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Semi-Annual Report

I. Program Development

During 1982 work was finished on the computer program development needed

for our basic mn-LTE radiative transfer modeling. As a result it is possible for the

first time to determine the formation of spectral lines in expanding spherical atmo-

spheres in a physicOly realistic way, taking into account multilevel atomic

processes, partial frequency redistribution, and other non-LTE transfer effects trat

affect the formation of optically thick lines. This program development work has

been documented by Avrett and Loeser (1983).

11. Resul-cs

We have begun an exploration of the formation of Mg 11 and Ca II circumstellar

absorption lines in late-type giants and supergiants. This work is based on the

wave-driven wind theory of Hartmann and MacGregor ( 1980), as modified by Hart-

mann, Edwards, and Avrett ( 1982) and Hartmann, MacGregor, and Avrett ( 1983) to

include solution of a realistic energy equation. In this theory, the mass loss rate

from a star is specified by the chr,ce of the initial magnetic field strength and

Alfven wave flux. This choice is guided by observational estimates of stellar mass

loss rates. In the context of this theory, in which the waves are assumed to dissi-

pate exponentially with a constant damping length )l, the terminal velocity is set by

the value of X. Although ire this schematic treatment there is no theoretical reason

to choose a specific value for a, it is found that the only way that low terminal

velocities in agreement with observation can be produced is by setting A — 1R,.

With the wave flux and the damping length fixed, the wave hewing rate is deter-

mined. In these winds, the temperature is determined from balancing wave heating

with radiative cooling. We havc calculated the radiative cooling rate as a function
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of density .end temperature from the results of plane-parallel chromospherlc models

and use these results to approximate the radiative cooling in an extended wind

(preliminary calculations Indicate that this Is roughly correct). This permits the run

of temperature to be calculated along with the density and velocity profiles.

The most important prediction of these models is that a warm zone In the wind

must exist es a result of the wave heating. Within this zone, the Ca 11 and Mg 11

atoms can be Ionized to Ca III and Mg ill, so that the gas is transparent in the

resonance transitions. At large distances, the wind cools adiabatically, and the Mg

III and Ca III can recombine to the lower stage of Ionization. Since the gas is dif-

ferentially expanding, this behavior gives rise to "double" circumstellar absorption.

Close to the star, the gas temperature is not high because the high densities le%d

to efficient radiative cooling. Thus, low-velocity Mg 11 and Ca II absorption Is

formed. As the wind expands, the gas heats up and becomes transparent. At

large distances and high velocities, the wind cools, and the recombination once

again results in observabia circumstellar absorption, in this case with a large blue-

shift.

The line profiles resulting from this wind beh- 3 ior are shown In Figs. 1, 2, and

3. The atmospheric model—the run of density, temperature, and velocity—has been

computed with a program solving the energy and momentum equations self-

consistently (Hartmann, Edwards, and Avrett 1982). This model orovides the Input

to the radiative transfer code.

The Ionization balance is solved for hydrogan using a model atom with three

levels plus continuum. The resulting solution provides the starting polit for calcula-

tions for a 3-level Ca II model atom and a 6-level Mg 11 model atom, solving the

transfer problem In partial redistribution In a moving atmosphere as described

above.

The results show the sensitivity of the high- and low-velocity absorption to
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variations in the mass loss rate and in the maximum wind temperature. Comparison

with some observed line profiles shows a striking resemblance between theory and

observation.

Another feature worthy of notice Is that the low-velocity absorption component

Is slightly hlueshifted by w -10 to -20 km s 1 . A similar shift is observed in many

stars with high-velocity circumstellar shells (cf. Relmerr • 1982). Although there is

some confusion in the analysis of the low-velocity Mg II and Ca 11 features due to

U:e possibility of interstellar absorption, no such contamination exists for Ha. Figs.

1 and 2 show a similar, small blueshift in the line core; there is a great deal of ob-

servational evidence for shifts in G and K supergiants (Mallik 1982; Zarrn 1982),

indicating that th9 flow is beginning in the low chromosphere.

Note that in the low mass loss rate case, model 1, the high-velocity absorption

is much less prominent than in model 2. The high-velocity circumstellar absorption

in model 1 may be overestimated, because at the radius where recombination is be-

ginning, the flow times are comparable to the recombination times. This convective

effect, which has not been included in the statistical equilibrium equations, will tend

to reduce the Ca If and Mg li absorption. Thus it is clear that minor changes in the

properties of model 1 could result in no high-velocity absorption at all. The only in-

dication of mass loss would be the asymmetry observed in Mg II, which is not

present In Ca II. Stencel and Mullan (1981) have shown that stars exist which

show no high-velocity absorption, and have Mg If mass-loss asymmetries but nc Ca

11 asymmetry. This is naturally explained by the warm wind model.

Our results suggest that the warm wind model is correct in outline, which hes

Important implications for the physical un lerstanding of late-type stellar winds. it

may be possible to investigate the required damping length empirica'ly through cal-

culations of the type demonstrated here.

We are continuing an invastigatior into the wind of a Ori. We showed previ-

,
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ously that the warn wind theory predicts Ha and free-free emission In approximate

agreement with speckle data (Goldberg et at. 1,082) and radio observations (Newell

and HJellming 1982). This work is continuing in an effort to determine wind tem-

peratures more precisely. Our prior calculations assumed detailed balancc in the

Lyman lines. This assumption is not adequate for accurate estimation cf the wind

temperature, and we are recomputing these models. Ultimately we hc:pe to derive

the electron temperature and hence the Importance of thermal effects in the wind

dynamics, as well as determine the amount of mechanical energy required to heat

the wind.

111. Further Work

to addition to exploring further the a Ori series of models, we wish to reexam-

ine the T Taurl series of models (Hartmann, Edwards, and Avrott 1982). These

models were originally computed with the statistical equilibrium calculated from a

static model, and we wish to check the effects of expansion on the source func-

tions, as well as departures from detailed balance In the Lyman lines.
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Fig. 1. Calculated Mg II and Cfa II line profiles for a star with a mass
loss rate of 3.8 x 10 - Nib yr (model 1).



l

ORIGINAL PAGE T3

OF POOR QUALrT'Y

W,

6

i
r^ ?

Z

N
1

E 0
U

15
a

LL.

10

10

5

4

8

Ur)nP"1 2

01
- ?S
	 -2	 -I	 0 o	 I	 2	 3
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Fig. 3. Ha line profiles for the two model winds.
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