
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



qq5^ ^ 754

INSTITUTE OF GAS TECHNOLOGY
IIT CENTER

CHICAGO. ILINOIS 60616

(NASA-CR-16 gcs12)	 HYBFID FUEL CELL/rIESEL	 N83-19217
GENESATICN TOTAL ENERGY SYSTEM, PART 2
Final Report, Apr. - Sep. 1982 (Institute of
Gas Technology) 88 p HC A09 /9F An1 CSCL 10A	 Unclas

G3/44 02829
t.„L,

Part II. HYBRID FUEL CELL /DIESEL	 4
	GENERATION TOTAL ENERGY SYSTEM	 v FFB 190

EE
^ EO

Final Report
(April-Septerber 1982)

1

by

Christopher F. Blazek

Project 65096

for

Jet Propulsion Laboratory

• i

November 1982

This work was performed under JPL Subcontract No. 956210 for the Jet
Propulsion Laboratory, California Institute of Technology, Sponsored
by the National Aeronautics and Space Administration under
Contract NA97-100

I N 5 T I T U T 1	 0 F	 0 A 6	 T E C M N 0 L 0 0 Y



i

S

I •	I

Fuel L,eli aySEems nna

Methanol Fueled

1
	 Natural Gas Fuel

Fuel Cell System Cost

ICONCLUSIONS AND REC(1

REFERENCES

I^
APPENDIX A

APPENDIX B

APPENDIX C

i

1
i

i
f
I

I:
l:

1 I•	 I N S T I T U T E

Z.

3

8

12

21

23

25

37

45

iysis

System

ed System

Comparison

MENDATION S

PRECED!NG PAGE BLANK NOT FTLO70

Iii

0 F	 G A 6	 T E C H H



LIST OF FIGURES

Figure No. Page

1 Methanol Fueled Nonintegrated Conceptual Fuel Cell Flow

Schematic 4

2 1.dtural Gas Fueled Nonintegrated Fuel Processing Subsystem 9

3 Commercial Power Load Profile for Goldstone Complex During
February 1978 13

4 Commercial Power Lard Profile for Goldstone Complex During
August 1978 14

5 Low Pressure Steam-Hydrocarbon Reforming Hydrogen Process 29

6 Oil Partial Oxidation Hydrogen Process 31

7 Hydrogen Production Costs vs. Plant Capacity, 1981 Basis 35

8 Fuel Cell Types 39

9 Conceptual Diagram of a Phosphoric Acid Fuel Cell 42

10 Illustrative Cell Configuration 42

PRECEDING PAGE BLANK NOT FILMED

V

I N S T I T U T E	 0 F	 G A S	 T E C H N O L O G Y

,1



LIST OF TABLES

Table No. Page

1 Assumptions Used in Systems Analysis 3

2 State Points of Methanol Fueled Nonintegrated System 6

3 Performance Summary of Methanol Fueled Nonintegrated System 7

4 State Points Natural Gas Fuel Processing Subsystem 10

S Performance Summary of Natural Gas Nonintegrated System 12

6 Methanol Prototype 2.6 MW(e) AC Phosphoric Acid Fuel Cell
Plant Nonintegrated Direct Capital Costs — 1981 Basis 16

7 Natural Gas Prototype".6 MW( e	AC Phosphoric Acid Fuel Cell

Plant Nonintegrated Direct Capital Costs — 1982 Basis 17

8 Constraints for Fuel Cell Powr Plants 19

9 Goldstone Yearly Energy Consumption and Categorized End

Use Consumption 20

10 Energy End-Use at the GDSCC 20

11 Savings-to-Investment Ratics for Commercial and Prototype
Natural Gas and Methanol Powered Fuel Cells 21

12 Efficiency, Process, and Utility Requirements of 	 Steam
Ref --r.ing Natural Gas for the Production of 97% Pure Hydrogen 29

13 Gasification of Heavy Oil 33

14 Economics of Hydrogen Manufacture in Small Reformers 36

F^HtGE^1NG VAGC BLAP1K NOT OWED

vii

I N S T I T U T E	 O F	 G A S	 T E C H N O L O G Y



r
i

J

OMGINAL PAGE 19

Suoma ry
OF POOR QUALITY

The objective of this study was to perform a technical and economic com-
1

parison between meeting the Goldstone Deep Spece Communications Complex's

F	
(GDSCC) electrical and thermal requirements with the existing system and with

fuel cells. Fuel cell technology selection was based on a :985 time frame for

t4	 installation. As part of this analysis the most cost-effective fuel feedstock

for fuel cell application was identified. Fuels considered in this investi-

gation included diesel oil, natural gas, methanol, and coal. These fuel

feedstocks were considered not only on the cost and efficiency of the fuel

conversion process, but also on complexity and integration of the fuel

L
processor on system operation and thermal energy availability.

r	
After a review of fuel processor technology, catalytic steam reformer

technology was selected based on the ease of integration and the economics of

hydrogen production. (See Appendix A.) The phosphoric acid fuel cell was

it	 selected for application at the GDSCC due to its commercial readiness for near
i_

term application. (See Appendix B.) With these technologies sett--ted, fuel

cell systems were analyzed for both natural gas and methanol feedstock.

^•	 Although the methanol fueled system resulted in a lower capital cost, the

subsequent economic analysis indicated that a natural gas fueled system was

the most cost effective of the cases analyzed. Both the centralized and

dispersed system, when sized for the peak load, dic e not meet the thermal

1	
energy requirements at the GDSCC.

Introduction
i
f

i	 The market price of an energy source is an important criterion in deter-

mining the relative economics of utilization. But with fuel cells,

It	 hydrocarbon fuels must be co nverted to hydrogen. Therefore, the cost of

hydrogen production becomes an iverriding issue for fuel selection. In

jAppendix A of this report we deterained the more economical fuel feedstock for

conversion to hydrogen. Feedstocks that were considered for conversion to

hydrogen included natural gas, methanol, diesel fuel, and coal. In a later

section of this report the integration of the entire filEl cell system will be

analyzed to consider the operational benefits of the different technologies.

1
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Fuel Cell Sy stems Analysis8

The objective of this task is to determine the technical and economic

characteristics of a fuel cell system that can meet the existing electrical

and thermal requirements of GDSCC. A detailed analysis of the fuel processors

analyzed for this study is presented in Appendix A. Based on the relative

cost and complexity of integrating the fuel processor section with the fuel

cell section, both diesel oil and coal were eliminated from further

analysis. A more detailed analysis of catalytic steam reforming to p oduce

hydrogen was performed to determine the system impact when operating on a

natural gas or methanol feedstock.

Before the systems analysis task could be carried out, selection of the

most appropriate fuel cell type for GDSCC was necessary. Based on the

investigation in Appendix B, a phosphoric acid fuel cell was selected for use

at GDSCC. This fuel cell was selected over the molten carbonate, alkaline, or

solid o x ide because of the projectjd commercial availibility of the phosphoric

acid fue_ cell in 1985.

The remainder of this section will focus on determining the system

configuration and relative economics of a natural gas ai.J methanol powered

phospho r ic acid fuel cell plant. Both of these systems are similar in corn

figuration except for the fuel conversion section. Since electricity and

thermal energy are both desirable products in this study, each fuel conversion

section was designed as a nonintegrated component of the entice system.

Rather than recovering a substantial portion of the preheating and

vaporization energy from the cathode side of the fuel cell, the nonintegrated

design uses energy derived from the fuel for these functions. This

nonintegrated design has the advantage of lower capital costs and easier

conversion to a different fuel if economically advantageous in the future.

These advantages are offset by reduced system ef:ic-iency.

Another consideration in the design of this system was whether to use a

pressurized fuel cell. In general, smaller fuel cells (less than 100 kW) have

been designed to operate at near atmospheric pressure, whereas larger systems

(greater than 4 MW) tiave been pressurized. The incentives for operating a

fuel cell at elevated pressure include easier integration with the fuel

processor, increased reactant partial pressure, and higher cell performance.

Increases in cell performance can be considered as increases in current

2

I N S T I T U T E	 O F	 G A S	 T E C H N 0 l 0 G Y

1

i

1

I

1



ORIGINAL PAGE 18
OF POOR QUALITY

density; which reduce fuel cell size and cost. Problems are alsc a6soc.iated

with high-pressure operation, however, such as increased component corrosion

at the resulting higher voltage.

Pressurized operation also involves the recovery of energy fro:, prePeur-

ized gas for reuse in the system. The economy of recovering this energy is a

matter of economy of scale. In general, pressurized operation becomes

economically favorable at somewhere between 300 and 800 kW, but this is only

opinion. A detailed study is required to determine the actual transition

point. Since the exact determination of this transition point is beyond the

scope of this study, all systems above 500 kW were assumed to banefit from

pressurized operation.

The ass_.,mptions listed in Table 1 were used as a base in this analysis.

A 2.6 Mw (e) (ac) design was chosen to compare the two fuel alternatives. This

size corresponds to the peak load at the entire Goldstone Complex. * In both

designs a forced-draft, dry, cooling tower was included to handle _he fuel

cell thermal discharge during low or no thermal demand periods at Goldstone.

Incorporation of this cooling tower increases the thermal heat rate of both

systems by 200 Btu/kWhr (e).

Table 1. ASSUMPTION USED IN SYSTEMS ANALYSIS

Design Fuel Cell Power Level	 2.81 Mw (e) (DC)

Power Conditioner Efficiency	 0.96

AmDient Temperature
	

26.7°C (80*F)

Make Up :rater Requirements 	 none

Methanol Fueled Svstem

A flow diagram of a nonintegrated methanol fueled fuel cell system is

presented in Figure 1, and the accompanying mass balance is presented in

Table 2. In this design, heat from the combustion of anode off gases at

1093 * C (2000'F) is utilized in the fuel processing reformer subsystem. This

* Includes Pioneer (DSS-11), Echo (DSS-12), Venus, (DSSr 13), and Mars (DSS-

14) only.

3
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Figure 1. METHANUL FUELED NONINTEGRATED CONCEPTUAL FUEL CELL FLOW

SCHEMATIC

i
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energy drives the endothermic reforming reaction to generate steam and to

vaporl . ze the incoming methanol feed. In total, the fuel processing subsysten

receives fuel, hot water, and an effluent from the anode side of the fuel cell

^^	 to produce the hydrogen-rich gas required by the fuel cell. The hydrogen-rich

gas enters the fuel cell anode where 80% of the hydrogen is consumed. Recir-

culation of exhaust gases may be necessary to c,)ntrol temperatures In the

reformer and to avoid the formation 	 a vapor plume upon discharge.

The fuel cells are cooled by air and steam (stream 12) to an operating

average temperature of 177°C (350°F). The 177"C (350°F) cathode effluent is

cooled in the low-pressure steam generator. The steam generated is used in

the steam turbine. A portion of the cathode effluent that is not recir._'^ted

is expanded r-) generate additional steam at a supersaturated state. A sep-

arator recovers input water, and the resulting supersaturated steam can be

used to meet thermal requirements. A direct-contact condenser and a dry

(1	cooling tower are incorporated into the design to act as a thermal load when

electrical and thermal load requirements differ.

i' The rotating group consists of a steam turbine, air compressor for cath-

ode supply, recirculator, and expander. The steam turbine is small (approxi-

mately 261 kW, 350 hp) and is modeled with three stages. The combustion air

:te n is driven by an electric motor and is included in the fuel processing

s • ibsystem. The compressor for the cathode air requires the most power

(approximately 447 kW, 600 hp), while the circulator requires only about

160 kW (215 hp). Tne expander produces approximately 377 kW (505 hp). At

rated conditions, the steam turbine and expander can produce more power than

that required by the compressor and circulator; therefore, at rated conditions

11	
some steam (about 62) is bypassed (13) around the steam turbine. At partial

power, the compressor, circulator, and expander powers are appro.cimately

A	 proportional to flow rate cubed over pressure level. Steam generation is

(aa^	 approximately proportional to Dower level. Therefore, excess steam is

available to accelerate the rotating group.

•' The conceptual design of the steam generator is that of a recirculating

low-quality steam boiler with both a steam separator and a deaeratfng, feed-

water heater. The design -:^f this boiler can use highly finned tubes on the

recirculating gas side (due co the clean characteristics of the gas) to

Iproduce an efficient, compact, heat exchanger. The pinch point temperature

5

l"
^	 I N S T I T U T E	 O F	 G A 1	 T E C H N O L O G Y



OWGINAL PAGE 19

OF POOR QUAL"Y

.-^....^....^^^	 T 0 O OO O	 i...r...00v^ITOh h °°

	

L 00 0000000'1 ^1 N1 h -+..r 1n ~0000	 O p^ J 00
Ol \

	

u ^ .G "" h 00 pp 00 00 u'i v1 O ° r'1 r'1 f^1 ,,,^ J J	 611%O ^„^ h m h ^ ^ ^ ^ T T p^ O 4 aD
O h h J JJ J rlscnh 	 O-SrT N v0'T OhJ J 00000000co'Dr-
J f+'1 J W OC' 00 00 N N „• h,• .T J .T N N .4	 a' 00 O, r N N m M 0 N N v1 ^-•^/esvv^/v ^.s ^/vvv^^..+^„rvv^ v a.i v^v^vvv as	 as a.iv v v v

0 	 r-

	

r- h ^D D O 	 J ^T CJN O%	 CN D •T NNNNOOOJ
\ J 00 "D J' J 1 J 'D ^Dw "'' r --^ .T h h NC, J m .D m 00 00 P1 P1 v1

00	 00 Ln

	

^-y N f'1 PO'1 fr1 cn O O h	 ^ ^ ^	 ,̀'^, O	 00	 M	 N	 .-^N.r ,^.^ N h hin
00 00

	

z	 1	 1	 1	 1	 1	 10 0	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

	

O	 I	 I	 I	 I	 I	 I	 1	 O O	 1	 I	 I	 I	 1	 I	 I	 I	 1	 1	 1	 1	 I	 I	 1	 1	 I	 I	 I	 I	 1	 1	 I
C O

z

	

^^^QQQ	

U	 -^ -+

I I N ^D D C D I I I 1	 0, a\	 00	 1 I 1 I rV	 0` I I 1 I N N

	

=	 1 1 00 ^J J.T I I 
I I h 00 1 00	 (71	 1 1 1 1 00x000000 1 1 1 1 0000

tn 00000	 000 00 0	 00000	 00
Q	W	 I I co000^ 1 1 1 1 OJ J	 J.T	 ^D	 I I 1 1 co pp00J J I I I I CO cc

	

rF+•	I I pssJ J I I I 1 0MCN I O`O^	 O	 11 I	 OpOp^O^ I I 1 I CEO

	

O	 N 0 0 0 0	 X 0 0 0 0	 N N C14 0 0	 N N
C^ C	 O O O O C	 0 0 0 0 0 O	 0 0 0 0 0	 0 0

4

z v

	

"4	 u	 h O I 00 00 00 00 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 1	 I

	

z	 rJ	 N r I 'n Ln '-n v1 1	 1	 I	 1	 I	 I	 I	 I	 1	 I	 1	 I	 I	 1	 I	 I	 I	 I	 I	 I	 1	 I	 1	 I	 I	 I
O {. O
 Cl!

v1 N N N N

	

Z	 [+. U
C O O O O O

^ d

	

W	 .--I

	

W	 }	 p	 - ^'	 I	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 I	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

	

U	 O	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 I	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

C!

	

. j	 O O
Cz
S00 .t 00 wt

	

F-	 Ln 0: O ' .D 'D 'D .DI I	 h r, h° h Lr) r4 J NC)p 0 0 0 p O r^ h 0° 0 0 0 O

	

W	 C h C r -T J Y I 1 0 0 00 p^ p O h N M^ J O p 0 0 ^^ r p^ O p 0 0 0 .^ ^+
O-^ONNN,y	C 0 ^^^^O ^^0000000000r-.000000

	

F	 0000000	 -+-+000 -- 00000-- -+-+- c; 0 0 C-- ---00
z

	

O	 t1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 I	 I	 I	 I	 I	 I	 I	 I	 1	 1	 1	 1	 1	 1	 1	 1

	

O.	 O^	 I	 I	 I	 I	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 I	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

a
00

F-

	

Lr	 ^ ^
	 ..

	

6! r	 O	 Ln v1 O v1 O	 O O C , O m Lr) Lr)	 Lr) p .. ^ . • O CN O C .. ^	 Lr) v1

	

•	 it '"y	 J'1 vl r .-. r r r 00 h C O v1 v1 J rn J •-r	 r	 r M f"1 M .T J v) J v1 r'1 r•'1 r

	

N	 M	 +i v .v v v v v v a.i v v v v ^..^ a.i 	 r v v v v v v v
^	 ^ u

	

N	 W.^	 v1 _n O r'1 r" 1 r•'1 f'1 N h	 Lr^ v1 CO h 00 . ^1	 f•1	 r'1 h --^ .-.	 rn CD Ln h	 ^"1	 c'1 r1
-^ T	 J -Cr r O O O p Ln	 ,  J J^ p r1 O C C O N N r J en .• p N O a, p 0

	

-^ 	 1. r0 M M1 r r r V1 v'1 h'D en r•1 rn ry r" I .^ ^ r N	 O p M r1 cn C,4
1-

	

^	 v1 N O M p G O O J h v1 .0 J p C0 \D %0 ^ r .n O O .T ,D h L",^D 1D J O^ OcnE ^' M rn O% N ... h P' CO M N P'1 N m N N N 	 a, C N	 00 00 f" f N N	 O ry

h h to N .•. h M 4D r \D 00 N r N	 ^C %D .r _ h h v1 N J	 _ R7 h

	

u 	 P1 O L	 N J	 ^	
^N.r f'1
	 .D v1 N N ..-. 2r `r'^	 J r N r'1

r r-

0 .r

• -, N ri J v1 ^D h 0p CT	 .-• N P'1 J v1 .D h	 T p ^ N t'1 J v1 ,D h	 O^ p --r N r'1 pp .-ru r .--. 	 N N N N N N N N m Pl m r1
u
to ^ 00 ^+

6
1	 N	 S	 T	 I	 T	 U	 T	 E	 0	 iF	 G	 A	 S	 T	 E	 C	 H	 N	 O	 L	 O	 G Y

r

1



9

I

ORIGINAL PAGE f$

U

OF POOR QUALITY

difference is 9 - C (20'F), and the log mean temperature difference is 34'C
•
t (72-F) with a presaLre-lose ratio (AP/P) of 21.

The conceptual design performance summary is given in Table 3. 	 The poaier

Uoutput at the do bus is 2810 kW. The power conditioner efficiency is assumed

to be 96% so that power ava'lable at the, ac bus is 2697 kW.	 The parasitic

C
loads are 97 kW so that the net output power is 2600 kW. 	 The overall

electrical efficiency is 39%.

s

• Table 3.	 PERFORMANCE SUMMARY METHANOL FUELED NONINTEGRATED SYSTEM

Gross Electrical Output, kWe	(dc) 2810

Gross Electrical Output, kWe (ac) 2697

^. Parasitic Losses,	 (kW(e))

Pumps
r

T

Fans ( !poling Tower) 78

Vacuum Pump 1
(

1.
Air Compressor b Dryer 1

Cor.trols 10

r
Net Electrical Output, kWe (ac)	 2600

Input Energy (hhv - 6.3 kW-hr/kg)

1J	
(hhv - 9758 Btu/lb), kW-hr/hr (Btu/hr)	 6693.41	 (22.86 R 106)

1	 Overall Plant Efficiency	 0.39
i

j	 Heat. Rate, kW-hr/kW--hr (Btu/kW-hr) 	 (8791)

e !	Design Current Density, AL/m 2 (A/f t 2 )	 3229 (300)

Fuel Utilzation Factor	 0.8

Design Cell Voltage, V/cell)	 0.66

A
Required wh%n thermal load is not present.

•r Includes 0.059 kWhr /kWhr (200 Btu/kWhr) heat rate loss to cooling Lover.

The power plant is started with 205 kPa (15 psig) steam from an auxiliary

boiler, Thia steam is directed to flow up through the tubes of the steam

generator. This heats the water to saturation and pressurizes the steam

7
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lines. The condensing o: this steam requires that some water be removed to

maintain the proper water level in the steam drum. Once: the steam generator

is presr.urized, the air compressor is valved off at station (25) and vented to

the atmosphere, and the valve at station (16) is opened to the atmosphere.

The steam turbine can then be starter, w,iich drives the rotating group

(circulator).

Also, heat from the steam generator can be transferred to the fuel cell

by the recirculating gas. The recirculating gas temperature can be controlled

by utilizing the bypass station (35) to ramp up the temperature in a con-

trolled manner. After the fuel cells are heated to about 121% (250°F), the

fuel processing system can be started using methanol in the endothermic

reformer to produce fuel gas. The fuel gas car. then be introduced into the

anode while the air compressor vent valve is closed and the valve at (25) is

opened to introduce air into the recirculating stream fot the cathode. The

vent valve at (16) for the expander is closed, and the start-up steam is shut

off. This puts the plant i%to the normal control mode.

Thermal energy can be taken from two places. A stream of hot water can

be used from flows (31) and (21) before they enter the cooling tower system,

or energy can be extracted from the warm flue g.ses in stream (i). Howe v,—

this thermal energy is mostly available from 60° !^, C8% (140° to 190°'r).

This is adequate for meeting hot water needs, but will not suffice watee steam

above atmospheric pressure is required. }higher temperature thermal energy is

available at 132°C (269°F) and 338 kYa (49 psia) in stream (14). Tapping this

stream for steam will divert energy from the turbo machinery that is required

for compression. To increase the availability of thermal energy, the tubo

machinery section must be reo'_aced by electric motor drivers, thus lowering

the overall electrical generation efficienc;• A more detailed optimization

study is required to determine the best approach.

Natural Gas Fu eled System

A natural gas powered fuel cell is similar in design to the previously

described methanol system. The major change is in the feel processing subsys-

tem where the dashed line segment in Figure 1 is replaced by the natural gas

processing subsystem in Figure 2. The state points of this new system config-

uration that differ from the nonintegrated methanol design are shown in

Table 4.
8
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This nonintegrated design uses about 7% of the -coming natural gas feed

to supply the endothermic heat of reaction for the reforming step. 7he

remaining 93X of the natural gas feedstuck is heated to 322'C (611'F) and

mixed with steam In a mole ratio of 1.57/1 steam/methane. 7his mixture is

then heated to 729°C (1344'F) by combustion gases before it enters the

reformer. Approximately 95Z of the natural gas IF reformed -t 1520'1' before

it exits the reformer for cooling to 379 0C (714 0 F). At this point additional

steam is added to the synthesis gas mixture to adjust the mole ratios for the

high-temperateire shift reaction at 367°C (693 0 F). Two shift reactions convert

the carbon monoxide 'o hydrogen. Before entering the second-shift reactor the

gas is cooled to 166'C (330°F). After the exothermic reaction in the second

shift converter the gas ie again cooled to 177'C (350°F) before entering the

anode of the fuel cell.

IJ

After shift conversion and cooling, the synthesis gas is composed of

primarily hydrogen and carbon dioxide. Approximately 60% of the hydrogen

entering the fuel cell anode is utilized. The anode exhaust gases are then

used in a combustion reaction where a small amount of natural gas and 10%

exceGs preheated air are used to produce a hot gas with a temperature of about

1977°C (3590 0 F). This gas is then routed to the reformer to supply the heat

of reaction and to preheat the reformer feed and combustion air.

7he natural gas and methanol systems are very similar in design. The

l	
water systems differ be y ::-, se natural g p s reforming requires more steam at

greater temperatures. This lowers system efficiency. In addition, the

natural gas reformer subsystem is much more complex. Table 5 is a performance

summary of the conceptual design of the nonintegrated natural gas system.

Thermal energy can be taKen from the natural gas fueled system in two

places. As shown in Mable 5, thermal ever$ • can be obtained from the 110%

(230°F) exhaust combustion products leaving the reformer or from the hot water

leaving the low-pressure steam drum (stream 31,. As in the methanol systeri,

this thermal energy is of low quality and will probebly only be used to meet

hot water needs. Higher quality thermal energy can be obtained by replacing

the turbo machinery with electric drivers, thus lowering the electrical

generation efficiency, or by increasing the amount of natural gas that is

combusted for use in the reformer. This can increase the availability of

high-quality heat to the system. A more detailed analysis is required to

11
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l
optimize the production of both electricit y and thermal energy depending on

chermal energy quality requirements ar Goldstone. 	
1

I

Table 5. PEKFORMANCE SUMMARY NATURAL GAS (METHANE) NONINTEGRATED SYSTEM

G	 JGoss Electrical do Output, kW	 2810 

Gross Electrical ac Output, kW 	 2697

Parasitic Losses, kW(e)

Puvp s	 8

Fans (Cooling Tower) * 	78

Vacuum Pump	 1

Air Compressor b Dryer	 1	 i

Controls	 10

I

Net Electrical ac Output, kW 	 2600

input Energy, kWr/hr (Btu/hr)	 7056 (24.10 X 106)

Ovcrall Plant Efficiency	 0.368

Heat Rate, kWhr/kWhr (Btu/kW-hr) 	 2.71 (9270)

* Required when thermal load is not present.

**
Includes 0.059 kWhr/kWhr (200 Btu/kW-hr) neat rate loss to cooling towers.

Fuel Cell System Cost Comparisons8

As mentioned earlier, the methanol and natural gas powered fuel cell

systems are technically very similar. For this reason a detailed economic
1

evaluation is necessary to clearly determine the "best" fuel feedstock for

fuel cell operation at Goldstone. This comparison will focus on a fuel cell

size that is most appropriate to this analysis. Two sizes of the fuel cell

system were determined by combining the commercial power load profile for the
i

entire Coldstone complex and sizing the fuel cell to meet the peak electrical

demand. The peak demand was calculated by adding the system segment load

profile curves during the months of February and August. Figures 3 and 4 	
i

present the -ower load profiles for February and August 1978 for the Mars and 	 1

Goldstone system. The Goldstone electrical load profile curves include the

Echo, Venus, and Pioneer segments. The peak demand for the combined Goldstone

and Mars segments during February 1978 occurred during the 13th day when 	 i

demand reached nearly 2.6 MW as shown in Figure 3. Similarly, the peak load

12
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`	 in August 1978 occurred on the 2nd day when the demand peaked at just over

2.5 MW as shown in Figure 4. 'Therefore, a system size of 2.6 MW (ac) was

	

t	 chosen for the comparison. fie last fuel cell system analyzed differs from

the other two systems in the sizing philosophy. This system was sized to meet

the minimum monthly average electrical load. As shown in Table 9 this corre-

sponds to December 1981 when the load was approximately 1.1 million kW-hrs.

Averaged out over the month and using a 90% fuel cell utilization rate, an

	

u	appropriate fuel cell size cf 1.7 MW (e) was calculated for this case.

In the technical section the fuel cell systems were designed as noninte-

grated, self-sufficient facilities. Cost estimates for this size system are

based on prototype construction because these units are not generally comarr-

cially available. A summary of these prototype system costs :s presented in

Tables (, and 7 for the methanol and natural gas powered concepts, respec-

tively. These cost estimates have been updated to 1982 dollars. Based on the

Energy Research Corporation estimates of fuel cell stack assembly costs,

$375/kWe was used for the stack cost and $641/kW f was used for the installed

fuel cell assembly. Costs for the fuel processing section and all other major

	

1	
equipment were based on vendor estimates where possible. All costs include a

	

•	 25% Increase for IR&D, GdA, and fee.
f

The capital equipment in these tables includes equipment such as the

control trailer, HVAC, lighting, drainage systems, sewage systems, security

fences, fire protection systems, communication systems, landscaping, paving,

etc. Fuel handling and -,rocessing equipment including storage of liquid fuels

(for methanol), pumps, piping, fittings, insulation, vaporizer, (for liquid

	

`	 fuels), heat exchangers, reformer, shift ccnverters, combustor, blowers,

instrumentation, foundations, supports, etc. The rotating equipment and

auxiliaries systems account for the steam turbine and expander, condenser

separators, induced-draft cooling towers, air compressor system, filters, gas

circulator, piping, fittings, pumps, instrumentatior., foundations, supports,

etc. The electric generating system has a lo:+-pressure boiler system, recir-

culation ducts, fuel cell assemblies, piping and fittings, supports, instru-

mentation and controls, foundations, etc. Accesso ry electric equipment

consists of a power conversion system, data acquisiti ,)n system, instrumzn-

tation acid controls, diesel generator system (if required), etc. Other

miscellaneous power plant equipment includes the compressed air system for

15
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Table 6. METHANOL PROTOTYPE 2.6 MW AC PHOSPHORIC ACID FUEL CELL
(PAFC) PLANT NONINTEGRATED

DIRECT CAPITAL COST — 1982 BASIS

(THOUSANDS OF DOLLARS)

A,,--r A.T.. (2)

341 — Structure and Improvements
342 — Fuel Handling and Processessing(4)

• Fuel Handling
• Fuel Processing

343 — Rotating Equipment and Auxiliaries.
• Steam Turbine/Expander
E Condenser System
• Separator System
• Cooling Tower
• Air Compressor System
• Air Filter/Silencer System
• Cathode Exhaust Gas Circulator

• Miscellaneous Auxiliaries

344 — Electricai Generating System
• Low Pressure Boiler System
• Recirculation Ducts
• Fuel Cell System

345 — Accessory Electric Equipment
• Power Conversion System
• Instrumentation and Control
• DAS System
• Diesel Generator System

346 — Other Miscellaneous Power Plant Equipment

353 — Station Equipment
• Main Transformer s

Total Direct Capital Cost (1).(3) 	 4788	 z

(Land Not Included)	 ($1842/kW)

1
1 1I?kD, G&A, and Fee (25%) are included.

2 Federal Power Commission Uniform Systems of Accounts for Public Utilities	 j

3 EPRI Technical Assessment Guide 	

{
4 Cost of initial catalyst is included in fuel processor cost ($250 K).	 1

i

103

77

1045
30

1015
385
84

15
10
63
140

1
46

26
1730

46
18

1666
1165

813
185
116
51

126
260
260
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Table 7, GAS PROTOTYPE 2.6 NW AC PHOSPHORIC, ACID FUEL CELL
(PAFC) PLANT RONINTEGRATED

P:RECT CAPITAL COST — 1982 BASIS
(THOUSANDS OF DOLLARS)

Account No. (2)	103

341 — Structure and Improvements 77
342 — Fuel Handling and Processessing (4) 1383

• Fuel Handling 30
• Fuel Processing 1353

343 — Rotating Equipment and Auxiliaries 383
• Steam Turbine/Expander 84
• Condenser System 15

Separator System 10
• Cooling Tower 63
• Air Compressor System 140
• Air Filter/Silencer System 1
• Cathode Exhaust Gas Circulator 46
s Miscellaneous AuxiliarieE 26

344 — Electrical Generating System 1730
• Low Pressure Boiler System 46
• Recirculation Ducts 18
• Fuel Cell System 1666

345 — Acrenso-y Electric Equipment 1165
• Power Conversion System 813
• Instrumentation and Control 185
• I/AS System 116
• ;Diesel Generator System 51

346 — Other Miscellaneous Power Plant Equipment 126
353 — Station Equipment 260

• Main Transformer 260

Total Direct Capital Cost (1),(3) 5126
(Land Not Included) ($1971/kW)

I IR&D, G&A, and Fee (25X) are included.

2 Federal Power Commission Uniform Systems of Accounts for Public Utilities

3 EPRI Technical Assessment Guide

4 Cost of initial catalyst is included in fuel processor cost ($250 K).

0 F
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I
pneumatic valves, water treatment and storage, inerting system, hydrogen

system, sampling system, cranes, highlights, etc. Station equipment includes 	
1

the main transformer and any other site-related equipment interfacing with the 	 J

utility grid.

These plant costs are based on the cost of producing a prototype because

this type of facility is not commercially available. Actual capital costs

could drop by as much as 69% when and if full-scale commercial production

volumes are reached. This will probably not occur before 1985 or even 1990.

In addition to the direct costs, a 10% contingency factor is included in the

economic analysis to cover any indirect costs. Fixed operating and

maintenance costs were assumed to be $4.5/kW-yr, and variable operating and

maintenance costs were estimated to be 4.4 mills/kWhr. These O&M costs are

presented nt 1982 dollars and do not include fuel costs.

Natural gas price estimates were obtained from Southwest Gas Corp., which

supplies the Barstow area. Current commercial rates are $0.024 kW-hr ($0.70

per therm), which is about $7.00 per million Btu. Methanol fuel, which is

chiefly derived from natural gas, is estimated to cost 26.2¢/liter ($0.99 per
i

gallon), or $0.05 per kW-hr (S14.50 per million Ftu) including taxes.

In addition to the above information, the criteria in Tables 8 through 11)

were also used in the economic evaluation. Table 8 presents the technical

constraints of the fuel cell system. The most important criterion in this
7

table for the analysis is the projected 20 year project life, which is based

on the replacement of the fuel cell stack every 40,000 hours of operation.

Another recurring cost that is not shown in Table 8 but is included in the	 1

economic analysis is a $250,000 charge every 3 years for catalyst and chemi-

cals. Table 9 presents the energy consumption profile that was used in the

analysis. Table 10, which is based on fiscal 1981 data, presents LPG, diesel

fuel, and purchased electrical energy as well as a breakdown of end-use	 j

applications in the complex.

From these data we determined that a 2.6 MW fuel cell system (which was	
I

sized for the peak demand) could supply the Goldstone complex with electricity 	 1

at a 68% yearly load factor. With this use pattern nearly 56% of the

complex's thermal energy needs will be met by the fuel cell. This is based on 	 1

utilizing all thermal energy above 100°F. This does not include distribution	 I

thermal losses, nor was any attempt made to see •f the fuel cell thermal

output matched the thermal quality requirements of the complex.

18
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Table 8. CONSTRAINTS FOR FUEL CELL POWER PLANTS

Start up from cold (from standby to hold in 15 seconds) 	 4 hours
Start/stop once per week
Unatterded operation

	

'	 Modular construction
Minimumn to maximum	 - 1 second preferred

- 1 minute acceptable

Standby to maximum power - 15 second preferred
- 2 minute acceptable

Minimum Power	 — 0.65 MW
Projected Life*	20 years
Fuel Consumpiton @ 0 Net power, kW-hr/hr (10 6 Btu/hr) (hold)	 146.4 (0.5)
Reactive Power (-190* up to full MVAR rating)	 0.2 seconds

C * Cell stack replaced every 40,000 brs.

	

(•
	 For the life-cycle costing analysis the procedures of the National Bureau of

	

l:	 Standards Handbook 135 were followed. The analysis determines the savings-to-

r

investment ratio (SIP) for a retrofit-type project. Future expenses are

L
adjusted to present values. First, the total life-cycle cost without retrofit

is determined. A 20-year period is assumed (expected life of the conversion
s
Ior  retrofit). Savings with the retrofit are then calculated, and the SIR is

determined. The SIR's are in Table 11; life-cycle cost calculations are in

Appendix C.

The cost calculations in Appendix C include 12 different retrofit

	

(i	 analyses. We reviewed three different system applications that use natural

	

1	 gas or methanol feedstock and assume a commercially available or prototype

I
V	

system cost. Ibe first application assumes one centralized fuel cell to serve

	

"	 the entire complex and is sized for a 2.6 MW(e) peak load. The second system

analyzed a two fuel cell dispersed arrangement, which will reduce thermal

renergy distribution costs. This dispersed fuel cell system consists of a

	

f7	
1.0 MW (e ) fuel cell sized for the peak at the Mars busbar and a 1.6 MW (e) `uel

	'F	 cell sized for the peak at the Goldstone* busbar. The third system differs

from the other two systems in the sizing philosophy. Ibis system consists of

the centralized fuel cell sized at 1.7 MW (e) . This is of sufficient size to

meet the minirum monthly electrical load. In all applications the cost of

Goldstone includes Echo, Pioneer, and Venus only.

19
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thermal energy distribution and storage was ignored. A scaling factor of 0.3

was used to calculate the smaller fuel cell capital costs.

For each of the three system configurations a different cost calculation

was performed for methanol and natural gas. Because fuel systems are riot vet

a commercial reality, all the cost calculations were repeated to show the

estimated capital costs for a prototype system and the expected cost of a

commercially manufactured fuel cell system. Ibis resulted in the 12 different

calculations in ZBble 11. A savings-to-investment ratio greater than one

indicates that the investment is cost effective; thr ;iigher the ratio, the

greater the dollar savings per dollar spent.

As shown in Table 11 the only economically attractive case waF the cen-

tralized commercially available system sized for minimum monthly load, which

was fueled with natural gas. This system does not represent the optimum

system because this was beyond the scope of this analysis.

Table 11. SAVINGS- TO-INVESTMENT RATIOS FOR
COMMERCIAL AND PROTOTYPE NATURAL GAS AND

METHANOL P06TERED FUEL CELLS

Centralized Dispersed Centralized

Peak Load Peak Load Average Sized

Sized System Sized System Syst e m

Natural Gas Powered
Commercial Unit 0.941 0.914 1.309

Natural Gas Powered
Prototype Unit 0.360 0.347 0.496

Methanol Pc.aered
Commercial Unit -3.233 -3.148 -3.914

Methanol Powered

Prototype Unit -1.248 -1.207 -1.496

Conclusions and Recommendations

fie mayor conclusions from this study are as follows:

•	 For the fuels analyzed in this study, natural gas is the preferred fuel
when system sizing is considered.

•	 While there is extensive commercial experience with fuel processors that
convert naphtha and natural gas Into hydrogen, the complexity of a fuel
processor subsystem for either naphioa or natural gas will make it rela-
tively more difficult to design a commercial utility unit with the desired

operation and maintenance characteristics.
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•	 Experience curve benefits in a production run of commercial units will be
important in minimizing capital costs. Production and manufacturing
planning must be an inherent and early part of the fut processing system
and complete phosphoric acid fuel/cell power plant des_gn process in order
to achieve such benefits in actual practice. 	 j

•	 The fuel cost alone is by far the largest component in all the units 	 I
cunsidered.	 1

•	 The phosphoric acid fuel cell (PAFC) may not have enough quality excess
heat for thermal loads. A molten carbonate fuel cell .s more appropriate
for thermal energy generation.

;he major recommendations resulting from this stud y are as follows:

I
•	 Determine the most cost-effective fuel cell size that would minimize the

total life-cycle cost of a combined system of fuel cell, utility-
purchased, ;end diesel-generated power.

•	 The effects of PAFC plant operating pressures and temperatures on plant
heat rate at full- and part-load conditions and costs should be evaluated.
The degree of technical risk associated with projected improvements in

performance and costs should also be evaluated.

•	 The economical transition point between atmospheric and pressurized
operation of the PAFC should be determined.

•	 A detailed study should be conducted to determine the required location,
consumption, and quality of heat at Goldstone.

•	 The cost of distributing thermal energy throughout the Goldstone complex
should be determined.

1

•	 Operability and performance features such as varying degrees of part-load,
transient, and startup/shutdown capabilities should be examined in detail.

•	 The development costs and technical risks associated with bringing
methanol processing systems from their present status to that required for	 1
commercial PAFC plants should be e ,%aluatea through appropriate vendors. 	 J
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(E JU(	 Fuel Conversion — Hydroge_n Production
I

pit
For the four energy feedstocks considered; natural gas, methanol, diesel

rfuel, and coal, three different technologies are required for the conversion

to hydrogen. These technologies are: 1) catalytic steam reforming, partial

oxidation, and coal gasification. Fbr the natural gas and methanol feed-

	

^^	
stocks, catalytic steam reforming technology must be used to produce hydrogen.

	It	 The catalytic steam reforming process, commercially available since the

1930's, is the most widely used and the most economical process for producing

hydrogen from light hydrocarbon gases or from naphthas. In this process light

hydrocarbons, ( including natural gas, methanol, ethanol, to light naphtha, and

rheavy naphtha, a ) are converted to a synthesis gas containing h-drogen, carbon

monoxide, and carbon dioxide by reaction viitn steam over a catalyst.

With methane as a feedstock, the reaction is —

CH4 + H2O + CO + 3H2 	(1)

This highly endothermic reaction is carried out at 650 % to 1 '00°C (1200°F to
1830° c) at (100 to 700 psig) in a reformer tube furnace fueled by the feed-

sstock vs shown in Figure 1.

Because the nickel-based catalysts used in this process are sensitive to

sulfur, 9-:.e hydrocarbon feed stream must be desulfurized before it enters the

steam reformer. In the first step of the desulfurization prc, ess, the feed

stream is passed over a colbalt/molybdenum catalyst in the presence of 5%

hydrogen; the reaction of sulfur-containing compounds and hydrogen produces

hydrogen sulfide (H2 S). The H2 S containing feedstock is then cooled and
rl

scrubbed with oonoethanolamine (IEA) to reduce the H 2 S concentration to

	

I

v	 25 ppm. Final polishing of the feedstock is performed in a zinc oxide ( Zn0)

	

L	 bed at 340° to 370% (644°F to 698 0 F), where the H 2 S is further reduced.

The cleaned gas is then cent to the primary reformer, a direct-fired

chamber containing high nickel alloy (20% to 35% Ni) tubes that are nnrmally

10.8 cm OD by 7.3 cm ID (4-1/4 inches OD by 7-7/8 inches ID). These tubes

PRECEDING PAGE BLANK NOT FILMED	 y

* Advances in materials, design, and operation will allow the use of
distillate fuels as a feedstock after the 1985 timefrare.
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contain the nickel-based catalyst (12% to 25% Ni) which is supported as NiO on

alumina. The feedstock is mixed with steam in a steam/carbon ratio of 2.5 to

5.0 and is passed over the catalyst with a space velocity of 5000 to

8000 vol/hr-1 . The reacted mixture exits the reformer at temperatures of

around 105°C to 870°C (1300°F to 1600°F) and a pressure usually in the range

of 325 to 500 psig. The flue gas temperature exiting the furnace section is

980°C to 1040°C (1800°F to 1900 0 F.) These hot flue gases are used to generate

superheated steam for the hydrocarbon-steam reaction, feedstock preheating,

and to drive steam turbomachinery. When methane is the feedstock, the conver-

sion rate in the reformer approaches 95%.

The synthesis gas exiting the reformer is comprised of approximately 76.

H2 , 12% CO, 10% CO 2 , and 1.3% CH4 . This gas is further processed in two down-

stream reactors, where the water-gas shift reaction takes place:

CO + H 2 O - H 2 + CO2	(2)

The first shift reaction takes place at 343°C to 455°C (650°F to 850°F) over a

chromium-;romoted iron oxide catalyst. Before entering the second shift reac-

tion (which is very sensitive to sulfur poisoning) the gas may again be desul-

furized in a Zinc  Oxide (ZnO) bed. The seconi shift reaction is then carried

out over a copper-zinc catalyst at a temperature of 200°C to 230°C (390°F to

450°F) to produce a gas with 85' H 2 , 22% CO 2 , ^ '5% CO, and 1.3% CH4 . This

gas can then scrubbed to remove the CO2 by a process such as the MEN, process

or by pressure swing absorption. At this point the gas contains 98.2% H21

0.37' CO, 0.01% CO2 , and 2.5% CH4 . Depending on purity requirerients, the

remaining carbon oxides can be further reduced by passing the gas over a meth-

anation catalyst (nickel oxide) to promote methane formation from the

remaining carbon oxides and hydrogen.

A flow diagram of the catalytic steam reforming process is presented in

Figure 5. The utility and feedstock requirem-nt for a large natural gas

reforming facility producing hydrogen with a purity in excess of 97% is shown

in Table 12.
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Figure 5. LOW PRESSURE STEAM-HYDROCARBON REFORMING HYDROGEN PROCESS

Ihble 12.	 EFFICIENCY, PROCESS, AND UTILITY REQUIREMENTS OF
5'"EAM REFORMING NATURAL GAS FOR THE PRODUCTION OF 97%-

PURE HYDROGEN

Per 28.32 m3 (Per 1000 SCF) of Hydrogen'

Pro=ess Feed, kg of methane (11.9 lbs.)

Fuel, kg of methane (7.9 lbs.)

Electric Power, kWhr 0.4

Cooling Water, m 3 (400 gal)

Boiler Feedwater, m 3 (10 gal)

Condensate Returned, m 3 (6 gal)

Iuput	 19.8 lb of methane X 23,800 Btu/lb W	 138.02 kWhr 472,000

0.4 kWhr electricity X 3413 Btu/kWhr W	 0.4	 kWhr 1,400

Total 8.98 kg of methane X 15.37 kWhr/kg
0.4	 kWhr of electricity 138.42 kWhr (474,200)

28.32 m 3 of Hydrogen X 3.36 k1dhrM3
Output - (1000 SCF of Hydrogen X 325 Btu/SCF) 95.22 kWhr (325,000)

Output r	 95.22 x 100	
325,000 

X 100
Efficiency -	 Input	 138.42	 474,200

68.5%
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Partial Oxidation Processes`

As the molecular weight of the carbonaceous fossil fuel continues to

increase beyond the naphtha range, the nickel based catalysts lose their

effectiveness in promoting the reaction between the hydrocarbon and steam. To

convert the heavier hydrocarbons to hydrogen it is necessary to subject them

to partial oxidation using gasifier technology. Two partial-oxidation

processes have been extensively commercialized: the Texaco Process (since

1954) and the Shell Gasification Process (since 1956). These two noncatalytic

pressurized partial-oxidation processes produce a gas consisting primarily of

hydrogen and carbon monoxide by burning hydrocarbons with high-purity oxygen

or an oxygen-rich stream.

Unlike the catalytic steam reforming process, the partial-oxidation

process can operate on nearly any type of pumpable or compressible hydrocarbon

feedstock, from methane gas through crude and residual oils to asphalts,

regardless of their sulfur content. This process's oxygen feedstock require-

ments make it both more capital and operating cost intensive than the cata-

lytic steam-reforming process. For this reason the partial-oxidation process

has been used in areas where light hydrocarbon feeds are either unavailable or

less economical than heavy hydrocarbons such as crude oil.

In the partial-oxidation process as shown in Figure 6 a preheated hydro-

carbon feed, preheated oxygen, and steam are injected into a pressurized com--

bustion vessel through specially designed burners. By controlling the amount
t

of oxygen entering the vessel, complete combustion does not occur; instead,

the following overall partial oxidation reaction occurs at 1290% to 1400°C

(2350°F to 2550 0 F):	 i	 1

C n HM + (N/2) 02 + (N)CO + (M/2) H 2	(3)

Reaction 3 occurs in three distinct phases within given regions in the

gasification vessel. The first-phase reactions occur when the preheated

hydrocarbons come into contact with the oxygen and steam mixture at the burner

tip, At this point the mixture is rapidly heated and vaporized by radiation

from the flame front and reactor walls. 'Ibis rapid heating cracks the heavy

hydrocarbons to carbon, methane, and hydrocarbon radicals. These first-phase 	 I

reaction products enter the second phase, whe-e partial oxidation occurs in

the highly exothermic combustion reaction — 	

I
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I	 CNHM + (N+M/4)02	(N)CO2 + (M/2) H2O	 (4)

I	 In the combustion reaction nearly all of the available oxygen is consumed.

The heat from the combustion reaction drives the endothermic reaction of the

• remaining hydrocarbons with steam and the combustion products. The principal

reaction In this phase is the reforming of the hydrocarbons with steam in the

following endothermic reaction:

CNHM + (N)H2 0	 (N)CO + (N + M/2) H 2	 (5)

fie thermil equilibrium of Ruction S occurs around 1340'C (2450'F).

In the final phase occurring within the gasification vessel, part of the

hign-temperature gases and unreacted carbon react with the carbon dioxide

(CO2 ) and steam. Nearly 972 to 991 of the carbon entering as feed is reacted

I
before exiting the reactor, compared with a 99.98% carbon conversion effici-

ency for the catalytic steam-reforming process. The hot gases that exit the

T	 partial oxidation reactor undergo a water -gas shift reaction ( CO + H2 O + CO2 +

iH2 ), which increases the concentration of hydrogen gas.

1•
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Figure 6.	 OIL PARTIAL OXIDATION HYDROGEN PROCESS

The reducing atmosphere within the reactor promotes the formation of

li sulfur compounds.	 The sulfur that enters with the feed is converted t^ hydro-

(I gen sulfide ( H2 S) and small amounts of carbonyl sulfide (COS) that are removed

in downstream processing equipment.

The Shell and Texaco partial oxidation processes are very similar. In

the Shell process five basic units are used to gasify an oil feedstock. There

I^
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five units are the gasification reactor, the waste-heat exchanger, the econo-

mizer heat exchanger, the carbon removal system, and the carbon recovery

system.

The vertical steel pressure gasification vessel is multiple-layer refrac-

tory lined. The preheated feedstock and oxidant are fed to the combustor,

which is located at the top of the vessel. The steam is mixed with the oxygen

in sufficient quantity to moderate the flame front. The hydrocarbon feed and

oxidant are sprayed as a rotating vortex into the combustion zone to promote

mixing. The reactor can be designed for pressures from as low as 207 kPa

(15 psig) to as high as 5858 kPa (835 psig) and still provide adequate resi-

dence time to ptrmit the partial oxidation reaction to approach equilibrium

conditions.

The hot gas exiting the reactor flows directly to a helical coil waste-

heat exchanger where process steam is generated. Using the helical coil tubes

and proper gas velocity minimizes soot deposit within the heat exchanger. The

stead prodaced in the waste-heat exchangers is generated at least 1034 kPa

(150 psi) greater than the reactor pressure so that it can be used directly in

the reactor. Waste-heat exchanger designs exist for generating steam at

pressures up to 13 0,443 kPa (1500 psig).

The s y nthesis gas exiting the waste-heat exchanger has a temperature

somewhat greater than the generated steam temperature. An economizer is used

to further cool the synthesis gas and preheat the feedwater for the waste-heat

recovery unit. The heat duties of the waste-heat exchanger and the economizer

are functions of gasifier operating conditions and end-product production.

!"he soot-laden gas that exits the heat recovery equipment is then

scrubbed to remove most of the soot. Some of the soot, which was formed in

'.he gasification vessel, does not exit with the synthesis gas; it is deposited

at the bottom of the gasification vessel and remove dur_ng periodic shutdown

inspections. The synthesis gas that exits the scrubber section contains less

than 5 ppm(v) soot. The carbon (soot) rec.,)ved in the scrubber section is

recovered and recycled into the gasifier.

The cooled synthesis gas leaving the scrubber section contains H 2 S, CO2,

and COS, which must be removed. The Shell Sulfinol process can be used to

remove these gases. This process uses the organic solvents sulfolante (tetra-
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hydrothiophene dioxide) and aqueous alkanolamine to both physically and cheml-

PA

tally absorb the unwanted gases.	 The striped acid gases are then processed to

 convert the sulfur-containing gases to elemental sulfur by the Claus and SCOT

f7 processes.	 7he relatively sulfur-free synthesis gas that exits the Sulfinol

Lreactor is then processed in such the same Way as the gases in the catalytic

steam-reforming process. 	 The synthesis gas is first sent to the water-gas

L
Tt shift reactor to produce more hydrogen, the resulting CO 2 can be removed by

the ?SEA process, and the gas is finally sent to a methanation unit.	 A typical

feedstock requirement for the partial oxidation process is shown in Table 13.

Table 13.	 GASIFICATION OF HEAVY OIL
(Shell Gasification prQQcess)C

3asi s:	 Production of 2.83 R 10 4 mj	 (100 R 106 SCF)
H2/stream day

[
[ Feedstock Type	 Heavy Fuel 011

Feedstock Properties

Gravity, 'API	 14.2

Specific Gravity, @ 15 . 5°C	 0.97

C/H Weight Ratio 	 7.49

l	 C/H Atomic Ratio	 1.59

Sulfur, wt %	 3.50

Ash, wt %	 0.07

Feedstock, kg/Stream hr @ 65 . 55°C (150°F)	 39939	 ( 88,050 lbs)

Oxygen Feed, k&/Stream hr @ 37.77°C ( 100°F)	 42670	 (940070 lbs)

Naphtha Net Usage For Carbon
Recovery, ** kg/Stream hr	 200	 440

Fuel 0'. 1 For Auxiliary Boiler, kg/Stream hr 	 4205	 (9,270 lbs)

* Expressed as 100 % 02 • actual 02p	 purity is ° q .50 vol X. Pressure is

9i.0 psig.

**
Constitutes feed to gasif ! cation reactor over and above the heavy fuel oil

feedstcck. Soot production is recycled 100% to gasif.icatic,= rp acto r.

ll	 Coal Gasification 5,6

When a solid carbonaceous feedstock such as coal is used, the conversion

to hydrogen is similar to the partial oxidation of heavy oils. However, mayor

equipment changes are required to handle the solid feedstock tnd the resulting

unwanted residue such as ash. As ir the partial oxidation process, coal gasi-

I	 '
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fication also requires an oxygen and steam feed. Unlike methane gas or meth-

anol, coal is a heterogeneous substance which contains trace elements such as

sulfur, nitrogen and metals which are detremental to fuel cell operation.

These trace elements, which are also found in the heavy oils but to a lesser

extent, react with the hydrogen, oxygen, and carbon to form other unwanted

substances such as hydrogen sulfide and carbonyl sulfide. Since coal gasi-

fication kinetics depend exclusively on temperature and pressure, these ele-

ments do not affect the overall conversion to hydrogen. The raw gas from the

gasifier contains hydrogen, carbon dioxide, carbon monoxide, water, soot,

methane, sulfur compounds and nitrogen. These raw gases must undergo further

processing to become an acceptable fuel cell feedstock.

In the first step of gas processing, the raw gas is usually sent to a

cyclone separator where unreacted carbon particles and ash are removed. This

isenerall followed b a waste-heat recover boiler which 	
j

g	 y	 y	 y	 generates part of

the steam feedstock requirement by heat-exchanger -with the hot raw gas. Due	 e

to the catalytic process which are also in the downstream processing section,

a sulfur removal process is required after the heat recovery step. The

recovered sulfur compounds undergo further treatment to recover elemental

sulfur.

The gas which exits the sulfur removal step contains predominately hydro-

gen, carbon monoxide and carbon dioxide. This gas is then sent to the water-

gas shift reactor to produce additional hydrogen. In the next step carbon

dioxide is removed by chemical or physical solvent washing and finally the gas

is sent to a methanation unit where the remaining carbon monoxide and carbon 	
t

dioxide are reacted to form methane.

Hydrogen Production Costs

The complexity of the above described processes becomes ;ignificantly

greater as one goes from natural gas or methanol to coal. This complexity is

also represented in the higher capital cost of the oil and coal based hydrogen

production processes. Figure 7 presents the capital cost range for hydrogen

production versus plant size for steam reforming, partial oxidation and coal

gasification. As can be seen coal gasification and partial oxidation of oil

are significantly more expensive than steam reforming of natural gas or

methanol. Ihis is even more so when small scale facilities as those required

by the fuel cell are involved. The economy of scale affect can be seen in 	 j

34
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Figure 7. HYDROGEN PRODUCTION COST vs. PLANT CAPACITY, 1981 DOLLARS
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Vole 14 for a natural gas steam reformer producing 2832 m 3 to 67,968 m3/day

(1U0,000 to 2.4 X 10 6 SCF/dap) of hydrogen. , For the smaller scale plant

hydrogen production costs are nearly four times that of the largest plant.

Economics of scale would be even more dramatic for the oil teased partial

oxidation process and the coal gasification case. For this reason the

remainder of this study will focus on natural gas and metl;snol as the primary

fuel source. At this point a more detailed analysis (which will appear in the

systems section of this report) will need to be made before the final fuel

section can be made.

Table 14.	 ECONOMICS OF HYDROGEN MANUFACTURE IN SMALL REFORMERS, 1982	 $

Hydrogen capacity, 	 m 3 /day (2832) (13,594) (67,968)

Operating hours per year 7920 7920 7920

Operators per shift 0.15 0.20 0.26

Investment, S Millions

Onsite

Offsite

Total

Y, contingent, in investments

$/`1Btu/yr $/10 3 kNhr/yr

Working capital, $ Lhousands

Costs & Charges, $/10 3 kWhr product

Natural gas @ $1.24/10 3 kWhr

Utilities

'- ^.or and supervision

ntenance (4% of onsites)

nt overhead (2.6% of onsites)

urance, property tares (1.5% of total)

reciation 00 onsites, 5% offsites)

erest on working capital (10%/yr)

urn on investment (207/yr)

Total Cost, $/10 3 kW-hr
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TYpes of Fuel Cells

	

' 
l	

Fuel cells usually are classified according to the type of electrolyte or

l	 ion-conducting media used and the temperature of operation, as shown in

ry	 Figure B. The figure also shows fuel quality requirements. A brief int:oduc-

tion to the four fuel cell types follows. these four types of fuel cells

R	 include the 1) solid oxide, 2) molten carbonate, 3) acid and 4) alkaline fuel
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	 Figure S. FUEL CELL TYPES

I
;

	

	 Solid Oxide Fuel Cells. Fuel cells with solid oxide electrolytes operate

at temperatures above 800°C (1472°F) using non-noble metal electrodes. The

electrolyte is usually yttrla- or calcia-stabilized zirconia (Zr02 ), which

conducts oxygen ions at the operating temperature. Because of their high

r
operating temperature, solid oxide fuel cells will offer high-quality waste

heat that can be utilized either in cogeneration or IT a bottoming cycle,

hence giving the potential for increasing overall system efficiency. Solid

oxide fuel cell technology 13 still at the research stage. Three of the mayor

problems yet to be solved are as follows:

6	 1. F.fficienct contac t. of electrodes with electrolytes, involving a solid/
solid interface, is difficult to achieve.

2. An extremely large number of c: , ils are needed because of the brittle and
fragile nature of the solid oxide electrolytes, which limits cell size to

w	 a few square centimete's.
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3. Materials that are stable at high temperatu es are needed, such as cell
interconnecting materials and stable electrolytes.

Molten Carbonate Fuel Cells. Th is type of cell operates at temperatures

of 600° to 700 *C (1112°F to 129 °F), using impure hydrogen and air, non-noble

m•2tal electro d es, and an electro.yte of molten alkali-metal carbonates in a 	 1
porous ceramic carrier (tile). As with solid oxide cells, high-quality waste

heat is available for use in cogeneration or in a bottoming cycle to increase

overall system etticiency. Molten salt fuel cells are entering the pilot 	 I

plant technology stage. The problems associat:' with molten carbonate fuel 	 I

cells are as follows:

1. Molten carbonate electrolytes are lost by evaporation, creepage, and cor-
rosion.

2. High-temperature heat exchangers capable of efficient hea: transfer at
about 1093% (2000°F) need to be developed.	 !f

3. Sulfur removal to about 1 ppm or less is required to prevent damaging of

the electrodes.

4. Electrolyte tile integrity and corrosion resistance of cell hardware must
be improved for successful long-term (approximately 40,000 hours)
operation.

Acid Fuel Cells. Many acid electrolytes have been considered for use in

fuel cells because acids do not react with carbon dioxide, which allows the

use of impure hydrogen and air. Phosphoric acid (H 3 PO4 i fuel cells are the
I

most advanced of all the fuel cell technologies, and they operate at about

190°C (375 0 F). Pilot plants up to 1 MW have been successfully operated, and a
t

4.8 MW unit is in startup. The following factors arc important it ­.sidering

the use of H 3 PO4 cells for commercial application —

Plati.um is poisoned by carbon monoxide (CO), reducing its electrocata-

lytic activity for hydrogen oxidation. Therefore, CO concentrations of 4%
or less in the fuel are desirable.

2. Cathcde performance must be improved to improve cell performance.

3. The acid electrolyte is lost because of evaporation and corrosion of cell

components. Electrolyte carryover can also cause corrosion problems down-
stream of tLe cell.

Alkaline Fuel Cells. Aqueous KOH eleLtrolyte fuel cells operare at lower

temperar.ure, 60° to 120°C (140°F to 248°F) and have demonstrated reliabiiity
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In space applica - i.ne using pure H 2 and 02 . The mayor drawback to commer-

l! 	
cielization of ail , n• fuel cells is teat cie electrolyte reacts with CO2,

l	 limiting the fuel cu ionearbonaceous confounds. Even the 0.04% CO2 in air
must be rewoved. %its cannot be accomplished by present technology in a cost-

effective manner.

All four fuel cell types are affected to various degrees by impurities

"	 such as H2 S, COS, S02 , HC1, NO., and NH 3 in the fuel. Thus, gas cleanup

M schemes are necerear) for the systems.

LBasis Principles of	 oration

!	 Figur a 9 and 10 show it schematic diagram of one repeating element in a

stack of fuel cells. Each element is made up of an at,oda, in which oxidation

of the fuel occurs; an electrolyte, to separate the anode and cathode and to

^.	 conduct the ions between them; and a cathode, in which reduction of the oxi-

dant occurs. The operation of the cell involveh many complex wechanlama,

1.	 which are conceptually simplified ±n the following discussions.

Phosphoric M ld. Gaseous hydrogen in the fuel diffuses through the

1.	 porous anode to a reaction site at the electrode (solid)/electrolyte (liquid)

inteiface where it is electrodb:mically oxidized:

•	 H2 + 2H+ + 2e	 (6)

The electrons are transported through the external cir cuit, and the hydrogen

tons ate conducted through the electrolyte to the cathode reaction sites.

Oxygen, wh:ch has diffused through the cathode, reacts with the hydrogen Ions

and electrons (Equation 7), and the product water diffuses back out of the

cathode:

li	 1 /[ 02 + 2H+ + 2e + H2 0(g)	 (7)

r '	 The net reaction is:

H2 + 112 02	 H 2 0(g)	 (8)

Hblten Carbonate. The electrolyte is a mixture of alkali metal carbon-

ates (a molten ionic conductor at the cell operating temperatures of 600' to

700'C) (1112 0 F to 1792'F) and ceramic Darticulateti that retain the liquid.
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Fuel enters the anode, and the H 2 reacts* at the anode/electrolyte interface

according to —

H2 + CO3" + H2 O + CO2 + 2e	 (9)

I'L
The product H2 O and CO2 diffuse out of the electrode. At the cathode,

 Equation 10 takes place:

CO2 + 1/2 02 + 2e + CO3	 (10)

Note that CO2 is formed at the anode and consumed at the cathode. Ib r a cost-

effective molten carbonate fuel cell system, the CO2 in the anode effluent

must be recycled to the cathode. This can be accomplished by catalytic coa-

	

l	
bustion of the anode effluent to CO2 and H2O (plus N2 iu the combustion air),

	

l	 followed by mixing with air to produce the cathode feed.

	

L^	
Applications

the fuel cell is quiet because it has no moving parts. Because the fuel

Ccell is not a combustion device, emissions such as NOx , CO, and unburned

hydrocarbons are not a serious problem. SOX emissions are not a problem

because the sulfur content of the fuel stream to the power plant must be

reduced to attain long fuel-cell life. Such low levels of emission, couples

	

'	 with the fuel cell's quiet, water-conserving operation, result in environ-

mental acceptability and siting flexibility.

A single fuel cell normally generates power at approximately 0.5 to

1 volt and can be connected in series stacked with other cells to obtain

almost any desired voltage. The current produced is a function of the size

(the areal of a single cell. The range of sizes, the modularity, and the

load-following capabilities make the fuel-cell system an attractive candidate

for power generation in a variety of applications, including on-site and

central plants for commercial, industrial, and residential uses.

* Carbon monoxide in the fuel also can be ox!.dized electrochem i cally, but the
more rapid reaction for the utilization of CO 2 is via conversion to
hydrogen by the shift reaction, CO + H 2 O + CO2 + H2 . The hydrogen formed
is then consumed according to Equation 7.

4.1
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Because of the above-mentioned advantages of fuel cells in addition tc

their high operating efficiency, they are likely to find applications in the

commercial, industrial, and residential areas and in military installations.	 r

Fuel cells are also used extensively in the space program. The high-quality

heat rejected by molten carbonate and solid oxide fuel cells also makes them
	 1

potential candidates for cogeneration applications.

State-of-the-Art

The phosphoric acid fuel-cell system is being tested in realistic utiiit^

situations. A 4.8 -+iW power plant is scheduled to operate in New York 7ity as

a joint venture between industry and the Department of Energy.

The Department of Energy is also sponsoring a 3-year program at IG .-CZ

and UTC to test a 1-MW molten carbonate fuel-cell stack by 1983. Demo- =trd-

tion of this technology in realistic utility situations is projected ° t 1985.

both of these systems are expected to succeed during the 1980's. The

molten carbonate fuel cell system is less developed and will r-quire more work

to solve high-temperature-related material problems. For this reason the

remainder of this analysis will focus on the phosphoric acid fuel cell. Addi-

tional experience on small scale phosphoric acid fuel cells is being gained

from a joint Gas Resea-ch Institute/DOE/Utilities testing program which will

involve 48 field test units at various industrial and commercial installa-

tions. This testing program is limited to a 40 kW fuel cel; size.

32(3)/65906dfr/ER

t

f
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