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MATHEMATICAL ENHANCEMENT OF DATA

FROM SCIENTIFIC MEASURING INSTRUMENTS

Introduction

The accuracy of any physical measurement is limited by

the instruments performing it. The proposed activities of this

grant are related to the study of and application of mathema-

tical techniques of deconvolution. Two techniques are being

investigated: an iterative method and a function continuation

Fourier method. This final status report describes the work

performed during the period July 1 to December 31, 1982.

Discussion

During the academic year 1982-83, the Principal Investi-

gator is on leave from her position as Professor of Physics at

Xavier University. Her present position is as a Geophysicist

Data Processor processing seismic data for Texaco in New Orleans.

Geophysical processing includes deconvolution and therefore is

closely related to the goals of this grant. Various schools

and short courses have been attended to provide a broader back-

ground in geophysics.

The NASA Technical Officer for this grant, Dr. George M.
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Wood, Jr., spent the summer in New Orleans working with Dr.

George E. Ioup, of the Department of Physics at the University

of New Orleans, and with the Principal Investigator. The research

performed is described in the paper, "Iterative and Function-

Continuation-Fourier Deconvolution Methods for Enhancing Mass

Spectrometer Resolution." A c ,apy of the current draft of this

paper is attached. It will be submitted for publication in the

International Journal of Mass Spectrometry and Ion Physics.

Publication

The abstract of a talk presented at the Louisiana Academy

of Sciences, "The Convolution Integral in Geophysics," has

appeared in the Proceedings of the Louisiana Academy of Sciences,

Vol. XLV, page 193, published in 1982.
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ITERATIVE AND FUNCTION-CONTINUATION-FOURIER DECONVOLUTION

METHODS FOR ENHANCING MASS SPECTROMETER RESOLUTION*

Juliette W. Ioup, Physics/Pre-Engineering Department, Xavier
University, New Orleans, LA 70125, and Texaco,t P.O.Box 60252,
New Orleans, LA 70160,

George E. Ioup, Department of Physics, University of New Orleans,
New Orleans, LA 70148,

Grayson H. Rayborn, Jr., Department of Physics and Astronomy,
University of Southern Mississippi, Hattiesburg, MS 354011

George M. Wood, Jr., NASA Langley Research Center, Hampton, VA
23665, and

Billy T. Upchurch, Department of Chemistry,, Old Dominion Univer-
sity, Norfolk, VA 23508.

Abstract

Mass spectrometer data in the force of ion current versus

mass-to-,charge ratio often include overlapping mass peaks,

especially in low and medium resolution instruments. Numeri-

cal deconvolution of such data effectively anhances the resolu-

tion by decreasing the overlap of mass peaks. In this paper

two approaches to deconvolution are presented: a function

domain iterative technique and a Fourier-transform method which

uses transform domain function continuation. Both techniques

include data smoothing to reduce the sensitivity of the decon-

V.
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volution to noise. The efficacy of these methods is demonstrated

through application to representative low resolution mass spec-

trometer data and the deconvolved results are discussed and comw

pai.ed to data obtained from a spectrometer with sufficient resolu-

tion to achieve separation of the mass peaks studied.

*Supported in part by NASA Research Grants NAG 1-16 (Xavier Uni-

versity), NSG-1460 and NSG-1648 (University of New Orleans), and

NSG-1285 and NSG-1380 (University of Southern Mississippi).

tPresent address.
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ITERATIVE AND FUNCTION-CONTINUATION-FOURIER DECONVOLUTION

METHODS FOR ENHANCING MASS SPECTROMETER RESOLUTION

Introduction

The accuracy of any physical data measurement is limited

by the resolving power of the instrument performing the measure-

ment. There exist, however, suitable mathematical techniques

which may be applied in order to increase the useful information.

which may be extracted. Broadening or lack of resolution in the

experimental data may be described by the convolution integral

if the system is shift invariant, i.e., if the response of the

system does not change significantly as the measurements progress.

If the response of the system is known,one may go from the de-

tected signal at least partly back to the ideal, or unbroadened,

signal by using mathematical techniques of noise removal and

deconvolution.

A parallel problem in data collection is that of noise,

which is present in all measurements. The adjustment of instru-

mental parameters to enhance resolution decrer;ses the signal-to-

noise ratio, with a resultant loss of sensitivity. The analysis

of mass spectrometric data may therefore be facilitated by the

use of deconvolution with noise removal features since this
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$ process is able to separate the signal from some of the noise.

Mass spectrometer data in the form of ion intensity versus

mass often include overlapping mass peaks, especially in low-

to-moderate resolution spectrometers. For such poorly resolved

data, the identification of masses and relative abundance'measure-

ments can be difficult. Effective increase of the resolution

by numerical deconvolution of the data can increase the separation

of overlapping peaks and lead to improved analysis.

In this work two approaches to deconvolution are used: a

function domain iterative technique and a Fourier method which

uses transform domain function continuation. These techniques

are UrAelly discussed irl ULIC LUIlo ing, seCL1V[1s

Iterative Method of Deconvolution

Let h represent the observed distribution of data, f the

true or ideal distribution, and g the apparatus or instrument

response function. These quantities are related by the convolu-

tion of f with g:

C
h(x) =

	
f(y) g (x-y) dy c f * g	 ^1)

Physically this means that the ideal or true data describing the

physical process, f, are smeared out or broadened by the measuring

apparatus or other experimental features, all represented by a

response function, g, to produce the data, h, which are actually

observed, The problem is to remove.the broadening effects and

7



obtain the ideal f from the measured h by deconvolution. Mathe-

matically this is described as solving a Fredholm integral equa-

tion of the first kind with a difference kernel.

Morrison's iterative noise removal technique first smoothes

the data, then iteratively restores the non-noisy output and the

compatible noise. It was designed specifically to prepare data

for deconvoluticn. The initial smoothing produces data hl:

hl = h * g	 (2)

The nth restoration is given by

h,,, = h.,	 + (h - h„ _ i ) * g	 n	 1	 (3)
•L	 Li-.Lr	 ^^ ^

After the data are smoothed and then resotred the selected number

of iterations, van Cittert's iterative deconvolution or unfolding

method may be applied. The first unfolded f is assumed to be

the same as h:

fo w h	 ,	 (4)

while the nth unfolding is given by

fn	 fn_l + (h - fn-1 * g)	 a	 (5)

A major difficulty of the iterations is that they do not converge

for most response functions. The iterative approach has been

modified by one of us so that convergence is achieved.
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It is necessary to study the particular data to be treated in order

to determine the number of smoothings and the number of unfoldings

needed. Convergence checks can be applied to the output of each

successive smoothing and unfolding. The usual procedure is to

compute several iterations and compare the output from each. In

general, for noisier dita, after the initial smoothing, fewer

restorations and also fewer unfoldings should be used since

deconvolution awplifies noise. In mass spectrometer data, the

signal-to-noise ratio is affected by the slit widths in the in-

strument as well as other factors. In any experiment there is

typically a trade-off between the instrument resolution and the

noise in the data. If the instrument is tuned for more resolu-

tion, the signal -to-noise ratio will decrease. When there is more

noise present in the data at high resolution, smoothing may be

emphasized. When there is less noise present with lower resolu-

tion, deconvolution may be emphasized. Judicious application of

the mathematical treatment will in either case enhance the infor-

mation obtained from the raw data.

Function-Continuation-Fourier Method of neconvolution

The Fourier transform may be used to deconvolve data because

the convolution in the function domain,

h = f * g
	

(1)

u

becomes R simple multiplication in the Fourier transform domain
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according to the convolution theorem. Let the Fourier transforms

be represented by capital letters, i.e., the Fourier transform

of f is F, etc.:

00

F(s) =	 J	 f(x) exp(-12lrxs) dx	 (6)
co

The inverse Fourier transform is

f(x) = J	 F(s) exp(i27fxs) ds	 (7)
- Co

The equation in the Fourier domain corresponding to the convolu-

tion in the function domain is given by the convolution theorem,

H = F G	 0	 (8)

F may be obtained by

F = H/G	 ,	 (9)

if G is not zero. The inverse Fourier transform is then computed

to obtain f. This procedure is generally called transform domain

inverse filtering. Since noise often predominates at high fre-

quencies, the high frequency part of the sp^:ctrum is generally

deleted (a process called (ideal) low-press filtering) before

inverse filtering.

Because of the noise problem at high frequencies, only the

low frequency values are used to calculate a solution f1 in the

function continuation Fourier method. Since the higher frequencies

are often important for obtaining improved resolution, the result

h
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f
t
 obtained from the low-pass inverse filterin g is enhanced

by the technique of function domain fitting. In, this procedure

an artificial function, a, is constructed by fitting an appro-

priate function (in this case a Gaussian) to the peaks of the

Function ft . 'the Fourier transform A is obte,ned, and the Fourier

coefficients of A and F are compared. Because of the noise domi-

nance at high frequencies, the high frequency coefficients of F

are replaced with the high frequency coefficients of A, which are

not affected by noise. The low frequency components of F, which

determine the principal features of the devonvolved result, are

unchanged.

+ {41ue-roa fil tering to1 ---	 ^.	 1	 Td .^. 1.+^.^_^ nnna	 - terRecently, Htuaya et ax apt,licM 

mass ,analyzed data to remove the parent ion beam spread. They

obtained significantly improved resolution, but because they gave

up the high frequency information to obtain smoothing and because

they were only removing parent ion beam spread, the improvement

was not as much as it could have been. Both approaches in this

paper include some high frequency information. The iterative

deconvolution approach resotres an increasing amount of this

information with each iteration. It also uses a function-domain

non-negativity constraint to determine the high frequency part

of the spectrum. The function continuation-Fourier method uses

an artificial function to restore the high frequencies.

Some other aspects of the procedures of Amaya et al merit

discussion. In recording the data, they reduced the size of their

11
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data file by keeping of

with m determined by

can possibly introduce

filtered. In order to

ily one in a selected number of points, m,

the size reduction needed. Such an approach

aliasing error if the data are not first

account for differing mass-to-charge ratios

of parent and daughter ions, the main beam peak also had points

deleted. To reduce aliasing (referred to as a low frequency

pattern by the authors) successive three-point smoothing was used.

This smoothing does reduce aliasing, but it may also have an

undesirable effect on the deconvolution. The smoothing is equiva-

lent to multiplication by (sinl^(ws/OVS) n in the transform domain

(with s the transform domain variable, n the number of times the

smoothing is applied, and w determined by the number of points

averaged), and if n is small, large sidelobes are possible in the

transform domain which could distort a subsequent deconvolution.

After deconvolving, Amaya et al set negative oscillations

to zero. This method of applying constraints after the solution

is obained is not advisable since the result is no longer a solu-

tion to the convolution equation, the area relation of the con-

volution is no longer preserved, and the constraints cannot bene-

ficially affect the rest of the solution. Both the present approaches

use the minimization of negative excursions to extend the transform

solution to higher frequencies without affecting the low-frequency

part of the transform. The iterative procedure strictly conserves

area and the Fourier-related method can easily be adjusted to do

so. Amaya et al also keep maximum intensities equal before and

12



~	 after deconvolution. This may not be a desirable procedure since

sharpening a peak will cause its height to increase if area is

to be conserved.

Application to Mass Spectrometer Data

Mass spectrometer data are usually presented in the form of

mass peaks, that is, the intensity of the ion current plotted

versus mass. The peak height, or more generally the area under

the peak, is propgrtional to the relative abundance of that mass.

If there is any ovet.lap, peak location and area or height will be

correspondingly in error. Therefore it is desirable to unfold

the Overlapping peaks to obtain enhanced resolution, for better

qu(,f 	 ica tion .

The choice of the response function will affect the resulting

deconvolved data. In mass spectrometry, even if the exit slit

of the spectrometer is made infinitesimally narrow, there will

be a finite intrinsic width of the resulting mass peaks because

of other effects, e.g., the intrinsic spatial distribution of

the ions. The response function for the deconvolution is sometimes

chosen as a Guassian for mass spectrometer data. A better function,

however, is one obtained for the particular instrument. The response

function describing the instrumental and other broadening factors

in the experiment can be determined by using an isolated mass

peak near those being deconvolved if the input is assumed to be

a
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a delta function. The response function may be approximately a

Gaussian curve but i r, general it is not.

The data treated were obtained from a five-inch radius

Dempster magnetic deflection mass spectrometer (CEC 21-104).

The resolution of the instrument was adjusted by varying the exit

slit width. The highest resolution used was about one part in

2500.
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	 The data shown in the figures (except for the response

functions) are for mass spectrometer scans across :Hass 16.

An isolated mass peak for argon, mass 19.9826, was used to deduce

the response t^inction. The first set of figures (Figs. 1-5)

is based on data obtained from a mixture of oxygen (mass 15.9949)

and methane (mass 16.0312) taken at two intermediate exit slit

widths, one narrower than the other but neither having high

enough resolution to separate the two peaks. The oxygen abundance,

was much smaller than that of the methane, producing a difficult

case for deconvolution. The abeance of high frequencies in the

response function of the instrument limits the amount of high

frequency restoration possible in deconvolution, especially with-

out the application of constraints. The missing high frequencies

can produce Gibbs oscillations, also called sidelobes or spurious

oscillations. The Gibbs oscillations about the baseline of

a large mass peak can easily

14
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overwhelm a neighboring small peak. Low-pass inverse filtering

is not in general capable of deconvolving to resolve the smaller

peak.

In Fig. 1, curves A and B are the wider slit and narrower

slit original data, respectively, while curves C and D are the

wide and narrow slit argon peaks, used as response iucrct-ions.

The mass scale in Fig. 1 was chosen to give an expanded view of

the original data. The ordinate is an arbitrary intensity scale.

New abscissas and ordinate scales are needed for Figs. 2 through

4 to show the deconvolved results. The same scales are used for

all three figures. Fig. 2A is the original wider slit peak

(Fig. 1A) drawn to the new scales. The low-pass inverse-filtered

result is in Fig. 2B. Although the first positive side lobe on

the left of the methane peak is larger than the corresponding

lobe on the right, one would be hard pressed to identify the oxygen

peak. The function-continuation-Fourier method, Fig. 2C, offers

considerable improvement. There remains enough side lobe effect,

however, to make interpretation of the oxygen peak difficult.

Fig. 2D gives the iterative result of 30 noise removal iterations

and 150 deconvoluti.on iterations. The Gibbs oscillations have

been suppressed and the oxygen peak can be quantified with some

confidence.

Fig. 3 presents a similar set of operations on the narrower

slit data. The original data are curve A. The "low-pass inverse-

filtered result (curve B) is again dominated around the baseline

It
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by the Gibbs oscillations. The function-continuation-Fourier

result (curve C) gives marked improvement,while the result of

30 noise removal iterations and 100 deconvolution iterations

(curve D) allows accurate determination of the peak height and

area for the oxygen peak.

In Fig. 4, the iterative deconvolution results for the

wider and narrower slit widths (curves C and D) are compared

to show that the two agree. The original data are shown in curves

A and B. The difference in intensity of the two results is

reflective of the decreased signal available with a narrower slit

width. An interesting lesson is that the choice of the highest

available instrumNent-I resolu tion sloes not necessarily lead to

the optimum deconvolved result.

In iterative deconvolution the sidelobes are surpressed

gradually as the constraints are applied at each iteration.

Eliminating the negative lobe causes the corresponding positive

lobe to be reduced also. If, as in our case, the large peak sidelobes are

comparable in size to an adjacent small data peak,the latter can be seri-

ously affected by the lobes superimposed on it. In the early iterations,

before the constraints have had sufficient effect, the deconvolved

result may therefore be misleading. This is illustrated by Fig.

5. New ordinate and abscissa scales have been selected for

clarity. The original narrower slit data is given by curve A.

Curves B, C, and D are the results of 30 noise removal iterations

and 10, 20, and 100 iterations of deconvol.ution,respectively.

A



f"

After ten iterations a peak appears at an incorrect location.

At twenty iterations the indication is that small amounts of

two masses are present, neither at the correct oxygen location.

Finally, as the iterations converge, the constraints have their full

effect and the oxygen peak is revealed correctly, in agreement

with the wider slit data.

The second set of data, Figs. 6 through 9 (all drawn with

the same ordinate and abscissa scales), also show a mixture of

oxygen and methane. For this case, however, the higher resolu-

tion slit width was narrow enough to resolve the two peaks. The

narrower slit data were therefore not deconvolved, although they

could have been had more sharply defined data been needed.

Rather they were used to check the correctness of the deconvo-

lution of the low resolution result. For this experiment the

oxygen and methane abundances were more nearly the same than

the abundances in the previous case, so that neither peak is

as seriously affected by the Gibbs oscillations of the other

after deconvolution as the oxygen peak in Figs. 2 and 3.

In Fig. 6A the wide slit oxygen-methane data are shown

and in Fig. 6B the argon data, resolved with the same exit

slit width to reveal the instrument response. Because this

response is so broad compared to the separation of the two

peaks, it is difficult to determine from an examination of curve

A just how many species are present and in what abundances.

The original data are repeated in Fig. 7A for comparison.
I.
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Fig. 7B is the result of 30 noise removal and 50 deconvolution

iterations. It may be compared to Fig. 7C which is the narrow

slit data. The deconvolution has correctly disclosed the loca-

tions and areas of the two peaks.

A small peak has also appeared to the right of the methane

in Fig. 7B, at mass number 16.0605. We suggest three possibili-

ties for this peak. The first is that it is an uncancelled posi-

tive Gibbs oscillation. The second is that it is due to the

formation of a metastable ion by decomposition in the field-

free drift region of the mass spectrometer. The third sugges-

tion is that it is due to a long, slow-decay tail on the high

mass side of the oxygen peak that characterized all the oxygen

peaks and none of the other mass peaks observed in our work.

As yet, the cause of this tail is unknown, although it may be

due to an oxygen-surface interaction in the electron multiplier.

If the oxygen tail can be modelled as a convolution with the

other instrumental broadening factors, then deconvolution would

not produce a spurious peak from the tail effect, only a skewness

in the deconvolved oxygen peak. If the tail cannot be described

by a convolution model, however, then the effect of deconvolution

is not easily predictable. Work is continuing to discover the

cause of the oxygen tail and to characterize it and also to

determine whether metastable ions are formed.

The fourth and still smaller peak on the right in curve B

18
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of Fig. 7 is almost certainly an uncencelled positive Gibbs os-

cillation. Such lack of cancelling can occur when the Gibbs

oscillations of two large adjacent peaks interfere with each

other and the amounts of positive and negative areas in the lobes

are no Longer nearly equal. That this is the likely interpre-

tation for this peak can be seen in the next two figures. As

both these small peaks show, the results of deconvolution must

be examined carefully for effects due to the absence of high

frequencies. In addition, if steps are not taken to reduce

the noise sufficiently, then the noise amplification which

generally occurs with deconvolution can also add spurious oscil-

lations.

Fig. 8 consists of the original data (curve A), the result

of low-pass inverse filtering (curve B), the function-continuation

Fourier result (curve C), and the narrow slit data (curve D).

Both deconvolution methods correctly delineate the two main

peaks. Both also include significant sidelobes'although these

are reduced somewhat by the function -continuation method.

A comparison of the iterative (curve A) and the function-

continuation Fourier (curve B) deconvolutions are contained

in Fig. 9. The two approaches show good agreement for the main

peaks. The juxtaposition also reveals that the small peaks of

the iterative result may well both be remnants of what are

probably Gibbs oscillations exhibited in curve B. This case

illustrates the usefulness of employing more than one approach

to deconvolution to aid in identifying features correctly.

19
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FXCUKE CAPTIONS

Figure 1. First case original oxygen-methane data at mass 16

for two exit slit widths and argon data at mass 20

and the same slit widths for instrument response

determination: A) wider slit, mass 16 data, B) nar-

rower slit, mass 16 data, C) argon wider slit data,

and D) argon narrower slit data.

Figure 2. First case original and deconvolved wider slit width

data; A) original data, B) after low-pass inverse-
Is

filter, C) after function-continuation Fourier decon-

volution, and D) after 30 noise removal And 150 deco-=

volution iterations.

Figure 3. First case original and deconvolved narrower slit

width data: A) original data, B) after low-pass

inverse-filter, C) after function-continuation Fourier

deconvolution, and D) after 30 noise removal and

100 deconvolution iterations.
a

Figure 4. First case original and iteratively deconvolved wider

and, narrower slit data: A) wider slit original data,

B) narrower slit original data, C) wider slit data

after 30 noise removal and 150 deconvolution iterations,

and D) narrower slit data after 30 noise removal and

100 deconvolution iterations.

Figure 5. First case narrower slit data, original and different

numbers of deconvolution iterations, to show constraints

24



gradually suppressing the effects of Gibbs oscillations:

A) original data; 30 noise removal and B) 10, C) 20, and

D) 100 noise removal iterations.

Figure 6. Second case: A) original wide slit oxygen-methane

data and B) original, argon data for response determination.

Figure 7. Second case; A) original and B) iteratively decon-

volved (30 noise removal and 50 deconvolution iterations)

wide slit data; C) original narrow slit data.

Figure 8. Second case: A) original., B) low-pass inverse filtered,

and C) function-continuation Fourier deconvolved wide slit

data; C) original, narrow slit data.

Figure y . Two different deconvolutions of the second case original

wide slit  data to show that the extra peaks in the iterative

deconvolution could be due to uncancel.led positive lobes

of Gibbs oscillations: A) result of 30 noise removal and

50 deconvolution iterations and B) result of function-

continuation Fourier deconvolution.
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