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Chapter I 

INTRODUCTION 

1.1 P_URPOSE 

This study is being performed to determine a few metrics 

that can be used to assess the quality of radar images, par- 

ticularly synthetic aperture radar images. The orginal pur- 

pose of this study was to evaluate the image interpretation 

elements of tone, shape, pattern, size and shadow, and con- 

struct a compendium of simulated radar images exhibiting the 

chazacteristics of radar images containing these recognition 

elements. In the face of reduced funding, the present pur- 

pose ia to re-evaluate the image quality metrics from the 

photographic image field in the context of synthetic aper- 

ture radar (SAR)  produced imagery. 

1.2 SCOPE 

The scope of this project has been reduced from that en- 

visioned in the original proposal. This reduction has been 

accomplished primarily by reducing the depth planned for the 

study and somewhat redirecting the thrust in order to maxim- 

ize the return for the resources expended. Those image 

quality metrics most commonly found in the literature apply 

almost without exception to conventional photography. We 
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will evaluate the application of several of these metrics to 

SAR produced imagery. 
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Chapter I1 

LITERATURE REVIEW 

We have explored the unclassified literature of image 

measurement for both radar derived images and for photo- 

graphic images. Measurements or ratings of image quality 

have generally been found to be divided into two types: sub- 

jective, qualitative ratings by human observers of relative 

or absolute image quality or various characteristics be- 

lieved to be associated with image quality; and quantitative 

measurements of image characteristics (normally a different 

set). By "subjective" or "qualitative", we mean those forms 

of image evaluation that: (a) establish only a relative 

ranking of comparable images in accordance with some criter- 

ion, and (b) require a human observer to perform the compar- 

ison. By "objective" or "quantitative", we mean a form of 

image evaluatior. that: (a) can be performed in a mechanized 

way without the intervention of a human observer, and (b) 

that produces a numerical result which can be used to rank- 

order the measured images such that the sequence correlates 

well with human produced rank ordering of the same images. 

A major problem with these approaches is that there is 

little agreement as to the elements or characteristics that 

should be considered in defining whether an image is of good 
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quality. The subjective ratings or measurements tend to be 

found in the literature of the human factors (ergonomics), 

psychology, and photo interpretation fields, and the quanti- 

tative measurements tend to be encountered in the image re- 

production and pattern recognition literature. On the one 

hand, we have attempts to define image quality in the sense 

of how the image is experienced by a human observer, and on 

the other hand, we have attempts to define it in the sense 

of stating that one device provides greater image quality 

than another because it produces images having one or more 

characteristics measurably better than the other. 

There were several bodies of work that have been useful 

in understanding the nature of the problem: they are summar- 

ized by image quality metric in the following sections. 

2.1 2mTHRESHOLDDOALImPACTOR (!l!QE) HE!l!Bx 

Charman and Olin [5] expressed dissatisfaction with the 

available metrics for rating aerial camera systems. They 

observed that the resolving power (RP) was the most widely 

used criterion since it seemed to be the easiest to obtain. 

One simply flew the camera system over a prepared low con- 

trast resolution target (usually sets of bars in a variety 

of widths and separations). Resultant photographs were then 

processed and evaluated by humar, observers. Charman and 

Olin noted that the results of such evaluations were satis- 

factory for rank order comparison of systems but they did 
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not yield quantative results that could be Compared when 

different resolution targets were used. They then proceeded 

to examilia the class of metrics developed from the optical 

transfer function. 

Briefly, the performance of a linear optical system is 

described by its optical transfer function (OTP), which re- 

lates how a system responds in both magnitude and ,:base as a 

function of the spatial frequency and the orientation of ob- 

jects in the scene. The related modulation transfer func- 

tion (MTF) omits the phase information. 

Charman and Olin critized OTF derived metrics on the 

grounds that they did not consider the effects of grain in 

the photographic emulsion or the non-linear response of the 

human observer. They mentioned that the effect of grain 

could be expressed in the spatial frequency domain by t b ~  

Wiener, or noise-power spectrum of the granularity. They 

pointed out, however, that attempts to obtain a unified ap- 

proach to the whole chain of processes had foundered on the 

marked non-linearities of the visual system. 

Their approach was to observe that there appeared to be a 

minimum modulation within a grain free image field that 

could be perceived by the eye. Using this datum, they cal- 

culated an effective scanning aperture of the eye and an RMS 

density deviation due to noise in the visual system which 

led to a figure for  the threshold viewing signal-to-noise 
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ratio. They then extended these arguments by including the 

noise due to photographic grain to arrive at a total RMS 

noise for the combined visual and photographic. system. Us- 

ing this, they calculated a threshold scene modulation for 

the combined optical, photographic and visual perception 

system. 

As they stated, they made a number of rather sweeping 

simplifying assumptions in deriving the threshold equation, 

and they asserted that only experimental evidence could 

justify the utility of their TQF approach. They performed 

such an experiment by measuring for a single camera system 

the RP, MTF and TQF and comparing the results. The results 

shawed these metrics to be in agreement as the exposure and 

development times were are varied. However, they concluded 

with the statement, "Definite judgement on the usefulness of 

the TQF must await the results of further tests." 

2.2 TIiE RADAR THRESHOLD OUALITY i?AmQB(RTOF) METRIC 

Mitchel [ 2 8 ]  used the same general approach to the prob- 

lem for the development of a Radar Threshold Quality Factor 

(RTQF) as a figure of merit uniquely tailored to SAR system 

images. Essentially he just re-defined the TQF to apply to 

synthetic aperture radar systems. He included the effects 

of the image impulse response, mainlobe width (azimuth and 

range), system noise, clutter noise, target contrast with 

respect to its background, the display geometry, the viewing 
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distance, and the human visual response. Factors not 

included were geometric fidelity, linear dynamic range, and 

sidelobe levels. While this work is very useful, it is not 

definitive (for the same reasons that Charman's and Olin's 

TQF was not definitive) as he pointed out. However he was 

able to validate the trends indicated by the RTQF by experi- 

mentation with interpreter studies conducted with a radar 

holographic viewer he built. 

2-3 ANONLINEARMODELQEmIIUMANVISUALSYSTEM 

Hall and Hall 1181 proposed in 1977 a new model for the 

human visual system (HVS) which supported the general hy- 

pothesis that the HVS is composed of spatial frequency chan- 

nels. They cited experimental results from psychophysical 

and neurophysiological investigators which suggested that 

the visual cortex performs a two-dimensonal spatial decompo- 

sition of subdomains of visual space. They reasoned that a 

rational method of constructing a HVS model would be to be- 

gin with a simple linear model and then modify the model ap- 

propriately to accord with observed data as each initial as- 

sumption was challenged. They began constructing a first 

approximation model of the HVS by considering the system to 

be linear, isotropic and time and space invariant. Other 

assumptions used were that the system is monocular, mono- 

chronmatic and photopic. All these assumptions they knew to 

be invalid, but they started with them and relaxed each at 

the appropriate time as they developed their model. 
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The BVS response to changes in intensity was clearly non- 

linear. The sensitivity of the system to a rotated contrast 

grating was known to be a function of both the spatial fre- 

quency of the grating and its angle of rotation, hence the 

system was anistropic. The HVS was known to be spatially 

variant and non-homogeneous in both optics and receptors, 

although they pointed out that optical spatial invariance is 

a good assumption near the optic axis and that the receptor 

distribution is relatively homogeneous in the foveal region. 

As a further argument for homogeneity, they cited a paper by 

Davidson [ 8 ]  which suggested that certain non-homogeneous 

systems are functionally self-homogenizing. The notion of 

temporal invariance was clearly violated by the evidence for 

both sustained and transient channels in human vision. How- 

ever the models discussed in their paper did not consider 

temporal responses; hence temporal homogneity was not a fac- 

tor . 
Since they did not propose to deal with depth perception, 

the only remaining differences between binocular and monocu- 

lar vision were the difference in absolute threshold (lower 

by the square root of 2 for the binocular case) and resolu- 

tion (7% better for binocular vision) reported by Campbell 

and Green [ 3 ] .  Because of these simple relationships, they 

argued that a monocular model could readily be extended to 

the binocular case, and thus proceeded to develop a monocu- 

lar model . 
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Monochromatic vision they defined as the inability to 

distinguish differences in hue. They argued that because 

the illumination sources used in the experimental protocols 

of interest were of a constant spectral content (usually 

white or blue-green light), there were no hue variations in 

the stimuli. (This means they reasoned that the spectral 

distribution of illuminating light energy within the elec- 

tromagnetic spectrum did not change from one ictensity level 

to the next.) For this reason, they accepted restriction of 

their model to the monochromatic case. As for the assump- 

tion that the system was photopic, this was clearly not in 

agreement with the observations of the “brightness con- 

stancy” phenomenon. In general, these observations were 

that the perceived brightness of an object tends to remain 

constant despite variations in the illumination falling upon 

it. 

Having brought out all these objections to their assump- 

tions, they proceeded to build an initial simple model con- 

sisting of cascaded low-pass and high-pass filters. They 

stated that the low-pass filter characteristics resulted 

from the interaction of several mechanisms. High-frequency 

response was limited by several factors: the optical char- 

acteristics of the eye including the pupil size, and the 

size and density of the photoreceptors and their neural sum- 

mation :letworks. In addition, light scattering within the 

aqueous humor was thought to be an increasing function of 
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frequency. Next they proceeded to point out that this model 

did not account for the "brightness constancy" phenemenon! 

and that to do so would require introducing a non-linearity 

into the system. 

Next they noted that the mechanism by which a quantum of 

light stimulating a photoreceptor produces an electrical im- 

pulse from an accompanying was not known exactly. However 

they cited the work of Yuortes [lO,ll] in measuring the 

electrical properties of the nerve cells of the eye of the 

Limulus (the horseshoe crab) and Rushton's conclusion [35 ]  

from that evidence that the resistance of the cell membrane 

was proportional to the logarithm of the total light inci- 

dent upon the receptor. Furthermore, Rushton had concluded 

that the relationship between the membrane potential and the 

frequency of impulses was linear; hence the frequency of 

nerve impulses was a logarithmic function of zight intensity 

which was in keeping with the seemingly general rule for 

stimulus-response relationships of physiological-mechanical 

receptors and se se organ transformations. 

Hall and Hall used this data to construct a pair of mo- 

dels which consisted of two blocks cascaded: a logarithmic 

intensity detector and a MTF (bandpass filter) section which 

was equivalent to the over-simplified initial model. The 

question then became; 'In which order should these blocks 

operate on the information?" They argued, from physiologi- 
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cal evidence and the incompatability of one of the models 

with the brightness constancy effect, that the correct ord%r 

was that of the logarithmic detector followed by the MTF 

block. 

Next, they pointed out that this model did not predict 

the observations that indicated a nonlinear distortion cf 

signals at high, but not low spatial frequencies. To sa= 

tisfy this evidence, they split the MTF bandpass filter into 

its equivalent high- and low-pass filters. They placed the 

low-pass filter prior to the logarithmic aetector because of 

the physical locations of the mechanisms responsible for 

this filter. They then introduced the Furman-Cornsweet 

backward inhibitor neural network model [16,6] for the in- 

teraction of adjacent photoreceptors. This model represented 

the net output of a receptor as the sum of its inherent out- 

put less an inhibitory coefficent times the inherent output 

of adjacent receptor(s). Aseuming that that there was no 

aelf-inhibitory action and that inhibitory interaction was 

an exponentially decreasing function of the distance between 

receptors, they derived a transfer function which had the 

frequency characteristics of a high-pass filter. 

They showed t n a t  the order of the visual system model 

elements jn the low-pass, nonlinearity, high-pass sequence 

satisfies various behavioral observations and that other ar- 

rangements do not. The major significance of this model was 
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that the bandwidth of the visual system decreased as the 

contrast increaeed. Thus the system appeared to maximize 

the signal-to-noise ratio while attempting to maintain a 

constant "perceptual" spatial-frequency fidelity. They 

pointed out that this model has several applications as a 

preprocessor for image processing, image coding, pattern re- 

cognition, and scene analysis. 

2.4 RADARIMAGE- 
Holtzman, Frost, Abbott and Kaupp (21) defined the prin- 

cipal concepts and benefits to be derived from computer si- 

mulation of radar image generation. They introduced a 

"Point Scattering Model" with four natural subdivisions: 

(1) the imaging model, (2) the radar geometrical propagation 

model, (3) the ground model, and (4) the reflectivity model. 

The reflectivity model was simply the series of the dif- 

ferential scattering cross section (sigma zero) curves which 

were supplied for each different category of terrain. Each 

point on the ground was supplied with a category descriptor 

(1,2,3,...) designating which of the reflectivity curves to 

apply for that particular pacch of ground. The ground model 

was an elevation above or below some datum supplied for each 

point in a rectangular grid. The radar geometrical propaga- 

tion model uses the relief of the ground model to compute 

those areas of the terrain that will be in shadow from the 

assumed location of the radar platform and computes the 
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range and power returned for each data point in the ground 

model. Finally the imaging model accounts for the transla- 

tion of power received for each element of radar range 

through a detection (square law or other appropriate detec- 

tion rule) process and into a gray level in a display or 

photographic image. 

This paper describes the structure for the radar simula- 

tion implemented at the University of Arkansas and gives a 

conceptual basis for following the flow from ground truth 

elevation and scattering properties to a radar image of that 

terrain from a specific point in space. 

RADAR 2.5 A ~ ~ Q E ~  - 
Kiyo Tomiyasu's discussion [37] of tie design and organi- 

zation of synthetic aperture radar systems together with the 

ambiguities, signal processing requirements and sources of 

error has proved to be a succinct and masterful exposition 

of the subject. While not discussing the subject of SAR im- 

age quality directly, the paper has proved to be a most use- 

ful reference for the electromagnetic, geometric and plat- 

form dynamics relationships involved in the production of 

SAR imagery. 

- 13 - 



A 1980 paper by Charles Hall [lo] did not deal directly 

with the subject of image quality, Its value lies in the 

quantization of his previously developed HVS transfer func- 

tion. The paper dealt .,ith the idea of using this charac- 

teristic as a preprocessor in performming data compression 

for image transmission, As part of this development, the 

author discussed the work of Shannon which established rate 

distortion theory. In this discussion, he mentions the idea 

of a minimum average distortion or fidelity criterion as a 

measure of agreement between the source and the system out- 

put as specified by the user. This fidelity criterion was 

not further explained in the paper. However, the minimum 

average distortion is not a single generally accepted me- 

tric, but instead is whatever metric may be useful - usually 
MSE, but a variety of others have been used - and no mathe- 
matical restrictions are imposed by rate distortion theory 

on the choice. 

RATLQTHRESHOLD (SNRT) H€mxc 2.7  THE SlQUU., - -  TONQISE 

A 1981 paper by Blumenthal and Campana [l] discussed the 

Johnson Criterion metric [ 2 2 ]  which has been used in the 

comparison of electro-optical systems (photocathodes, telev- 

ision camera tubes and infared detectors) in military appli- 

cations, and introduced a metric called the signal-to-noise 

ratio threshold (SNRT). The Johnson Criterion was based on 
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the limiting resolution of a system as measured under the 

same ambient conditions as encountered in the field. Ac- 

cording to the Johnson concept, if at any given range the 

minimum target dimension subtends a specified number of cy- 

cles of a periodic pattern resolvable under the conditions 

of the test, the target could be discriminated at the cor- 

responding level. The specific number of resolvable half- 

cycles across the minimum dimension required to detect, re- 

cognize or identify a target is determined empirically from 

field experiments. This metric has been in use in the mili- 

tary electro-optical area since 1958. 

The criterion had been generalized by Moser [31] by spe- 

cifying the number of pixels that the target area must sub- 

tend in a two-dimensional image before the task of detec- 

tion, recognition or identification could be accomplished. 

The authors demonstrated an instance in which both the John- 

son and Moser criterion selected a grossly degraded image as 

the best. From this apparent contradiction, they argued 

that the difficulty was in the siqnal-to-noise ratio under 

which the images were obtained and that a metric which did 

not account for the SNR conditions was insufficent. 

Using Schade's noise-equivalent passband as a means of 

describing the MTF with a single number, they generated an 

array of images in which the SNR,  scale factor and MTF were 

varied in a controlled manner. The images were rank-ordered 
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by an interpreter study and then the rankings were corre- 

lated with several different figure of merit formulations. 

These were: the Modulation Transfer Function Area (MTFA), 

the Modulation Transfer Function Power (MTFP), the Signal- 

to-Noise Threshold (SNRT), and the Johnson criterion (JC). 

The authors commented that the correlation coefficent 

proved to be a very insensitive measure of agreement and 

that in no case was the coefficent less than 0.9. After 

performming a RMS evaluation of the quality metrics versus 

observer performance, the authors determined that the John- 

son criterion tended to overestimate the utility of images 

made at low SNR, while underestimating the quality of high 

SNR images, The SNRT was shown to be a better metric across 

the range of SNR variation. 

2.8 QUALIm-PPnIGITALLY-- 

Burke and Snyder [2] published a paper which dealt with 

the degradation via hardware and software of a set of ten 

aerial images (4096 x 4096 pixels) to produce a set of twen- 

ty-five versions of each image. Using this data base, they 

performed an interpreter study that indicated that the addi- 

tion of noise or blurring of the image degrades the ability 

of photo interpreters to detect, recognize and identify ob- 

jects in the scene. They also pointed out that moderate 

levels of blurring may actually enhance the ability o€ an 

interpreter to perform in the presence of high levels of 

noise. 

- 16 - 



2.9 A-APPROACBTPIMAGEOUALImMETRICS 

An especially interesting body of work was that done by 

Frost, et a1 in 1981 [14]. Their basic concept was that of 

performing interpreter studies of an array of several SAR 

images of scenes in which each scene was represented by mul- 

tiple images having one or more measurable characteristics 

degraded by varying degrees. The interpreters were to rank 

order the images 

terpretation tasks. 

in terms of their utility for various in- 

They obtained statistically significant 

models to relate the measured image properties to the inter- 

preters' ability to analyze linear featrlres and to evaluate 

the utility of radar images for vehicle movement potential 

and activity level. They further found that the relative 

importantance of the measured irnage properties with respect 

to image utility varied with image application. This last 

finding led naturally to the concept of a multi-dimensional 

image quality parameter space in which one could perform 

classification tasks. Their approach tn the problem of de- 

signing an experimental protocol was to apply the Response 

Surface Methodology techniques expounded by Myers [32]. A 

brief description of Response Surface Methodology, quoted 

from Myers is: 

"Response surface methodology (RSM) is essentially a 
particular set of mathematical and statistical methods 
used by researchers to aid in the solution of certain 
types of problems which are pertinent to scientific or 
engineering processes. Its greatest application has 
been in industrial research, particularly in situations 
where a large number of variables in some system influ- 
ence some feature of the system. This feature (e.g. 
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reaction yield, cost of production, etc.) is termed the 
response; it is normally measured on a continuous scale 
and is a variable which likely represents the most im- 
portant function of the sytems, though this does not 
rule out the possibility of a study of more than one 
response. Also contained in the system are input vari- 
ables or independent variables, which have an effect on 
the response and are subject to the control of the 
scientist or experimenter. The response surface proce- 
dures are a collection involving experimental strategy, 
mathematical methods, and statistical inference which, 
when combined, enable the experimenter to make an effi- 
cent empirical exploration of the system in which he is 
interested." 

Frost, et al, applied these techniques in their experi- 

mental design to minimize the number of observations used 

and to insure that each degradation was selected such that 

all the data points obtained had uniform significance. They 

concluded that five measurable image properties were identi- 

fiable: dynamic ranye, signal-to-noise ratio ( S N R ) ,  image 

spatial bandwidth, geometric fidelity and root-mean-square 

error (RMSE). These metrics were determined to be linked to 

independent characteristics of the radar image and were 

either directly or indirectly related to many image quality 

parameters proposed in the past. 

They found that they did not obtain statistically signi- 

ficant regression equations relating natural area features 

and individual man-made targets to the quality of radar im- 

ages as judged by human interpreters. A possible explana- 

tion was advanced that the interpreters did not use uniform 

criteria for these response categories owing to the complex- 

ity of the these image features. However, for the simpler 
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categories, (i.e. linear features and relative image quality 

ranking), statistically significant regression equations 

could be estimated. Another finding was that different im- 

age metrics assumed varying levels of importance as the res- 

ponse category was changed. For example, bandwidth and the 

signal-to-noise ratio were the most important metrics in es- 

timating the ability of an interpreter to extract linear 

features from radar images. Dynamic range was predominant 

for estimating how an interpreter would rank radar images. 

This last observation has important ramifications for the 

application of image quality metrics for multi-mission sen- 

sor design. That is, the system designer will have to 

trade-off system performance as a function of the applica- 

tion. 

2.10 MEANSOUAREERROR- 

Charles Hall [20], in a 1981 paper, commented upon the 

application of human visual system ( H V S )  models (see sec- 

tions above) to the problem of evaluating imaqe metrics that 

have been suggested in the past, and presented a new metric 

which he called the perceptual mean square error (PMSE).  He 

began by discussing briefly the traditional mean square er- 

ror (MSE) as a distortion measure, pointing out both its 

mathematical tractability and its low correlation with human 

evaluation of the same imagery. He then proceeded with si- 

milar brevity to deal with the normalized mean square error 
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(NMSE), the normalized difference or normalized error ( N E ) ,  

the Laplacian mean square error (LMSE) and a variant on the 

LMSE which he called the estimated gradiant mean square er- 

ror (GMSE) and which he noted as presenting some formidable 

analytic problems. Next he pointed out that the GMSE and 

LMSE are simply the NMSE computed in a transformed space and 

that one merely selects an appropriate preprocessor to apply 

to the NMSE. He asked "What more appropriate preprocessor 

could be selected than a HVS model?" This choice yielded 

the perceptual mean square error metric which he computed by 

taking the NMSE of the image pair produced by convolving the 

test and reference images with the INS point spread func- 

tion. He finished with an interpreter study which compared 

the correlation between human evaluation and the NMSE, LMSE, 

and PMSE for a series of images with varying degrees or de- 

gradation derived from the S P I E  GIRL picture. The correla- 

tions obtained were .85, - 8 4 ,  and .92 for the NMSE, LMSE and 

PMSE respectively. He noted that these correlations were 

obtained in the presence of three types of noise (Gaussian, 

8x8 blocking errors and 16x16 blocking errors) 2nd concluded 

that the PMSE is a more successful attempt at measuring im- 

age quality objectively that the other measures discusse;. 

2.11 G E o M E T R r C D l S T O R T I O N m m I h l S B B -  

The papers and reports by Kaupp, Waite and MacDonald 

[23,25,26,27] provided a clear exposition of the sources of 
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geometric distortion (layover, foreshortening, etc.) and 

noise in synthetic aperture images and demonstrated the vir- 

tues of computer simulation as a means of producing a series 

of images of the same terrrain with controiled amounts of 

geometric distortion by variation of the angle of incidence. 

The signal-to-noise ratio may be controlled over the range 

that one might realistically expect to encmnter and the 

number of looks that are averaged in synthesizing the effec- 

tive radar antenna length can be varied. Another poten- 

tially useful finding was that, in the simulation, it is 

possible to de-coilple the effects of back-scatter and propa- 

gation so that the variation of geometric distortion can be 

controlled in the output image independently of the speckle 

in the image. 

2.12 S B B I M A G E Q u A L u x ~  

Mitchel and Marder in a 1981 paper [29 ]  discussed a num- 

ber of factors which bear on the image quality of imaging 

synthetic aperture radar systems. The major facror presented 

was the dynamic range characteristics of SAR data. In elec- 

tromagnetic scattering theory, the parameter G which charac- 

terizes the roughness of a surface is proportional to the 

root-mean-square surface roughness and inversely propor- 

tional to the wavelength of the incident illumination. For 

visible light at wavelengths of the order of 50 microns, 

smooth (specular reflector) surfaces are a rarity. For air- 
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borne imaging radar with wavelengths typically in the range 

from 3 to 30 centimeters, many surfaces exist for which 

G <e l'and the reflection is specular. When the type of il- 

lumination (coherent and uni-directional in radar as opposed 

to diffuse, incoherent and of a relatively wide frequency 

range in photography) was included, the result was to accen- 

tuate the specular character of radar scattering and the 

consequent large dynamic range of the signals returned. As 

a means of contrasting the difference in the dynamic range 

requirements, the authors provided data indicating that for 

aerial photography, the dynamic range is typically on the 

order of 10 dB while it can range from 50 to 90 dB for radar 

imaging systems. The data presented suggested that synthetic 

aperture radars could image natural terrain with a dynamic 

range of 50 to 60 dB while the flat surfaces characteristic 

of man-made artifacts extend the dynamic range requirements. 

Next they argued that as with any antenna or lens, the 

quality of the image produced is dependent upon the accuracy 

with the effective aperture is constructed. In the case of 

synthetic aperture radar where the aperture is synthesized 

from the motion of a small physical antenna along the line 

of flight, the position of the physical antenna must be 

kgown to a fraction of a wavelength throughout its motion 

across the aperture. Errors in knowledge of the physical 

antenna location cause phase errors in the received signal 

which have the effect of degrading the synthetic antenna 
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pattern. The specific degradations which arise depend on 

the form of the phase errors, but the general result is to 

increase the sidelobes and broaden the mainlobe of the syn- 

thetic aperture response pattern. They thus argued that the 

antenna response is not fixed in the design and construction 

as is the case with a conventional radar or optical system. 

It followed that the image quality of a synthetic aperture 

radar must be regularly evaluated since its constancy cannot 

be assumed. 

Mitchel and Warder next addressed the problem of record- 

ing and displaying SAR imagery. They pointed out that with 

state of the art design, radar receivers and signal proces- 

sors can maintain a dynamic range of more that 60 dB or more 

and that this is adequate to handle the range of natural 

terrain backscatter, but that man-made or cultural features 

may exceed this capability. The principal problem is that 

photographic media is simply not up to the task when it 

comes to recording data with this wide dynamic range - the 
maximum dynamic range for photographic materials appears to 

be of the order of 20 to 30 dB, Digital storage methods 

have the potential to store the full dynamic range, but the 

usual digital display devices (CRT's) have similar and often 

more severe dynamic range limitations. They concluded by 

promoting tine holographic viewer as designed and built by 

Mitchel in the course of his PhD dissertation work. 
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Chapter IIi 

INTERPRETATION ELEMENTS EXTRACTED FROM THE LITERATURE 

Although many articles and texts differ as to the number 

of basic interpretation or recognition elements, there is 

general agreement on six: tone or color, shape, pattern, 

size, shadow, and texture. Three other elements which are 

often included with these six are site, association or con- 

text, and resolution [ 3 4 ] .  Image metrics that are best as- 

sociated with each of these elements in the literature are 

hypothesized below. 

3.1 TONE 
In one sense, it can be said that without variations in 

tone (or image intensity) and/or color, there is no image 

present to interpret. The dynamic range of intensities, 

their relative distributions across the capabilities of the 

imaging system, and their gradients across the image are all 

major factors bearing on the quality of an image. A great 

deal of the information content of an image is contained in 

the change in tone or color from one pixel to the next. We 

expect then to find that dynamic range, SNR, and spatial 

bandwidth have some relationship to the element of tone. 
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3.2 pATTEBN 

Pattern, or repetition, is characteristic of many man- 

made objects and natural features. Recognition of patterns 

is dependent upon discerning groups of similar shapes or 

commonality of direction in objects observed in an image. 

Hence we see that the same metrics apply here as apply in 

the case of tone: SNR, spatial bandwith (particularly the 

higher frequency components), and dynamic range. Addition- 

ally, it is likely that RMSE and geometric fidelity are re- 

lated to the element of pattern. Because patterns may be 

independent of the size of the constituent elements of the 

pattern in an image, resolution of the imaging system also 

bears on whether a pattern in a scene may be recognized in 

an image. 

3 . 3  SHAPE 

This element is most heavily dependent upon both the re- 

solution and geometric fidelity of an image to the imaged 

scene. The difficulty with term "geometric fidelity" when 

used in this context is that ultimately the degree of geome- 

tric fidelity of an image of a scene (or conversely the de- 

gree of distortion) is determined by a qualitive or subjec- 

tive judgement by a human observer. We believe that this is 

the reason that the various quantitative approaches to mea- 

suring geometric fidelity have had only moderate success: 

they bave not accounted for the no~-linc-rities and spatial 

frequency response characteristics a€ t h e  HVS. 
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Distortion (non-linear mapping) as the scene is imaged is 

inevitable given that a three dimensional scene is being im- 

aged into two dimensions. However, the human visual system 

is able to extract information from such images so long as 

there is a regularity to the types of distortions intro- 

duced. What seems to be most troubling to this ability is 

variation in the type and degree of the geometric distor- 

tions encountered. Images on a rubber sheet distorted by 

non-uniform three dimensional stretching suggest themselves 

as a means of visualizing this problem. Imagine an image 

fixed upon a rubber sheet lying in the plane and viewed from 

above. As long as the sheet is uniformly stretched in the X 

and Y directions by roughly equivalent amounts, little dif- 

ficulty in recognizing the imaged objects is experienced. 

However should the ratio Y/X vary appreciably from unity, or 

should the stretching (scaling) in the X or Y directions 

vary much trom a constant, or should there be other than mi- 

nor stretching distortions in the 2 direction, the ability 

to recognize objects by shape alone deteriorates rapidly and 

may be lost altogether. As with pattern, the texture, in- 

tensity or color, and contrast (dynamic range) of the image 

must be sufficient to identify edges or boundaries of 

shapes. Hence, we must include dynamic range, spatial band- 

width and SNR as likely to have a positive correlation with 

this element in addition to the primary one of geometric fi- 

delity and resolution. An objective metric for geometric 
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fidelity seems likeliest to be the PMSE, although the entire 

class of M E  metrics have demonstrated some success at mea- 

suring this image attribute, 

3.4 SIZE 

This element also depends heavily upon the geometric fi- 

delity of an image to the original scene. Ideally, areas 

and distances in an image should be related in a linear 

fashion to areas and distances in the original scene. Also, 

there is the concept of comparing relative sizes of objects 

in an image, or metsuring them directly from an image when 

the scale is known, in order to properly identify ambiguous 

objects in the image. This recognition/interpretation ele- 

ment also requires that the image have discernable changes 

in texture, pattern, intensity and/or color, and contrast so 

that the boundaries or edges of an area or linear feature 

may be detected. The objective metrics that relate most di- 

rectly to the element of size are the dynamic range, its 

spsLial bandwidth, the SNR, and t.re geometric fidelity me- 

trics of the image to the imaged scene. 

3.5 SHADOW 

Shadows are major cues to the interpreter in determining 

both the shape and height of objects. The arguments con- 

cerning geometric fidelity as they apply to size and shape 

apply here with the further requirement that the scene illu- 
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mination source be consistent across the image. Changes in 

apparent direction and number of illumination sources ra- 

pidly destroy the value of any information that ban be ob- 

tained from shadows in the image. The metrics that relate 

best to this element are dynamic range, SNR, geometric fi- 

delity metrics, and spatial bandwidth. 

3.6 TEXTURE 

Texture in images is created by tonal repetitions in 

groups of objects which are often too small to be discerned 

as individual objects. Texture, the visual impression of 

roughness or smoothness created by some objects, is often a 

valuable clue in interpretation. In Chapter 14 of the Ma- 

nual of Remote Sensing [ 3 4 ] ,  the author comments that tex- 

ture is an especially useful element for the interpretation 

of sidelooking airborne radar imagery, but there is some 

dissent with this view. Texture interpretation is dependent 

upon the scale of the image relative to the scene, the SNR 

and t \e resolution cell size of the imaging system. We do 

not propose to treat this element in our study. 

3.7 SlTE 

The location of objects with respect to terrain features 

or other objects is often helpful in the identifica- 

tion/interpretation task. For extmple, in an image of a 

scene with low elevation relief and visible standing water 
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in the southern United States, any trees standing in the wa- 

ter are very likely to be cypress trees. It seems fairly 

reasonable that this recognition element can be considered 

to be a higher level abstraction developed from the elements 

previously discussed. Hence no new metrics can be intro- 

duced for this element and we will not include this element 

in our study. 

3 - 8  fx2NxEum- 

Some objects are so commonly associated with other ob- 

jects that one tends to indicate the presence of the other. 

It is one of the most helpful clues to the identity of man- 

made installations. As an example, a tall smokestack, large 

building, pile of coal, conveyors, and cooling towers in 

proximity to each other are very likely to be associated 

with power production. As another example, small streams 

converge into larger streams. The relative angles of the 

smaller and larger streams can often be used to interpret 

the general slope of the terrain in the region. This in- 

terpretation can be strengthened if the stream beds conform 

with one of the patterns that the geologic community refers 

to as “creekology.” As with the recognition element of site 

however, this element is an abstracticn developed from the 

elements present i n  the image. So again the problem is to 

image the individual objects in the scene in & recognizable 

way and the same metrics previously noted apply. Therefore 
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we will not deal in any 

tion element in this study. 

direct manner with this interpreta- 

3.9 RESOLUTION 

Resolution depends upon many parameters of the image 

forming system as well as the image viewing conditions. 

System resolution is the limiting case in answer to the 

question "Can I see the object I am interested in and dif- 

ferentiate it from its background?" This question applies 

both to the image viewing conditions and to the scene imag- 

ing conditions. The inherent limitations of the human vi- 

sual system place an upper and lower bound upon the spatial 

frequency content useable in an image. These bounds are de- 

pendent upon viewing conditions with the primary metrics be- 

ing those of the viewing geometry, viewing illumination, and 

image magnification. Because these variables are presumed 

to be under the control of the interpreter and because the 

limitations of the human visual system are not yet firmly 

established, it is difficult to quantify these metrics in 

any useful way. The resolution of the imaging system is 

more directly addressable. It is usually possible to deter- 

mine the resolution of a sytem in terms of ground resolved 

distance, line pairs per millimeter, acutance or the modula- 

tion transfer function. 
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Chapter IV 

RESEARCH APPROACH 

In examining the image interpretation/recognition ele- 

ments set (tone, shape, pattern, size, and shadow) , we re- 
cognize that they are in general associated with subjective 

methods of observation. This subjectivity would appear to 

defeat the goal of being able ia develop quantitative mea- 

surements for radar images since the variability of the hu- 

man observer's judgement is introduced into the process. It 

makes it difficult because we desire tc perform objective 

measurements on images and process these data in some ra- 

tional fashion in order to arrive at a specific conclusion 

with respect to the quality of an image in a form that is 

intuitively satisfying. In addition, we desire to minimize 

the number of measurements needed to arrive at an assessment 

of the quality of an individual image. This requires that 

we determine a set of image metrics that are independent of 

each other, or in other words, the mztrics must be orthogo- 

nal . 
Our first approach to the establishment of an appropriate 

set of image recognition/interpretation elements was to at- 

tempt to quantify the cues trained image interpreters use as 

they interpret a variety of features and targets. In this 
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way, we hoped to establish a rank-ordering of importance or 

utility of the various subjective interpretation elements. 

While we are not abandoning this approach: our current ex- 

perimental protocol involves a more basic view of photo- 

graphic image quality metrics as applied to synthetic aper- 

ture radar produced imagery. The results are not expected 

to correspond with those related to photographic imagery for 

the following reasons: 

(a) The dynamic range of SAR data is markedly greater 

than that of phographic data. 

(b) Distortions introduced in the imaging process due 

to geometric propagation phenomena are not uniform 

across an image, i.e., the effects of foreshorten- 

ing and layover. 

(c) The primary noise in SAR imagery is multiplicative 

background clutter return noise rather than addi- 

tive noise as is the case with photography. There 

may be additive noise introduced by the receiver 

thermal noise, processor noise, and in some imple- 

mentations, transmitter noise leakage. A further 

source of additive noise is film grain if photog- 

raphy is used to record the SAR image. However 

the dynamic range of the background clutter return 

is normally much greater in magnitude than the sum 

of all the additive noise sources. 
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4.1 l2mJuuM MEI'RICS 

It is clear from the foregoing discussion that there is 

not a one-to-one correspondance between the set of image in- 

terpretation/recognition elements and the set of image char- 

acteristics that can be directly quantified. Because ot 

this, we conclude that it would be very difficult, if not 

impossible, to relate each metric directly to a visual cue. 

A more basic approach was needed. 

4.2 ~ C R X S E L E C T I O N  

There are a variety of approaches for metric selection 

but it is not clear which best discriminates a series of im- 

ages. One which is intuitively very satisfying is that of 

determining the principal components of the overall cluster 

in N-dimensional feature space. This is a well recognized 

procedure in statistics and pattern recognition in which the 

major and minor axes of the hyper-ellipse cnntaining all'the 

feature vectors is determined [ 9 ) .  This set of axes is, by 

definition, orthogonal. Since these axes are described in 

terms of the coordinate system of the feature space, it may 

be possible to identify a subset of these measurments that 

are the primary constituents needed to classify an image as 

having some desired property. This leads directly to the 

procedure of assigning a subjective assessment of image 

quality to each image according to some set of quantified 

image parameters. 
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4.3 IMAGE s2suumx 
If we perform a clustering analysis of the feature space 

using an interpreter study derived image quality assessment 

a8 our criteria, we can divide the overall set of image me- 

trics into subsets representing various levels of image 

quality for a specific application. Having identified these 

subsets, we may then determine classification surfaces in 

terms of the objective image metrics that will sort the im- 

ages according to their assessed quality. This being done, 

the task of assessing the quality of a specific image be- 

comes one of measuring the identified metrics, and observing 

where in the feature space the pattern vector representing 

this image falls with respect to the classification surfaces 

established. This is a process which is amenable to being 

completely mechanized. That is, an assessment of image 

quality may be produced without recourse to the variabilites 

associated with human observers. 

The foregoing is, of course, entirely dependent on the 

existence of separable Cluster8 in the feature space. If 

the clmters are non-separable, then a single measure or- 

iented along the major axis of the distribution would suff- 

ice to measure the relative quality of the measured images. 

However, our initial estimate is that the clusters will in 

fact, be separable based on the work performed by Frost, et 

a1 [ 1 4 ] .  Consequently, we do not expect to obtain a single 

measure of image quality, but rather a complex multi-dimen- 
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sional image quality surface upon which the influence of 

image metric8 will vary depending upon the purpose for which 

the image is utilized. It is worth recalling that what this 

all amounts to is a statistical procedure for selecting a 

subset of the properties of an image that: (a) can be mea- 

sured objectively; and (b) can be used to rank-order a set 

images in accordance with a group of human obser- 

vers/interpreters. 

- 35 - 



Chapter V 

PROGRESS TO DATE 

We have observed that some seven objective metrics are 

generally believed to show promise as a way of characterlz- 

ing the quality of an image. They are: 

(1) The dynamic range of intensities in the displayed 

image . 

(2) The system signal-to-noise ratio. 

(3) The system spatial bandwidth or bandpass. 

(4) The system xesolution or acutancc. 

(5) The normalized-mean-square-error (NMSE) as a mea- 

sure of geometric fidelity. 

(6) The perceptual-mean-square-error (PMSE). 

(7) The radar threshold quality factor (RTQF) 

Our plan is to test the validity of these assumed metrics 

by constructing a series of simulated synthetic aperture ra- 
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dar (SAR)  images in which one or more of the above named 

elements are degraded by varying amounts. We are presently 

engaged in the programing effort involved in applying selec- 

tive levels of degradation to our simulated SAR images. The 

SAR simulation program itself has been tested extensively 

and we consider it to be well validated and ready for use. 

With the compendium of good and degraded SAR images in hand, 

we will proceed to the interpreter portion of the study 

which will be followed by a period of statistical analysis 

effort to develop the relationships between the objective 

metrics and each of the interpretation/recognition elements 

and overall image quality. 
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