td>1200°C/4 hrs (covered), Annealed at 580°C/2 hrs</td>
</tr>
</tbody>
</table>

* Melted in a fused silica crucible.
PART III. GEL-DERIVED GLASSES FOR STUDYING PHASE SEPARATION BEHAVIOR (EXPERIMENTAL RESULTS)

Composition 3: SiO₂:60; B₂O₃:30; Na₂O:10 (weight percent) was chosen because the liquid-liquid immiscibility temperature had been determined by Haller et al.⁸, and the composition is well within the liquid-liquid immiscibility zone. Gel preparation was based on Procedures 3-I and 3-II. The gel preparation procedures are briefly described below.

Gel Preparation Procedures

Procedure 3-I

Starting Chemicals: Tetraethyl Orthosilicate
Boric Acid
Sodium Methylate

The sequence of the steps used for the preparation of the gel was as follows:

(1) Mixing of Si(OC₂H₅)₄ with C₂H₅OH.
(2) Partial hydrolysis with acidified water at 40°C. The molar ratio of water to Si(OC₂H₅)₄ was 0.2.
(3) Addition of boric acid dissolved in methanol.
(4) Addition of sodium methylate diluted with methanol.
(5) Addition of water-ethanol mixture to initiate gelation. The molar ratio of water to Si(OC₂H₅)₄ at the end was 3.5. The gelation occurred rapidly.

Procedure 3-II

Starting Chemicals: Tetraethyl Orthosilicate
Boric Acid
Sodium Nitrate

The sequence of the steps used for the preparation of gels was as follows.
(1) Mixing of Si(OC\textsubscript{2}H\textsubscript{5})\textsubscript{4} with C\textsubscript{2}H\textsubscript{5}OH.
(2) Partial hydrolysis with acidified H\textsubscript{2}O at 40 C.
The molar ratio of water to Si(OC\textsubscript{2}H\textsubscript{5})\textsubscript{4} was 0.4.
(3) Addition of boric acid dissolved in methanol.
(4) Addition of sodium nitrate dissolved in excess water. The molar ratio of water to Si(OC\textsubscript{2}H\textsubscript{5})\textsubscript{2} was 5.2.
(5) Gelation achieved overnight.

Drying and Melting

The gels were dried under an infrared lamp for 48 hours, and were placed in an oven at approximately 150 C for several days. The gel powders prepared by Procedure 3-I were heated slowly to 350 C and held there for 5 hours. The temperature was then raised to 500 C and held there for approximately 16 hours. The gel powders were then heated quickly to 1200 C and held at that temperature for 6 hours. A bubble-free glass patty was poured and annealed at 580 C for 1 hour. The gel powders prepared by Procedure 3-II were dried for 48 hours under an infrared lamp and placed in an oven at approximately 150 C for several days. A clear bubble-free glass patty was poured and annealed at 580 C for 1 hour.

Microstructural Studies

The glass samples obtained by the melting of Composition 3 gel powders and conventional glass batches were sent to the Jet Propulsion Laboratory for small angle x-ray scattering studies of phase separation behavior.

The microstructures of the glasses were also observed by SEM. The micrographs of the various samples after different heat treatments are shown in Figures 3 through 8.
FIGURE 3. SCANNING ELECTRON MICROGRAPH OF THE GLASS OBTAINED FROM THE GEL PREPARED BY PROCEDURE 3-I WITHOUT ANY HEAT TREATMENT
FIGURE 4. SCANNING ELECTRON MICROGRAPH OF THE GLASS OBTAINED FROM THE GEL PREPARED BY PROCEDURE 3-I AFTER HEAT TREATMENT AT 600°C FOR 4 HOURS
FIGURE 5. SCANNING ELECTRON MICROGRAPH OF THE GLASS OBTAINED FROM THE GEL PREPARED BY PROCEDURE 3-II WITHOUT ANY HEAT TREATMENT
FIGURE 6. SCANNING ELECTRON MICROGRAPH OF THE GLASS OBTAINED FROM THE GEL PREPARED BY PROCEDURE 3-II AFTER HEAT TREATMENT AT 600 C FOR 4 HOURS

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH
FIGURE 7. SCANNING ELECTRON MICROGRAPH OF THE GLASS PREPARED FROM THE CONVENTIONAL GLASS BATCH, WITHOUT ANY HEAT TREATMENT
FIGURE 8. SCANNING ELECTRON MICROGRAPH OF THE GLASS PREPARED FROM THE CONVENTIONAL BATCH AFTER HEAT TREATMENT AT 600 C FOR 4 HOURS
DISCUSSION OF TOTAL PROGRAM

Preparation of Gels

The formation of the condensed polysilicates and subsequent gelation is the result of a complex sequence of hydrolysis and condensation reactions. The complexity increases in a system with components having different reactivity and solubility. Gelling is controlled by process parameters such as chemical nature of alkoxides and other reactants, molecular ratio of water to alkoxides, the presence of catalysts and pH of the medium, temperature, concentration of reactants, and the nature of solvents.

In this multicomponent system having reactants of markedly different chemical nature, it is extremely difficult to change the process parameters independently of each other. Moreover, the addition of aqueous solution such as sodium nitrate and sodium acetate which are insoluble in alcohol should be considered in the context of the liquid-liquid immiscibility existing in the Si(OC₂H₅)₄, C₂H₅OH, and H₂O system. The possibility of segregating water-soluble phases under certain experimental conditions should be investigated. To homogeneously incorporate a high proportion of Na⁺ ions (which is not a network former) into a gel structure is complex and difficult.

In Procedure I, all reactants are soluble in alcohols and it is presumed that a homogeneous solution of the molecular species was obtained at the final stage. However, the sequence of reactions may be postulated as follows: in acid medium, the hydronium ion attacks the polar Si-OC₂H₅ bond and forms Si-OH groups. However, in this type of nucleophilic displacement reactions the reactivity decreases as more groups on the silicon atom are displaced. The polysilicate is formed through condensation of silanol groups; SiOH; or silanol and alkoxy groups (≡ Si-OC₂H₅). The further attack of ≡ Si-OC₂H₅ bond in the polysiloxane by H₂O might also be hindered by the steric effect of ethoxy groups. The hydrolysis of ethylsilicate is thus controlled by the
electronic and steric effects developed during hydrolysis. Hence the formation of low-molecular-weight molecules takes place under mild conditions of hydrolysis at room temperatures and with a small proportion of H_2O. Recent work of Peace, et al.\(^{10}\) on the hydrolysis of alkoxysilanes suggests that the polymers at the initial stage of hydrolysis might have a ring structure—perhaps a dimer with two connected rings each containing four silicon atoms. Boric acid itself or methyl borate $\text{B(OCH}_3\text{)}_3$ which could form by the reaction of methanol with boric acid can react with silanol or alkoxy groups and form $\text{Si-0-B} = $ bonds in the following way:

$$2 \equiv \text{Si-OH} + \text{H}_3\text{BO}_3 \rightarrow \text{Si-O-B-O-Si} + \text{H}_2\text{O} \quad (1)$$

$$\equiv \text{Si-OR} + \text{HO-B} \rightarrow \equiv \text{Si-O-B} = \text{ROH} \quad (2)$$

$$\equiv \text{Si-OH} + \text{CH}_3\text{OH} \rightarrow \equiv \text{Si-O-B} = \text{CH}_3\text{OH} \quad (3)$$

An advantage of the addition of boric acid is that a certain amount of water is liberated during the reaction of H_3BO_3 either with silanol groups or with alcohols, and this water produced in situ could effectively induce further hydrolysis without addition of free H_2O. After subsequent addition of sodium methoxide solution, the pH of the solution increases above 9, and consequently the mechanism and kinetics of hydrolysis and polycondensation changes. Moreover, sodium methoxide being highly susceptible to hydrolysis (e.g., $\text{NaOCH}_3 + \text{H}_2\text{O} \rightarrow \text{NaOH} + \text{CH}_3\text{OH}$) produces OH groups which enhance the polycondensation and growth of the polymeric particles. Subsequently, the solution absorbs sufficient water from the atmosphere or when free water is added, the gelation occurs rapidly. The observed increased gelling rate with increased proportion of water at the initial stage of hydrolysis suggest that any free water remaining before adding sodium methoxide causes the generation of hydroxyl groups which enhance the gelation. The decreased gelling time with increased NaOCH_3 and with increased humidity also indicates the hydrolytic reaction of the NaOCH_3 and the catalytic activity of OH groups. The incorporation of Na^+ ions into the gel structures might
take place as follows\(\text{8}\): \(\text{NaOH}\) generated by the hydrolysis of \(\text{NaOCH}_3\) might react with \(\text{Si-OCH}_2\text{H}_5\) group to produce \(\text{SiONa}\). Sodium methoxide having strong ionic character might undergo ion exchange with \(\text{H}^{+}\) ion of silanol groups at high \(\text{pH}\) and may produce \(\text{SiONa}\). A secondary reaction forming tetra-coordinated boron of the type \(\text{Na}[\text{B(OCH}_3)_4]\) might take place when free or partially hydrolyzed \(\text{B(OCH}_3)_3\) reacts with \(\text{NaOCH}_3\).

In Procedure II, the initial reactions of tetraethoxysilane with boric acid are anticipated to be similar to those described for Procedure I. However, the addition of higher proportion of water and of acids would lead to more complete hydrolysis of ethoxysilane. The polymer molecules contain less unreacted ethoxy groups, and the solution shows little tendency to gelation. Sodium nitrate additions, unlike \(\text{NaOCH}_3\) or sodium acetate, do not increase the \(\text{pH}\). Consequently, the gelling time is long. Sodium nitrate, not being reactive to other reactants and being insoluble in alcohols, segregates in the aqueous phase and precipitates as \(\text{NaNO}_3\) as the gels dry, as evidenced by the x-ray diffraction results. The heat treatment at 500°C or above decomposes the nitrate and reactive \(\text{Na}_2\text{O}\) forms; thus, the crystallinity decreases with the heat treatment. However, excess water and the low gelation rate are beneficial for hydrolyzing alkoxy groups and subsequent removal of organics.

In Procedure III, the initial stage of the hydrolytic reactions in the presence of a high proportion of water and acid is similar to that of Procedure II. Consequently, the hydrolysis is more complete and the solution being at low \(\text{pH}\) (\(\leq 2\)) shows less tendency to gel. Sodium acetate solution is added, the gelation occurs due to the high concentration of \(\text{OH}\) ions present in sodium acetate solution; the \(\text{pH}\) of the solution increases to higher gelling rate region and gelation occurs rapidly.

The surface areas of gels produced from the low \(\text{pH}\) solution is large because, in strongly acid medium, the polymeric particles cannot grow; consequently, gels produced from submicron particles have higher surface areas. The significant difference in the surface areas of the gels prepared by the different procedures can be interpreted in terms
of the effect of pH on the size of the particles. When the gelation is
done with solution of low pH (<2) the particle sizes are smaller, and, con-
sequently, the pore sizes are finer. The incorporation of Na+ ions
into the gel structure might occur either by the reaction of NaOH pro-
duced by the hydrolysis of sodium acetate with Si-O-C2H5 group or by the
exchange of H+ ions of the silanol groups with Na+ ions of acetate
solution. But a portion of Na+ ions might remain in the water phase and
could produce a nonuniform distribution of Na+ ions in the gels.

The results of the infrared and Raman spectroscopic studies of
glasses made from the different gels and having different melting
histories (e.g., time and temperature of melting) indicate that the
molecular structures of the glasses made from the gels prepared by
different procedures and melted at lower temperatures (<1000 C) are
not identical. However, the melting at higher temperatures (1100-1200 C)
appears to be sufficient to give an equilibrium melt for each gel.
Studies on glasses melted at lower temperatures (e.g., 700-1000) may
throw some light on the process of approaching an equilibrium melt.

Removal of Organics From Gels

The "as prepared" gels may be considered as a solid character
in which macromolecules are dispersed in a solvent and somehow constitute
a coherent structure. Thus, it contains the structural skeleton of the
silicate network; unreacted alkoxy groups chemically bonded to the silici-
cate network; free solvents, like alcohols and water; and alcohols and
water absorbed to the silicate structure. Hence, the removal of these
organic compounds and also inorganic radicals, such as nitrates, is a
complex phenomenon and is related to the structure and morphology of
the gels which in turn is related to the chemical nature of the gel pre-
cursors used in the gel preparation procedures as well as the thermo-
chemical nature of the gel precursors.

The thermal treatment of gels containing alcohols/ethers/water
would normally involve volatilization of these constituents at all
temperatures with the maximum rate of vaporization near their boiling
points. This phenomenon is, however, related to the balance between
the rate of diffusion of the solvents/water from inside the gel structure to the surface of the gel and the rate of evaporation of solvents/water from the gel surface to the surrounding atmosphere at the equilibrium temperature. The dynamic nature of the heat treatment procedure establishes an imbalance between the above two rates and, as a result, evaporation of solvents/water may continue to take place at temperatures beyond their boiling ranges. Besides, if the solvents/water are chemically bound or chemisorbed to the gel structure, evaporation temperatures would be higher. Moreover, during the thermal treatment the initial densification of the gel structure takes place resulting in the formation of increasing number of closed pores. The presence of solvents (e.g., alcohols, ethers, etc.) in the closed pores make them inaccessible to the surrounding atmosphere even at considerably higher temperatures. Therefore, at somewhat higher temperatures thermochemical reactions of the organic solvents present in the closed pores and organic radicals (connected to the gel structure) may take place resulting in the formation of carbon. Also, the thermochemical nature of the gel precursors either alone or in combination may result in the deposition of carbon due to incomplete hydrolysis and polymerization (hydrolytic polycondensation). It is to be noted that pyrolyses of alcohols, aliphatic ethers, acetic acid and ester give gaseous mixtures of approximately the same composition (methane, ethane, ethylene, acetylene, carbon monoxide, etc.). During pyrolysis of ethylene and acetylene the residue \([\text{CH}_2 \equiv] , [\text{HC} \equiv] \) are considered to be formed by direct rupture of the carbon-to-carbon bonds. These residues may become dehydrogenated further into carbon. The problems associated with the deposition of carbon during initial thermal treatment of gels are:

- The complete removal of carbon needs higher melting temperature and longer soaking time.
- Complete removal of bubbles (from gel-derived glass) needs longer soaking time.

It would therefore appear that the conversion of gel into glass at lower temperature essentially depends upon the successful removal of organics during preliminary heat treatment or drying of gels. Proper selection of heating rate and the furnace atmosphere are to be considered.
for the thermal treatment of gels. In the present investigation the behavior of the gels towards thermal treatments were studied with gels prepared by two different procedures, Procedure I and III. The thermal treatment consisted of humidity treatments, heating in steps, slow rate of heating and moistening the gel during heating under different furnace atmospheres. The results of the present work indicate that the thermal treatment of gels in a humidity chamber just after preparation has beneficial effect on the removal of organics. This suggests that the hydrolysis and increased polymerization can take place in the solid phase. The water vapors react with the unreacted ethoxy groups during the humidity treatment and causes polycondensation. In general, humidity treatment was more beneficial for removing organics in the gels prepared by Procedure I than those prepared by Procedure III. This may be due to the fact that the gel prepared by Procedure III has smaller pore sizes and/or larger number of closed pores.

It is to be noted that it was possible to achieve complete removal of organics in the gels prepared by Procedure II during preliminary heat treatment up to 500 C even without humidity treatment. This may be due to one or all of the following factors:

- Less number of closed pores.
- Comparatively large pore sizes.
- The decomposition of sodium nitrate creates/develops an oxidizing environment inside the gel structure and, as a result, dehydrogenation or thermal cracking of organic molecules or radicals are prevented.

It is to be mentioned that although prolonged humidification of freshly prepared gel followed by soaking the gel with water at elevated temperatures was found to be the most effective method of removing the organics, it was not fully effective in removing the organics completely. Therefore, the presence of formation of closed pores appears to be the single most important factor which makes the complete removal of organics from gels a difficult task.
Removal of Hydroxyl Groups From Gels

The hydroxyl concentration in a glass is determined by:

- The water content of the raw material.
- The sintering properties of the starting materials.
- The H_2O partial pressure of the surrounding gas during melting.
- The H_2 partial pressure of the surrounding gas during melting.
- The thermal history of the glass.

Hence, the hydroxyl content in the starting material needs to be reduced by thermal treatment. The following steps were taken for the removal of hydroxyl groups from gel powders of Composition 1.

- Baking in an oven.
- Passing dry O_2 through the porous gels at elevated temperature.
- Passing thionyl chloride ($SOCl_2$) vapor carried by dry oxygen through the porous gels at elevated temperatures.
- Passing carbon tetrachloride (CCl_4) vapors carried by dry oxygen through the porous gels at elevated temperatures.
- Subsequent melting of the thionyl chloride treated/carbon tetrachloride treated gels in air atmosphere.
- Melting of dehydrated gels in nitrogen atmosphere.

The results of the present investigation indicate that:

- The water content of the glasses obtained from two different gels differ significantly.
- The hydroxy content could be reduced at lower dehydration temperature by passing dry oxygen through a vertical column packed with gel powders.
- Use of thionyl chloride for reducing hydroxyl groups at lower temperatures results in liquid-liquid phase separation. A large liquid-liquid immiscibility zone exists in the system $SiO_2-Na_2O_2-Na_2SO_4$ at 1200 C.
Presumably, during the dehydration treatment thionyl chloride reacts with sodium ion and residual water to form sodium sulfate which causes liquid-liquid separation during melting.

- The presence of a large proportion of sulfur and sodium in the top fluid layer substantiate the explanation suggested. The use of thionyl chloride may not, therefore, be advisable in this system.
- The use of carbon-tetrachloride during dehydration treatment did not cause liquid-liquid separation during melting and was, at the same time, effective in reducing the hydroxyl groups in the glass.
- Melting of dehydrated gels in dry nitrogen atmosphere was found to be very effective in reducing the hydroxyl groups.

CONCLUSIONS

The following conclusions can be drawn from the results of the present work:

- All three compositions in the soda-borosilicate system can be prepared by three different procedures using three different sources of Na₂O.
- Gels produced by Procedure I and Procedure III are noncrystalline, and remain so after thermal treatment at 600°C for 40 hours, whereas gels prepared by Procedure II using NaNO₃ are crystalline due to the presence of residual sodium nitrate.
- The removal of organic groups during the thermal treatment below 500°C is related to gel preparation procedures, ambient atmosphere such as humidity and oxygen potential, and the rate of heating. The carbon content of the fired gel can vary from 0.1 percent to 0.6 percent by weight depending on the preparation procedure.
The rate of removal of carbon from the glass during the melting depends on the gel preparation procedures and thermal treatment before melting. The removal of carbon from the gel prepared by Procedure II is most rapid, whereas the removal is most sluggish with the gel prepared by Procedure III.

The rates of removal of carbon and the bubbles were also a function of temperature and time of melting in an air atmosphere.

Molecular structures of the glasses melted at lower temperatures (<1000 °C) are not identical; however, the melting at higher temperatures 1100-1200 °C appears to give an equilibrium melt from the different gels.

Gel preparation procedures can be improved to get higher homogeneity.

Microstructures of glasses obtained from gels prepared by different procedures are different.

The water content of glasses obtained from the two different gels differs significantly.

The dehydration treatment reduces the hydroxyl content of the glass.

The removal of hydroxyl groups from gel powders by the treatment with thionyl chloride vapor causes phase separation in the glass during melting. The reason for this phase separation is most likely due to the formation of sodium sulfate during the thionyl chloride treatment. Hence, the thionyl chloride treatment procedure should be critically analyzed before further continuation.

The vertical column for dehydration is more effective than the horizontal set-up used previously for the dehydration treatment.
Bubbling dry nitrogen (dewpoint approximately -59 C) through the melt greatly reduces the hydroxyl content of the glass.

Procedure II gel powders can be used to produce glass samples for Rayleigh scattering by employing less thermal treatments and lower melting temperatures and times.

Glass samples for Rayleigh Scattering can be prepared by melting in a fused silica crucible at 1000 C for 1 hour if appropriate procedures are followed.

Results of Rayleigh Scattering studies indicate that the homogeneity of glasses prepared by the gel technique is much better than that of glasses made by the conventional technique.
REFERENCES

APPENDIX

Experimental Details of Gel Preparation Procedures
Gel Preparation Procedures for Composition 1:
SiO₂:60, B₂O₃:15, Na₂O:25 (weight percent)

Gel Preparation Procedure 1-I

The sequence of steps used for the preparation of the gel was as follows:

1. Tetraethyl orthosilicate was mixed with half its volume of anhydrous ethanol and stirred for about five minutes.
2. The solution was heated to 40°C and hydrolyzed with 0.23 mol water per mol Si(OC₂H₅)₄ acidified with 0.0004 mol HCl per mol Si(OC₂H₅)₄. A small amount of acetylacetone (3 ml/100 ml Si(OC₂H₅)₄) was added after the addition of acidified water. The solution was stirred at 40°C for a half hour after the addition of water. The pH of the solution was 5.
3. Boric acid dissolved in boiling anhydrous methanol (30 g/100 ml) was added to the above solution at 40°C and stirred for ~1 hour. The pH of the solution was 6 at this stage.
4. A solution of sodium methyate (prepared by mixing commercially available 30 percent NaOCH₃ in methanol with half its volume of anhydrous methanol) was added to the above solution at 40°C and stirred for 45 minutes. The pH of the solution was about 10.
5. Finally, a mixture of water and ethanol (1:4 ratio) was added to the solution. The amount of water added was 5.8 mols per mol Si(OC₂H₅)₄. The solution gelled within five minutes on addition of the alcohol-water mixtures.

Gel Preparation Procedure 1-II

The sequence of steps used for the gel preparation was as follows:

1. Tetraethyl orthosilicate, Si(OC₂H₅)₄ was mixed with half its volume of anhydrous ethanol and stirred for about five minutes.
2. The solution was heated to approximately 40°C and hydrolyzed with 0.5 mol water per mol Si(OC₂H₅)₄ acidified with 0.0004 mol HCl per mol Si(OC₂H₅)₄. The solution was stirred for a half hour at about 40°C after the addition of water.

Battelle - Columbus
3. Boric acid dissolved in boiling anhydrous methanol (30 g/100 ml) was added to the solution at 40 °C and stirred for about 1 hour. The pH of the solution was about 5.

4. Finally, an aqueous solution of sodium nitrate (18 g/100 ml) was added to the mixture. The proportion of water was 20 mols per mol Si(OC₂H₅)₄. The solution was then evaporated till gelation took place.

Gel Preparation Procedure 1-III

The sequence of steps used for the gel preparation was as follows:

1. Tetraethyl orthosilicate was mixed with half its volume of anhydrous ethanol and stirred for about five minutes.
2. The solution was heated to 40 °C and hydrolyzed with 11 (eleven) mols of water per mol Si(OC₂H₅)₄ in the presence of dilute nitric acid. The pH of the solution was about 2 during hydrolysis. The solution was stirred for half hour at 40 °C after the addition of water.
3. Trimethyl corate was added to the mixture at 40 °C and stirred for 45 minutes.
4. Finally, one molar aqueous solution of sodium acetate was added to the above solution and stirred for 45 minutes. The pH of the solution was 6. Gelation took place after 30 minutes.

Gel Preparation Procedures for Composition 2;

SiO₂:55, B₂O₃:25, Na₂O:20 (weight percent)

Gel Preparation Procedure 2-I

The sequence of steps used for the preparation of the gel was as follows:

1. Tetraethyl orthosilicate was mixed with three times its volume of anhydrous ethanol and stirred for about five minutes.
2. The solution was heated to 40 °C. A small amount of HCl [0.0002 mol/mol Si(OC₂H₅)₄] was added; followed by the addition acetylacetone [5 ml/100 ml Si(OC₂H₅)₄]. The solution was stirred for about 1 hour at
40°C for partial hydrolysis of Si(OC₂H₅)₄. The pH of the solution was
3.6. The solution was cooled to ambient temperature.
3. Boric acid dissolved in boiling anhydrous methanol (30 g/100 ml) was
added and stirring was continued for about 2 hours. The pH of the
solution was 3.6.
4. A solution of sodium methylate (prepared by mixing commercially
available 30 percent NaOCH₃ in methanol with an equal volume of
anhydrous methanol) was added and stirred for 45 minutes. The pH of the
solution was about 10.
5. Finally, a requisite amount of anhydrous ethanol was added to obtain
a concentration of approximately 40 g silica per liter of the solution.
After addition of anhydrous ethanol the solution was stirred for a
further period of 30 minutes. The solution gelled in 3 hours.

Gel Preparation Procedure 2-II

The sequence of steps used for the preparation of the gel was as follows:

1. Tetraethyl orthosilicate was mixed with three times its volume of
anhydrous ethanol and stirred for about 5 minutes.
2. The solution was heated to 40°C. Approximately 0.5 mol water per
mol Si(OC₂H₅)₄ acidified with 0.0004 mol HCl per mol Si(OC₂H₅)₄ was added.
The solution was stirred for about one hour at 40°C for partial hydrolysis
of Si(OC₂H₅)₄. The pH of the solution was 2.8.
3. Boric acid dissolved in boiling anhydrous methanol (approximately
30 g/100 ml) was added to the partially hydrolyzed tetraethyl orthosilic-
cate and stirring continued for 1 hour at 40°C. The pH of the solution
was 2.4.
4. Finally, a dilute aqueous solution of sodium nitrate (approximately
17 g/100 ml) was added to the mixture and stirring was continued for
3 hours. The pH was 3.2. The solution was left at ~ 40°C for about
3 days to form the gel.
Gel Preparation Procedure 2-III

The sequence of steps used for the preparation of the gel was as follows:

1. Tetraethyl orthosilicate was mixed with three times its volume of anhydrous ethanol and was stirred for about 5 minutes. The solution was heated to 40°C and partially hydrolyzed with one mol of water per mol Si(OC₂H₅)₄ acidified with 0.02 mol HCl per mol Si(OC₂H₅)₄. The solution was stirred for 1 hour at 40°C. The pH of the solution was 0.2.
2. The solution was cooled to room temperature and the requisite amount of trimethyl borate was added. The mixture was stirred for 3 hours at room temperature. The pH of the solution was 0.4.
3. Finally, a buffer solution of 0.5M Sodium Acetate (prepared by dissolving Crystalline Sodium Acetate in water to which acetic anhydride was added) was added and the solution stirred for 2 to 3 minutes. The pH was 5.5. The solution gelled in about 1 hour.

Gel Preparation Procedures for Composition 3

SiO₂:55, B₂O₃:25, Na₂O:20 (weight percent)

Gel Preparation Procedure 3-1

The sequence of steps used for the preparation of the gel was as follows:

1. Tetraethyl Orthosilicate Si(OC₂H₅)₄ was mixed with half its volume of anhydrous ethanol and stirred for about 5 minutes.
2. The solution was heated to 40°C and hydrolyzed with 0.2 mol of water per mol Si(OC₂H₅)₄ acidified with 0.0004 mol HCl per mol Si(OC₂H₅)₄. The solution was stirred at 40°C for a period of 45 minutes. A small volume of acetylacetone [2 ml/100 ml Si(OC₂H₅)₄] was added after the addition of acidified water.
3. Boric acid dissolved in boiling anhydrous methanol (30 g H₃BO₃/100 ml MeHavol) was added to the partially hydrolyzed Si(OC₂H₅)₄ solution at 40°C and stirred for 20 minutes. The pH of the solution was 4.5. The solution was cooled to ambient temperature.
3. A solution of sodium methylate (prepared by mixing commercially available 30 percent sodium methylate in methanol with an equal volume of anhydrous methanol) was added to the above solution and stirred. The pH of the solution was 6.

4. Finally, 3.3 mols H₂O/mol Si(OC₂H₅)₄ was added in the form of alcoholic solution. The solution was prepared by mixing water and alcohol in equal volumes. The molar ratio of water to Si(OC₂H₅)₄ at the end was 3.5. The gelation occurred rapidly.

Gel Preparation Procedure 3-II

The sequence of steps used for the preparation of the gel was as follows:

1. Tetraethyl Orthosilicate, Si(OC₂H₅)₄ was mixed with half its volume of anhydrous ethanol and stirred for about 5 minutes.

2. The solution was heated to 40°C and hydrolyzed with 0.4 mol water per mol Si(OC₂H₅)₄ acidified with 0.0002 mol HCl per mol Si(OC₂H₅)₄. The solution was stirred at 40°C for half hour. The pH of the solution was about 4.

3. Boric acid dissolved in boiling anhydrous methanol (22 g H₃BO₃/100 ml methanol) was added to the partially hydrolyzed Si(OC₂H₅)₄ solution at 40°C and stirred for a half hour. The pH of the solution was 4.

4. 13.5 percent aqueous solution of NaNO₃ was added to the above solution and stirred. The molar ratio of water to Si(OC₂H₅)₄ was 5.2 at this stage. The solution was heated to 75°C with continuous stirring. Gelation took place in 2-1/2 hours.
The scientific and technological significance and importance of the sol-gel processes are evaluated. Two methods for preparing gels in the silicate systems are described. The first method is based on gelation of colloidal silica sol; the second method, on the polymerization of alkoxysilane with meric alkoxides or meric salts to produce multicomponent noncrystalline inorganic gels with network structures. The physical-chemical principles of gelation processes are discussed in terms of various process parameters. The conversion of gel to glass is described. The structures, microstructures, phase separation and crystallization behavior of gels and gel-derived glasses are discussed in relation to the methods of gel preparation. The advantages associated with the processes are examined and evaluated. Various applications in glass technology are suggested.

INTRODUCTION

In recent years, sol-gel processes for glass making have gained scientific and technological importance. There are two methods for preparing gels in silicate glass systems. One is based on the gelation of silica hydrogel (1-3), the other is based on the polymerization reaction of alkoxysilanes (2,3,4-10).

Earlier research involved gels as starting materials for the silicate phase equilibrium (11-14) and the deposition of thin noncrystalline oxide coatings (15-18). In recent years, two aspects of the sol-gel process have stimulated research on the preparation of glasses via the gel route. First is the formation of noncrystalline transparent "glass-like" materials in the multicomponent systems below the glass transition temperature (5-10). Second is the preparation of highly homogeneous glasses using gels as starting materials (2,3,8). Moreover, the phase separation, nucleation and crystallization characteristics of the glasses made from gels are markedly different from those of glass made from a mixture of oxides (1,11,12).

These aspects have scientific and technological significance and importance. The formation of transparent noncrystalline materials by chemical polymerization at temperature below the glass transition temperature raises the question whether these materials should be termed "glass" or not, because the ASTM definition of glass as an "inorganic product of fusion" excludes these types of noncrystalline materials. However, the molecular structure and the microstructure of these "glass-like" materials prepared by this route in multicomponent systems appear to be different from the glass prepared from the oxide melts (19). Because the structures of the gel-derived materials depend on the thermodynamics and kinetics of the polymerization reactions that take place in the sol and gel states at low
temperatures, whereas the structures of the glass prepared from the melt depend on the thermodynamics and kinetics of the reactions of oxide mixtures in solution and supercooled state.

The prime technological importance of the sol-gel process is that it opens up a possibility of preparing heterogenous high temperature "glasses" and "glass-ceramics" at low temperatures that are hard to prepare by melting of oxide mixtures. These glasses are hard to prepare by melting oxides because of the high melting temperatures and a strong tendency to crystallize when cooling through the temperature having optimal crystallization rate. The sol-gel process is particularly suitable for depositing deposition and fiber fabrication. Hence, the deposition of high-temperature oxide coatings on substrates at low temperatures, and the fabrication of high-temperature glass and glass-ceramic fibers are of potential technological interest.

In this work, the following aspects of the sol-gel processes are critically reviewed and discussed: Preparation of Gels, Conversion of Gel to Glass, Microstructure and Structure of Gels and Gel-Derived Glasses, Advantages, and Applications.

PREPARATION OF GELS

Gelation of Silica Hydrosol

Method I is based on the principles of colloid science. The essential feature is to disperse the metal compounds into their elementary units in an aqueous solvent. This dispersed phase, called "sol", is then converted into a rigid "gel" by destabilization process. During gelation, the overall medium becomes viscous and is then solidified to a coherent network of particles (14). This is distinctly different from precipitation. Figure 1 indicates the process for preparing glass in the silicate system by this method.

FIGURE 1. SOL-GEL PROCESS FOR GLASS MAKING--FIRST METHOD

The gelation process of silica, which is the main constituent of silicate gel systems, can be represented as follows:
The gelling process consists of three stages: polymerization of monomer (silicic acid) to form particles, growth of particles and linking of particles together into branched chains, then networks finally extending throughout the liquid medium, thickening it to gel. However, the conditions leading to the formation and growth of the particles are different from those leading to aggregation or gelation. The factors influencing the gelling process are: pH of the medium and the presence of a catalyst, electrolytes and coagulants, particle size and concentration, temperature.

The role of pH is extremely important in the rate of gelling of silica sol. In certain pH regions, the sol is fairly stable. The gelling rate of pure silica sol is maximum around pH 5. However, the addition of metal salts, which reduces the overall net repulsion effect, enhances the gelling and coagulation. The metal ions in the +3 and +4 oxidation states and of nuclear and rare earth compounds may behave differently as they tend to form a condensed form of small polymeric cations in aqueous solutions. For example, a cyclic tetramer of zirconium (Zr₄(OH)₈(H₂O)₁₂)₉ (1a) which forms initially in a concentrated sol condenses further to form larger (*100k) polymeric ions. These types of polynuclear species might react under proper experimental conditions, with the colloidal silica to form complex metal silicate species. Hence, the critical step in Method I is to prepare a stable, homogeneous, multicomponent sol, which could destabilize to a homogeneous rigid gel. Ronijmendijk, et al., have reported the preparation of homogeneous glasses in alkali-borosilicate systems prepared via this gel route. Mukherjee, Zarzycki, and Traverse prepared homogenous glass in rare earth silicate systems via this gel route. Also, Shoup has reported the fabrication of monolithic porous silica gel articles, and has subsequently consolidated them to transparent silica bodies at 1400 to 1720°C.

Polymerization of Alkoxysilanes and Metal Alkides

Method II is based on the polymerization (hydrolytic condensation) of alkoxysilanes with other metal alkoxides or with suitable metal salts to produce multicomponent noncrystalline transparent "glass-like" gels with a network like Si-O-M-O-Si- where M is a metal atom, such as Al, Ti, or B. A partial hydrolysis of alkoxy stabilizes the active functional groups which react with other reactants to form a polymeric solution which further polymerizes with time and increased temperature to form a rigid gel.

The gel point is defined as the stage in the course of polymerization when the concentrate transforms suddenly from a viscous liquid to an elastic gel. At the gel point, the generation of the infinite network commences abruptly and gel polymerization increases rapidly with further condensation. As the degree of polymerization increases
beyond the gel point, the relative proportions of "sol" and "gel" have varied continuously, the larger metal ions in the sol being progressively incorporated into the gel.

Nukherjee (16) measured the change of viscosity with time of a solution prepared by reacting a mixture of Si(OCHCH3)4, Al(OCH3)3, LiOCH3, NaOCH3, and KOCH3. A sharp rise of viscosity was observed at the gel point and an abrupt gelation indicating the generation of the infinite network occurred. Presumably, the polymerization reactions of alkoxysilane and metal alkoxides under certain conditions might be based in the gelation process mentioned above.

A schematic diagram of the method is shown in Figure 2.

FIGURE 2. SOL-GEL PROCESS FOR GLASS MAKING—SECOND METHOD

An overall reaction of the formation of gel in a multicomponent system may be represented as follows (R is the alkyl group):

\[x \text{Si} (\text{OR}) _4 + y \text{B} (\text{OR})_3 + z \text{NaOR} \rightarrow \text{Si}_x \text{B}_y \text{Na}_z (\text{OR})_{4x+3y+z} \]

(Solution)

\[+ \text{H}_2 \text{O} \]

(Partial hydrolysis and Polycondensation)

\[\text{OH} \quad \text{Na}^+ \quad \text{OH} \quad \text{OR} \]

\[\text{Si} - \text{O} - \text{B} - \text{Si} \quad \text{O} - \text{Si} - \text{O} - \text{Si} \]

\[\text{OR} \quad \text{Na}^+ \quad \text{OH} \]

\(n \)

(Solution → gel)

\[-\text{H}_2 \text{O} \]

(Heating)

\[\text{Si} - \text{O} - \text{B} - \text{Si} - \text{O} - \text{Si} \]

\[\text{OR} \quad \text{Na}^+ \quad \text{OH} \]

\(n \)

The gelling process is controlled by the following main factors: chemical nature of alkoxides and other reactants, ratio of water to alkoxides, pH of the medium, and the presence of a catalyst, temperature, concentration of the reactants, and nature of solvents. The micromeric pore diameter and pore volume as well as the structures of gel powders and gel monoliths are strongly influenced by the
gel preparation procedure.

The role of pH and the ratio of water to alkoxides are extremely important in controlling the hydrolysis and polycondensation rates. The physicochemical nature of the gel is controlled by that of the intermediates which form during the hydrolytic polycondensation reactions of alkoxysilanes and metal alkoxides. Moreover, a knowledge of the catalytic or inhibitive actions of acid or bases and other compounds is required for better control of the process. The role of pH and the ratio of water to alkoxides have been investigated by Yoldas(19), Yamane(10), and Saka and Kanai(20); primarily in single component systems, such as aluminum alkoxides, Si(OC₂H₅)₄, and Si(OC₂H₅)₃. The results show that the morphology, the composition of the gel, and the densification rate are strongly influenced by the pH and the ratio of water to alkoxide.

Differences in properties of gels prepared by different procedures may be attributed to the kinetics of the polymerization reactions that take place under different experimental conditions. For the alkoxysilanes, the mechanism and the rates of hydrolysis and polycondensation are different in different pH regions. In acid solutions, the rate of hydrolysis is proportional to the concentration of acid, alkoxysilane, and water. In basic solutions, the rate is proportional to the concentration of base and alkoxysilane. In strongly acid solutions, the hydrolysis reaction is rapid, the gelation tendency is low; whereas in alkaline medium, the condensation of SiOH groups take place more rapidly. The hydrolysis rate decreases sharply with increasing molecular size of the alkyl groups(15,16).

It may be anticipated that for preparing gel monoliths, a rapid hydrolysis and polycondensation is undesirable because they will lead to rapid growth of polymer, and will trap Si-OH or Si-OR groups within the interior of large, three-dimensional molecules where they would not further condense because of steric hindrance.

The picture becomes more complex in a multicomponent system because the hydrolysis rate of metal alkoxides M(OR)₃, where M is Al, Ti, Zr, etc., is much higher than that for alkoxysilanes. In a multicomponent system, the water addition sequence should also be considered in terms of the sensitivity of the different alkoxides to hydrolysis.

Some preparation procedures involving large excess of water should be considered in terms of a two-solvent colloid system where almost completely hydrolyzed polymeric species having reduced chemical reactivity are produced. Moreover, in the presence of excess water, some M-O bonds and M-O-Si-bonds that are highly susceptible to hydrolysis and ionic reactions may undergo hydrolysis and reaction, and inhomogeneity might develop due to the segregation of phases in two-solvents.

CONVERSION OF GEL TO GLASS

Gel can be converted to glass in several ways: (a) conversion of gel particulate or cast monolith to "glass" at temperatures below Tg, (b) conversion of gel particulates to glass or glass-ceramics by sintering (with or without pressure) at temperatures above Tg, but well below melting temperatures, (c) conversion of gel particulates to glass by fusion.

The first conversion route is based on the chemical polymerization process at low temperatures. An initial major shrinkage of the cast sol/solution occurs at temperatures below 100°C due to polycondensation and subsequent contraction of the gel network. Two pieces of glass-like gel-converted prepared by the present author(21), in alkali borosilicate systems, are shown in Figure 3. The difference in transparency is due to the difference in the gel preparation procedures.
The conversion of gel monoliths to silica glass below Tg has been investigated by several workers. Sakka and Kamigaki\(^1\) reported that the gel to glass transition starts above 600°C and the complete densification takes place at 1000°C. Yaman, et al\(^1\) studied the densification of silica gels prepared by two procedures. The densification rate and the organics removal were not the same in both cases. The final densification took place at 1070°C. Recently, Brinker and Mukherjee\(^2\) produced gels in a multicomponent system (K2O, B2O3, Al2O3, Na2O, BaO) by two different procedures and investigated the gel-to-glass conversion. The densification rate, and the removal of organic groups were dependent on the gel preparation procedures.

Hence, the densification rate, and the final densification temperatures are significantly influenced by the morphology, composition, and chemical reactivity of the gel. These properties are controlled by the preparation procedures.

The synthesis of glasses and glass-ceramics by hot pressing gels has been reported by Dislich\(^3\), McCarthy, et al\(^4\), and by Decottignies, et al\(^5\) who also reported that the sintering process during hot pressing follows the densification model based on viscous flow. The structure of the gel evolves progressively toward that of glass with loss of water and porosity.

Gel particulates, after the removal of organics and water, can be fused to glass either by conventional melting or by using concentrated heat. Concentrated heat is detrimental to making homogeneous glass from conventional glass batch because of the difficulty of attaining homogeneity, whereas a homogeneous glass can be obtained by melting multicomponent gels by concentrated heat. Mukherjee, Zarzycki, and Traverse\(^6\) demonstrated this concept by melting gels in a solar furnace.
Mukherjee, Zarzycki, and Traverse (3) reported that the microstructure of phase separated glass prepared from oxide mixtures differs from that of gel-derived glass in terms of uniformity and distribution of particle sizes. They observed that the rates of nucleation and crystallization of glasses made from the gels were much higher than those made from the mixture of oxides and concluded that the uniform cation distribution, gel structure, and the residual hydroxyl groups contribute to these properties.

Weinberg and Neilson (13) observed that the miscibility temperature of a glass composition in the sodium silicate system is elevated when the glass is prepared via the gel route. They attributed the origin of this effect to the enhanced water content in the gel-derived glass. Work of Mukherjee and Zarzycki (8) indicates that the microstructure as well as the thermal history of the gel also contribute to the structure and microstructure of the glasses. They observed that the gel prepared from the gelation of silica sol (Method I) crystallized faster than that prepared by the polymerization of alkoxysilane (Method II). The gel made by the polymerization of alkoxysilane is a glass-like noncrystalline solid with a much higher resistance to crystallization. When thermally aged (>500°C), a noncrystalline submicron size La2O3-rich phase (20 Å size) dispersed in the silica network is developed. Philippou, Zarzycki and Lalanne (27) determined apparent activation energy of crystallization of pure silica gel prepared by two methods. The apparent energy of activation for crystallization of gel prepared by Method II is much higher than that of gel prepared by Method I.

Recently, the author (28) has studied the preparation of gels in alkaliborosilicate systems by different procedures based on the polymerization of alkoxysilane (Method II). The infrared spectra of the gels, prepared by two different procedures are shown in figure 4. The first procedure consists of the following steps: (i) mixing tetraethyl orthosilicate with amhydrous ethanol, (ii) adding boric acid dissolved in methanol, (iii) adding sodium methylate, (iv) initiating gelation by adding less than the theoretical water required for the complete hydrolysis. The second procedure consists of the following steps: (i) mixing tetraethyl orthosilicate with amhydrous ethanol, (id) deliberate initial partial hydrolysis of ethyl silicate in the presence of an acid catalyst, (iii) adding trimethyl borate, (iv) further partial hydrolysis of alkoxides, (v) adding an aqueous solution of sodium acetate.

It is evident from the figure that the position and the features of the absorption band (resulting from Si-O bond stretching) are not the same in both the gels. The peak position of the gel prepared by the first procedure is at 1000 cm⁻¹ whereas the peak position obtained with gel prepared by the second procedure is at 1060 cm⁻¹. The peak position did not shift by any thermal treatment steps (up to 500°C). The humidity treatment which had an effect on both the hydrolysis and the removal of chemically bonded alkoxyl groups did not shift the peak position.

In vitreous silica, the absorption band resulting from Si-O bond stretching is at 1100 cm⁻¹. The Si-O stretching vibration of polysiloxanes containing Si-O linkage gives rise to the absorption band in the region of 1010 cm⁻¹ to 1090 cm⁻¹. The position of the peak depends on the nature of the polymers. There are some differences between cyclic and open-chain compounds. For the cyclic compounds, the position of absorption peak shifts with increased ring size. In trimer compounds, the band appears at 1018 cm⁻¹ while in the higher ring, it falls in the range of 1076 to 1056 cm⁻¹ (29). Most likely, the differences in the peak positions are due to the structural differences in the polymer, the nature of which is controlled by the gel preparation procedure.
It is extremely difficult to introduce Ti ions into the silicate network as Si-O-Ti (fourfold coordination). Ti ions separate in the form of droplets of TiO₂ (sixfold coordination) which crystallizes and increases the thermal expansion coefficient. The low or zero thermal expansion coefficient of the glasses in the SiO₂-TiO₂ system is attributed to the fourfold coordination of Ti⁺⁴ ions (30).

Mukherjee (31) prepared gels in the TiO₂-SiO₂ system of different compositions (up to 50 wt% TiO₂) by two different procedures, based on the polymerization of tetra-alkoxy silane with titanium n-butoxide. In the first procedure, the polymerization was affected by exposing the solution to atmospheric moisture without deliberate addition of water. In the second procedure, the gelation was done rapidly by adding ammoniacal water. The physical nature and microstructure of the gels were markedly different. In the first procedure, transparent glass-like gel was obtained, whereas in the second procedure a white powdery gel was obtained. The microstructure of the gels is shown in Figure 5. The gels after drying at 100°C were examined by X-ray diffraction. No crystallinity was observed with any composition (up to 50 wt% TiO₂).

The infrared spectra of gels prepared by two procedures are shown in Figure 6. The presence of absorption band at 960 cm⁻¹ indicates that Ti ions are in the fourfold coordination state (32). Note that the half width of the absorption band of the gel prepared by the second procedure is much smaller than that of the gel prepared by the first procedure. This may be due to the change in the molecular structure.
TIGLRE
4.
ELECTROS
HICROCW=XZ
iT
GELS
IS
THE
TiO\textsubscript{2}-SiO\textsubscript{2} SYSTEM:

(a) PROCEDURE 1, TiO\textsubscript{2}, 10\%
(b) PROCEDURE 2, TiO\textsubscript{2}, 10\%

FIGURE 5. ELECTRON MICROGRAPHS OF GELS IN THE TiO\textsubscript{2}-SiO\textsubscript{2} SYSTEM:
(a) PROCEDURE 1, TiO\textsubscript{2}, 10\%
(b) PROCEDURE 2, TiO\textsubscript{2}, 10\%

FIGURE 6. INFRARED SPECTRA OF GELS IN THE TiO\textsubscript{2}-SiO\textsubscript{2} SYSTEM:
(1a) — PROCEDURE 1
(1b) — PROCEDURE 2, TiO\textsubscript{2}, 10\%
(2) — PROCEDURE 1, TiO\textsubscript{2}, 25\%
Hence, it is evident that the sol-gel process leads to the preparation of glasses which are hard to prepare because it is extremely difficult to introduce certain cations into the silicate network as glass formers by the melting process.

ADVANTAGES

Several advantages are associated with the preparation of glasses via the gel route. They may be summarized as follows: (a) particulate as well as nonelicitc glass-like transparent materials can be formed without melting; (b) distributions of cations are in a molecular scale, unique and uniform microstructures can be obtained in the liquid-liquid miscibility zone; (c) incorporation of certain cations in a particular coordination state can be achieved; (d) suitable for making ultrapure glasses because many oxides are liquids which can be purified by distillation; (e) highly flexible for depositing "glass" coatings at low temperatures; (f) both the macroscopic homogeneity and submicroscopic homogeneity of glass prepared by the sol-gel process are considerably better; and (g) homogeneous glass can be obtained at lower melting temperatures and in shorter melting times.

APPLICATIONS

Present commercial applications of the sol-gel process, except the coatings on glass, are somewhat rare. However, various applications that are of potential importance are as follows: (a) nonelicitc glass blocks without melting, (b) coatings: optical, protective, dielectric, antireflective, at low-temperatures, (c) high-temperature and high-strength glass and glass-ceramic fibers, (d) starting materials for making highly homogeneous ultrapure glasses (e.g., optical glass, laser glass, glass for optical communications), (e) high-temperature glasses containing components that volatize at high temperatures, (f) high-temperature glass frits at low temperatures, (g) homogeneous, ultrapure, multi-component batch for glass processing in space, (h) hollow shells for fusion targets, (i) insulating glass or glass-ceramics foams/fibers, (j) bonding agents for refractory materials, and (k) low expansion glass.

ACKNOWLEDGEMENTS

The work (28) on the gel preparation in alkali borosilicate system was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration. The work (18) on the preparation of gel in the system SIO2, BaO3, Al2O3, Na2O, BaO was performed for Sandia Laboratories, sponsored by the U.S. Department of Energy.

REFERENCES

(2) W. L. Konijnendijk, M. van Duuren and H. Groenendijk, Verres Refract., 27, (1973) 11.
S.P. Mukherjee: Sol-Gel Processes

10. R. D. Shoup, Presented at the Conf. on “Glass Through Chemical Processing” held at Rutgers University; March 19-21, 1980.
17. C. J. Brinker and S. P. Mukherjee, Presented at the Conf. on “Glass Through Chemical Processing” held at Rutgers University, March 19-21, 1980.
Cincinnati, April 29 to May 2 (1979).

Eng. Transl. 847.
GELS AND GEL-DERIVED GLASSES IN THE Na₂O-B₂O₃-SiO₂ SYSTEM

SHYAMA P. MUKHERJEE
 Battelle's Columbus Laboratories, 505 King Avenue, Columbus, Ohio 43201

ABSTRACT

The containerless melting of high-purity multicomponent homogeneouse gels and gel-monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the Na₂O-B₂O₃-SiO₂ system are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures were found to be significantly different. Infrared absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel-monoliths to transparent "glass" without melting are described.

INTRODUCTION

The possibility of containerless melting of glass in the reduced gravity environment of space will open a unique approach to preparing ultrapure glass or melts free from contamination from containers. Consequently, the optical and electrical properties of the melt which are strongly influenced by trace impurities can be of superior quality. However, because of the absence of gravity-induced convection currents, homogenizing glass during melting of conventional raw materials will be difficult in the space environment. Homogeneous, glass-like, gels and gel-monoliths prepared by the polymerization reaction of alkoxysilane with other metal alkoxides and/or with suitable metal salts[1-7] can be used as the batch materials for the containerless melting of glasses in the reduced gravity environment in space. This approach could lead to a process for the preparation of ultrapure optical glasses.

In the present work, three procedures for the preparation of gels in the multicomponent Na₂O-B₂O₃-SiO₂ system are investigated. The physicochemical nature of gels and gel-derived glasses has been characterized. Attempts are made to understand the physicochemical properties of the gels in relation to the chemistry of the gelling process. The transformation of different gels and gel-monoliths to glasses by melting and by densifying monolithic gels are investigated.

EXPERIMENTAL WORK AND RESULTS

Compositions

The starting batch compositions of the glasses investigated are given in Table I. The glass transition temperatures of the same compositions prepared by the melting conventional batches are 520°C and 600°C for Composition 1 and
Composition 2, respectively. Composition 1 having high Na_2O content lies away from the metastable liquid-liquid immiscibility zone. Composition 2 lies inside the metastable liquid-liquid immiscibility zone and was chosen for investigating the liquid-liquid phase-separation behavior of gel-derived glasses which is discussed elsewhere.

Table 1

<table>
<thead>
<tr>
<th>Composition</th>
<th>Weight percent</th>
<th>Mol percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LiO_2</td>
<td>B_2O_3</td>
</tr>
<tr>
<td>1</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>84</td>
<td>12</td>
</tr>
</tbody>
</table>

Gel preparation procedures

The following starting chemicals were used as sources of different oxides: tetraethoxyxilane (liqu.), methanolic solution of boric acid, trimethyl borate (liquid), methanolic solution of sodium methoxide, aqueous solution of sodium nitrate, and aqueous solution of sodium acetate. Three procedures using three sources of Na_2O were developed and investigated. Gels of Composition 1 in particulate forms were prepared by all three procedures. Gels of Composition 2 were prepared by Procedure I and III in particulate and in monolithic forms.

Procedure I. The starting compounds were tetraethoxyxilane, boric acid, and sodium methoxide. Gels were synthesized in nonaqueous solvents. The general procedure consisted of the following steps:

(i) Mixing tetraethoxyxilane with three times its volume of anhydrous ethanol at 40 °C

(ii) Partial hydrolysis of tetraethoxyxilane (a) by exposing the solution containing acid catalyst (HCl) to the ambient atmosphere and stirring at 40 °C for about 1 hour or (b) by adding a small proportion of water acidified with HCl and stirring, for 10 to 15 minutes at 40 °C. The proportion of water that could be added was in the range 0.1 to 0.3 mol per mol of Si(OC_2H_5)_4. The concentration of HCl was in the range 0.02 to 0.0004 mol per mol of Si(OC_2H_5)_4.

(iii) Adding Na_2O dissolved in hot anhydrous methanol (30 g/100 ml) and stirring at 40 °C for 2 hours resulted in a solution pH 4 to 6.

(iv) Adding methanolic solution of sodium methoxide, a transparent solution is produced if the proportion of acidified water added during partial hydrolysis was sufficiently low. The final solution was in the pH range 9 to 10. The solution was stirred for 2 to 3 hours at room temperature.

(v) The final solution was diluted with anhydrous ethanol to a concentration about 40 g metal oxide per liter and was left exposed to the ambient atmosphere for gelation.

The gelling time of the solution decreased (a) with increased Na_2O concentration, (b) with increased metal oxide concentration, (c) with increased proportion of water and acid added during the partial hydrolysis, (d) with increased humidity of the ambient atmosphere during the final gelation stages.

The gelling time of the solution (40 g/liter) of Composition 1 was in the range 1 to 3 hours, whereas the gelling time of the solution of same concentration of Composition 2 was about 16 hours.
The gel-polyacrylamide of Composition 3 was prepared by putting 6% (v/v) continuous stirring of Composition 1 to 10% gel-polyacrylamide solution at room temperature. After the gel-polyacrylamide was poured into a gel-polyacrylamide solution, the gels were allowed to polymerize at room temperature. When the gel-polyacrylamide was polymerized, the gel-polyacrylamide was then vacuumed in a vacuum chamber at room temperature. The gel-polyacrylamide was then cut into the desired size and shape. The gel-polyacrylamide was then allowed to equilibrate in a buffered solution at room temperature. The gel-polyacrylamide was then allowed to equilibrate in a buffered solution at room temperature. The gel-polyacrylamide was then allowed to equilibrate in a buffered solution at room temperature.
Thermal treatment and characterization of gels

Thermal treatment procedures for the removal of organics and volatiles consisted of heating in steps at a low rate (1 C/hour) up to 500 C. The first soaking temperature after initial drying at 60 C for about 2 days was 150 C to remove adsorbed water and solvents. The second soaking temperature was 350 C where combustion of the organic groups occurs. An endothermic peak at around 150 C and an exothermic peak at around 250 C obtained with the DTA curves indicate these phenomena. The organics removal rate can be increased by taking further steps such as the thermal treatment of gels in a humidity chamber at around 70 C, or an oxygen atmosphere during the thermal treatment.

The removal rate is related to the gel preparation procedure as well as the gel composition. The results suggest that different organic removal rates from gels prepared from the same composition but by different procedures could be related to (1) the chemical nature of the residual organics (2) the nature and size of pores in the gels, and (3) the rate of pore closure at temperatures below 500 C.

The surface areas of the gel particles and gel-monoliths were measured by argon adsorption using a Micrometrics instrument (Model 2205). The surface areas of Composition 1 gel particles were measured through a range of temperatures holding in the instrument at each for 1/2 hour before the measurement. The surface areas of gel-monoliths of Composition 2 were measured after thermal treatment at different temperatures in a furnace in air. The results are shown in Table II. It is evident from the results that the surface areas are strongly influenced by the preparation procedures and by the thermal treatment.

**TABLE II
Surface areas of gels and gel-monoliths**

<table>
<thead>
<tr>
<th>Gel preparation procedure</th>
<th>Composition</th>
<th>Thermal treatment</th>
<th>Surface area (m²/gm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Holding time (hr)</td>
<td>Holding temp. (C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gel particulates</td>
<td>1</td>
<td>1/2</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1/2</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1/2</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1/2</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1/2</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1/2</td>
<td>500</td>
</tr>
<tr>
<td>Gel-monoliths</td>
<td>1</td>
<td>96</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>1/4</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>2</td>
<td>500</td>
</tr>
</tbody>
</table>

X-ray diffraction powder patterns of gels of Composition 1 were taken after thermal treatment at different temperatures up to 600 C. The results
the gels prepared by Procedure I and Procedure III were noncrystalline and that no crystallinity developed on thermal treatment at temperatures up to 600 C. The maximum thermal treatment at 600 C was 40 hours. The gels prepared by Procedure II were crystalline due to the presence of NaNO3. However, the crystallinity decreased with increased thermal treatment time at 500 to 600 C.

Gel-monoiliths of Composition I prepared by Procedure I and Procedure III were noncrystalline after thermal treatments at temperatures 500 C. Maximum heat treatment at 500 C was 4 hours. Crystallinity developed after heat treatment at temperatures above 600 C during the gel-to-glass transformation stage.

Conversion of gels to glass
Melt of gels: The gels of Composition I after the thermal treatment at 500 C were melted at temperatures at and above 1000 C to obtain clear glass after eliminating residual carbons. Carbon retention in the gels depended on the gel preparation procedure and thermal treatment. Subsequent elimination of carbon from the glass was a function of time, temperature, and ambient atmosphere (i.e., oxygen potential) of melting. Time and temperature required for obtaining visually colorless and transparent glasses of Composition I are given in Table III. It is evident that residual carbon was eliminated most rapidly from Procedure II gels and most slowly from Procedure III gels.

<table>
<thead>
<tr>
<th>Gel preparation procedure</th>
<th>Melting temperatures (C)</th>
<th>Melting time (hr)</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1000</td>
<td>2</td>
<td>Transparent, grey</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>3</td>
<td>Transparent, colorless</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>2</td>
<td>Transparent, colorless</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1</td>
<td>Transparent, colorless</td>
</tr>
<tr>
<td>II</td>
<td>1000</td>
<td>1</td>
<td>Transparent, colorless</td>
</tr>
<tr>
<td>III</td>
<td>1000</td>
<td>1</td>
<td>Transparent, grey to</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>4</td>
<td>More transparent,</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>2</td>
<td>Transparent, nearly</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>4</td>
<td>Transparent, colorless</td>
</tr>
</tbody>
</table>

Denstification of gel-monoiliths: Porous gel-monoiliths of Composition I prepared by Procedure I were heat treated at different temperatures after the removal of organics at 500 C. The samples were examined and X-ray diffraction patterns were taken to detect the crystallinity developed. The results of the experiments are shown in Table IV. The physical appearance of a glass-like gel-monoilith obtained after densification at 700 C for 1/2 hour is shown in Figure 1 (page 10).
TABLE IV
Thermal treatments for the porous gel monoliths of composition 2

<table>
<thead>
<tr>
<th>Gel preparation procedure</th>
<th>Sample</th>
<th>Thermal history</th>
<th>Heat treatment</th>
<th>Physical appearance</th>
<th>Crystallinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (1)</td>
<td>15C</td>
<td>72</td>
<td>500 4</td>
<td>Transparent,</td>
<td>Noncrystalline porous</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>open porosity</td>
<td></td>
</tr>
<tr>
<td>I (2)</td>
<td>15C</td>
<td>72</td>
<td>600 1/4</td>
<td>Transparent,</td>
<td>Noncrystalline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>open porosity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35C</td>
<td>1-1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I (3)</td>
<td>15C</td>
<td>72</td>
<td>600 1/2</td>
<td>Transparent,</td>
<td>Noncrystalline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>open porosity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35C</td>
<td>1-1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I (4)</td>
<td>15C</td>
<td>72</td>
<td>650 1/4</td>
<td>Transparent,</td>
<td>Noncrystalline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and densified</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35C</td>
<td>1-1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I (5)</td>
<td>15C</td>
<td>72</td>
<td>650 1/2</td>
<td>Transparent,</td>
<td>Noncrystalline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and densified</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35C</td>
<td>1-1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I (6)</td>
<td>15C</td>
<td>72</td>
<td>700 1/2</td>
<td>Transparent,</td>
<td>Noncrystalline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and densified</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35C</td>
<td>1-1/4</td>
<td></td>
<td>(see Fig. 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I (7)</td>
<td>15C</td>
<td>72</td>
<td>750 1/2</td>
<td>Transparent,</td>
<td>Crystallinity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and densified</td>
<td>detected</td>
</tr>
<tr>
<td></td>
<td>35C</td>
<td>1-1/4</td>
<td></td>
<td></td>
<td>6-quartz</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I (8)</td>
<td>15C</td>
<td>72</td>
<td>750 2</td>
<td>Completely white</td>
<td>Crystalline,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and opaque</td>
<td>e-crystobalite</td>
</tr>
<tr>
<td></td>
<td>35C</td>
<td>1-1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I (9)</td>
<td>15C</td>
<td>72</td>
<td>800 1/4</td>
<td>Completely white</td>
<td>e-crystobalite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and opaque</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35C</td>
<td>1-1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I (10)</td>
<td>15C</td>
<td>72</td>
<td>850 1/4</td>
<td>Completely white</td>
<td>e-crystobalite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and opaque</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35C</td>
<td>1-1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III (11)</td>
<td>Slowly</td>
<td>heated to 500 C</td>
<td>500 4</td>
<td>Transparent,</td>
<td>Noncrystalline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>porous</td>
<td></td>
</tr>
<tr>
<td>III (12)</td>
<td>Slowly</td>
<td>heated to 500 C</td>
<td>700 1/2</td>
<td>Transparent</td>
<td>Crystallinity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>with slight</td>
<td>detected,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>opacity</td>
<td>6-quartz</td>
</tr>
</tbody>
</table>
DISCUSSION

The formation of the condensed polysilicates and subsequent gelation of tetrachlorosilane is the result of a complex sequence of hydrolysis and condensation reactions. The complexity increases in a system with components having different reactivity and solubility. Gelling is controlled by the process parameters such as chemical nature of alkoxydes and other reactants, molecular ratio of water to alkoxydes, the presence of catalysts and pH of the medium, temperature, concentration of reactants, and nature of solvents.\[6\]

In this multicomponent system having reactants of markedly different chemical nature, it is extremely difficult to change the process parameters independently of each other. Moreover, the addition of aqueous solution such as sodium nitrate and sodium acetate which are insoluble in alcohol should be considered in the context of the liquid-liquid immiscibility\[9\] existing in the Si\(\text{O}_2\)\(\text{H}_2\)\(_2\), \(\text{C}_2\text{H}_5\text{OH}\), and \(\text{H}_2\text{O}\) system. The possibility of segregating water-soluble phases under certain experimental conditions should be investigated. To homogeneously incorporate a high proportion of Na\(^+\) ions (which is not a network former) into a gel structure is complex and difficult.

In Procedure I, all reactants are soluble in alcohols and it is presumed that a homogeneous solution of the molecular species was obtained at the final stage. However, the sequence of reactions may be postulated as follows: In acid medium, the hydronium ion attacks the polar \(\text{Si}-\text{OC}_2\text{H}_5\) bond and forms \(\text{Si}-\text{OH}\) groups\[10\]. However, in this type of nucleophile displacement reactions the reactivity decreases as more groups on the silicon atom are displaced. The polysilicate is formed through condensation of silanol groups: Si(\(\text{O}_2\)\(\text{H}\)), or silanol and alkoxy groups (\(\text{RSi}-\text{OC}_2\text{H}_5\)). The further attack of \(\text{Si}_2\text{O}_3\text{Si}\) bond in the polysiloxane by \(\text{H}_2\text{O}\) might also be hindered by the steric effect of ethoxy groups. Thus, hydrolysis of ethylsilicate is controlled by the electronic and steric effects developed during hydrolysis. Hence under mild conditions of hydrolysis at room temperatures and with a small proportion of \(\text{H}_2\text{O}\), the formation of low-molecular-weight molecules takes place. Recent work of Ponce, et al\[11\] on the hydrolysis of alkoxysilanes suggests that the polymers at the initial stage of hydrolysis might have ring structure—perhaps a dimer with two connected rings each containing four silicon atoms. Boric acid itself or methyl borate \(\text{B} (\text{OCH}_3)_3\) which could form by the reaction of methanol with boric acid\[12\], can react with silanol or alkoxy groups and form \(\text{Si}-\text{O}-\text{B} = \text{ bonds in the following way:}\[9\]

\[
2 \text{Si-OH} + \text{H}_2\text{BO}_3 \rightarrow \text{Si-O-B-O-Si} + 2\text{H}_2\text{O} \quad (1)
\]

\[
\text{Si-OH} + \text{BO}_3\text{H} = \text{Si-O-B} = \text{OH} \quad (2)
\]

\[
\text{Si-OH} + \text{CH}_3\text{OH} \rightarrow \text{Si-O-CH}_3 \quad (3)
\]

An advantage of the addition of boric acid is that certain amount of water is liberated during the reaction of \(\text{H}_2\text{BO}_3\) either with silanol groups or with alcohols and this water produced in situ could effectively induce further hydrolysis without addition of free \(\text{H}_2\text{O}\). After subsequent addition of sodium methoxide solution, the \(pH\) of the solution increases above 9, and consequently the mechanism and kinetics of hydrolysis and polycondensation changes.\[10\] Moreover, sodium methoxide being highly susceptible to hydrolysis (e.g., \(\text{NaOCH}_3 + \text{H}_2\text{O} \rightarrow \text{NaHCO}_3 + \text{CH}_3\text{OH}\)) produces \(\text{OH}^-\) groups which
enhance the polycondensation and growth of the polymeric particles.10

Subsequently, the solution absorbs sufficient water from the atmosphere or when free water is added, the gelation occurs rapidly. The observed increased gelling rate with increased proportion of water at the initial stage of hydrolysis suggest that any free water remaining before adding acetic methoxide cause the generation of hydroxylation which enhance the gelation. The decreased gelling time with increased NaOH and with increased humidity also indicates the hydrolytic reaction of the NaOH and the catalytic activity of OH particles. The incorporation of Na+ ions into the gel structures might take place as follows: NaOH generated by the hydrolysis of NaOH might react with Si-OC\textsubscript{2}H\textsubscript{4} to produce Si(ON\textsubscript{3})\textsubscript{2} as the first step. Sodium nitrate having strong ionic character might undergo an exchange with Na+ ion of silanol groups at high pH and may produce Si(ONO\textsubscript{3})\textsubscript{2}. A secondary reaction forming tetra-coordinated boron of the type Na\textsubscript{3}Si(OC\textsubscript{2}H\textsubscript{4})\textsubscript{4} might take place when free or partially hydrolyzed Si(OC\textsubscript{2}H\textsubscript{4})\textsubscript{4} reacts with NaOH [13].

In Procedure II, the initial reactions of tetrathoxysilane with boric acid are anticipated to be similar to those described for Procedure I. However, the addition of higher proportion of water and of acids would lead to more complete hydrolysis of ethoxyxilane. The polymer molecules contain less unreacted ethoxy groups, and the solution shows little tendency to gelation. Sodium nitrate additions, unlike NaOH or sodium acetate, do not increase the pH. Consequently, the gelling time is long. Sodium nitrate, being not reactive to other reagents and being insoluble in alcohols, segregates in the aqueous phase and precipitates as NaNO\textsubscript{3} as the gels dry, as evidenced by the x-ray diffraction results. The heat treatment at 500°C or above decomposes the nitrate and reactive NaOH forms thus, the crystallinity decreases with the heat treatment. However, excess water and the low gelation rate are beneficial for hydrolyzing alkoxy groups and subsequent removal of organics.

In Procedure III, the initial stage of the hydrolytic reactions in presence of high proportion of water and acid is similar to that of Procedure II. Consequently, the hydrolysis is more complete and the solution being at low pH (2) shows less tendency to form gels. When sodium acetate solution is added, the gelation occurs due to introducing high concentration of OH ions present in sodium acetate solution: the pH of the solution increases to higher gelling rate region10 and gelation occurs rapidly. The surface areas of gels produced from the low pH solution is large because, in strongly acid medium, the polymeric particles cannot grow14, consequently gels produced from submicron particles have higher surface areas.

The significant difference in the surface areas of the gels prepared by the different procedures (Table IV) can be interpreted in terms of the effect of pH on the size of the particles. When the gelation is done with solution of low pH (2) the particle sizes are smaller, consequently, the pore sizes are finer. The incorporation of Na+ ions into the gel structure might occur either by the reaction of NaOH produced by the hydrolysis of sodium acetate with Si-OC\textsubscript{2}H\textsubscript{4} group or by the exchange of Na+ ions of the silanol groups with Na+ ions of acetate solution15. But, a portion of Na+ ions might remain in water phase and could produce a nonuniform distribution of Na+ ions in the gels.

The infrared absorption spectra of Composition I gels prepared by different procedures and after thermal treatments at different temperatures were taken by the KBr pellet technique, using Perkin-Elmer spectrophotometer and are shown in Figure 2. It is evident from the figure that the position and the features of the absorption bands resulting from Si-O bond stretching are not the same in all the gels. The peak positions were not shifted by thermal treatment steps up to 500°C or by the humidity treatment that had affected both hydrolysis and removal of chemically bonded alkoxy groups.
The difference in the nature of the molecular structure of the gels as depicted in the infrared spectra, might have been originated due to (a) the difference in the structural incorporation of Na⁺ ions with the polymeric species of the gels, or (b) the difference in the molecular structures of the networks produced during the hydrolytic polycondensation process.\(^{11, 16, 17}\) The effects of different thermal treatments above 500 °C on the change in molecular structures of the gels have not been studied. However, the infrared and Raman spectra of glasses made from the different gels of Composition 1 indicate that the melting at higher temperatures from 100 to 1200 °C appears to be sufficient to give an equilibrium melt for each gel.

The preliminary results of the densification studies of the gel-monoliths of Composition 2 (see Table IV) shows that the porous gel-monoliths can be densified to transparent "glass" by heat treatment at temperatures above the glass-transition temperatures. The results show that the gels have a strong tendency to crystallize at higher temperatures. However, the gels of Composition 1 prepared by Procedure I and Procedure II do not crystallize on heat treatment at temperatures above Tₕ for a prolonged period (for example, 40 hours at 600 °C). The basic reason for the crystallization of gels of Composition 2 is not understood yet. The heat treatment of gels in the \(\text{Li}_2\text{O}-\text{SiO}_2\) system shows a similar crystallizing tendency.\(^{19}\) It is reported by several workers\(^{19, 20}\) that the silica gels and amorphous silica powders and silica glass crystallize in presence of sodium or potassium salts in the 800 to 850 °C range. It is suggested\(^{19, 20}\) that adsorbed cations entered the lattice at elevated temperatures causing the Si-O-Si bridges to rupture, thereby collapsing the structure and lowering the densification temperatures. The crystallization of gels of Composition 2 is presumably due to the high reactivity of the mobile Na⁺ ions on the less tight gel structure and subsequent rupture of the Si-O-Si bonds. The high hydroxyl contents might also enhance crystallization.\(^{21}\) The absence of crystallization tendency in Composition 1 gels may be a compositional effect. A viscous low melting alkali borosilicate glassy phase might form at lower temperatures. Na⁺ ions being structurally incorporated into this glassy phase becomes less reactive and mobile, consequently, the stability of the gels toward crystallization above Tₕ is prolonged.

CONCLUSIONS

Gels and gel-monoliths of different compositions in the \(\text{Na}_2\text{O}-\text{B}_2\text{O}_3-\text{SiO}_2\) system can be prepared by three different procedures. The physicochemical nature of the gels prepared by the different procedure are significantly different. The chemistry of the gelling process is controlled by the various process parameters and by the composition of the gels in a particular system. Molecular structures of gels having Composition 1 (wt %) \(\text{SiO}_2\) 60, \(\text{B}_2\text{O}_3\) 5, \(\text{Na}_2\text{O}\) 25 prepared by different processes are not identical. However, the melting of the gels at 1100 to 1200 °C is sufficient to give equilibrium in the melts from the different gels. Gel-monoliths having a composition (wt %) \(\text{SiO}_2\) 84, \(\text{B}_2\text{O}_3\) 12, \(\text{Na}_2\text{O}\) 4 can be transformed into transparent "glass" by heat treatment at temperatures above Tₕ. But the gel has a strong tendency to crystallize during gel-to-"glass" transformation. The rupture of Si-O-Si bonds by highly mobile Na⁺ ions in the less dense gel structure might be the reason for the crystallization of silica phase.
the spatial resolution of photograph.
projective was to prepare of the vegetation in Faden, says, "But we can also recommend selective cutting to professional forest stages today, for educational other areas can be likened y as climax forest."

Fig. 1. Composition 2 gel-monoliths after treatment at 700 C for 1/2 hour.

Fig. 2. Infrared spectra of air-dried gel. A. Procedure I, without deliberate addition of acidified water. B. Procedure I, initial hydrolysis with acidified water, acidified with acetic anhydride before adding NaOH. C. Procedure II. D. Procedure III.

REFERENCES

17. A. N. Lasarev and M. G. Vovkov, Optics and Spectroscopy, 8, 325 (1960).
Crystallization Behavior of Gels and Gel-Monoliths in the Na₂O-B₂O₃-SiO₂ System

Shyama P. Mukherjee
Battelle's Columbus Laboratories, Columbus, Ohio 43201, U.S.A.
Abstract. - Gels and gel-monoliths in the sodium borosilicate system were prepared by the hydrolytic polycondensation of alkoxy silane with trimethyl borate or boric acid and a suitable sodium compound. Three different procedures using three different sources of Na$_2$O were developed. Crystallinity of different gel-powders and gel-monoliths of two compositions were examined after thermal treatment at different temperatures above the glass transition temperature(T_g). Results indicate that the stability of the gels toward crystallization during gel-to-glass transformation around T_g depends on the composition, previous thermal history, and time and temperature of heat treatment. The results are explained in terms of gel structures and the nature and role of sodium ions in gel structures.

1. Introduction. - In recent years, the preparation of noncrystalline silicate gels and gel-monoliths and their subsequent conversion to glasses and glass-ceramics by sintering or by melting have been reported by several researchers [1, 2, 3, 4, 5]. Research activities and their scientific and technological importance have been critically reviewed by Mukherjee [6] and by Sakka and Kamiya [7].

The stability of the gels or gel-derived glasses toward crystallization (i.e., the kinetics of the ordering process during gel-to-glass transformation), depends on the nature of the noncrystallinity of the gel structure. The formation of a noncrystalline phase by rapidly quenching molten or evaporated solids is not unusual because the kinetic forces (e.g., the rate of quenching of melt or vapor and high viscosity of melts) play a major role in preventing the crystallization.

The key element in developing noncrystallinity may result from chemical polymerization conditions which can produce certain stable disordered polymeric molecular configurations. Kinetic factors such as the cooling rate or viscosity do not appear to be the major force in the formation of inorganic glasses from solutions. Hence, the kinetics of the ordering process for the gels and gel-derived glasses appears to be different from those of the vitreous solids produced from the melts [3, 8, 9, 10, 11, 12]. The effects of minor components and impurities on the kinetics of crystallization of gels are also found to be different from those observed with the glasses obtained by the fusion of molten oxides [9, 13, 14, 15, 16].

The objectives of the present work were to (a) prepare gels and gel-monoliths in the Na$_2$O-B$_2$O$_3$-SiO$_2$ system by different gel preparation procedures; (b) investigate the stability of the gels toward crystallization during gel-to-glass conversion at temperatures around T_g and (c) investigate the effects of chemical leaching of sodium ions from the porous gels on the crystallization rate during gel-to-glass conversion.
2. Experimental Work and Results. - The batch compositions of the gels investigated are given in Table I. The compositions of the same compositions prepared by melting conventional batches are 520 C for Composition 1 and 600 C for Composition 2.

Table 1: Composition of Gels.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Weight Percent</th>
<th>Mol Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SiO₂</td>
<td>B₂O₃</td>
</tr>
<tr>
<td>1</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>84</td>
<td>12</td>
</tr>
</tbody>
</table>

3. Gel Preparation Procedures. Three procedures using three sources of Na₂O were developed and investigated. Gels of Composition 1 were prepared in particulate forms. Gels of Composition 2 were prepared in particulate and in monolithic forms. Starting chemicals for each procedure are given in Table 2. Each procedure followed a five step routine: mix silicon compound with ethanol, partial hydrolysis with aceticified H₂O, add boron compound, adjust pH, and gelation. See Reference 16 for procedural details.

Table 2: Starting Chemicals for Gel Preparation.

<table>
<thead>
<tr>
<th>Procedure I</th>
<th>Procedure II</th>
<th>Procedure III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si(OR)₄ (liquid) where R = C₂H₅, CH₃</td>
<td>Si(OC₂H₅)₄ (liquid)</td>
<td>Si(OC₂H₅)₄ (liquid)</td>
</tr>
<tr>
<td>H₃BO₃ in methanol</td>
<td>H₃BO₃ in methanol</td>
<td>B(OCH₃)₃ (liquid)</td>
</tr>
<tr>
<td>Na₂CO₃ in methanol</td>
<td>NaNO₃ in excess water</td>
<td>Sodium acetate in water</td>
</tr>
<tr>
<td>Solvent: Ethanol</td>
<td>Solvent: Water and ethanol</td>
<td>Solvent: Water and ethanol</td>
</tr>
</tbody>
</table>

Thermal history and heat treatment for Composition 1 gels and Composition 2 gel-monoliths are indicated in Table 3. Crystallization was monitored by the differential thermal analysis (DTA) and X-ray powder diffraction techniques. Experimental results are shown in Table 3. All gels prepared by Procedures I and III were noncrystalline; Procedure II gels were crystalline. No exothermic peak indicating crystallization was observed in the DTA curves for Composition 1 gels. DTA curves for Composition 2 gel samples shown in Figure 1 display exothermic peaks around 800°C due to cristobalite.

The physical appearance of heat treated monoliths at different stages of transformation is shown in Figure 2.

To determine the influence of leaching on crystallization behavior, the gel-monoliths were leached with water for different periods and subsequently heat treated at 700°C. Crystallinity and physical appearance were compared with those obtained with the unleached samples. The results, given in Table 4, show that chemical leaching reduced the crystallization rate significantly. Samples crystallizing on heat treatment at 700°C, when leached, showed no crystallization, even at 750°C.

Discussion. - The chemistry of the gelling process and its relation to process parameters and compositions are discussed elsewhere [16]. Gels prepared by Procedures I and III were noncrystalline and remained noncrystalline on thermal treatment up to 500°C. The gels prepared by Procedure II were crystalline after drying at room temperature. In Procedure II, sodium nitrate (not as reactive as sodium methoxide or sodium acetate and insoluble in alcohol) segregates and remains in aqueous phase of wet gels but precipitates as NaNO₃ as the gels dry. The heat treatment at 500°C or above decomposes the nitrate, forming reactive Na₂O which reacts with the polysilicic acid species to form a vitreous phase. Thus, crystallinity decreases with heat treatment.
Table 3: Heat Treatment Effects on Compositions 1 and 2.

<table>
<thead>
<tr>
<th>Composition 1</th>
<th>Composition 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure I</td>
<td>Procedure I</td>
</tr>
<tr>
<td>Slow heat to 600°C</td>
<td>500 4</td>
</tr>
<tr>
<td>Ditto</td>
<td>500 4</td>
</tr>
<tr>
<td>Ditto</td>
<td>500 4</td>
</tr>
<tr>
<td>ditto</td>
<td>500 4</td>
</tr>
<tr>
<td>1000 2</td>
<td>Noncrystalline</td>
</tr>
<tr>
<td>1000 1</td>
<td>Noncrystalline</td>
</tr>
</tbody>
</table>

Procedure II	Procedure III		
Air dried	Slow heat to 600°C		
ditto	600 12	Noncrystalline	Partially deoxygen mass
Ditto	600 12	Noncrystalline	Partially deoxygen mass
Ditto	600 12	Noncrystalline	Partially deoxygen mass
Ditto	600 12	Noncrystalline	Partially deoxygen mass
Ditto	600 12	Noncrystalline	Partially deoxygen mass
Ditto	600 12	Noncrystalline	Partially deoxygen mass
Ditto	600 12	Noncrystalline	Partially deoxygen mass
Ditto	600 12	Noncrystalline	Partially deoxygen mass
Ditto	600 12	Noncrystalline	Partially deoxygen mass

Note: For details of drying gels up to 600°C, see Reference 18.
The results of the crystallization studies of the gels at temperatures higher than T_g can be summarized as follows: (a) Composition 1 gels have practically no tendency toward crystallization on heat treatment above 500 C; the gel-to-glass conversion can be achieved easily without crystallization, (b) Composition 2 gel-monoliths have a strong crystallization tendency during gel-to-glass conversion. Glass is formed on appropriate thermal treatment above 600 C, (c) crystallization rate of Composition 2 gels is controlled by the time and temperature both of heat treatment above T_g and of aging treatment at lower temperatures (e.g., 150 C), and (d) the concentration of leachable sodium ions has a strong influence on the crystallization rate.

Note that the glass of Composition 2 prepared by cooling molten sodium is much more stable toward crystallization than the porous gel-monoliths of the same composition. Several researchers [13, 14, 15, 17] report that relatively small quantities of adsorbed alkali ions on silica gel, amorphous silica powder, and silica glass-powders can cause crystallization at lower temperatures. It is suggested [9, 13, 17] that adsorbed cations enter the lattice and cause the Si-O-Si bridges to rupture, thereby collapsing the texture and lowering the crystallization temperatures. The crystallization of gels of Composition 2 is presumably due to the high reactivity of the mobile Na⁺ ions on the less compact gel structure and, subsequent, rupture of the Si-O-Si bonds. Hence, the mobility, (i.e., the structural state or environment) of Na⁺ ions in the gel structure may be an important parameter controlling the crystallization rate. The reason for the improved stability toward crystallization after prolonged low-temperature aging might be the formation of more Si-O-Si bridges and

<table>
<thead>
<tr>
<th>Thermal History</th>
<th>Leaching Treatment</th>
<th>Heat Treatment</th>
<th>Crystallinity</th>
<th>Physical Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (°C)</td>
<td>t (hr)</td>
<td>None</td>
<td>700</td>
<td>1/2</td>
</tr>
<tr>
<td>150</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>1.5</td>
<td>Dilute HCl, 1/2 hr at RT</td>
<td>700</td>
<td>1/2</td>
</tr>
<tr>
<td>500</td>
<td>4</td>
<td>Dilute HCl, 1/2 hr at RT</td>
<td>780</td>
<td>1/2</td>
</tr>
<tr>
<td>500</td>
<td>4</td>
<td>Dilute HCl, 16 hr at RT</td>
<td>700</td>
<td>1/2</td>
</tr>
</tbody>
</table>
compaction of gel structure at lower temperatures. The work of Brinker and Mukherjee [18] on the densification of gel-monoliths prepared by similar procedures shows the evidence of densification at lower temperatures.

The great reduction in the crystallization tendency of the porous gels on chemical leaching can be explained as follows. Presumably, there are two kinds of Na⁺ ions in the gel structure. The leaching treatment removes one kind of Na⁺ ions that are highly mobile like adsorbed ions and can enhance the crystallization rate. The residual Na⁺ ions after leaching might be less mobile and less effective in inducing the crystallization. The absence of crystallization tendency in Composition I gels may be a compositional effect; in this system a viscous, low-melting soda borosilicate glassy phase might form at lower temperatures. Na⁺ ions being structurally incorporated into this glassy phase become less reactive and mobile, consequently, the stability of the gels toward crystallization above Tg is prolonged.

4. Conclusions. The crystallization kinetics of the gels and gel monoliths during the gel-to-glass conversion are controlled by the composition, the low-temperature aging, and heat-treatment conditions above Tg. Porous gel-monoliths can be transformed into transparent noncrystalline "glass" without melting by appropriate heat treatment above Tg. The removal of Na⁺ ions by chemical leaching reduces the crystallization rate. The rupture of Si-O-Si bonds by highly mobile Na⁺ ions in the less dense gel structure might be the reason for the crystallization of silica phase.

5. References.

ACKNOWLEDGMENTS: The author acknowledges the financial support of the Jet Propulsion Laboratory, and the Lawrence Livermore National Laboratory for the major part of the work, and thanks E. J. Onesto and T. Beam for the laboratory assistance.