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PREFACE

This report is the result of the author's participation in the workshop on "Tile Hunian Role In
Space," August 24 through 26, in Leesburg, Virginia, This workshop was sponsored by the Office of
Aeronautics and Space Technology, NASA Headquarters, and managed by br, Melvin D, Montemerlo
of that office,

The information gathered at that conference has been organized and adapted to the requirements
of a space station,, enipl •uasizhng the problem of flask allocation between humans and machines.

It is hoped that the information presented here is of interest and may be helpful in stimulating
specific investigations in this area,
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TECHNICAL MEMORANDUM

AN APPROACH TOWARD FUNCTION ALLOCATION BETWEEN HUMANS
AND MACHINES IN SPACE STATION ACTIVITIES

1,0 'INTRODUCTION

Present NASA and contractor studies are evolving toward the definition of a future manned per-
manent space station. During the early stages of design, informed decisions must be made about the
allocation of functions between humans and automated systems and for the combination of both in order
to maximize mission success, efficiency, safety, and economics.

In the past, decisions on task allocations have been made more often unconsciously and
unrecorded, than consciously and implicitly. A continuation of the past lack of deliberation on this
subject may be quite penalizing in the most complex human-machine relationship as presented by a
manned permanent space station.

The complexity of planned space station missions may create workloads that at times impose
intolerable demands on crews, therefore, development and application of automated features can improve
the effectiveness of space station operations.

The technology for automation of all routine tasks and of some others is now available, Avail-
able modern microprocessor technology and display systems and the advent of expert systems and others
make it entirely feasible to automate specific space station systems and functions which previously were
considered to be operated manually.

The need to apply automation technology to advanced missions in general and to a space station
in particular is described below:

Cost of Ground Support — Current ground operations are reliant on large teams of specialists to
perform functions such as fault detection, fault isolation, failure mode workaround, command processing,
and tracking processing. It is becoming less feasible to maintain these large cadres of technical people
during flight operatio- :s due to economic limitations. Furthermore, these individuals in a typical opera-
tion scenario are under-utilized until a failure occurs. With the maturing of decision-aiding techniques
such as expert systems, it is becoming feasible to supplement individuals with aids that more effectively
extract information from the ever-increasing volume of data. Thus, in turn, will enable the large cadres 	

d

of individuals to be significantly reduced while increasing the ability of operators to make decisions
effectively,

Man Support in Hazardous Environments — The cost of supporting man in the hostile space
environment is necessarily much larger than that of supporting an unmanned system. Manned vehicles
must incorporate costly life support systems which decrease vehicle payload capacity, The quality of
components and level of redundancy for manned vehicles must be higher than those for unmanned
missions, However, human problem solving capabilities are still required for many applications, For some
near-term applications, it will be feasible to automate the control process in order to remove man from
the system. For more complex operations, problem solving abilities may be remotely incorporated
through telepresence and remote man-in-the-loop control. As the state of the art in automated problem
solving advances, thy: individual can be removed from the control loop and will become a supervisor
over an automated system.
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Non-Optimal Human Control — Laboratory studies have shown that if good models of the system
dynamics and appropriate control laws call be developed and implemented in real time, an automated
system provides more optimal control than does a man in the loop. This has been demonstrated during
physical simulations for rendezvous and docking but applies as well to otter areas such as manipulator
control.

Psychological Considerations -- When placed in a highly-repetitive, mundane environment, humans
have a tendency to become lackadaisical and make mistakes. Many of the tasks inherent in spacc opera-
tions and ground support have this quality, Decision aids in tills environment would reduce the repeti-
tion and provide a means to quickly evaluate the volumes of data, provide a synopsis of the data,
generate recommendations, and allow the human to use the inherent powers of reasoning more
effectively,

Limited Strength — For many application scenarios such as payload retrieval, limited human
strength becomes a negative factor. Furthermore, human dexterity is significantly reduced by the
cumbersome life support equipment required in space, With the state of the art in actuators and
materials, it is possible to develop inechanisms that deliver more torque with faster response times than
a human counterpart.

In developing future manned space stations, sufficient attention must be paid to past and present
efforts in automation and the human role in comparable systems. This will help to repeat past successes
and avoid past shortcomings.

There is currently no systematic, widely applied methodology available for allocating of functions
between automated systems and astronauts. Similarly, there is no criterion for balancing the cost of
automating particular functions against the resulting improvements in space station performance.

Tile current absence of a systematic approach to task allocations between humans and machines
in space stations constitutes a serious void in developing space station systems and functions. This report
intends to assist in arriving at an efficient space station design approach for maximum returns witllhn
limited resources by providing an approach to a rational guide to allocate tasks between astronauts and
machines in the context of human capabilities and limitations until a more in-depth approach to this
problem addressing specific systems, is available,

1.1 Definition of Automation

While the term "hummn factor" is rather explicit, the term "automation" is ambiguous and has
diverse interpretations, It is used variously to describe the control of a single quantity by a very simple
on-off mechanism (e.g., thermostat). It is used to describe the concurrent display of data from several
sources to a person for interpretation (e.g., Shuttle crew station). Automation has also been used to
describe the control of complex processes in which the automated system replaced some human intellec-
tual capabilities (e,g,, mission sequencing), Certain human decision processes can be done by machines
and called automated.

In this report the term "automation" shall describe any effort to allocate physical and abstract
tasks to machines with various levels of human participation. This broad definition appears appropriate
for a manned space station with its wide scope of functions.

2
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1.2	 General Objectives of Space Station Ailtomatioi-,.

The propet application of space station automation shall include benefits in the following areas:

1) Pei f. rmance of functions that humans are not capable of performing or because of cost,
time, and safety constraints imposed by manual performance

2) Provide better solutions to a problem than humans

3) More cost-effective, reliable, or consistent

R	 4) Decreased workload

5) Increased safety margin

u) Increased quality of life for astronauts

7) Ease of learning to operate a system

8) Speed and convenience in actual use

9) Increased operating efficiency

10) Increased schedule dependability.

2,0 SPACE STATION SYSTEMS AND FUNCTIONS

2,1 Classification of Systems and Functions

It is convenient to divide space station systems and functions into two classes each of which is
different in its expected human role, type and character of activities, approach to human/machine task
allocation, and development needs (Table 1), These classes are:

Class A:

•	 Includes all systems and functions that are necessary to sustain the basic space station in an
operational mode (core systems)

•	 Human involvement should be minor because it is unproductive

•	 These operations are constant and essentially fixed, therefore a singular approach toward
task allocation and integration of humans/systems is possible

•	 Thus class of operations must be part of the space station development.

Class B

•	 Includes all systems and functions that constitute the objectives of having a space station
(performing experiments, application tasks, construction, satellite services, etc.)

3
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TABLE 1. CLASSIFICATION OF SPACE STATION SYSTEMS AND FUNCTIONS

A B

Experiments, Applications,
Space Station Related Systems Construction, S/C Servicing

Operations and Maintenance .Etc.

Unproductive Activities Productive Activities

Expected • Minor • Major
Human Role

Type and • Essentially fixed ("core" systems) • Continually changing
Character of
Activities

Approach to i Singular • Diverse, individual
Human/Machine
Task Allocations

Developmient
Needs

i integrated liuman/systenis automa-
Lion for "core" systems functions

i integration between activities
andwith space station systems
and functions ('model)

Responsibility A Space station development • Individual project development

s	 Human involvement should be major because these activities constitute the reason for human
presence and are, therefore, productive.

•	 These systems and functions change continually and, therefore, a model is required for
li unan/machine task allocation and integration.

•	 This class of operations requires a two-stage integration: between different systems and
functions and with the space station interfaces.

•	 This class of operations must be part of the individual project development,

2.2 Space Station Core Systems and Functions

Table 2 lists systems and activities that are expected to exist in all space stations and, therefore,
can be co. ' tiered generic. It is understood that these generic systems are generally those that maintain
the functions of the space station proper. In some cases they may also support Class Ii activities.

4
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TABLE 2. SPACE, STATION COIN,, SYSTEMS AND ACTIVITIES

Class A (Core Areas)

• Environmental control and life support
e Communication

• Systems control and display
* Power source

c Power management and distribution

• Data information and management

e Propulsion

• Flight control (including formation flights, Shuttle Interaction, altitude rcboost, etc.)

* Malfunction warning and reconfiguration

• Thermal control
• Inventory control (expendables, equipment, etc,)

• Activity schedule co-wi l. •ol
s Software control

s External environmental control
O Configuration control (build-up pliase, growth adjustment, etc.)
11 Traffic control

^r Manipulator control

® TMS (OTV) checkout and launch control

s Others

Those generic systems that may serve both Classes A and B are the Data and Information Manage-
ment, Thermal Control, and Inventory Control Systems. The reason for this is the more up-to-date tech-
nology of the Class B systems versus the space station Class A systems which may have their technology
frozen several years before the station's initial emplacement (e.g., the Space Shuttle on-board computers
are about 1.971/72 technology while experiment electronics may have more recent technology). Cost
trade-offs will decide for these Class B functions if central or peripheral control has more advantages.

All core systems and functions can be divided into core performance areas (Table 3). These
seven performance areas were compiled from a great deal of literature in the area of optimal human
performance in systems (I ] . These areas were defined as performance areas that could be used to
describe any system and function.

Table 4 expands the classification of core performance capabilities with specific examples and
related required resource characteristics, It should be noted that this classification often has consider-
able overlap between several areas but is maintained to provide a well manageable structure to be used
for later task allocation efforts.

5
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1. Monitoring	 S. Decision Making
2. Sensing	 6. Information Storage
3. Information Processing	 7. Controlling
4, Interpreting

TABLE 4, CLASSIFICATION OF CORE PERFORMANCE CAPABILITIES [ 1 I

Monitoring

To maintain a state of readiness or preparation for receipt of inputs

Examples	 Requires Resource Characteristics

Search	 High reliability in detecting signals

Surveillance	 Monitoring 6pecific physical energies

Vigilance	 Monitoring of infrequent events

Watch-keeping	 Monitoring scheduled or predictable events

Continuous attention
Monitoring of long-duration events

Sensing

To perceive external stimuli, to recognize a change of external state, to acquire data from the
environment

Examples	 Required Resource Characteristics

Perception	 Sensing specific physical energies

Signal Detection 	 Sensing a stimulus against a background of noise

Signal Recognition 	 Sensing the same stimulus frequently

Discrimination	 Sensing several similar stimuli simultaneously

Recognition of Discrete	 Sensing quantitative values
Change

Recognition of Dynamic	 Simultaneous multichannel sensing
Change

I
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Information Processing

To transform, to organize, to break down, to combine, to operate on input data or vqAo lls

Examples Required Resource Characteristics

Encoding/Decoding Numerical computation

Sorting High volume and/or speed of transactions

Filtering Simple processing rules or specific programs

Ordering Parallel or multichannel operations

Merging Repetitive operations

Analysis High accuracy or precision

Computation

Interpreting

To construct, to derive, to translate, to assign meaiung to data or signals

Examples Required Resource Characteristics

Pattern Recognition Assigning items to a large inclusiv 1 class by specific rules

Interpolation Assigning a narrow range of meanings to inputs

Extrapolation Estimation of rate of change, acceleration, or higher order
derivatives

Prediction Consideration of specific, predictable, or unambiguous inputs

Association A nuni num number of errors due to expectation or cognitive set

Classification

OF po()R QUALM

TABLE 4. (Continued)
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Decision Making

To select among alternatives, to determine a course of action, to assess the validity of a proposition

Examples Required Resource Characteristics

Hypothesis Formulation Dependence upon complex procedures or oprations

induction/:Inference A large number of differentiations or integrations

Deduction Deductive reasoning without reference to context

Probability/Contingency Prediction based on variable whose nature and weightings are
Estimation known in advance

Identification and Selection among well define-i alternatives
Comparison of Alternatives

Comparison with Invariant decision-making logic
Standards or Criteria

Selection/Choice Short time lags between scheduled cvcnts

.Information Storage

To retain or to remain aware of information and, conversely, to recall or to bring forth previously
acquired information

Examples Required Resource Characteristics

Short-Term li'idmory Rapid storage (ingestion) of large amounts of data

Long-Term Memory Long-term storage with total recall

Total Retrieval/ Recall Infallible memory with the precise source of data accurately tagged

Selective Retrieval/Recall High speed and/or frequent memory search

Purging Multichannel storage or retrieval

Large buffer (immediate memory) capacity

Storing of coded or numerical data

Rapid and/or complete purging (erasure) of stored data

i
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TABLE 4. (Concluded)

Controlling

To maintain a given level of operation, to adjust and correct for changes in requirements, to adjust
for deviations from a prescribed optimum state

Examples	 Required Resource Characteristics

Tracking	 Generate a variety of movements in response to unpredicted
changes

Adjusting	 Detect discrepancies

Directing	 Apply refined forces

Specific Force Generation 	 Apply variety of forces in large range of magnitude and duration

Response Latency	 Respond rapidly and appropriately to apply force in a changing
(Reaction Time)	 situation

3.0 HUMAN FACTORS AND ROLES

3.1 Initial Considerations

In order to proceed from the Class A generic space station core systems and functions to the
determination of function allocations, it seems helpful to answer a number of basic questions about these
systems and functions. These questions are listed in Table 5. It should be noted that the user will find
that after answering a specific question some of the subsequent answers to questions will be utermined
as a consequence of the first response. This requires a check for consistency after answering all
questions.

3.2 Duman and Machine Advantages

After gaining a general idea about the principal allocation approach, the issue of basic liuman and
machine advantages must be reviewed.

One of the most recent papers on the relative capabilities of man and machine [ 1 ] discusses tech-
niques for improving liuman performance in production. The author lists characteristics which tend to
favor humans over machines, and vice versa (Table 6). The user, however, must be cautioned to take
each item at face value without additional qualifications. Some of these are: Items 1 in top list applies
as well to ]unmans, item 9 in the top list seems to be limited to only certain formats and tends to exclude
pure qualitative reasoning. Item I in the bottom list applies as well to machines. Item 6 of that same
list appears somewhat ambiguous in that the exact definition of judgment is rather vague. It certainly
would cover deductive reasoning and items like 9 and 10. In simple terms, all systems and functions can

9



ORIGINAL PAGE., M
OF POOR QUALITY

TABLE S. QUESTIONS FOR DETERMINING THE HUMAN PARTICIPATION
FOR EACH FUNCTION [ 1 I

• What is the function under consideration?

• What are the tasks involved in this function?

For each task;

Does this task involve Sensing?

What part of the; Sensing do we give the human operator?
What part of the Sensing do we give the equipment?

Does the task involve Interpreting?

What part of the Interpreting do we give the human operator?

What part of the Interpreting do we give the equipment?

Does the task involve Information Processing?

What part of the Information Processing do we give the. human operator?

What part of the Information Processing do we give the equipment?

Does the task involve Decision-Making?

What part of the Decision-Making do we give the human operator?
What part of the Decision-Making do we give the equipment?

Does the task involve Controlling?
What part of the Controlling do we give the human operator?

What part of the Controlling do we give the equipment?

Does the task involve Monitoring?
What part of the Monitoring do we give the human operator?

What part of the Monitoring do we give the equipment?

Does the task involve Information Storage?

What part of the Information Storage do we give the human operator?

What part of the Information Storage do we give the equipment?

• What is the total hypothesized human operation participation for the function?

• What is the total hypothesized equipment participation for the function?

A
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TABLE 6. SWAIN'S LIST OF MAN AND MACI°IINE ADVANTAGES

Ten Characteristics Tending to Favor Machines Over Humans

1. Monitoring men or other machines.

2. Performance of routine, repetitive, precise tasks,

3. Responding quickly to control signals.

4. Exerting large amounts of force smoothly and precisely.

5. Storing and recalling large amounts of precise data for short periods of tune.

G. Computing ability.

7. Sensitivity to stimuli.

8. Handling of highly complex operations (i.e., doing many different thfrigs at once).

9. Deductive reasoning ability.

10. Insensitivity to extraneous factors.

Fourteen Characteristics Tending to Favor Humans Over Machines

1. Ability to detect certain forms of energy.

2. Sensitivity to a wide variety of stimuli.

3. Ability to perceive patterns and generalize about them.

4. Ability to detect signals (including patterns) in high noise environments.

5. Ability to store large amounts of information for long periods and to remember .relevant
facts at the appropriate time.

6. Ability to use judgment.

7. Ability to improvise and adopt flexible procedures.

8. Ability to handle low probability alternative (i.e., unexpected events).

9. Ability to arrive at new and completely different solutions to problems.

10. Ability to profit from experience.	
4

11. Ability to track in a wide variety of situations.

12. Ability to perform fine manipulations.

13. Ability to perform when overloaded.

14. Ability to reason inductively.

11
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be reduced to three disciplines: sensing, computing, and actuating. The decision, in each individual case,
is then to decide between human, machine,,lnd participating activity between the two.

A question to be answered at this time relates to infrequent and to unlikely functions that may
occur, Humans may forget to perform infrequent functions or have lost the skill to perform them.
On the other hand, it may be quite uneconomical to automate them. Unlikely functions, however,
seem to be best performed by humans if they are capable of doing them. Based on these reasons, these
items are not included in the table.

3.3 General Roles of Humans in a System and Development of the Role of Humans

There is a distinction between the role of humans and the function of humans. The role must
be defined before specific functions are allocated. Table 7b lists questions under "Development of the
Role of Man," the answers to which define the basic role of humans in a system listed in Table 7a.
The specifics of this role are then modified during functions allocation.

TABLE 7a. GENERAL ROLES OF MAN IN A SYSTEM (1

• Contributing capabilities not possible with an automatic system

— Identifying goals
— Developing plans

• Operation of system equipment (primary or back-up)

— Process control
— Reconfiguration of system equipment
— Intervention in automated functions

• Monitoring system equipment

• Diagnosing system malfunctions

TABLE 7b. DEVELOPMENT OF THE ROLE OF MAN

• Can man's unique capabilities be significant in the attainment of the system goals?

— Man has the ability to learn
— Man has the capacity for creative problem solving

• What system performance could be implemented by man?

• If a role for man is justified because of his unique capabilities (question 1) or primary
performance activities (question 2), what other performance should be assigned to hum
to take advantage of his utilitarian capabilities?

• Will man's unique limitations constrain his use in the system?

— Man has certain physical characteristics
— Man has physiological needs
— Man has psychological needs

• Will man be local or remote to the primary system?

G

4
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TABLE 8. CRITERIA THAT DEFINE UNIQUE HUMAN CAPABILITIES [ 1 ]

Fluman participation in the performance of a function is mandatory when that function
requires one or more of the following capabilities.

• Develop a Strategy. Man's inclusion is mandatory when.

— Operations cannot be reduced to preset procedures

- The form and content of till inputs and outputs cannot be specified or predicted

— The relationship between inputs and outputs may require restructuring during task
performance.

9 Integrate a Large Amount of Information, Mail 	 be included in the accomplishment
of a function when;

— Signals must be detected against a noise background

-- Patterns of information and trends must be extracted from several sources.

• Make and Report Unique Observations. Mail 	 be included when a function requires
that observation be made of;

— The performance of others

--- The performance of self

* — Ephemeral events.

• Assign Meaning and Value to Events. Mail 	 be included when performance of a
system or function requires that meaning and relative values be assigned to events.

3.4 Unique Duman Capabilities

In defining unique human capabilities it has to be recognized that "unique" is often only a
temporary characteristic and depends oil 	 state-of-the-art of any applicable technology. What is
considered unique today may not be any more unique at a later tune. Within the criteria that define
unique human capabilities (Table 8), there are at least three capabilities which may soon be automated.
These are marked by asterisks in the table.

3.5 Unique Human Limitations

In contrast to the unique human capabilities which often will prove to be strongly dependent on
the future time period under consideration, the unique human limitations listed in Tables 9 and 10 are
rather fixed and permanent and are not very accessible to training and learning. Tills does not consider
yet the possibility of luuman-machine hybrids where direct interconnections exist between lutman senses
(or train) with appropriate machines which would expand human capabilities or reduce human limita-
tions [101, Research in these areas is under way.

13
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TABLE 9. A FEW OF MAN'S UNIQUE LIMITATIONS (I ]

1. Mail 	 in only a single model. From a design point of view, man can be integrated
into the system concept only as a complete "unit" with variable physical cilaracterist,es:
dimensions, weight, and strength.

2. Mail 	 certain performance limitations from the standpoint of such things as sensf-
tivity, reaction time, number of information channels, rate of response, and tolerance
to stress,

3. Man's performance has all associated cost. One pays a price for providing and maintain-
Ing reliable hunmui performance, These costs are measurable in terms of: selection;
training; maintenance of proficiency; manuals, handbooks, instructions, and job aids;
biological support; and management. These costs are not always evident to the designer
until a system is operational.

4, Mail 	 physiological needs. I3uman performance deteriorates rapidly when physio-
logical needs for nourislument, sleep, comfort, and health are not satisfied.

S, Man has psychological needs. Mate's performance deteriorates over prolonged periods
of high stress or inactivity. Iluman performance also changes significantly because of
such psychological variables as motivation, frustration, conflict, and fear.

TABLE 10. CRITERIA THAT LIMIT OR PRECLUDE HUMAN PARTICIPATION
IN A SYSTEM FUNCTION [1 1

Consideration should be given to the exclusion of mail performing a function when one
or more of the criteria below apply.

• Force Application, Large, precise, or extended applications of force preclude the use of
man. Man's instantaneous peak force is limited to a mean force of 3000 Newtons,

• Response to Stinu► Ii/Signals. The human operator experiences a finite lag between the
onset of a stimulus and the ability to make a response to it. Tills lag varies from a
mean of 100 cosec for auditory stinmdi and approximately 120 cosec for visual stimuli,
to lags of 1 sec for responses involving a choice among alternatives.

• PrecIse Calibration and Measurement. human operators are incapable of making precise
measurements and calibrations.

• Reliable Response. Because of the variability of human response, man should be pre-
cluded from performing functions which require the unvarying repetition of one or more
responses,

• Time Sharing. Under most circumstances mail as a single-channel information
processor and should ordinarily be precluded from performing multiple tune -shared
tasks.

• Continuous Performance. Mail should be precluded from perforating functions which
cannot be interrupted or which require sustained attention for long periods of time
(e.g., in excess of 20 min).

• Detection of Low Frequent Events. The operator should be precluded from performing
functions which require the detection of rarely occurring stimuli, events, or conditions.

14
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3,6 Human Effectiveness In Performing Functions

In order to evaluate each generic system and function of a space station, twelve specific parame-
ters are suggested from which a matrix can be constructed listing the functions in a column and the
parameters in a row, The parameters are listed in Table 1 I with their descriptions.

TABLE 11. PARAMETERS FOR EVALUATING EFFECTIVENESS OF
MAN IN PERFORMING FUNCTIONS [2]

,

Feasibility The likelihood that man can perform the designated
function Successfully on orbit or on site with necessary
tools, Scale: low, medium, or high,

Utility Usefulness of man doing the task instead of with auto-
matic machines. Scale: low, medium, or high,

Location of Man The physical location of man performing the function.
Options: on ground, orbit, or site.

Level of Manned Interaction Degree to which Iran can participate in performing the
function. Scale: low, medium, or high.

Frequency or Duration The number of times the function is performed during
a mission or the length of time for an occurrence.

Technical Risk The technical risk incurred by performing the function
using man. Scale: low, medium, or high.

Time Phasing	 Period in program when a function is to be performed.

Common Aspects	 Characteristics of function which are common to
several discipline areas and can be performed with
similar operations.

Unique Aspects	 Characteristics of function which require that only
man or machine perform work.

Costs	 Coarse estimate of additional costs to incorporate
manned performance of function. Scale: low,
medium, or high.

Effectiveness Comparison Estimate of the relative effectiveness of performing
the function by man and by machine. Scale: good,
medium, or poor.

Recommended Method	 Estimate of the best method for performing the
function using man, machine, or interactive system.

4
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3.7 Human Factors Development ;wring Systems Definition 	 OF POOL 

The importance of developing the human role as early as during the mission analysis phase is
emphasized in Reference 3, This has to be followed by the function allocation, the definition of Human
factors engineering requirements, and finally, result in an optimum human-machine interface in the full
scale development phase (Table 12),

K

TABLE 12. PRINCIPAL. HUMAN FACTORS DEFINITIONS DURING MAJOR
SYSTEM DEVELOPMENT PHASES [3]

System Development
Phase

Human Factors R&D
Principal Product

Potential System
Design Effects

Mission Analysis Phase Development of the Role of Man (a) Maximum mission
(Pre-Phase A) flexibility

(b) Maximum crew
acceptance

(c) Minimal crew size and
cost

(d) System recoverability

Concept Development Allocation of System Functions (a) Balanced automation
Phase to Man (b) Mission sustainability/
(Phase A) endurance

(c) Optimum response to
emergencies

(d) Responsiveness to
change

Demonstration and Task Analysis and Determination (a) High quality decision
Validation Phase of Human Factors Engineering making
(Phase B) Requirements (b) Productive and

satisfying job designs
(c) Minimal training

costs
(d) Minimal maintenance

costs
(e) Minimal retrofit and

redesign

Full-Scale Development Design of the Optimal Man- (a) Minimal response
Phase Machine Interfaces delays
(Phase C, D) (b) Optimal accuracy/

reduced errors
(c) Optimal survivability
(d) Optimal user

compatibility

A
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4.1 Current State of Automation [ 121

The current state ' of automation is limited to relatively simple, pre-programmed tasks with little
or no machine intelligence cnd very restricted sensing of environments, For the more complex and
dynamic environment associated Mth space applications, it is still necessary to incorporate mail in the
control loop, In order to achieve the ambitious goals of the space program in areas such as space station
and long-life reserviceable spacecraft, it is essential to reduce direct human control of the robotic: systems.
This reduction can most naturally occur over a four-pliase development process.

The first phase is to develop the required system with man in the loop to provide control and
problem solving functions, The second please of robotic system evolution is to extract the man from the
primary control loop to assume a supervisory role. In this role, the op°rator will perform the functions
of planning out a sequence of tasks to achieve a specific goal. In the third phase, the individual will be
extracted one more level, In this phase, the operator will perform the function of establishing* intoni
mediate goals for the robotic system. The robotic system will perform the functions associated with
breaking down the specific goals into individual tasks to be performed. The finial phase of robotic evalua-
tion is the development of a fully-autonomous robotic system,

4.2 Automation Guidelines for Space Stations

General guidelines on when and how to automate space station systems and functions as well as
pitfalls of automation are given in Table 13.

4,3 Technical Feasibility of Automation

In order to decide on the technical feasibility of automating a specific system or function, a
number of questions need to be answered, These are listed in Table 14, For better orientation about
the various levels of automation, Table 15 has been adapted from Reference I 1 and lists five distinct
technological levels of increasing complexity,

4.4 Economic Feasibility of Automation

A number of questions have to be answered as to the economic feasibility of automation (Table
16). In establishing system cost this must include the cost of acquiring, automatically maintaining, and
operating a fully automatic system. The cost of including one or more human operators or maintainers
entails the aggregate costs of personnel selection, training, life support, staffing, attrition, and manage-
ment, and the provision of supporting documents, manuals, job aids, and training devices.

4.5 Total Automation

In certain instances total automation of specific systems and functions will be necessary. In order
to define these systems and functions, a set of criteria has been developed and is presented in Table 17.
The reference charts shown in this table can be found in the appendix of this report, y

11
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TABLE 13, GENERAL AUTOMATION GUIDELINES FOR SPACE STATIONS [4]

When to Automate;
To reduce excessive workload

I. Consider automating to avoid perceptual saturation,
2. Consider automating to reduce concurrent tasks,
3. Consider automating tasks on compressed title-lines.
4. Consider automating to avoid astronaut bandwidth limitations.
5. Consider automating to eliminate or consolidate small-scale operations,

To reduce errors
G. Consider automating ro:!tine tasks.
7. Consider automating memorization tasks,
8. Consider automating sequential and time tasks.
9. Consider automating seldom-performed tasks.

10. Consider automating monitoring tasks,
11. Consider automating tasks astronauts find boring and unmotivating.

To improve performance

12. Consider automating precision tasks.
13. Consider automating emergency-prevention devices.
14. Consider automating complex mathematical or logical tasks.

To add new capability

15. Consider automating complex tasks that must be performed rapidly.

How to Automate;
Control Tasks

16. Design space station controls and displays to be compatible with astronaut's mental
representations of the tasks.

17. Use automation to eliminate peak task demands.
18. Provide optional capability for manual operation of the system,

Monitoring tasks
19, beep false-alarm rate low
20. Provide operationally-relevarnt information.
21. Allow for astronaut query,
22. Design alarms to indicate the extent of emergencies.
23. Expose astronauts tc all alerts and to important combinations.

Pitfalls of Automation

24. Beware of reliability and maintenance problems in complex systems.
25. Beware of unnecessary use of automation.
26. Beware of the lack of astronaut acceptance.
27. Beware of substitution of emergency backup systems for main systems.
28. Beware of the loss c f astronaut's manual skills.
29. Beware of increased training requirevaents.
30. Beware of failure modes for complex systems.
31. Beware of system inflexibility or unmodifiability.
32. Beware of unknowns.

18
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TABLE 14. C'RITE'RIA FOR ASSESSIN , NY TI;C'IINIC'AL FEASIBILITY
OF AUTOMATION (1)

A system can be automated if tl ► e following criteria cats be satisfied.

y Component Availability, Are the necessary hardware and software com ponents required
by the system available off«Il ► c•shelf'

Development `lilac. if components are not readily available off, Ilic-sliclf, can needed
co ►uponcnts be devc1olicit within the sclicdulcd lifceeycic development limit Iirr the
system or can that limit tie revised to permit development and lestinw.

Predictability, C'a ►i system events (ix., mission events aunt system Nture modes) be
predicted and handled by automation'

Reliability. Is the expected reliability of the proposed system conrip iration adequate
to meet system performance regufrcnmits:'

• hailurc. Can the consequences of expected system failures be compensated for by
automatic: back-up or otherwise prevented from exceeding acceptable limits?

• Safety. Can adquale safeguards aeminst dangers to health be Billy automated?

TABLE 1 5. THE DIVE LEVELS OF AUTOMATION, AS DI,VI L.OPE'D
BY MERTES AND JRNNEY I I I I

Level I Automation of Computational Aids

At this carder of automation, repe titive computation and routine data processing tasks,
and maintenance of the system data base, aw allocated to machines.

Level 11 Automation of Aids to Decision Making

At this level, machines are assigned to more sophisticated data processing tasks.
Machines laegi ► i to Ibnction as a means of alerting man to the need fora decision and
providing him with data to assist his decision making.

Level iII Automation of Decision making

At this level, many decision-making tasks, particularly those of a mutme and repetitive
nature, are assigned to machines,

Level IV Automation of Communications

At this level, the machine replaces man in tine space-ground commumeation loofa for
routine relay of inR7rmation. Alan is responsible for communications of a special or
emerge ley nature.

Level V Full Automation

This level represents a syswna in which man has no direct responsibility for regulation
and control. Afan's role has become that of a system monitor and manager. lie con-
trols a complex of automated resources which, in turn, control the apace station.

NC)TFS:

These levels were developed by Mertes and Jcnney l l l l as a result of a study on automation
applications in air traffic control (ATC) tasks, and were derived from an analysis of Nis
generic (asks.

The authors examined tine ATCtasks within each We) for corresponding automation
within existing wstems in oWer :o determine how tasks combmed to form functional
groups.	 19
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TABLE: 16. CRITERIA FOR ASSESSING THE ECONOMIC FEASIBILITY
OF AUTOMATION [9]

A system can be automated within; economic constraints if it ineets'the following criteria:

Cost-Effectiveness, Will automation of the system be more cost-effective than tine use
of a human operator to perform one or more system functions? This assumes that
inclusion of the operator is not precluded for reasons of life support or human perform-
ance limitations,

o Funding. Call all necessary costs of development, design, testing, installation, and
automation be covered by known financial resources?

TABLE 17, CRITERIA FOR TOTAL AUTOMATION [9]

A system should be fully automated when a statement of its mquircments or its present configura-
tion meets one or more of the following criteria:

Regulation or Policy. A system must be automated when regulation or public polic y ^n

dictate. This assuuics that automati^3tt can lie accomplished with availaW r25^ mi

known technology.

Unvironincotal Factors. A system must be automated when any form of hunnan
is precluded because the system or its environment either will not support hmnan ii..
create products or conditions that would endanger it. `Phis assumes that an adequate life
support system cannot lie developed aria that mars cannot be rentoted to a safe environment
to perforin essential system functions, Ftivironmentni criteria include:

Unconwined radiation (see Chatt A-1)
Beat (see Chart A-« to A-4)
Noise (see Chart A-5)
Atmospheric pressure and sudden pressure change (see Chart A-G)
Chemical or biological substances (see Chart A-7)
Vibration (see Chart A-8).

System Itcquirements a, )d Constraints. A system must (:c auton)atcd when its porfonnance
requirements exceed or ia!1-Niside of the range of human capability. Perfor)nance requirements
!it 	 following areas may nuke automation mandatory. They are best expressed as a series
of questions having qualitative or quantitative answers,

Coatrolling: Do system requirements demand operational response to be made at speeds
which cannot be attained or mainUtined .)y a human operator? Does the system require
that adjustments be made which are too precise for the luumat) operator to make?

Monitoring: Does the system require the human operator to maintain a state. of alertness
or preparation which is beyond the operator's normal limits? (Cltatt A-16)

Sensing: Are there stimuli required by the system which are beyond tine capability of
human operators to perceive then)? (Chart A-17 and A-18)

Information processing: Are there information processing tasks, such as computations,
which require performance beyond the normal range of the buman operator! (Charts
A-14 and A-15)

interpretation: [noes the system require performance in areas such as classification or
extrapolation (calculating accelerations) which are not possible for the human operator
to perform within the limits of the system?

Information storage: Do system requirements demand that the operator be able to store
and retrieve large aunounts of information 

fit 	 that am beyond human capabilities?

Decision-making: Does the system require that tine operator determine a course of action
or make a selection from among existing procedural options In a shorter time than the
nonnai operator is capable of making such determinations? (Charts A-I i and A-1 2)

20



5,0 APPENDIX

Data on Human Capabilities and Limitations

The following data Have been extracted from various sources as indicated, The references listed
at the end of this report can provide additional information if desired.
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A•1, VVV'1 :.C'r8 01* ACIVITMIOLF.-DODY IXITRNAL RADIATION FIX110SUR11
(I"t-oIll woot.18011, 1981)

0 25 loms 25-100 gems 10	 rams	 200-300 FOM5 300-600 rams 600 tems or nw#

Inlinodiale Effects

No dcecla5lir clinical Slight IrarmeAt Nausea and 10guo Willi	 NAirsoa and vomiting on NAujVA, vomiting, and Nausea, vomiting, and
effects tirduclions in possible vomiting 	 first day cluirrhoa in first low disfihos in first low

lymphocytes and above t25 (am% hours hours
noullophils

Dis4bling s0noss not Reduction in lymphocytes	 Latent period tip to 2 Want Period with no Short latent period with
common, exposed and nout(ophils with	 weak$ 

or 
perhaps definite symptoms, no definite ►ymploms

individuals shQuid be delayed recovery	 longer perhaps as long as in some cases dumill
$bit IQ ptoce" Willi I weak first weak
usual duties

Wayed New

Nlayird ollocis may Delayed affitcls possible, Nlayed otlects may	 Following talent period, (pilation, lost of Diarrhea, hemorrhage,
occur but sanoiilo oflocts on shorten life oxro"lancy	 the following appetite. general purpu(A, inflammation

average old 'vidwAl very in the order of 144 	 symplools appear but malaise, and favor of mouth and throat,
improbable err not severe loss of during second week, favir toward end of

appolite, and general followed by first week
malaise, so(* throat, hemorrhage, purpurs, Rapid emaciation And
P4110t, patochlAo, pol"11140, death as early as the
diarihvA, moderate Inflammation of mouth second week, Willi
sina(uttion and throat, diarrhea, eventual death 

of 
up

and unisciallon in ilia to 100% of exposed
third week individuals

nova 	 IMFIV in abo
LN

ut Unie dooilht in 2 to 6
3 months unless weeks, Possible
complicated by poor eventual death to 50%
previous licallh or 611ho exposed
superimposed injuries individuals for about
or infections 500 rams

A-'. T01 VRANCE FO
(Ii volli Nvoot.1soll, 1081)
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Legend:

A--l-clo
D--2-clo
C-- 3- clo
D--4-clo

ex'o a lrae'r rwwr (NM

(light coveralls)
(woolen underwear, coveralls, and jacket)
(intermediate-weight flight clothing)
(heavy flight clothing)

, Ubjeotz were seat6d and performing light work. Air velocity,
approximately 200 ft/min; barometric pressure, I "ItIll.
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A-3, I:T VECTS OF COLD ON SLL ECTI^I) TASK PERFORMANCE'S
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Legend:

A--tactile sensitivity, bare hand
Ij ° =simple visual reaction tic
C--manual skill

A-4. TI MPLIMATURI'-I1UMIDITY TOLERABILITY
(WITH CONVEINTIONAL CLOTHING)

(From Woo(Ison, 1981) 
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A-5, POTENTIAL EFFECTS OF IIIGkI NOISE LEVELS
(From Woodsoli, 1981)

When noise levels exceed 100 dB, potentially serious
consequences occur, as shown below.

Noise Level, d8 Spectrum Duration Effects

105 Jet engine 2 min Reduced visual acuity, stereosco pic acuity,
and near-point accommodation and
permanent hearing loss when exposure
continues over a long period (months)

110 Machinery noise 8 hr Chronic fatigue and digestive disorders
120 Broadband 1 hr Loss of equdtbr>ajm
150 1-100 Hz 2 min Reduced visual acuity, chest- wall vibration,	 r

changes in respiratory rhythm, and a
"gagging" sensation"

*Subjects were wearing so-caller! protective aids to prevent hearing loss,

A-G, EFFECTS OF HIGH AND LOW OXYGEN LEVELS
(From Woodson, 1981)

Partial	 Percent of Oxygen
Pressure	 in Dry Air at Sea

of Oxygen,	 Level

mm of Hg	 Pressure	 Effect
Oxygen Excess

456	 60	 Onset of oxygen poisoning after some hours.
167	 22	 Limit set in RN to control fire

hazard in charcoal filters in nuclear sub marines

Normal

160 21 Normal atmospheric level 	 +

Oxygen Lack

137 18 Accepted limit of alertness. Loss of night vision
Earliest sign—dilation of the pupils.

114 15 Performance seriously impaired.
Hallucinations, excitation, apathy

100 13 Coordination impaired. Emotional upset
84 11 Paralysis, loss of memory.

Irreversible unconsciousness
4 6 6 Death before symptoms apparent.

Note The effect of falling oxygen is insidious, because it dulls the brain and prevents realization of danger

14
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A-7, SKIN REACTION TO CIiEMICAL SUBSTANCES
(From Woodson, 1981)

The table below presents a partial list of chemical
substances and their action on the skin.

Agent Reaction

Acids:
Acetic Dermatitis and ulcers
Carbolic irritation and erosion, eczema, and anesthesia
Chromic Ulcers (chrome holes on the skin), inflammation, and perforation

of the nasal septum
Hydrochloric Irritation and ulceration

'	 Hydrofluoric Severe burning, erosion ulcers, and blisters
Lactic Ulcers (if strong solution)
Nitric Severe burns and ulcers
Oxalic Local caustic action on the skin
Sulfuric Corrosive action on the skin and severe inflammation of the

Alkalis;
Calcium cyanamide Irritation and ulceration
Calcium oxide Dermatitis, burns, and ulcers
Potassium hydroxide Severe burning, persistent ulcers, and loss of fingernails
Sodium hydroxide
Sodium silicate Thickening of the skin and ulcers on the fingers
Sodium or potassium cyanide Blisters and ulcers

Salts:
Antimony and its compounds irritation and eczematous eruptions
Arsenic Skin darkening, perforation of the nasal septum, eczema around

the mouth and nose, and possible loss of nails or hair
Barium Eczema and cyanosis of skin
Bromine Brownish stains and skin erruptions
Chromium (hexavalent compounds) Chrome holes on the skin, perforation of the nasal septum, and

eczematous eruptions
Mercury compounds Corrosion and irritation and mercurial eczema
Sodium Burns and ulcers
Zinc chloride Ulcers of the skin and nasal septum

Solvents:

Acetone Dry (defatted) skin
Benzene Dry (defatted) skin
Carbon disulfide Dry (defatted) skin
Chlorinated phenols Severe eruptions

Petroleum distillates Acne and epithelioma
Tnchlorethylene Dry, cracked skin

Turpentine Red, blistered skin and eczema
Dyes:

Chlorinated compounds Blisterlike eruptions	 +
Dinitrochlorobenzene Blisterlike eruptions
Nitro and nitroso compounds Red skin and eczematous eruptions
Phenyl hydrazine Blisterlike skin eruptions

Insecticides:
Chlorophenois Red skin, and blisters
Creosote Pustular eczema, warts, and epithelioma

'	 Fluorides Severe burns and dermatitis
Pyrethrum Red skin, blisters, and pimples
Rotenone Red skin and blisters

Resins:
Coal tar, pitch, and asphalt Acute dermatitis, acne, inflammation, epithebomatous cancer,

eczema, and ulcers
Synthetics, a a.,

phenol -formaldehyde Extremely red and itchy skin
Synthetic waxes, e.g., Dermatitis and acne

chloronaphthatenes and
chlorodiphenylt
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A-8, EFFECTS OF VIBRATION ON HUMAN PERFORMANCE
(From Woodson, 1981)

Vibration Conditions Measures Effect Source

Biodynamic Mecharwsms

+0 154 35 g, at 0 9-6 5 Hz, Whole body, vertical vibration, hand tremor, Foot preset" constancy mripawcd at 3.5 bs Scenic:, Simons. and
g low amplitude body equilibrium. toot pressure 6,5 Hz. error increase with i nternutr; no BOettder, 1960

residual effects
Ong. t rig, for V, he Body sway "librium No effects Hornick. 8uettdw, and

Srrrorrs 1961

tg, 2-20 Hz (intensities . 'A Control of pith and roll of a caw Wide individual differences: decrement Coemw», Magri, and.
short-term tolerance limits) between 3 amid 12 H& worst at 6 Hz Lange, 1962

_g, at 0. 2, 5, and 9 Hz Onentation (orienting body positron to face Only unail decrement In aocwacy; mean error Ayoub, a 1969
targets at 15, 30, and 6(r from reference 4 0,5'
place)

--003 - -0.41 g, at 0, 3. Leg muscular power (on bicycle efgometer) No effects Haer(w. 1%9
5, and 8 Hz

Various peak-lo-peak Arm-hand steadiness Positional errors significancy, related to rats Clarke et al" 1965
accelerations at '1 Hz with 3 and frequency of vibration; 90% of error
Hz, and 2 Hz with 6 Hz was periodic 1 Hz with 3-Hz combination

produced larger error; small (0,5-1 g)
didlercr>ces in acukrat,on had no effect

Psycfwrnotor Performance

-0 25 g, at 2.4-9.5 Hz Time to pck up markers and place in small Completion bme worst at 3.4 and 4.8 Hz Guhgnxd and Irving.
CuCUtar areas 1960

-0.5 rms g, at 2-30 Hz OigivA decimal input with push button, toggle Accuracy unaffected; insert times increased by Dean et at- 1967
(13•Hz peak power) switch, rotary switch, and thumbwneel 4%; push buttons and toggle switches were

Controls most raptly used. mth the forcer
preferred; thumbwheels were most mate

0, 0,2. 0.4, 0.6, znd 0.9 rms &- me No effects for 0,2 and 0.4 rms g; significant Dean. Farrell, and Hitt.
g, for 5 min increase in Insert time for 0,6 and 0,8 rms 1967

g; speed: push buttons > •rotary switches
> thumbwfeels: error rate: push buttons
highest and thumbwheels lowest for high
intensity vibrations

_g, and ^g, at 0.33 and Nut and bolt assembly and disassembly; No effects at 0.33 Hr, time required irwrased Seeman and Willams.
0.80 Hz at amplitude of placement of probe through various sized by 30% at 0,80 Hz with no incease in 1966
-6.3 and -7.0 in holes accuracy

Speech Intelligibiky

_g, at 10, 20, 30, 40, and Intelligib,lrty Most effect at 10 and 20 Hz Nixon. 1962
50 Hz

0,5 g, sinusoidal at 6 Hr; 0.75 Intelligibility and quality No effect on intelligibility at 65 d8; 'quality" Nixon and Sommer.
g, at 4 and 8 Hr 1.0 g, at poorer than control condition 1963
2-20 Hz

Audition

5-Hr sinusoidal, 5-Hz random Frequency (pitch) change (1200 for 1600 Hz) No effect Weisz. Goddard. and
amplitude. 4. to 12-Hz at 8648 taus of 0.25a duration every Allen 1965
random frequency sacord-detection

1200 Hz at 86 d8 presented every 0.25 s for No effect Holt". 1966
1 s against a 74.d8, 30. to 3000-Hz white r
nose, pads change at 86 d8 (1600 for
1200 Hz)-detection

+ 11, =0.7 g, at 15 Hz TTS determined as function of vibration and Extremely small vibration effect at low tone Guhgnard and Coles.	 .
(amplitude 0 036 in) for 30 noise versus nose alone (acoustical Moquennes only 1%5
min f*equeruaes from 250-6000 Hr)

ffigtw Mental Processes

+0 15 - 0 35 g, at 2 5 arw. Mental addimdn No effect SdwrwM Simons, and
3.5 Hz Boettcher. 1960
g, at 5, 7, and 11 Hz Pattern makhing and discrimination No affect 8uckhhorrt,„ 1964

(I 40 rms g, random vibration Navigational tasks in simulated low-altitude. No effect Sehohan. Rawsm and
high-speed flight Sdidey, 1965; Sokday

and Sdwhan, 1965
No vibration, no rase, no Continuous countirig at a grven rate Decrermemt, espeaaly dunng 5-7 nun of bseluirn, 1967

vibration; rase only, exposure: resdual effects noted; 70% of
vibration plus noise, decr,enient attributed to vibration (30% to
postvihration +4 0 g, at 70 nose) Ss over 36 showed greater
Hz decrement

'Symbol > there indicates faster than
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A-9, HEIGHT/WEIGHT RANGES OF U.S. MALES/FEMALES (CAUCASIAN)
(From Van Cott and Kinkade, 1972)

.

Male Female

Height (in,) Weight (lb) Height (in,) Weight (lb)

Age (yr) Mean S.D. Mean S.D, Mean S.D. Mean S.D.

1 29,7 1.1 23 3 29.3 1.0 21 3
2 34.5 1.2 28 3 34,1 1.2 27 3
3 37,8 1.3 32 3 37.5 1.4 31 4
4 -10.8 1.9 37 5 40,6 1.6 36 5
5 43.7 2.0 42 5 43,8 1.7 41 5
6 46.1 2.1 47 6 45.7 1.9 45 5
7 48,2 2,2 54 7 47.9 2.0 50 7
8 50.4 2.3 60 8 50,3 2,2 58 11
9 52.8 2.4 66 8 52.1 2.3 64 11

10 £4.5 2.5 73 10 54,6 2.5 72 14
11 56.8 2,6 82 11 57.1 2,6 82 18
12 58,3 2.9 87 12 59,6 2.7 93 18
13 60,7 3.2 99 13 61,4 2.6 102 18
14 63.6 3,2 113 15 62,8 245 112 19
15 66,3 3.1 128 16 63.4 2,4 117 20
16 67.7 2.8 137 16 63,9 2.2 120 21
17 68.3 2,6 143 19 64,1 2,2 122 19
18 68.5 2.6 149 20 64.1 2.3 123 17
19 68.6 2,6 153 21 64,1 2.3 124 17

20-24 68.7 2,6 158 23 64.0 2.4 125 19
25-29 68.7 2.6 163 24 63,7 2.5 127 21
30-34 68.5 2.6 165 25 G3.6 2.4 130 24
35--39 60.4 2.6 166 25 63,4 2.4 136 25
40-19 68,0 2,6 167 25 63.2 2.4 142 27
50-59 67.3 2,6 165 25 62.8 2.4 14R 28
60-69 66.8 2.4 162 24 62.2 2,4 146 28
70-79 66,5 2.2 157 24 61.8 2.2 144 27
80-89 66.1 2.2 151 24

A-10. HUMAN PHYSICAL STRENGTH AND ENDURANCE
(From Woodson, 1981)

100

7s
1
vo
a 50i
N

d, 2 S

	

0 L	 1	 1	 1	 ,

	0 	 2	 4	 6	 t3
	

10

Minutes
Typical endurance time in relation to force requirements.
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A-11. REACTION TIME COMPARISONS OF SENSORY INPUT CHANNELS
(From Woodson, 1981)

HEARING

TOUCH
c

	

	 ,

SIGHT
 I

COLD

WARMTH
I	 I

SMELL

PAIN

KtAGTIVN TlMttsec)

Note: Signals should not occur at rates faster than about
two per second unless some means are provided for anticipating
the signal. Avoid alerting periods shorter than 0.1 sn

A-12. EFFECT OF NUMBER OF RESPONSE CHOICES
(From Woodson, 1981)

As one might expect, when the number of response choices
increases, the reaction time is lengthened. The table below
illustrates this point.

Number of Choices Mean Reaction Time, s

1 0.20
2 0.35
3 0.40
4 0.45
5 0.50
6 0.55
7 0.60
a 0.60
9 0.65

10 0.65

WIN

a-

28
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A-13, REPRESENTATIVE MANUAL ENTRY RATES
(Adapted from Devoe, 1967)

,

ENTRY RATES STRO14ES PER MINUTE

900 TOP KEYING
800 TOP TYPIST
700
600-

500-- VERY GOOD TYPIST

400

TYPING TEXT
300

TYPING RANDOM WONIS

200
GOOD STENOTYPIST
KEYPUNCHING

TYPING RANDOM LETTERS
HANDPRINTING NUMBERS

HANDWRITING TEXT \ 100
KEYINGNUMBERS, 5X5 MATRIX

KEYING NUMBERS 90. CHORD ENTRY DEVICES
HANDPRINTING LETTERS 80. TYPING CODED ORDERS

MARKING NUMBERS -70 KEYING NUMBERS, 10 BUTTONS
HANDPRINTING TEXT

UNSKILLED TYPING TEXT ----'^^ KEYING NUMBERS, IOX 10 MATRIX

4n
CONSTRAINED HAND PRINTING ---------

MARKING LETTERS ----30
STYLUS PUNCHING
CODED KEYbnARO MATRIX
MARKING

20
HAND PUNCHING

MARKING LETTERS ------.
(CHARACTER RATE)

10

A-14. SENSORY CIiANNEL CAPACITY FOR MULTIDIMENSIONAL STIMULI
(From Van Cott and Kinkade, 1972)

Channel Discrim-
Stimulus dimension capacty inable Investigator

(bits) categories

Size, brightness, and hue (varied 4.10 18 Eriksen (1954).
together).

Frequency, intensity, rate of in.. 7.2 ISO Pollack & Ficks (1934).
terrupdon, on-time fraction,
total duration, and spatial
location.

Colors of equal luminance....... 3.6 13 Halsey & Chapanis (1954).

Loudness and pitch------------- 3.1 9 Pollack'(1953).

Position of points in a square (no 4.6 24 Memmer & Frick (1953).
grid).

dote: The capacity of each dimension separately was approximately 2.7 bits.
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A-15. SENSORY CHANNEL CAPACITY FOR DIFFERENT
UNIDIMENSIONAL STIMULI

(Froln Van Cott and 'Kinkade, 1972)

Channel Discrim.
Sense Stimulus dimension ca acity finable Investigator

(bits) categories

Vision............ Dot position (in space).. 3.25 10 Hake & Garner
(1451).

Dot position (in'space).. 3.2 10 Oman & ktemmer
41n Miller, 1956).

ErTsen & HakiI Size of squares......... 2.2 5
(1955).

Dominant wavelength... 3,1 9 Eriksen & Hake
41955)

Luminance ............. 2,3 5 Erikson	 Hake

2,6 6
(1955;.

Pollack (in Miller,Area ..................
1956).

Line length............ 2.G-3.0 7-8 Pollack (in Miller,
1956),

Direction of line 2.8-3.3 7-11 Pollack (in Miller,
Inclination. 1956).

Line curvature......... 1.6-2.2 4-5 Pollack (in Miller,
1956).

Taste ............ Salt concentrations...._ 1.9 4 Beebe-Center et al,
(1955).

Audition......... Intensity -------- 2,3 5 Corner (1953).
Pitch ................. 2.5 7 Pollack (1952, 1953).

Vibration (on Intensity .............. 2.0 4 Geldard (in Miller,
chmt) 19:56).

Duration .............. 2.3 5 Geldard (in Miller,
1956).

Location .............. 2.8 7 Geldard (in Miller,
1956).

Electrical shock Intensity .............. 1,7 3 Hawker (1960).
(skin).

Durations ............. 1.8 3 Hawker & Warn
(1961).
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A-16, TASK CONDITIONS AFFECTING SIGNAL DETECTABILITY
DURING PROLONGED VIGILANCE
(From Van Cott and Kinkade, 1972)

0

Improved probability of detection

Simultaneous presentation of signals to dual channels.......... Buckner & W.Grath (190),
Gruber (1964).

Men monitoring display in pairs; merntiers of palm permitted to Bergum & Lehr (1962).
speak With one another; 10 Wnutea rest each 30 rn y nutts of
work; random schedule inspection by supervisor.

Introduction of artificial signals during vigilance period to which a Garvey, Taylor &- Newun
Faulknerresponse in required, (1959),	 (1962).

Introduction of knowledge of results of artificial signals........ Baker (1960).

Artificial signals identical to real signals... ................... Willdnaon (1964).

Decreased probability, of correct detections

Introduction of artificial signals for which a reaponie is not re- Colquhoun (1961).
quired,

Exowaive or impoverished task load on operator .............. Poulton (1060).

Introduction of a secondary display monitoring Jenson (1963), O'Hanlon
Schmidt	 964), Ware,
Baker d. Sheldon (1964),
Wiener (1964).

OTerator reports only signals of which he is sure..........	 . Broadbent &- Gregory (19631).

Change in probability of detection with time

A short pretest period followed 	 High initial probability of de-
by infrequently	 section, falling

Colquhuon 4: Baddeley (1964).
appearing	 off rapidly.

signals during vigilance.

Few pretest signals before vigi- 	 Reduces decrement in probe, Colquhuon A- Baddeley (1964).
lance period.	 bility of detection with time.

Prolonged continuous vigilance	 Decreases probsLUty of cor. Mackworth &- Taylor (1963).
rect, signal dettction.

A
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A-17. RELATIVE DISCRIMINATION OF PHYSICAL INTENSITIES
(After Mowbray and Gebliard, 1958)

Sensation	 Number discriminable

Brightness ............. 570 discriminable intensities,
white light.

Loudness............... 325 discriminable intensities,
2,000 Hz,

Vibration .............. 15 discriminable amplitudes
in cheat region wing broad
contact vibrator mth
0.05-0.5 mm amplitude
limits.

A-18. RELATIVE DISCRIMINATION OF FREQUENCY
(After Mowbray and Gebliard, 1958)

Sensation	 Number discriminable

Hues .................. 128 discriminable hues	 at
medium intensities.

White light............. 375 discriminable interim
Lion rates between 1-45
Interruptions/sec. at mod-
erate intensities and duty
cycle of 0.^5.

Pure tones ............. 1,800	 discriminable	 tones
between 20 Hz and 20,000
Hz at 80-dB loudness.

Interrupted white noise.- 480 discriminable interrup-
tion rated between	 1-45
interruptions/sec, at mod.
erato intensities and duty
Cycle of 0.5.

Mechanical vibration.... 180 discriminable	 fr	 uen-

cum between 1 and 320 Hs.
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A-19. l-'RltQUI NCY'-Sr-NSITIVITY lkANOL-S OI# ` ill-', SI?NSI^S
(A,ttapted from Ntowbray abut Ge )hard, 1958)

stimulus	 Lower Limit	 Upper limit

Color (hue) ....... FR..R....0 300 nm (300 X W r* $ m.).R.R. SW am.
Interrupted white light....... UaHmitod . .. . .............. 50 interruptionib we. at moder.

ate intensities and duty cycle

, 4	 M `}
	 20.000

Mo5.
S UM toaf. ..* ....... *-.... 20 H t ........ ............... 	 lit.

Nfe&:wicxl vibration........ UnlimlW .................. 10,000 lit at high intensities

A-20. S `I'INILILAI'ION•IN`l'I?NSi`I Y RANGFS O MAN'S SMSFS
(Adapted from Al()WJJr,iy alld (Jebliard, I058)

Smallmt detectable L&rgmt tolerable or
Sensation (thrrahold) practical

Sight.... ................ 10''	 mL ...................... ^1010 mL.
hearing ....	 ............. 2X10' 1dynar cm'............. <HP	 dynebpcm+.

Mechanic.+) vibration...... 25X 10° 1 mm Average amplitude
the fingertip MaximumAt

Varies with site and location
of stimulator,	 40pain hkely

sensitivity 300 l(s). dD above threshold.
Touch (premure).......... Fingertilss, 0 04 to 1.1 erg tone Unknown.

erg apprvx, kinetic ener>	 of
I mg	 mpprd 1 cm.)	 linr~s-
sure," 3 gat. mm'.

Smell, ................... Very rertsitive for some sub. Unknown.
atanm. a g., 2 X 10- 1 ing ^ml
of vanillin.

Two .................... Very sensitive for anme sub- Unknown.
stanmi, a ji., 4 X 10- 1 molar
concentration of quinine
sultatr.

Temperature .............. iSX 10^ 6 gm-calzcmi `sec. for 22X I0'' Km-cal/cm'.'xc. for

3 
see. exposure of 200 cm} sec exposure of 200 cm'

Pot iition and movement.... 0.2-01 deg. at 10 deg.^min, for 	 Unknown.
joint movement.

Acceleration .............. 0.02 g for linear acceleration.,., 5 to 8 R positive;
0.0.8 g for linear deeelcration...•. 3 to # g negatti+c'
0.12 deg ';►ec ► rotational	 D'unrient.atton, oonfulian.

acceleration for oculogyral	 vertigo, blackout, or redout.
illuriun (apparent motion or
displacement of viewed abject).

13
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MAN'S SENSES AS INFORMATION CHANNELS

Allocation decisions must be qualified through detailed considerations of basic human capacities.
Potential allocations may be rejected as incompatible with basic human capacities, The following chart
is a sample of a type of data available in literature which can be used for this purpose, Allocations may
be rejected or the level of human participation modified based on human demands,

In this case, an option is to supplement humans with equipment or aids to allow the operator
to function within the system,

A-22 1.  MAN'S SENSES AS INFORMATION CHANNELS: A COMPARISON o TIIL INTENSITY RANGES
AND "NTENSITY DISCRIMINATION ABILITIES OF TIME SENSES*

k

34

Same Intensity Range Intensity Discrimination
Smallest Drtectabla Largest Practical Relative Absolute

Vision 2.2 to 5.7 x 10*10 erga Roughly, the brightness With white light, With white light,
of snow in the there are about 3 to 5 absolutely
midday sun, or 470 discrimin• identifiable in-
about 109 times the able intensity tensities in a range
threshold Intensity differences in a of 0.1 to 50 ml.

practical range

Audition 2 x 10"4 ergs/cm2 Roughly, the intensity At a frequency of With pure tones
of the sound produced 2,000 cps, there about 3 to 5
by a jet piano with are approximately identifiable steps
afterburner or about 325 discriminable
1014 times the Intensity differences
threshold intensity

Mechanical For a small stimulator Varies with sire of In the chest region 3 to 5 steps
vibration on the fingertip, stimulator, portion a broad contact

average amplitudes of body stimulated vibrator with
of 0,00025 mm can and Individual, Pain amplitude limits
be detected is usually encountered between 0,05 mm

about 40 db above and 0.5 mm provides
threshold 15 discriminable

amplitudes

Touch Varies considerably Pain threshold Varies enormously Unknown
pressure with body areas for area measured,

stimulated and type duration of stimulus
of stimulator. Some contact and Interval
representative between presentation
values: of standard and
Ball of Thumb— comparison stimuli
0.026 erg
Fingertips-
0,037 to 1.090 ergs
Arm-0.032 to
0.113 ergs

Smell Widely variant with Largely unknown No data available No data available
typo of odorous
substance, Some
representative
values:
Vanillin-
2 x 10'7 mg/m3

e

* Reference 8.
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