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NUMERICAL COMPUTATION OF TRANSONIC FLOW GOVERNED BY
THE FULL-POTENTIAL EQUATION

Terry L. Holst

Ames Research Center
1. INTRODUCTION

This set of notes discusses the numerical solution of transonic flow
fields governed by the full-potential equation. In a general sense this
presentation deals with relaxation schemes suitable for the rumerical solu-
tion of elliptic partial differential equations. Of course, transonic flow
is not purely elliptic in nature but consists of hyperbolic regions embedded
in an otherwise elliptic domain. However, the most successful numerical
methods of solution for transonic flow applications, at least for potential
formulations, have evolved from classical relaxation schemes associated with
elliptic equations. Thus, most of the algorithms presented herein will have
an elliptic-equation, relaxation-algorithm flavor. For related material the
reader is referred to Hall (ref. 1) for a review with emphasis on the his-
torical aspects of computational fluid dynamics (CFD), Holst et al. (ref. 2)
for a general review of computational transonic aerodynamics (CTA), Chapman
(refs. 3,4) for a general review of current CFD research, and Kordulla
(ref. 5) and Baker (ref. 6) for additional information regarding transonic-
flow solution methods.

The transonic speed regime provides the most efficient aircraft cruise
performance; hence, most large commercial aircraft cruise in this speed
regime. However, transonic flow fields tend to be sensitive to small per-
turbations in flow conditions or to slight changes in geometrical character-
istics, either of which can cause large variations in the flow field. Large
performance penalties can result because of relatively small perturbations
away from desired design conditions. Computational techniques, therefore,
have enjoyed an increasing role in helping the aerodynamics engineer find
optimal design conditions, as well as to evaluate design sensitivity.

Transonic flow fields contain a variety of interesting and unique char-
acteristics. Typical airfoil and swept-wing flow fields are shown in
figures 1 and 2. The outer free-stream flow is typically subsonic and
elliptic in nature. Regions of supersonic flow (hyperbolic) usually exist
on the upper airfoil or wing surface and are generally terminated by a weak
“transonic" shock wave. For the case of a swept-wing flow field, the shock
wave may actually consist of a system of shocks, as shown in figure 2. The
first shock is swept and therefore has a supersonic downstream Mach number.
The rear shock is approximately normal to the local flow and therefore has
a subsonic downstream Mach number.

Signals tend to propagate very rapidly downstream in transonic flow
fields where the propagation velocity is u + a (local fluid speed plus sonic
velocity) and very slowly upstream where the propagation velocity is u - a.
For a downstream disturbance to propagate upstream it must move around the
supersonic zone, further increasing the difference between the upstream and
downstream propagation speeds. This situation tends to make transonic
numerical solution techniques, which depend on physical-time-dependent algo-
rithms, very slow. Such problems are said to be "stiff," and they require
large amounts of computer time for even a single steady-state solution.
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Another characteristic of transonic flow is that it is governed by
equations that are inherently nonlinear. Linearization of these equations
will remove the vital flow-field physics which are responsible for the pre-
diction of shock waves. This nonlinear behavior tells us that a direct
(1.e., noniterative) solution procedure for transonic flow is theoretically
impossible. Thus, one basic feature associated with all of the schemes dis-
cussed within these notes is that they are all iterative.

Viscous effects are also important in transonic flow fields. This
complex subject involves four major effects: (1) shock/boundary-layer inter-
action effects, (2) the decambering and thickness effects caused by the
addition of a simple displacement thickness, (3) trailing-edge effects, and
(&) near-wake effects. However, a discussion of viscous correction proce-
dures is not within the scope of the present set of notes., Instead, the
interested reader is referred to Lock (ref. 7) and Melnik (ref. 8) who treat
this subject in detail.

The following presentation can be divided into two general categories:
an introductory treatment of the basic concepts associated with the numerical
solution of elliptic partial differential equations and a more advanced
treatment of current procedures used to solve the full-potential equation
for transonic flow fields. The introductory material is presented for com-
pleteness; it covers governing equations (sec. 2), classical relaxation
schemes (sec. 3), and early concepts regarding transonic, full-potential
equation algorithms (sec. 4). These topics are intended to provide an intro-
duction for some of the more advanced concepts presented in the later sec-
tions. The more knowledgeable reader could skip sections 2-4 and proceed
directly to sections 5-8 without a significant loss in continuity.

State-of-the-art topics concerning the numerical solution of the full-
potential equation for transonic flows are presented in sections 5-8. These
sections include a discussion of equation transformation and grid-generation
procedures (sec. 5); a presentation of recent full-potential spatial differ-
encing schemes (sec. 6); a presentation of full-potential iteration schemes,
with special emphasis on convergence acceleration (sec. 7); and a brief
review of recent three~-dimensional applications (sec. 8). These notes are
then concluded with a few general remarks including recommendations for
future research.

2. GOVERNING EQUATIONS

2.1 Classification of Second-Order Partial Differential Equations

Consider the following general quasi-linear, second-order partial dif-
ferential equation (PDE):

Auxx + Buxy + buyy = F (2.1)

where A, B, C, and F are functions of x, Ys U, Uy, Uy. This equation can
be classified by considering the corresponding characteristic equation (for a
derivation of the characteristic equation and additional discussion on this
topic see refs. 9 and 10):

. |
A% -B%+c=o (2.2)




Using the quadratic formula, the two characteristic directions associated
with equation (2.1) are given by :

(91 B * VBZ - 4Ac

= (2'3)
dx 1,2 2A

The nature of these characteristics determines the equation classification.
Equation (2.1) is hyperbolic 1f the characteristics are real and distinct
[that is, if the discriminant of eq. (2.3) is greater than zero

(B? - 4AC > 0), then the equation is hyperbolic]; parabolic if the character-
istics are real and coincidental (B? - 4AC = 0); and elliptic if the charac~
teristics are complex and distinct (B2 - 4AC < 0). '

Several classical PDEs along with thelr classifications are given as
follows.

Laplace's equation:

Heat equation:

u_ = o‘u (o ~ real)
21) = $0 parabolic
1,2

Wave equation:

u,=¢ uyy (c ~ real)
(%1 = *¢  hyperbolic
/1,2

The primary motivation for studving the nature of PDEs in the present
context is to gain insight into the physics they govern, and, therefore, to
develop guidelines for the implementation of numerical solution procedures.
Different equation types generally require different solution algorithms.

A particular point, P, in a solution domain governed by a PDE, has
associated with it regions called domains of influence and domains of depen-
dence. These domains are determined by characteristics. For example, in
the case of steady supersonic flow, which is hyperbolic, the domain of depen-
dence is defined by the forward Mach cone, and the domain of influence is
defined by the zft Mach cone (see fig. 3). Physically, the flow conditions
at point P depend on the flow conditions in the domain of dependence. Con-
versely, the flow conditions at point P can influence any other point in
the domain of influence.

The numerical domain of dependence, that is, the domain of dependence
modeled by the numerical differencing scheme, should mimic the physical
domain of dependence as closely as possible. If it does not, instability
probably will result. ;

cihoddmen Gl e I e L e




Elliptic equations are much different in nature than hyperbolic equa~-
tions. A single point in an elliptic solution domain influences every other
point and vice versa; that is, the elliptic domains of dependence and influ-
ence are coincidental and contain the entire solution domain. Solution
algorithms for elliptic equations should reflect this fact to properly
simulate the physics,

For transonic flow applications, the solution domain u:ontains both
elliptic (subsonic) and hyperbolic (supersonic) regions. The boundaries
between these reglons (sonic lines or shock waves) are unknown in advance
and must be determined as part of the solution. Most successful relaxation
schemes used for transonic applications utiiize a feature called type-
dependent differencing which allows the local differencing scheme to be
adjusted to the local flow-field physics. Numerical solution techniques for
implementing this philosophy will be the primary subject of discussion in
subsequent sections of these notes. Two PDE formulations representing
different levels of approximation for transonic flow fields are discussed
next.

2.2 Transonic, Small-Disturbance Potential Equation

The transonic, small-disturbance (TSD) equation expressed in two-
dimensional Cartesian coordinates (x,y) is given by

(1= M5 - Mi(y + Do do, + 4y =0 (2.4)

where M, 1is the free-stream Mach number, vy is the ratio of specific heats,
and ¢ 1is the small-disturbance or perturbation velocity potential defined

by
(2.5)

In equation (2.5), 3 and Em are the local and free-stream velocity vectors
defined by

g=ul+v], T =ugf (2.6)

where 1 and 5 are the unit vectors along the x and y directions, respec-
tively. Thus, the velocity components are given by

¢x=u-—Um, ¢y=v (2.7)

Boundary conditions for a typical "thin" airfoil used in conjunction
with equation (2.4) are given by

¢y(x,03) = U, %gy— (2.8)

where g+(x) and g~ (x) define the upper and lower airfoil surfaces, respec-
tively. Application of this boundary condition is made at the airfoil slit
(or chord line). This simulates the required flow-tangency boundary condi-
tion at the airfoil surface to an accuracy consistent with small-disturbance
theory. An auxiliary relation, usually used in this formulation to define
the airfoil surface pressure coefficient, is given by
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C; = ~24,(x,0%) (2.9)

where C; and CE correspond to the upper and lower surfaces, respectively.

The TSD equation, given by equation (2.4), is valid for isentropic,
irrotational flows about thin shapes (airfoils and wings) immersed in approx-
imately sonic free streams (that is, M, ~ 1). For a more detailed discussion
of TSD theory, including a discussion of the varlous three-dimensional formu-
lations, see references 2 and 1l1.

By using the discriminant test obtained from equation (2.3), it can be
shown that equation (2.4) is hyperbolic when

2
¢x>_1_~._b1_°°__
(v + )M
and elliptic when
2
<1 =My
oy + g
In other words, the sign of the first term coefficient determines the equa~
tion type. If this coefficient is positive, the local flow is subsonic; if
it is negative, the local flow is supersonic. The nonlinearity of the first

term is essential for describing the mixed character of transonic flow and
is the mechanism by which shock waves are formed.

The characteristic directions associated with the TSD equation are given
by

dx

‘(Qx = sl -2 - M3y + D172 (2.10)
1,2

Notice that these characteristic slopes are symmetrical about the x-axis
regardless of the local velocity-vector orientation; that is, the character-
istics are not a function of the y-component of the velocity (¢,) (see

fig. 4). This situation, which is in dramatic contrast to the full-potential
equation, has certain implications regarding spatial-difference approxima-
tions for both the TSD and the full-potential equationm.

2.3 Full-Potential Equation

The full-potential equation written in conservative form for two-
dimensional Cartesian coordinates (x,y) is given by

(Po )y + (poydy =0 (2.11a)

where the density p 1is defined by
- _ -1 2 2 1/Y_1
P [1 L—Y 1 (b + ¢y)] (2.11b)

In equation (2.11), Yy is the ratio of specific heats (equal to 1.4 for air)
and ¢ is the full or exact velocity potential given by

vg=¢itoedeulrvi=g (2.12)




where ¢x and ¢y are the velocity components in the x and y directions,
respectively. The density and velocity components appearing in equa-

tion (2.11) are nondimensionalized by the stagnation demsity pg and by the
critical speed of sound, a,. Thus, at a stagnation point,

¢x'¢y -0, p > 1 (2.13)
and at a sonic line,
2 2 y -1 /-1
¢x + ¢y + 1, p -+ [} e 1] = 0.633938145 ., . . (2.14)
The latter condition 1s quite useful in providing a simple test for super-
sonic flow; that is, if p < 0.633938145 . . . the flow is supersonic, and
if p > 0.633938145 . . . the flow is subsonic.

Several useful auxiliary relations are given as follows.

Bernouili equation (energy equation):

2 2
9 a =
) + T =1 constant (2.15)

Isentropic equation of state (perfect gas):

P/pY = constant (2.16)
Speed of sound definition:
2 o 4P _ YP
a o 0 (2.17)

The second equality in equation (2.17) is obtained by using the isentropic
equation of state. Using the same nondimensionalization for these realtions
as for the full-potential equation yields

2
q° a - ly+ 1
i o (2.18)
P + 1
R A (2.19)
oY 2
a2 = Y2 (2.20)

)
Note that the density expression shown in equation (2.11b) has been derived
from equations (2.18)-(2.20).

The full-potential equation given by equation (2.11) is valid for isen-
tropic, irrotational flows about arbitrary shapes. That is, the full-
potential equation is not restricted to thin shapes as is the TSD equation.
However, to obtain physically realistic results, the full-potential equation
is restricted to shapes and to flows for which viscous effects (separated
flow) are not significant. The full-potential equation is also restricted
to flows ranging from incompressible (M, ~ 0) to transonic (M, ~ 1). These
potential formulations are valid in transonic flow (even though they are,
strictly speaking, isentropic) because weak, or transonic, shock waves can be
reasonably approximated by an isentropic formulation. A comparison of the
isentropic shock-jump relation with the exact Euler shock-jump relations

*r
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(Rankine-Hugoniot relations) is given in figure 5 (see ref. 12). Note that
for a local Mach number (M,) at or below 1.3 a reasonable approximation is
maintained by the isentropic assumption.

It is essential that the finite-difference approximation to the full-
potential equation be cast in conservative form (see refs. 13 and 14).
Otherwise, the shock-capturing procedure will not necessarily conserve mass
across the shock wave. The effective mass source added at the shock wave is
dependent on nonphysical considerations such as the local grid spacing.
Nonconservative schemes have been used, with good success, in transonic-flow
simulations for many engineering applications. This is because the effec-
tive mass production at shocks fortuitously models shock/boundary-layer
interactions. A superior approach is to use conservative form with viscous
corrections added via the boundary-layer equations. Therefore, the proper
shock strength and position (within the framework of the isentropic formula-
tion), automatically corrected by the proper viscous effects, will be
obtained.

Classification of the full-potential equation [eq. (2.11)] is difficult
because it is not in standard form [eq. (2.1)]. Transformation of equa-
tion (2.11) into nonconservative form will facilitate the classification
process. The nonconservative full-potential equation written in two-
dimensional Cartesian coordinates is given by

2 2 2 — “
(a* = 90, - 20,60, + @ - 408, = 0 (2.21)

where a 1s the local speed of sound computed from the Bernoulli equation
[see eq. (2.18)]. The discriminant [see eq. (2.3)] for equation (2.21)
becomes

B - 4AC = 4a’(q® -~ a?) (2.22)

Therefore, the full-potential equation, either in the conservative form
{eq. (2.11)] or nonconservative form [eq. (2.21)], is hyperbolic for super-
sonic flow (q > a), parabolic for sonic flow (q = a), and elliptic for sub-
sonic flow (q < a).

The characteristic directions associated with the full-potential equa-
tion are given by

- '/ 2 2 -
5!}'_) Tty e (@* - &%) (2.23)
dx 1,2 aZ - ¢;

Notice that the characteristic directions for the full-potential equation are
not symmetric about the x-axis as was the case with the TSD equation.
Instead, the characteristics are symmetric about the stream direction. (This
fact will become obvious in a subsequent section.) Therefore, ilke the local
velocity vector 3, the characteristic directions can have virtually any
orientation, which makes numerical solution of the full-potential equation
more complicated than the previously discussed TSD equation. After the pres-
entation of several classical relaxation schemes for purely elliptic equa-
tions, we shall return to this and other points associated with the numerical
solution of the full-potential equation for transonic flows.
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3. CLASSICAL RELAXATION ALGORITHMS

A look at some of the classical relaxation schemes applied to elliptic
equations, including point and block (line) iterative techniques, i8 consid-
ered next. Additional details on this subject can be found in Ames (ref. 9).
To facilitate this discussion, notation conventions, which will apply
throughout these notes, are now presented. ,

3.1 Notation Conventions

In general, the notation, ¢2, » will be used to represent the nth
iterate of the discretized dependent variable, ¢, at a position in the
finite-difference mesh given by x = iAx and y = jAy. When transformed
coordinates (£,n) are involved, the 1 and j subscripts will be used to
represent position in the computational-domain, finite-difference mesh (that
is, £ =1 and n = j where Af = An = 1.0). Definitions for the various
difference operators used in these notes are given by the following.

First central difference (second-order accurate):
6.0+ T [y 4 = Oy, 4] (3.1)
x* ‘1,j 2Ax% it+1,] i-1,]3
First backward difference (first-order accurate):
S0y 2 Oy 4= Oy ] (3.2)
First forward difference (first-order accurate):
1

LA VEE -5 (NN SN (3.3)

Second central difference (second~order accurate):
=L -
Sex{ 01,5 = 77 10,3720 3 % Oy 4] (3.4)

Forward shift operator:

B (g5 = O g (3.5)
Backward shift operator:
-1 ) _
Eo (5,58 Oy g (3.6)
Central average.operator:
b33 23 1Oy * Oy y) (3.7
Forward average operator:
GOy =5 (O 4% Oy 4 (3.8)

e ¥ G S R R T T I R T T NI T




Backward average operator:

These operator definitions have all been defined using the x-direction. Of
course, additional operators can be defined for any space or time coordinate
similarly to those for the x-direction. Certain identities associated with
these operators exist and can be useful. For example, all difference and
averaging cperators can be expressed, using shift-operator notation:

3

1 -1
H(l-Ex)

x
+ 1 -1
“x'"i(1+Ex)
(3.10)
1 -1, 1 -1 -1
§x§¥ = (- By ) Bx A -E") =E 8 x
=L (1 - 28 + ET?)
Ax? X X

Notice that the symmétrical cowbination of first-order-accurate, one-sided
difference operators creates second-order-accurate, centered~difference
operators.

+1 -1
E.  -11-E
IR S S -1y o X X
Gxx T, (By 2+ E, ) Ax Ax
Ax
=53 =15 (3.11)
. X X X X
D S D R S | “_l
6x T 2A% (Ex B ) 2 (3¥ + ﬁ#)

This fact will be useful in the application of fully implicit, approximate-
factorization schemes for solving the full~potential equationm.

The classical relaxation schemes discussed next will all be presented
for the two-dimensional Laplace equation:

byx T byy = 0 (3.12)

Each scheme will be put into a standard, two-level correction form (sometimes
called delta form) given by

n n .
NCi’j +ouléy 4= 0 (3-13)

where Cz § is the nth~iteration correction defined by
’

n+1

n
O34 %% - ¥ (3.14)

L¢1 is the nth-iteration residual, which is a measure of how well the
finite=d1fference equation is satisfied by the nth-level solution, ¢"; and
w 18 a relaxation parameter. The general iteration scheme given by




equation (3.13) can be considered as an iteration in time (that is, pseuco-
time — the scheme does not actually apply to a physical time-dependent dif-
ferential equation). This consideration allows the n supersceript to be
regarded as a time-index, that is, C' ~ At¢;. The N-operator determines the
type of iteration scheme and, therefore, is the orly quantity from equa-

tion (3.13) to change from scheme to scheme.

3.2 The von Neumann Test for Stabllity

The general iteration scheme represented by equation (3.13) can be
investigated for numerical stability by using the Fourier, or von Neumann,
test for numerical stability. This scheme was developed by von Neumann in
the early 1940s and was first discussed in detail by O'Brien et al. (ref. i5)
in 1951, Additional details can be found in Smith (ref. 16), Ames (ref. 9),
Mitchell (ref. 10), and Richtmyer and Morton (ref. 17).

The propagation of numerical error is studied by substituting a suitable
solution,

A 4 eiax eiby

Qi,j (3.15)
into the finite-difference scheme [eq. (3.13)]. In equation (3.15) a and b
are wave numbers associated with the Fourier series which represents the
solution at t = 0, X 1s (in general) a complex constant, and the super-
script 1 1is V-1. The resulting expression is solved for

G = ex(t-mc)/ext = oMt

(3.16)

This quantity is called the amplification factor and provides an indication
of error growth or decay. If G > 1 for any values of a and b, the scheme
is numerically unstable. If G <1 for all values of a and b, the scheme
is stable.

There are several important limitations assvuciated with the von Neumann
stability test, First, this test applies only to linear difference schemes
with constant coefficients; however, if the difference scheme in question has
variable coefficients, the method can still be applied locally with a good
chance for accurately predicting numerical stability characteristics.

Second, the effect of boundary conditions is neglected by this method (that
is, the boundary conditions are assumed to be periodic). Another type of
stability analysis, referred to as the matrix method, is preferable when the
effect of boundary conditions needs to be analyzed (see refs. 9, 10, 16 for
discussion on this topic).

3,3 The Point-Jacobi Scheme

The point-Jacobi relaxation scheme can be expressed as follows:

1 n+1
T @y - 2¢§j+¢1lj>+ AR IR R C BT

Rewriting this scheme in standard form yields

2 2 \.n n
(— = - ;)Ci,j + (Gxx + ny)¢ioj 0 (3.18)




whera

2 2
NoN . &« e (3.19)
2 ax? Ay2
and
L o= Sxx + ny (3.20)

Note that the N-operator for the point-Jacobi scheme is just a scalar oxr in
matrix form a simple dizagonal matrix. Notice also that w = l; that is, the
point-Jacobl scheme is not overrelaxated, Because of the simple foim of
NpJ, obtaining the (n + l)st-level solution from the nth~level solution is
quite easily accompliched. ¥or instance, rewriting equation (3.17) with
only the n + 1 term on the left and with Ax = Ay yields

¢;‘-T; -?l;- (¢2+10.1 + ¢:“1ij + ¢;‘-oj+1 + Q‘i"j"‘l) (3.21)

Thus, the value at each grid point is simply replaced by the average of the
values at the four nearest neighboring points. The asimplistic nature of the
point-Jacobi scheme and, in particular, the large difference between the
construction of the ¥ and L operators, ylelds very slow convergence,
especlally as the mesh is refined.

Stability for the point-Jacobl scheme can be investigated by using the
von Neumann stability analysis (see sec. 3.2). The amplification factor
(for Ax = Ay) is given by

GPJ =1+

3 s abx - 1) +3 (cos by - 1) (3.22)
For stability, the magnitude of the amplification fackor must be bounded

by 1. Notice that Gpy i1s purely real. This makes the stability analysis
somewhat easler. Since both cos adx - 1 and cos bAy ~ 1 range from a
maximum of zero to a minimum of ~2, the growth factor can never be larger
than 1 nor smzller than -1, Notice that if w had been retained, any value
above 1 (representing overrelaxation) would have caused instability.

If equation (3.18) is rewritten as

¢§f; - ¢2.j - aT(s,, + ny)¢:,j (3.23)

where AT = (2/Ax?® + 2/Ay*)™!, the point-Jacobi relaxation scheme looks very
much like a standard heat-equation integration scheme in which At is the
time-integration step-size. The stability condition assocldated with the
time-integration of the heat equation using the present "explicit scheme" is
glven by

At/ax? + At:/Ay.2 s1/2 (3.24)

This condition is automatically satisfied by the point-Jacobi scheme through
the definition of Art.
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3.4 'The Polnt-Gauss-Seidel Scheme

The point-Gauss-Seidel relaxation scheme is very similay to point-Jacobil
with one important difference: as we sweep through the mesh, the solutlon at
some points has already been updated. Point-Gauss-Seidel uses this "extra"
information by using the latest updated solution at every point possible.

For instance, assuming we sweep through inerecasing values of the mesh indices,
i and j, we have

1 n n+1l ntl 1 n n+l bl .
PR R N R R R R .

Note that the 1i-1,j and 1,j-1 terms, as well as the usual 1,1 term, are
all evaluated at the new n + 1 iteration level. Rewriting equation (3.25)
in standard form vields

s

[Zi-z— (7' - 2) +Z;_2 (E.;1 - z)]c‘i"j + w;‘d =0 (3.26)

where
. E, -2 . E;1 -2 ]
Pcs = o oy (3.27)

and again w = 1. The residual operator L is defined as before by equa-
tion (3.20). The N-operator for the point-Gauss-Seidel schemwe (Npgg) pro-
vides a more completz approximation to the L-opgrator than Npj. Because of
this, the point-Gauss-Seidel scheme convergence is faster than that of point~-
Jacobi. As we shall see, however, other schemes with much faster convergence
speed exist.

Because point-Gauss-Seidel has several eutries per row, located on or to
the left of the diagonal, advancing from the nth-solution level to the
(n + l)st~solution level does not involve typical matrix inversions, for
example, tridiagonal and pentadiagonal. However, obtaining the (n + 1)st-
solution level is basically a recursive process. Such recursion is difficult
(or imposmible) to program on vector computers in such a way as to fully
utilize the improvement in computational speed offered by the vector archi-
tecture. In this context, point-~Jacobi, which is completely explicit, that
is, nonrecursive, may actually be more efficient than point-Gauss-Seidel.
Other relaxation schemes which are vectorizable are discussed in section 7.6.

3.5 The Successive Overrelaxation Scheme

The successive overrelaxation (SOR) scheme can be presented by first
writing the point-Gauss~Seidel scheme [eq. (3.25)] in the following form:

n+l n+l n+1 n+l )

1 n 1 n
7 gy, g~ 20 gt e P e (Of 441 = 203,4 ¢ 40 =0

2
ax (3.28)

In equation (3.28) the values of n + ! with an over bar are provisional
values modified by the following standard relaxation formula:

ﬁf; = r¢‘i‘*"j1 + Q1 - r)¢‘;’j (3.29)
12
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where r 1s a relaxation factor. For values of r > 1 the scheme is said
to be overrelaxed, and for values of r < 1 the scheme is8 said to be under-
relaxed. Equations (3.28) and (3.29) can be combined and rewritten in
standard form as

Lt _2) 4 L (g 2)| e n o
[Ax2 (Ex r)+Ay2 (1@:y r)]Ci'j+L¢i'j 0 (3.30)

The N-operator for the SOR scheme 1s still of the same form as Npgg

[eq. (3.27)], although the matrix elements have been modified by the pres-
ence of r. Use of the overrelaxation factor greatly improves the conver-
gence rate of the SOR scheme relative to the point-Gauss-Seidel scheme, as we
shall see in section 3.8.

Stability of the SOR scheme as applied to Laplace's equation can easily
be investigated by the von Neumann analysis. The amplification factor for
the SOR scheme is given by

~-cos aAx - cos bAy - % + 4 ~ i(sin alAx + sin bAy)

Csor = Z (3.31)
cos aAx + cos bAy - - i{sin aAx + sin bAy)

Notice that the imaginary parts of both the numerator and denominator are
identical. Therefore, an aliernative, but no less restrictive, condition for
stability is given by

-cos aldx - cos bAy - %-+ 4
-1 < <1 (3.32)

cos aAx + cos bAy - %

Assume r 1is such that the denominator is negative. This ylelds, after
simplification, the following two inequalities:

2/x

v

1 (3.33)
-z0s aAx - cos bAy 2 =2 (3.34)

which are satisfied for all values aAx and bAy providing 0 < r < 2. The
latter restriction on r forces the denominator to always be negative, which
is consistent with out initial assumption. Thus, the SOR iteration scheme is
stable by the von Neumann stability test.

An interesting approach for finding an optimum value for the SOR relaxa-
tion parameter was presented by Garabédian (ref. 18; see also ref. 9). The
approach consisted of viewing the SOR solution procedure as a time-dependent
problem, that is, an artificial-time-dependent problem. Major'features of
this technique can be outlined as follows: First, using Taylor series derive
the modified equation, then assume that Ax and At are so small that the
solution to the difference equation (or modified equation) behaves like the
solution to the corresponding differential equation. The time-dependent PDE
can then be solved analytically using a separation of variables technique.
The pvoblem is to choose a relaxation factor r such that the time-dependent
analytical solution converges as rapidly as pogeible to the desired steady-
state solution. A typical result obtained with this approach using a square
domain (0 < x <7 and 0 <y < m) is given by )

{3.35)




Thus, the optimum relaxation factor approaches a value of 2 as the finite-
difference mesh is refined. This analysis was performed on Laplace's equa-
tion, and, although strictly speaking it is not valid for nonlinear problems,
the same results apply qualitatively.

3.6 Block or Line Iteration Schemes

Thus far only poiunt iterative schemes have been discussed. Other
methods which involve the simultaneous evaluation of more points at the
n+ 1 iteration level are now cousidered. This additional implicitness pro-
vides for faster convergence while requiring only minimel increases in com-
putational work. The first three line schemes discussed are line-Jacobi,
line-Gauss~Seidel, and successive line-overrelaxation (SLOR). These schemes,
written in standard correction form, are given by the following.

Line~Jacobi:

- n "o
[ o ayy]ci,j + Loy ;=0 (3.36)

Line-Gauss-Seidel:

f 1 - n n

LZ; (Exl -2) + syy ci,j + L¢i,j =0 (3.37)
SLOR:

Lo fpr 2 n nooo_ .

[Ax2 \Ex r) + ny]ci,j + Ld)i’j 0 (3.38)

In each case one additional point has been added to the N-operator differ-
encing molecule. This allows the entire y~difference operator to be modeled
in the N-operator and requires the inversion of a set of tridiagonal matrix
equations for each iteration. Equations (3.36)-(3.38) have all been written
for vertical-line relaxation, that is, the tridiagonal matrix extends along
the y-direction. An equally valid form can be constructed by using
horizontal-line relaxation. The optimal form depends on characteristics of
the particular application.

The SLOR scheme {eq. (3.38)] is widely used today in industry as a
general relaxation scheme for solving both the TSD and the full-potential
equations. A specific SLOR algorithm used to solve the nonconservative full-
potential equation will be discussed in section 4.

3.7 The Alternating Direction Implicit Scheme

One technique for achieving even faster convergence than that provided
by the SLOR scheme is to use a fully implicit scheme; that is, a scheme in
which each point communicates with every other point during each interatiom.
This type of scheme can be constructed using the approximate factorization
(AF) philosophy. First, write the N-operator in direct form, that is,

N = L, where L is the usual residual operator given by equation (3.20).
Note that if the problem is nonlinear, then N must be a linearized approxi-
mation to the nonlinear L-operator. The next step in the construction of a
suitable AF scheme is to factor the N-operator by using an appropriate
factorization, as indicated by

14




N -~ NN, (3.39)

Usually the AF scheme consists of two factors for two-dimensional problems
and three factors for three-dimensional problems. An important idea behind
the factorization is that each of the factors N; and N; must involve only
simple banded matrix inversions, thus reducing the computational work per
iteration. Then, both the errors associated with tha factorization and the
linearization (for nonlinear problems) are removed from the solution simul-
taneously and automatically by iteration.

Of course, using the N-operator directly (before factorization) as the
final form of the N-operator will yield a direct scheme which converges in
just a single iteration (for linear problems). This type of scheme requires
a special inversion algorithm (divect solver) which is much more compuvta-
tionally expensive than, for instance, a set of tridiagonal matrix inver-
sions. For nonlinear problems, which must be considered for transonic appli-
cations, the direct-solver scheme lnses its single-iteration advantage and
must be iterated just as any other standard scheme. Therefore, the direct-
solver scheme will not be considered further in these notes. For more
information see veferences 19-23,

The first AF scheme presented 1s a reformulation of the Peaceman-
Rachford alternating direction implicit (ADI) scheme and can be expressed by
choosing N as follows (see refs., 9 and 10 for more information on ADI
schemes):

Nypr = = & (@ = 8 )(a - 84y (3.40)
where o i1s an acceleration parameter which may be considered as the inverse
of an artificial time-step, 1/At. More on the optimal choice of the «
parameter will be presented subsequently. In equation (3.40) both the x and
y directions are treated implicitly. The N-operator has been written as
the product of two tridiagonal matrix factors which when multiplied out yield

L
Napr = = = 5 Sydyy + L (3.41)

This expression contains the original L-operator plus two error terms. The
ADI scheme of equation (3.40) can be restated in practical terms using two
sweeps as follows.,

Sweep 1:
n n
(a - Gxx)fi,j = QML¢1,j (3.42)
Sweep 2:

(o - 8, N (3.43)

VA 1,]

In equations (3.42) and 53.43) w 4s the relaxation parameter associated with
the standard form and £y, is an intermediate result stored at each mesh
point in the finite-difference mesh. In the first sweep, the f-array is
obtained by solving a tridiagonal matrix equation fot each y = constant
line. The correction array (Gi,j) is then obtained In the second sweep from
the f-array by solving a tridiagonal matrix equation for each x = constant
line. This construction of N allows each grid point in the entire mesh to
be influenced by every other grid point during each lteration. As a result,

15

G s a i s




ORGINAL PAGE 18
OF POOR QUALITY |

much faster convergence can be obtained with this type of algorithm. More
discussion on the ADI scheme in particular and AF schemes in general will be
presented in section 7.

3.8 Convergence Rate Estimation

A summary of the schemes presented in the preceding sections of this
chapter is given in figure 6. The computational molecules of both the N and
L operators are shown schematically for each scheme. Note that the
L-operator consists of the same five grid points in each case whereas the
N-operator is different, varying from only the single central point (i,3) for
the point-Jacobi scheme to all five points for the ADI scheme.

Convergence-rate estimates for each of these schemes are now presented.
In brief, this estimation technique proceeds as follows (see Ames, ref. 9 for
a more detailed discussion). It can be shown that

fle™*fi/fle™f = (3.44)
where e" is the error in the nth-level solution defined by
e = ¢n - ¢exact (3.45)

and ) 1is the average spectral radius of the iteration scheme (that is, the
ratio of the average maximum eigenvalue at n + 1 to the average maximum
eigenvalue at n). To achieve a given reduction in the initial error, say
ps we have

o = [/l = »° (3.46)

Thus, -log,, ¢ is.the number of orders of magnitude by which the error is
reduced in n iterations. Rearranging, we have

Num = log, , A/log10 ) (3.47)

Equation (3.47) gives the number of iterations required to reduce the initial
error, e , by -loglo p orders of magnitude. Ames (ref. 9) evaluates an
expression similar to equation (3.47) for each of the relaxation schemes just
presented. For a one-order magnitude drop in the error, that is, for

~log,, o = 1, an estimate of the number of iterationms (Num) can be obtained
and is given for each scheme in table 1. The quantity A is the mesh spac-
ing. Note that the line versions of each algorithm are about a factor of 2
faster than the corresponding point counterparts (except SLOR which is V2
faster than SOR). More important, the SOR and SLOR schemes are much faster
than the other point or line schemes. For example, when A = 0.0l, SOR is
200 times faster than point-Gauss-Seidel. Thus, the importance of overrelax-~
ation in relaxation schemes in emphasized. Furthermore, ADI is much faster
than SLOR; for example, when A = (.01, ADI is over 10 times faster than
SLOR. These convergence rate estimates are compared graphically in figure 7.
For more details regarding the assumptions of this analysis see Ames (ref. 9).

4, ALGORITHMS FOR THE FULL-POTENTIAL EQUATION: EARLY IDEAS

In this section, priliminary concepts associated with the numerical
solution of the full-potential equation are discussed. Because the noncon-
servative form of the full~potential equation is more revealing to linear
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analysis and also because it was the first form of the full-potential equa-
tion solved, we will restrict our attention solely to this equation in this
section. The nonconservative full-potential equation was presented earlier
(see sec. 2.3) and is restated here for convenience:

(a? - u2)¢xx - 2uv¢xy + (a? - v2)¢yy =0 (4.1)

For purposes of simplifying the analysis we can treat the coefficients
a? - u?, -2uv, and a? - v*, as local constants. Thus, the equation is

effectively linearized.

4.1 Subsonic Difference Scheme

A spatial finite-difference scheme for the nonconservative full-
potential equation (4.1), which is valid for subsonic flow only, is given by

- 2 _ 2 - 2 _ 2
L¢i,j [(a u )Sxx 2uv6x6y + (a v )Syy]¢i,j (4.2)
This scheme is centrally differenced and second-order accurate. If the
point-Jacobi iteration scheme is now applied to equation (4.2) we have
2 _ 2 2 _ 2
e muw) 2@ -v) ¢ +Léy . =0 (4.3)
sz Ay?. )j !j

Stability can be investigated for this scheme by using the von Neumann
test. The amplification factor (G) for Ax = Ay is given by

G =1 + R(cos adx - 1) + H(cos aAx sin bAy)

+ T(cos bAy - 1) (4.4)
where
2_ .2 . 2 _ 2
R=-2-Y §=— . T= a -v_ 4.5)
2a? - q2 2a? - q2 2a - q2

and q 1is the speed of the fluid (VYuZ + vZ). As before with Laplace's
equation, the amplification factor is purely real. For stability, the mag-
nitude of the amplification factor must be less than or equal to 1. When
the flow is locally supersonic (q > a), this centrally differenced scheme is
unstable. An example demonstrating this situation is presented as follows:
Assume the flow is aligned with the x-axis; therefore, u =q and v = 0.
Equation (4.4) reduces to

2
G =1+ R(cos adx - 1) + ———2————r(cos bay - 1) (4.6)
2a? - q2

Since cos aAx -1 < ¢ and R <0 for q > a, it is obvious that G > 1.
That is, this centrally differenced scheme is unstable for supersonic flow.

Proving stability for subsonic flow is a little more difficult. The
amplification factor must satisfy -1 < G < 1. Working with only the first
inequality, we have from equation (4.4) the following condition:

R(l - cos aAx) - S sin aAx sin bAy + T(1 - cos bady) < 2 (4.7)

17
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The condition for subsonic flow requires the discriminate of equation (2.3)
to be less than or equal to zero. This can be restated as

YRT 2 |s| (4.8)

This expression is used to replace the S coefficient in the cross-product
term and makes the original condition for stability more restrictive. The
sign of this cross-product term can be either positive or negative. Clearly,
if this term is negative then the inequality is always satisfied. Therefore,
assuming the sign to be positive yields

R(1 - cos adx) + /RT|sin adx||sim bAy| + T(L - cos bAy) < 2 (4.9)

Next, add and subtract the terms necessary to combine the cross-product term
in a perfect square, This yields

J

R(1 ~ cos aAx) + T(l - cos bay) + % sin? aAx + % sin? bAy

_ 2
- [y(§ |sin aax| - ]/% |sin bAyﬂ <2 (4.10)

Because the perfect-square term is always negative, it can be neglected,
making the original expression more restrictive. After further simplifica-
tion the inequality becomes

- % (1 + cos apx)? - %-(1 + cos bAy)2 <0 (4.11)

The inequality is now seen to always be true. Therefore, the first half of
the stability analysis is complete. Looking at the second half yields

R(cos aAx - 1) + S sin aAx sin bAy + T(cos bAy - 1) < 0 (4.12)

Using a similar substitution on this expression to reduce the cross-product
term ylelds, after simplification,

- % (1 - cos aAx)? - g-(l ~ cos bAy)2 £ 0 (4.13)

This inequality is aiso always true. Thus, the simple central-difference
scheme given by equation (4.2) is stable, providing q < a, but is unstable
when q > a. In the example just considered the iteration scheme was point-
Jacobi; however, these conclusions can (theoretically) be reached with any
iteration scheme.

4.2 Simple Supersonic Difference Scheme

A scheme suitable for supersonic regions of flow was first introduced
by Murman and Cole (ref. 24), for the TSD equation. This approach was later
advanced by many researchers including Steger and Lomax (ref. 25), Garabedian
and Korn (ref. 26), Bailey and Steger (ref. 27), and Ballhaus and Bailey
(ref. 28) for a variety of formulations in both two and three dimensions.
The basic idea is as follows: First, determine the local flow type at each
grid point (elther elliptic or hyperbolic), by central differencing the
velocity potential. Then, at subsonic points, use the standard central-
difference approximation (second-order accurate), and at supersonic points
use difference formulas retarded in the upwind direction. This yields an
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overall differencing schemé in which the computational domain of dependence
correctly reflects the physical domain of dependence.

When the flow is essentially aligned with the positive x-coordinate

direction the following simple upwind difference scheme 1s uitable for
supersonic reglons of flow (see Jameson, ref. 29):

L¢2’j = [(az--uZ)E;16xx - 2uv§¥6y + (a* - vz)ny]¢:’J (4.14)

Upwind evaluation of the ¢, term, as in equation (4.14), models the origi-
nal second-order central-difference approximation plus an upwind-differenced
artificial viscosity term. This can be showm as

-1 . -1
Ey Spxt = (6xx - Gxx + Ex Gxx)¢

X XX
1 - E;l
= Gxx - Ax Y a— Gxx ¢

(Gxx - Ax%';(6:tx)(1)

b = Dxb + 0(Ax?) (4.15)

XX

where the -Ax¢yyxx 1s the upwind-evaluated artificial viscosity. [Equa-
tion (4.15) can also be derived by a standard Taylor series approach.] The
spatial difference scheme given by equation (4.14) is only first-order accu-
rate. Second-order accuracy in subsonic regions and first-order accuracy in
supersonic regions are typical characteristics of most successful transonic
difference schemes based on potential formulatioms.

An appropriate iteration algorithm for solving the spatial difference
scheme expressed by equation (4.14) is given simply by

n

2 _ ,2ypt _ 2 _ 2,
[(a u )EX Gxx 2uv§¥6y + (a v )ny]Ci,j

n —
+ L¢i,j =0 (4.16)
where the N-operator used here is the same as the L-operator defined in
equation (4.14). The velocity components used in both the N and L oper-
ators of equation (4.16) are defined by

n n
Ui,i = %%,

(4.17)
n n
Vi,1 = 8%,

and a is obtained from these velocity components and equation {2.18). The
iteration scheme of equation (4.16) requires the inversion of a set of tri-
diagonal matrix equations along the y-direction and is most judiclously
implemented by sweeping downstream along the x~direction.

Numerical stability of the simple supersonic algorithm just presented
can be investigated using the von Neumann stability analysis. Because the
N and L operators are identical, the amplification factor is zero, indicat-
ing a direct procedure which converges in one iteration. Even though the
solution procedure in the supersonic region is very fast, it i3 not direct.
There are two reasons for this. First, the equation being solved is actually
nonlinear and must be iterated to convergence. This factor is not measured
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by the linear stability apalysis. Second, the sonic line boundary supplied
to this scheme as initial data must be iterated until the proper position is
obtained, a process which may take many iterations. Note that if an over-
relaxation factor (w > 1) had been used for this supersonlic marching scheme
the convergence rate would have been slower, that is, the amplification fac-
tor would not have been zero. Setting all relaxation factors to 1 for super-
sonic regions is a standard procedure for most line relaxation schemes.

The iteration scheme given by equation (4.16) is essentially a hyper-
bolic marching scheme. Therefore, it is appropriate to check the marching
stability of the scheme. This is accomplished by the usual von Neumann
stability test in which

bg,q = < e (4.18)

is substituted into equation (4.16) to yield, after simplification, a quad-
ratic expression in e~80X, golving this expression for e~abx yields

_ )
T W % sin bldy * ‘/C E; sin? bAy - 2 % (cos bay - 1) (4.19)
A

The A, B, and C coefficients are given by

2 2 2 2
A=i‘—1—§;£—, BA:VAy’ c=-‘-‘—-A—;—2-‘1— (4.20)
For stability
6| = [2%%] <1 (4.21)
or equivalently
le38%| 5 1 (4.22)

Clearly, the condition for stability will be satisfied if the quantity under
the radical in equation (4.19) is always negative. The first term is always
negative and the second term is negative providing C/A < 0. The quantity
C/A 1is negative as long as the x-marching direction remains supersonic,
that is, as long as u > a. (Keep in mind that this scheme has been formu-
lated for flows essentially aligned with the x-axis where v is small with
respect to u.) Thus, the supersonic marching scheme given by equa-

tion (4.16) is stable, providing the x-direction remains hyperbolic. When
the x marching direction becomes subsonic (u < a) even though the flow is
still supersonic (q > a), a marching instability is predicted.

A schematic example of this situation, using characteristics, is shown
in figure.8. Notice that the computational domain of dependence does not
include the entire physical domain of dependence, a situation which must lead
to trouble. Near sonic lines, when the flow is only slightly misaligned with
the x-axis, instability is predicted. Theoretically, this makes the simple
supersonic difference scheme given by equation (4.14) impractical.

The marching instability can also be attributed to a sign change of the
artificial viscosity term, Ax(u®? - a?)¢yyy» which should be positive for
stable operation. This term, as mentioned previously, i: a consequence of
the upwind bias on the differencing scheme in supersonic reglions and is the
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mechanism for allowing physically correct comprossion shocks while disallow-
ing the physically incorrect expansion shocks.

In practice, the simple supersonic difference scheme is suitable for
small regions of supersonic flow in which the flow is nearly aligned in the
proper direction. Small regions of flow near the sonic line with negative
artificial viscosity are not enough to prevent stable operation (ref. 29).
However, when the free stream is supersonic or when a swept-wing calculation
is involved, a new technique for handling supersonic regions is necessary.

4.3 Rotated Supersonic Difference Scheme

The concept of rotated differencing was first introduced by Jameson
(ref. 29) in 1974 and used for solving the nonconservative full-potential
equation for transonic flows about wing geometries. This concept utilizes
the ideas already discussed, namely, second-order-accurate central differenc-
ing for subsonic flow and first-order-accurate upwind differencing for super-
sonic flow. However, to remove the directional difficulties associated with
the previous simple supersonic differencing scheme, the following coordinate-
invariant difference scheme is used for supersonic regions. For two-
dimensional cases the nonconservative full-potential equation can be trans-
formed into a local stream and stream-normal coordinate system (s - n),
which yields

(a® - q*)¢,, + 2% =0 (4.23)

where the 8 and n coordinates are related to the x and y Cartesian coor-
dinates by

u v
=2 Y .2

x =378 7" (4.24)

Y = "':; s + --: n (4.25)

and ¢gg and ¢,, are expressed in terms of Cartesian-coordinate derivatives
by

,.l_ 2 2
¢ss v (u ¢xx + 2uv¢xy + v ¢yy) (4.26)
o =L (w2 - 2uvé._ + uPp ) 4.27)
nn qz XX Xy yy

[Note that the characteristic directions associated with eq. (4.23) are always
symmetric about the stream direction; see eq. (2.3).]

The algorithm proposed by Jameson (ref. 29), which is based on equa-
tion (4.23), is now presented. At hyperbolic points (q > a), central-
difference formulas are used for all contributions to énn [eq. (4.27)].
These formulas are given by
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1 n n+1 n n+l
¢xx = ;2- (¢i+1,j - ¢i,j - ¢i’j + ¢.i"1:j)
) 1 T n . 0+l n+1 .
Lo T Taxby it1,gtr T fae, g1 T Paoa, g T by, g-0) (4.28)
o1 ,mir o onh n-+1
Wyy - Ay2 (¢i,j+1 2¢isj + ¢i!j"1)

Contributions to ¢55 are given by (q > a)

. ntl n _ , ntl n
sz (2¢i,j ¢19j 2¢i'1»j + ¢i'2sj)

-
1

XX

nt+l n n+l n+1

-1 - - - n
by = xby P%1,5 7 0,5 " Pie1,i T %L,4-0 T 4er,4-0)

(4.29)
n+1 n n+1

=L - - "
¢ - 2 (2¢isj ¢inj 2¢i}j‘1 + ¢isj-2)

Y ay

Equations (4.28) and (4.29) have been written assuming u > 0 and v > 0,
If these signs are different, equations (4.28) and (4.29) are replaced by
similar formulas which retard the difference scheme in the proper upwind
direction. The n-superscripts have been determined so as to provide favor-
able temporal damping to the iteration scheme in supersonic regions. More
discussion on this topic will be presented shortly. -

The iteration scheme obtained by substituting equations (4.28) and (4.29)
into equation (4.23) is expressed in standard correction form by

‘Mz - 1 [2u2 g + 2uv (2 - E-l _ E;l) + g!i_g ]

qz Ax "x  Axdy X Ay y
. uy -1 2 n n_
" [ =8 v S g 6, +u ayy]}ci,j +Lgg ;=0 (4.30)

where the terms inside the first set of square brackets arise from the ¢g4q
differencing, and the terms inside the second set of square brackets arise
from the ¢,, differencing. The spatial differencing molecules associated
with this scheme are shown in figure 9. All four variations corresponding to
the velocity vector originating in the four quadrants are shéwn. The contri-
bution due to the ¢,, term is shown by + symbols, and the contribution
owing to the ¢4 term is shown by o symbols. Note that the ¢nn differ-
encing molecule never changes but that the ¢gg differencing molecule is
automatically upwind biased inte the quadrant from which the velocity arises.
The transition between these differencing variations is smooth because as one
difference operator is switched to another the lead coefficient of that term
automatically goes through zero. '

The rotated difference scheme just presented, completely removes the
marchifrg instability problems associated with the simple upwind scheme pre-
sentéd earlier. However, several new limitations or’&isadvantages are intro-
duced: (1) the rotated differencing scheme no longer mimics a direct march-
ing scheme and, therefore, slows convergence somewhat; (2) the increased size
of the computational molecule, as well as the fact that the scheme is first-~
order accurate in both directions, increases shock smearing; and (3) this
scheme must be swept in the flow direction, a minor limitation associated
with general curvilinear meshes. Despite these limitations, this scheme
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pioneered the way for three-dimensional, transonic flow-field calculations
using the full-potential equation and is still the basis for a widely used
computer code in the aircraft industry — FLO2Z.

4.4 Temporal Damping

The equivalent time-dependent equation associated with the iteration
scheme of equation (4.30) can be written as

209, + 286, + M2 - Doy, = byp = 0 (4.31)

where the o and B8 coefficients are defined by

. At u At v
= MZ_ —_— = —— - .
o ( 1) A% g v 9 (4.32)
__lAt___U
B = 2 Ax q (4.33)

The quantity, ¢g¢, built into the iteration scheme of equation (4.39), pro-
vides temporal damping. This is very important in supersonic regions and is
required to maintain stability. The ¢g, term must be differenced upwind
and with the proper sign so as to add to the magnitude of the matrix diagonal.
This ensures diagonzal dominance for the matrix inversion.
Introducing an independent-variable transformation
t =T+ aX/(M? - 1) - BY
s = X (4.34)

n=Y

for equation (4.31) yields

2 a? 2
(6 - I 1) ¢TT + (M° - 1)¢XX - ¢YY =0 . (4.35)
For supersonic flows, it can be seen that the coordinate T 1is space-like
(elliptic) and that either X (which is the streamwise coordinate) or Y
(which is the stream-normal coordinate) is time-like (hyperbolic). In the
physical steady-state problem, X is time-like; therefore, to maintain this
situation computationally, the following condition is required

a2 > g2 (M2 - 1) (4.36)

Rewriting equation (4.36) using the definitions of o and B [eqs. (4.32)
and (4.33)] yields

2 2 )
2 At u , At v 1l (At v
o - l)(A'x q + Ay q) > 4 \Ax q) (4.37)

Generally speaking, the iteration scheme of equation (4.30) has been designed
to satisfy the condition of equation (4.37). However, problems arise near
sonic lines (as M? - 1 + 0). Also, in many iteration schemes the ¢g, tem-
poral damping term is not automatically added. For both of these cases dgt
can be added explicitly. A suitable term for the present case is given by
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At v _ |
A": *q ¢yt) (4.38)

where the ¢y and ¢yt terms are differenced as follows (u>0,v>0):

U afl. n+i n

¢)xt: = Athx (¢i,j ¢* .3 + ¢1_1 '3 ¢i~1,j) (4.39)
- n+1 n+1 n

bye # AtAy @54 9,5 %91 4 = 84,5-1)  (4.40)

The parameter & in expression (4.38) 1is a user-specified constant, set
large enough for szability but not so large as to excessively slow
convergence.

5. TRANSFORMATION AND GRID~GENERATION TECHNIQUES

5.1 Governing Equation Transformation

So far, all examples presented have dealt with only Cartesian coordi-
nates. Usually, before solution algorithms can be implemented, the governing
equation must be transformed from Carteslian coordinaies into some suitable
computational domain. Even applications that use Cartesian coordinates in
the computational domain typically require the use of stretching or shearing
transfcrmations or both. The primary reason for applying an independent
variable transformation to the governing equation is to transform any gecmet-
rical surfaces in the problem into constant coordinate lines in the computa-
tional domain. Thus, boundary-comdition implementation and grid clustering
at geometrical surfaces can be achieved without undue difficulty.

A general, independent variable transformation typically used in con-
junction with numerical grid-generation procedures, is given by

E = £(x,y)
(501)
n = n(x,y)

where x and y represent the Cartesian-coordinate physical domain and £ and
n the computational domain (see fig. 10). The conservative full-potential
equation writter in Cartesian coordinates was presented in section 2 and is
restated here for convenience as follows:

(o), + (pog)y = 0 (5.2a)

1/y-1
p= -T2 +¢)] (5.2b)

Equation (5.2) transformed by equation (5.1) yields the full-potential equa-
tion written in ‘the (£,n) computational domain,

("U) (”V) =0 (5.3a)
n .

_ 1/y-1
p = [t - L5t we, +ve )] (5.3b)
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where

U= A A0 (5.4a)
Vo= A, + A (5.4b)
A =V vg‘- 5; + s; (5.5a)
A, = V5 Vn = E.n, +’€yny (5.5b)
Ay =UneVn = n: + n; £5.5¢)

and ,
J = Exny - Eynx (5.6)

The quantities U and V are contravariant velocity components along the

& and n directions, respectively; A;, Ay, and A; are metric quantities; and
J 18 the Jacobian of the trép- -7 ~tion. To evaluate the metric quantities
of equations (5.5) and (5.6), ' = fillowing metric identities are required:

J = 1/(X€Yn - anE) (5.7)
Ex = Jyn » nx = —Jyg
(5.8)
Sy = Ixp oy =X

This transformation maintains the strong conservation-law form of the
original equation and hence possesses characteristics suiltable for a shock-
capturing scheme. Additional information about such transformations can be
found in references 30-34.

The transformation metric quantities just presented — A,, A, A;, and
J — all have interesting physical interpretations. First of all, the
Jacobian, J, can be shown to approximate the inverse of the cell area (in
three dimensions the Jacobian approximates the inverse of the céll volume).
Thus, a simple test on the sign of the numerically computed Jacobian will
reveal if the mesh crosses over on itself (an occasional symptom of some
numerically geiierated meshes which is devastating to the stabllity of the
iteration schemsa).

*

In general, the (x,y) + (£,n) transformation produces a nonorthogonal
mesh in the physical domain. A direct measure of the amount of mesh skewness
or nonorthogonality is the A, metric. Since A, = VE-+ Vn, the special case
of an orthogonal mesh is realized when all the A, metrics are zero. The
A, and A; metrics provide a measure of cell aspect ratio. The A; metric
is approximately the ratio of arc length along the n-direction to the arc
length along the g£~direction. The A3 metric is approximately the inverse
of A,. Thus, intimate details regarding a finite-difference mesh can be
obtained automatically, without even plotting the grid, by just monitoring
the A,, Ay, A;, and J quantities.

The three-dimensional form of the full-potential equation written in
general curvilinear coordinates (&,n,%) is given by
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(%11) + P—!) + (%‘-”-) =0 (5.9a)
4
-1 i/y-l
p = [1 - l—-——y 1 (U + Vo + w¢c)] (5.9b)
The contravariant velocity components U, V, and W are defined by
W, v, = 1 H(¢£.¢ 1o, )T (5.10)
the quantity H is defined by
&x Ey Ez
3(E,n,t) _
H = 3(X.Y,z) nx ny nz ) (5.11)
Cx Cy L,

and J = det(H). In equation (5.11), x, v, and z are the usual Cartesian
coordinates along the flow, span, and vertical directions, respectively. The
£, ny, and £ computational coordinates represent wraparound, spanwise, and
radial-~like directions, respectively.

5.2 The Elliptic Grid-Generation Procedure

Perhaps the most popular new technique for grid generation is the numeri-
cal approach. The main idea associated with this technique is to establish a
set of curvilinear coordinates by requiring that they be solutions to appro-
priately formulated PDEs. The properties of the FDEs are such that smioth
and regular finite-difference grids result. Coordinate lines of the r:vu»
family do not cross, and coordingte lines of opposiie families intesi: .
orthogonally or nearly orthogonally. Dirichlet boundary conditions (re speci~
fied such that the body nr other desired boundaries are automatically mapped
to constant coordinate lines in the physical domain. This guarantees a one-
to~-one mapping in which the mesh is well-crdered and body-fitted. Mechanisms
for achieving general mesh control exist through boundary-condition specifi-
catlon and through the control of various arbitrary coefficients depending on
exactly which formulation is used. The numerical mappiug procedure 1is
generally valid for both two- and three-dimensional flows.

Many numerical grid-generation techniques have been developed for a wide
variety of applications. However, only three schemes will be discussed here.
For an extensive survey of this subject see Thompson, et al. (ref. 35). The
first acheme has its roots in a number of publications, but has been recently
developed and popularized by Thompson et al. (refs. 36-38). This scheme is
perhaps the most widely used numerical grid-generation scheme. Poisson's
equation is used to define the transformation and 1is given by

P(E,n)

i

Eyx T gyy
(5.12)

n..+n Q(E,n)

XX Yy

The P and Q@ right-hand-side quantities are defined as a sum of exponential
terms each with several free coefficlents. These coefficients can be adjusted
by the user to provide different types of mesh size and skewness control.
Equations (5.12) ars transformed to (and numerically solved in) the
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computational domain, that is, the roles of (£,n) and (x,y) are interchanged
such that equations (5.12) become

uxEg - ZBxE;n + yx = -JZ(PxE + an)

nn
) (5.13)
ayE‘g hs ZBygn + Yynn = -J (PYE + Qyn)
where
= 2 2 = - vl 2
o =% + A B XX, + VeV 0 Y =X + e (5.14)
J = xgyn - xnyF= (5.15)

The finite-difference grid is generated by numerically solving equa-

tions (5.13)-(5.15). First, all derivatives are replaced by standard second-
order-accurate finite differences. The spatial increments, A% and An, can be
arbitrarily chosen and are usually set to 1. Once boundary and initial
values of x and y are specified, the final interior values can be computed
by standard relaxation procedures.

An important aspect associated with numerical elliptic-solver technigues
is that they have a high degree of controllability. The vast number of free
coefficients contained in the P and Q terms is an indication of the large
amount of control available to the user. There is an obvious difficulty
associated with this flexibiiity: How can it, in a general and simple way,
be made available to the user? This problem poses a difficulty in two
dimensions and becomes seemingly insurmountable in three dimensions.

Several researchers have experimented with different aspects of this
problem, including Thomas and Middlecoff (ref. 39), Steger and Sorenson
(ref. 40), and Sorenson and Steger {ref. 41). In the latter approach, a
simplified form of the P and 9 terms was adopted and is given by

P Po(g)e-a(n-nl)

(5.16)

q = q (g)e 2 (n)

where n; corresponds to the npj, inner boundary, P, and Qy, are cets of
constants which vary in the £ direction on the npy, boundary, and a and
b are constants which control the rate of decay of the P and @ forcing
terms into the mesh interior. Thus, application of the forcing terms is
restricted only to ngy, where the control is primarily desired. Steger and
Sorenson recognized that two types of control are desired: (1) control of
the cell aspect ratio at boundaries and (2) control of cell skewness at
boundaries. These two conditions can be expressed mathematically by

_ds| _ (2 2y1/2 :
sn = n : (xn 4+ yn) ; As (5.17)
and
VE « VUn = XEXH + yEyn = |V£||ancos 6 (5.18)

where s 1is the arc length along the n lines which intersect the body and
® is the angle of intersection. The condition for orthogonality is 6 = w/2.
Other angle specifications are possible, thus allowing precise control on the
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cell skewness at the grid boundary. By utilizing equations (5.16)-(5.18),
as well as the Dirichlet boundary conditions in x and y, expressions for
P, and Q, can be derived. Specification of As(E) and 6(§) is all that is
required tc completely determine a new grid with the desired cell aspect
ratio and cell skewness at the boundary.

: An example of this technique used to generate a grid about a highly cam-
bered 12-to-1 ellipse is shown in figures 11 and 12. Figure 11 shows global
and trailing edge detail of the Laplacian mesh (that is, a mesh with no con-
trol) and figure 12 shows the same views with control (8 = 7/2 and

As = 0.005). Note the poor grid quality for the case with no control, espe-
cially in the concave portion of the ellipse. The case with control, how-
ever, produces a nearly orthogonal grid at the body with a nearly uniform

As distribution closely approximating the desired value of 0.005.

5.3 The Hyperbolic Grid-Generation Procedure

The next numerical grid-mapping procedure to be discussed is based on a
hyperbolic set of governing equations. This type of grid-generation proce-
dure is less well developed than the elliptic procedures but does have sev~
eral desirable characteristics. Examples of this type of grid-generation
procedure include Starius (ref. 42) and Steger and Chaussee (ref. 43). In
the latter work, the PDEs used to numerically define the finite~difference
mesh are given by

VE+Vn = Exnx + F,yny =9 (5.19)

Exny - Eynx =J (5.20)
Orthogonality is achieved by simply setting ¢ to zero, and J represents
the Jacobian of the transformation (that is, effectively the grid-cell area).
In this formulation, both ¢ and J are user-specified functions. This pro-
vides a great deal of controllability which is perhaps more direct and easier
tc implement than in most elliptic PDE formulations. Direct specification of
J produces a well-behaved mesh that does not cross over on itself except in
the most severe cases. Because this system of equations is hyperbolic in n,
a solution can be obtained simply by marching away from initial data speci-
fied on the inner boundary. Because iteration is not required, computation
time for this technique is very small.

A disadvantage of this technique lies in the lack of direct control over

the position and distribution of grid points on the outer boundary (n = npay).

However, for external aerodynamic applications this limitation is not severe.
Other more fundamental problems lie in the treatment of surface singularities
or extension to three-dimensions. Because of the hyperbolic nature of the
grid-transformation equations, any singularities imposed in the n = ngi,
initial data — for example, a slope discontinuity in the geometry — will

propagate in the n-direction and perhaps cause problems in the grid interior.

Formulations of a suitable algorithm in three dimensions is more difficult
because the orthogonality condition [eq. (5.19)] expands to three equations.
Thus, a system of four independent equations is created where only three can
be used.

Much work needs to be completed before numerlcal grid-generation schemes
based on hyperbolic PDEs can be used routinely for three-dimensional calcula-
tions. However, with the advantages of speed and controllability, this grid-
generation procedure is an attractive alternative to the elliptic-solver
grid-generation technique.
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5.4 The Parabolic Grid-Generation Procedure

The final numerical grid-generation procedure presented in these notes
is now discussed. This procedure, developed by Nakamura (refs. 44 and 45),
is based on a parabolic set of equations given by

X, = Axgg - ZBXEn + Sx (5.21a)

y = Aygg - 2Bygn + Sy (5.21b)

N

where A and B are positive constants, £ and n are the usual computational
coordinates along and away from the airfoil surface, x and y are the physi-
cal domain Cartesian coordinates, and Sy and Sy are source terms given by

Seli,g = (g ng = %,/ O - 3) (5.22a)
Syli,j = Oy Ny = Vg, /(N = 3) (5.22b)

In equations (5.22), the i and j subscripts represent position in the
finite-difference mesh (£ = 1Af and n = jAn) and j = NJ is the outer
boundary. Thus, the effect of the outer boundary (x4 ynj and yji n3) 18
included in the S, and Sy source terms.

Equations (5.21) are parabolic in n and can be marched away from ini-
tial data (xj , and yj 1). These initial coordinates represent the airfoil
surface, spec{fied by the user, with any smooth distribution. A standard
difference scheme involving centered differences for all £ derivatives and
backward differences for all n derivatives is used to discretize equa-
tions (5.21). This produces a set of uncoupled tridiagonal matrix equationms,
which, when inverted, yield values of x and y at J = 2., This process is
repeated marching away from the airfoil surface, j = 1, to the outer boundary,
j =NJ. As j approaches NJ the x and y values automatically approach
the specified outer boundary values of xj NJ and yj NJ-.

An example of this procedure applied tc a highly cambered thin ellipse
is shown in figure 13 (taken from ref. 44). A view of the entire geometry is
shown in figure 13(a) and a close-up of the trailing edge is shown in fig-
ure 13(b). Note the regularity cof cell size around the inner boundary and
lack of cell skewness over the entire mesh. This grid compares quite favor-
ably with the grid presented in figure 12 which was generated with explicit
controls on cell size and skewness by the elliptic~solver approach. However,
the parabolic scheme requires only a fraction of the computational work.

The parabolic scheme is also easily extended to three dimensions (see
ref. 45). One additional equation i1s required to define the third coordinate
and each equation has additional terms; otherwise, the extension is quite
straightforward. Because the resulting difference equations are no longer
narrow-banded an ADI factorization is used. Thus, in proceeding from one
coordinate surface to the next, several iterations are required. However,
the basic parabolic grid-generation scheme is s8till direct, requiring only
one sweep from the inner to the outer boundary and, thus, requires only a
fraction of the computer time used by the elliptic~solver scheme.

An example of a three-dimensional grid generated by the parabolic scheme
about a wing/fuselage geometry is showm in figure 14 (taken from ref. 45).
The wing planform plane, the fuselage surface, and a typical fuselage cross-
sectional grid are all highlighted in this figure.

L il T R NP SRR T T e el e e o U Ll i L i e i i e



?H 7.2}7‘&% ok B
TRy g

S e
5.5 Geometric and Analytic Mapping Procedures

Algebraic and aiialytical mapping procedures can he simple — for example,
involving only a stretching or shearing of the coordinate system. On the
other hand, they can be more complicated — for example, conformal mappings.
The stretching and shearing transformations can be useful for simple geome-
tries but generally are not sufficient by themselves for more complex airfoil
and wing calculations. Conformal mappings do have the generality required
for providing good quality, economical gride for reasonably complex, two-
dimensional geometries. Many researchers have used conformal mappings to
generate arbitrary, orthogonal (or nearly orthogonal meshes when a sheared
‘conformal mapping procedure is used) for a host of two-dimensional applica-
tions. A few examples include those of Sella (ref. 46) for an airfoil;
Kacprzynski (ref. 47) for an airfoil between wind-tunnel walls; Ives (ref. 48)
for a multielement airfoil; Caughey and Jameson (ref. 49) and Chen and Caughey
(ref. 50) for axisymmetric inlets with and without a centerbody; and Ives and
Liutermoza (ref. 51) for axial~flow turbomachinery cascade applications.

The theory behind conformal mapping techniques is governed by analytic
functions of a single complex variable. This theory is well developed, but
fundamentally limited to applications in two space dimensions. Nevertheless,
some researchers l':ve found ways to use conformal mapping techniques to
assist in generating grids for three-~dimensional problems. A few examples
are given by Jameson (ref. 19) for wings; Jameson and Caughey (ref. 52) and
Caughey and Jameson (refs. 53 and 54) for wind/body combinations/ and Ives
and Menor (ref. 55) for three-dimensional inlet and inlet-centerbody config-
urations. The basic approach utilized for three-dimensional grids is to
generate a series of two-dimensional grids using standard conformal mapping
procedures. Then these grids are ''stacked" together in the third dimension
to form the final three-dimensional grid. This approach has worked well for
geometries with smooth variation in the third dimension but lacks generality.
Conformal mapping procedures will continue to be used successfully in a wide
variety of applications; however, the anticipated trend for grid-generation
procedures will be away from such techniques and toward the more general
(although presently less well-developed) numerical or geometric mapping
procedures.

The geometric grid-generation procedure has recently received much
attention and promises to develop into a practical approach. These proce~
dures are efficient, requiring very little computer time, and have general
capabilities regarding coordinate line control. In addition, this type of
procedure seems to be general enough for easy extension to three dimensions.
Eiseman has presented geometric grid-generation techniques for several two-
and three-dimensional configurations (refs. 56-58). The mathematical aspects
of this new geometrical grid-generation procedure are developed by Eiseman in
references 59 and 60. An example application using this grid-generation pro-
cedure for the numerical computation of transonic airfoil flows is given by
Pulliam et al. (ref. 61).

Other geometric grid-generation procedures have been presented by
McNally (ref. 62), Graves (ref. 63), and Eriksson (refs. 64 and 65). The
latter procedure, which can be viewed as a generalized spline interpolation
technique, generates a finite~difference grid in two or three dimensions by
interpolating geometric data from the domain boundaries. The geometric data
required include boundary coordinates and derivatives. In some cases outer
domain boundaries can automatically be determined by the geometric transfor-~
mation procedure and, therefore, do not necessarily have to be specified.
This procedure is computationally efficient and has good coordinate line con~-
trol properties. Transonic wing computations using the Euler equations have
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been obtained using this grid mapping procedure for a variety of configura-
tions (ref. 66).

The geometric grid-generation procedure has only recently been intro-
duced and, therefore, its ultimate role is difficult to predict. However,
the general properties of this class of grid-mapping procedures (e.g., flexi-
bility, computational efficiency, and controllability) suggest a large
increase in its use for the generation of grids about complicated
configurations.

5.6 Solutions-Adaptive Grid-Generation Schemes

A solution-adaptive grid (SAG) technique is defined to be a grid-
generation procedure in which the filow-field solution influences the genera-
tion of the grid. Usually this solution influence is designed to produce
mesh-point clustering about flow-field gradients and, therefore, produce
reduced levels of truncation error. Several researchers have experimented
with different types of SAG algorithms, including Dwyer et al. (ref. 67), who
developed a procedure for various time-accurate heat-transfer problems;
Glowinski (ref. 68), who experimented with optimal grids for incompressible,
inviscid flow, using a finite-element technique; and Pierson and Kutler
(ref. 69), who determined optimal grid-point distributions for several model
problems. Additional work has been presented by Rai and Anderson (refs. 70
to 72), in which the positions of the grid points are determined iteratively
along with the solution~dependent variables. The method used to adjust the
grid-point positions, forces the solution gradients to be averaged or spread
evenly over the finite~difference mesh in the computational domain. This has
the effect of reducing the average truncation error.

Other examples of SAG approaches applied to transonic airfoil solutions
using the full-potential equation are presented by Ushimaru (ref. 73), Holst
and Brown (ref. 74), and Nakamura and Holst (ref. 75). In the latter
approach, the surface grid distribution is redistributed by using a second-
order ordinary differential equation (ODE) in which the dependent variable is
a grid~density function. The forcing function for this ODE is a function of
the airfoil surface solution gradient which has to be supplied from an inde-
pendent solution computed on a standard mesh. In regions of large gradient
(for example, at shock waves) the surface grid distribution is automatically
clustered, and in regions of small gradient the surface grid distribution is
coarsened. The interior grid is generated via interpolation using character-
istics of the airfoil surface distribution to appropriately cluster the mesh
interior.

An example SAG grid taken from reference 75 is shown in figure 15(a).
This grid contains 99 x 25 points and was generated about an NACA 0012 air-
foil at a free-stream Mach number of 0.75 and an angle of attack of 2°. For
convenience, only the inner 14 lines are shown. The surface~pressure coeffi-
cient distribution computed with this grid is compared with a surface solu-
tion generated on a much finer standard grid (245 x 56) in figure 15(b).
Even though the fine standard grid contains 5.5 times more grid points, the
shock is slightly steeper for the SAG solution. For this case despite the
fact that the SAG procedure utilized two complete sclutions, one on the stan-

- dard grid and the second on the SAG grid, the SAG procedure was 2 to 3 times

faster than the fine-grid calculation.
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6. SPATIAL DIFFERENCING SCHEMES

6.1 The Finite-Volume Scheme

The finite-volume spatial difference scheme of Jameson and Caughey
(refs. 52-54; 76~77) was first used to solve the conservative full-potential
equation in 1977. Since then many applications of this scheme have been
made in both two and three dimensions. This scheme, written in two dimen-
sions (for convenience) is given by (see ref. 77)

— + 5, (2 = 0 6
g(J )i+1/2,++1/2 ¢ n(J )r+1/z,j+1/2

where the averaging (u and u ) and differencing (X and § ) operators are
defined in section 3. 1 The Herivatives of x, vy, and ¢ with respect to

£ and n are required to compute the density (p), the contravariant velocity
components (U and V), and the Jacobian (J). These computations are all per-
formed at cell centers (i+1/2;j+1/2) by using

( )E‘i+1/2,j+1/2 = uhxﬁ( )i+1.j+1 (6.2a)
-~
¢ )nli+1/2,j+1/z ; uggn( )1+1_j+1 (6.2b)

The resulting spatial differencing scheme is very compact and requires only a
single density evaluation per grid point.

However, this scheme has a tendency to produce oscillatory solutions in
which the i + j odd points are decoupled from the i + j even points.
This situation can be corrected by adding suitable recoupling terms. The
resulting scheme becomes

pV € =
ngﬁ( + g n( ) -5 58 4 + 8880, =0

i+1/2,j41/2 it1/2,j+1/2 (6.3)

where

4, ~ U2/32):L+1/2,j+1/2

wio

A5|i+1/z,j+1/z =
(6.4)

(A3 - VZ/aZ)

a|o

An'i+1/2,j+1/2 = i+1/2,3+1/2
A value of one half is generally used for the constant €. Addition of these
terms recouples the odd and even points and represents a suitable spatial
differencing scheme for subsonic regions of flow.

The finite-volume scheme is stabilized in supersonic regions by the
explicit addition of artificial viscosity terms given by

5 _ 2 pry2
Pi,j = op/Ja“ (U 65 + UVG § )¢i 3 (6.5a)
A _ 2 2
Qi,j ap/Ja (Uvsgan + Vv Gnn)¢i,j (6.5b)
where the switching function o 1is defined by
o = max[0, 1 - (M, /M)?] (6.6)
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The M. parameter used in equation (6.6) is a critical Mach number, defined
in such a way that the spatial differencing scheme uses the subsounic differ-
encing for values of local Mach number below M, and the supersonic differ-
encing for values of the local Mach number above M,. In other words, the
transition from central to upwind differencing does not necessarily take
place at the sonic line. Note that M, must be less than or equal to 1 for
stability.

The final spatial differencing scheme that is valid for both subsonic
and supersonic regions of flow with the odd-even error compeasating terms
included is given by

) ] L, ]
E n(J )i+1/2,j+1/2 i+1/2,3 n g(J )i+1/2,j+1/2 i,441/2

€
- = 35‘6'“(1\& + An)§€§n¢i,j 0 (6.7)
where the P and @ terms are defined as follows:
Pi,j if U0
3 = (6.8a)
i+1/2,j 5
L Pi+1,j if U <O
'n
Qi,j if v20
Qi,j+1/z = 4 V<o (6.8b)
v L, it

The spatial differencing scheme given by equations (6.5)-(6.8) is cen-
trally differenced and second-order accurate in subsonic regions where
M <M, and is upwind-differenced and first-order accurate in supersonic
regions (or in regions where M > M.). The upwind influence is retained for
general curvilinear meshes regardless of the orientation of the velocity
vector. Therefore, this conservative spatial differencing scheme approxi-
mates the rotated differencing scheme first developed by Jameson (ref. 29)
for the nonconservative form of the full-potential equatiom.

Extensions of this scheme to higher orders of accuracy have been investi-

gated by several researchers, including the work reported in references 76
and 78-81. For example, Caughey and Jameson (ref. 76) modified the P and Q
terms such that (looking at only the P term)

By - (L -esp)By if U20 |
P, = (6.9)
1+1/2:j =P _ !

Pi+1,j + (1 c:cSE;p)P“_z’j if U< 0

where ¢ is a constant of order unity. When the local solution is smooth,
the overall scheme is formally second-order accurate. In regions of high
solution gradient (for example, at shock waves) these added terms force the
overall accuracy to revert back to first order. This type of hybrid scheme
has been found to be useful for maintaining stability in strong shock
calculations.
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6.2 The Artificial Density Scheme

The artificial density spatial differencing scheme for the full-
potential equation has been independently presented in several different
forms (refs. 82~84). These forms, although not identical, have certain simi-
larities which can be attributed to the earlier work of Jameson (ref. 85).
Jameson's work 1s characterized by a scheme with an explicitly added artifi-
cial viscosity term. This term blases the spatial difference scheme in the
upwind direction for supersonic regions of flow but does not affect the
centrally differenced scheme in subsonic reglons. The three schemes of ref-
erences 82-84 use this approach with one basic simplification: the upwind
bias is accomplished by an upwind evaluation of the density coefficient. All
three procedures compute this upwind or artificial density quantity in
different ways.

In the procedure of Holst and Ballhaus (ref. 83; see also refs. 34, 86)
the finite-difference approximation for the full-potential equation written
in general curvilinear coordinates [see eq. (5.3a)] is given by

55(%9) + Eﬁ(%?) =0 (6.10)

i,j+1/2
where the operators Xg( ) and Xn( ) are first-order-accurate, backward-
difference operators in the ¢ and n directions, respectively (see sec. 3.1),
and the density coefficients p and § are defined by

i+1/2,j

Pi+1/2,5 = O L e P Vit1/2,4 0 e+1/2,5 (6.11a)

Py, gr/2 = LA =90y api/n ¥ 91 541/2P1, j4s41/2 (6.11b)

The r and s subscripts used in equations (6.11) control the upwind direc~
tion of the density coefficients and are defined by

r = %] when Ui+1/2,j $0

(6.12)

20

s = %] when Vi,j+1/2 2

The switching or transition function v depends on the local Mach number
Mi’i and the flow direction and is defined by (e.g., looking at only the
re '

x—-direction)
2
m::tx[(Mi,j - 1)c,0] for Ui+1/2,j >0
v . o= (6.13)
i+1/2,j 2
max[(Mi_H’j - 1)C,0] for Ui+1/2,j <0

The quantity C 1is a user-specified constant usually set to a value between
1 and 2.

The density calculation is performed in a straightforward manner by using
a discretized version of equation (5.3b). Values of the density are computed
and stored at half points (i.e., at i + 1/2,j). Values of ¢¢ and ¢p
required for computing the density at i + 1/2,j are given by

bglinaa,g ® Sebe,g
(6.14)

113

->
¢nli+1/2,j N “€6ﬂ¢i:j
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The contravariant velocity components (U and V) used in equations (6.10)

to (6.12) are computed with standard, second-order-accurate, finite-difference
formulas. These quantities are computed and used at 1 + 1/2,§ or

1, + 1/2. An example differencing formula for U computed at 1 + 1/2,j

is given by

3

U i+1/2,3 £¢i.j

Al + A, (6.15)

n.8

i+1/2,3 * l141/2,5%€80%4,9

The metric quantities A,, A, and A; are computed with fourth-order-
accurate, finite-difference formulas and are stored at integer points in the
finite-difference mesh. Values required at i + 1/2,j, 1, + 1/2, etc., are
obtained by using simple second-order averages. This metric calculation pro-
cedure has produced good results on smooth meshes but suffers on meshes that
are not smooth. A superior metric differencing scheme which produces good
results on even nonsmooth meshes will be discussed later in this section.

With the spatial differencing scheme just outlined, an upwind influence
in supersonic regions 1s achieved without the explicit addition of an arti-
ficial viscosity term. Instead, the stabilizing upwind influence is produced
by the upwind evaluation of the density in an otherwise centrally differenced
scheme. This apporoach 1s significant because it simplifies the technique for
including an upwind influence into the residual operator. As in the finite-
volume scheme presented in section 6.1, the present artificial density scheme
closely approximates the effects of a rotated differencing scheme. This
aspect greatly contributes to the stability and reliability of the present
algorithm for many difficult test cases.

Another variant of the artificial density spatial differencing scheme
has been presented by Hafez et al. (ref. 84). In this scheme, which is desig-
nated as an artificial compressibility scheme, the density coefficients in
both coordinate directions are defined by

Py T P T Ve, ety s (6.16)
where
(v % vy %
(psAs)i,j = (q){ jchpr + (q)i ijpAy (6.17)

The double-arrow notation indicates a first-order, upwind difference, s is
the streamwise coordinate direction, and v 1is a switching function defined
similarly to equation (6.6) or (6.13).

One difficulty associated with the artificial density spatial discretiza-
tion philosophy is that if either the switching function v or the density
p (or both) are not properly computed, the shock capture process will produce
large pre-shock oscillations and poor algorithm reliability. Two guidelines
offered by South and Jameson (1979, private communication) that help elimi-
nate this unacceptable behavior are (1) the quantity v should be evaluated
at i,j not at 1 + 1/2,j as in some formulatioris; and (2) the density
values used in equation (6.11) or (6.16) should be computed at 1+1/2,j+ 1/2.
The last guideline produces a density computation with a minimum-width dif-
ferencing module in the streamwlise direction. With these two guidelines the
existence of pre-shock oscillations is greatly reduced.

Examples showing the magnitude of these effects are shown in fig-
ures 16~18. Figure 16 shows two pressure coefficient distributions from
reference 86 for an NACA 0012 airfoil at a free-stream Mach number of 0.75
and an angle of attack of 2°. The two solutions correspond to different
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values of C [see eq, (6.13)]. For both of thése calculations, v 18 incor-
rectly evaluated at 1 + 1/2,j instead of 1,j, and p is computed
directly at grid points instead of at the preferred location (i+1/2,j+1/2).
As a result a pre-shock oscillation exists even for relatively large values
of C. Figure 17 shows the same comparison with v correctly evaluated at
i,j. The pre~shock oscillation has been eliminated, even for relatively
small values of C, but in some cases could still exist for values of Vv
computed from equation (6.6) (when M, = 1.0). Figure 18 shows a pressure
coefficient comparison from South et al., (ref. 87) for a nonlifting NACA
0012 airfoill calculation at a free-stream Mach number of 0.85. The two
curves correspond to nodal-point (i,j) and mid-cell (7 -+ 1/2,j + 1/2) density
calculations. The Vv parameter is correctly evaluated at i,j in both
cases and defined by equation (6.6) with M, = 1.0. The mid-cell density
calculation clearly gives the superior result with no oscillations.

Many researchers have used one of the artificial-density, spatial-
differencing schemes mentioned above because of the simple, reliable way in
which the supersonic region is stabilized. A few of these applications
include those of Farrell and Adamczyk (ref. 88), Akay and Ecer (ref. 89), and
Deconinck and Hirsch (ref. 90), for cascade calculations; Shankar (ref. 91)
for supersonic marching problems; Eberle (refs. 92 and 93) for a variety of
different applications; and Steger and Caradonna (ref. 94) and Goorjian
(ref. 95) for unsteady calculations. Results comparing a number of artifi-~
cial density scheme variations applied in a finite-element context are pre-
sented in Habashi and Hafez (ref. 96).

6.3 Spatial Differencing Schemes Based on Flux-Vector Splitting

Spatial discretization schemes based on the flux-vector splitting models
of Godunov (ref. 97) and Engquist and Osher (ref. 98) have recently gained in
popularity. Their value in capturing shock waves sharply and in providing
good stability properties for a variety of different iteration schemes has
been reported by Goorjian and Van Buskirk (ref. 99), Goorjian et al.

(ref. 100), Boerstoel (vef. 101), and Slooff (ref. 102). A comparison of
these schemes is presented in van Leer (ref. 103) as they apgply to the one-
dimensional Burger's equation,

u, + Fx =0 (6.18)

where u is the flow velocity, and F is the flux, u®?/2 (or for the full-
potential equation F = pu). These spatial discretization schemes applied to
the steady part of equation {(6.18) can be stated as follows (see ref. 102):

where
Fiy/, = F* - max(&]_ /.07, /)  (Godunov) (6.20)
§;+1/2 = F% - AI_I/2 - A;+1/2 (Engquist-Osher) (6.21)

In equations (6.20) and (6.21) F* 1is the sonic value of F and A+ and A”
are defined by
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' {F Fi1/2 for Yy 40 >
8yvy2 ™ (6.22a)

L-1/2 o for u,_ ,, <uk

) {0 for Yiti/2 > u¥
A = (6.22b)

i+1/2 . n
[h* - F1+1/2 for Uitr/z < u*

Both of these schemes produce standard discretizations in regions away
from sonic lines and supersonic-~to-subsonic shock waves. At sonic lines and
shock waves these schemes differ from standard schemes and are designed to
produce smooth solutions through sonic lines and sharp, monotonic shock waves.
The only difference between the Godunov scheme [eqs. (6.19), (6.20), (6.22)]
and the Engquist~Osher scheme [eqs. (6.19), (6.21), (6.22)] is in the shock-
point operator.

6.4 TFree-Stream Consistency Conditions

Grid~generated irregularities, such as mapping singularities, rapid
stretching, cell skewness, or grid coarseness, manifest themselves in many
realistic configurations. Examples of rapid stretching and cell skewness can
be found in the grids about multielement airfoils, wing/fuselage configura-
tions, wing/fuselage/pylon/nacelle configurations, or even simple airfcils
when the "0" mesh mapping topology is used. In addition, the solution near
the outer computational boundary almost always consists of extremely coarse
regions of the grid. Ideally, a stable flow-solver algorithm which can handle
all of the above mentioned irregularities, yet provide uniform accuracy over
the entire mesh, is desired.

The accurate capture of free-stream flow near the outer computational
boundary where the mesh is quite coarse can be a difficult problem. In a
formulation that is mapped to the computational domain [see eq. (5.3)], it can
be shown that if the metric differencing is implemented properly, the trunca-
tion error associated with a free-stream distribution of the dependent
variable is zero. That is, free stream 1s admitted as a solution to the
finite-difference equations. This type of procedure was addressed by Pulliam
and Steger (ref. 104) for the Euler equations but was not used, because of the
small improvements in accuracy obtained on smooth meshes. Thomas and Lombard
(ref. 105) and Hindmar (ref. 106) also worked with geometrically induced
errors associated with the metric differencing and found that certain differ-
encing procedures are better than others.

All of the above work was performed on the Euler equation formulation.
Chattot et al. (ref. 107) developed a spatial differencing scheme which con-
tained a perfect free-stream capture characteristic for the full-potential
equation., "However, in this formulation the full-potential equation was not
written in strong conservation-law form, that is, the metrics were written
outside the main flux differentiation as follows (see ref. 108):

A1(°¢g)g + Azl(p¢€)n + (9¢n)5] + A3(0¢n) +6=0 (6.23)

where A,, A,, and A, are defined by equation (5.5) and G 1is defined by

= 2 2
G = V7€ pd + Vn oo (6.24)
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On smooth meshes, where the metric variation is small, this formulation
behaves like conservative form. On nonsmooth meshes, such as one generated
by a solution-adaptive procedure, the metric variation at (for example) a
shock wave, would be large. This covid greatly affect the conservation prep-
erties of the spatial differencing svaeme.

Flores et al. (ref. 109) presented a free-stream-preserving, spatlial-
differencing scheme for the conservative full-potential equation written in
general curvilinear coordinates [see eq. (5.3)]. Unlike the Euler equation
scheme presented in reference 104, which produces perfect free-stream capture
with a single free-stream consistency condition, the full-potential equation,
in general, requires three conditions. The first condition 1s assoclated with
the density calculation procedure and is developed as follows: The density .
can be written solely as a function of the fluid speed. Thus, the exact
numerical prediction of free-stream density must result In the exact predic-
tion of the free-stream fluid speed. The fluid speed can be written as

2 .. 12 2 [ 2, 2

This expression reduces precisely to qi; if the difference operators used
for all E-differences involving x, y, and ¢ are the same, and if the dif-
ference operators used for all n-differences involving x, y, and ¢ are the
same. This can easily be verified by substituting difference operators for
all derivatives into equation {(6.25) and then using the exact free-stream ¢
distribution to simplify.

The second and third free~stream consistency conditions are associated
with the flux calculation. Using the fact that the density is exactly a con-
stant in free-stream flow, the full-potential equation can be rearranged to

give
(B tit) (it L e
£ n
where ¢, and ¢y are given by
by = Epbp Fnyen = Iy b - oygd) = u (6.27a)
éy = gy¢€ + “y¢n = J(-xn¢g + x£¢n) = v (6.27b)

If the difference operators for the E-~differences of x, y, and ¢ and the
difference operators for the n-~differences of x, y, and ¢ are the same,
respectively, then ¢, = u, and ¢y = V. This can be verified from equa-
tions (6.27) and is the second free-stream consistency condition. Note that
this condition is the same as the first condition, providing the density and
flux calculations are performed at the same grid locations. However, the
density and flux calculations, in an optimal calculation procedure, are not
computed in the same locations (see sec. 6.2}, and, therefore, these two
conditioris have to be satisfied independently.

With ¢, = u, and ¢, = V., equation (6.26) can be rewritten as
X y

u,,,(yng - ygn) + v‘”(xné; ~ xtin) =0 (6.28)

In general, equation (6.28) can be rewritten as two separate equations given
by
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yne - yen -0, xne - xen -0 (6.29)
Thua, the finite~difference operators used to obtaln the metric quantities
must commute. This is the third free-stream consistency condition. The last
condition is the same condition stated in reference 104 and was requircd (by
itself) to achieve perfect free-stream capture for the Euler equations.

The three free-stream conditions just presented are satisfied by the
twe-dimensional finite-volume scheme discussed in section 6.1. However, the
extension of this finite-volume scheme to three dimensions does not satisfy
all three free-stream flow consistency conditions (see vef. 76).

As stated in reference 109, extension of the first two conslstency con-
ditions to three dimensions is straightforward., Extension of the third con-
dition to three dimensions is somewhat more difficult. The following three
equations must be satisfied:

(nzg = Yerpde ¥ Orgzg = vergdy ¥ (g2, = VpZedy = O (6.30a)
(xczn - xnzc)5 + (xEZC - xczs)rl + (xan - xszn)c w0 (6.30h)
(xnyt - nyn)E + (nyE - Xeyc)n + (xayn - xnye)c = 0 (6.30¢)

That is, once all the derivatives of equations (6.30) are replaced by differ-
ence operators, these relations must cancel just as in the analytical case
(sece ref. 110),

Values of A,, Ay, Ay, and J in the two-dimensional flux calculations,
satisfying both the second and third consistency conditions, were obtained
with the same set of difference operators for all primitive metrics, Xy, Xy,
etc. (see sec, 5.1). This is not the case in three dimensions. Separate
formulas for the primitive metrics are required to satisfy the latter two
conditions, For example, the A; metric quantity can be written

Ay = B E BB 8T (6.31)

The quantities without bars must be computed so as to satisfy free-stream
consistency condition two, and the barred quantities must satisfy condition
three.

The use of this scheme requires more storage (or a moderate increase in
execution time if the metrics are recomputed each iteration). Separate
values of the metrics are required at four locations, although not all
metrics are required at each & these locations. Tha minimum number of
arrays required for a schem: in which the density is computed at
i+ 1/2,3 + 1/2,k + 1/2 (assuming no metric recomputation) is 15, which com-
pares to 7 arrays for a standard scheme using the same assumptions. If den-
sities are computed at i + 1/2,3,k the storage for a perfect free~stream
capture algorithm is reduced to 13 arrays. With the size of computer memor-
ies rapidly increasing, such storage requirements may not be too difficult to
obtain.

Two results showing some of the advantages of schemes that capture free
stream perfectly are shown in figures 19 and 20 (taken from ref. 109).
Results from a transcnic airfoll calculation computed with the TAIR computerx
code (see ref. 111) are presented in figure 19 for the Korn airfol) at its
design condition (M, = 0.75, o = 0.115°; see ref. 112). Three solutions are
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presented in figure 19 corresponding to (1) & scheme that satisfies none of
the consistency conditions but uses fourth-order-accurate metric differencing
(scheme 1), (2) a scheme that satisfies only the first consistency condition
(scheme 2), and (3) a scheme that satisfies all three consistency conditions
(scheme 3). The TAIR code uses a density and metric numerical smoothing at
the trailing edge of airfoils. For this study, the density smoothing is
disabled for all three schemes, and the metric smoothing is disabled for
schemes 2 and 3., The metric smoothing is still active for scheme 1, for it
is vequired for stability.

In figure 19, the shock location is about the same for all three results,
However, the shock strength is different in each case. For this calculation
a shock-free solution is expected, and, therefore, the strength of the shock
produced is a qualitative estimate of the numerical error associated with
each scheme. As expected, the third scheme produces the smallest error based
on this criterion. Another benefit associated with the third scheme is the
smooth trailing-edge solution. Because the density smoothing has been
removed at the trailing edge, schemes 1 and 2 produce oscillations in the
trailing-edge pressure distribution. However, the scheme 3 result is
oscillation-free, even without the trailing-edge smoothing terms. Thus,
satisfying free-stream consistency produces a reduction in global error, as
well as a reduction in local error around various grid singularities.

Results from a mesh refinement study are presented in figure 20. The
1ift coefficlent is plotted versus the average mesh spacing for the three
schemes outlined above, all applied to an NACA 0012 airfoil at M, = 0.75
and o = 2°, During this study, as the mesh was refined, the ratio of grid
points on the airfoil surface to the total number of field points was held
fixed. All three curves, representing the three different types of metric
differencing, approach the same asymptotic limit as they must to be mathemati-
cally consistent. On coarse meshes, the error associated with each scheme is
quite different: scheme 3 is the most accurate, scheme 1 1s next, and
scheme 2 is the least accurate. The scheme 3 improvement in accuracy on
coarse meshes represents a highly desirable quality in three-dimensional
problems. The behavior between schemes ] and 2 is somewhat unexpected, since
scheme 2 satisfies the first free-stream consistency condition and scheme 1
satisfies none of the consistency conditions. Apparently, the fourth-order-
accurate metrics associated with scheme 1 produce smaller levels of error in
1ift (because the present mesh is smooth) than the second-order-accurate
metrics of scheme 2.

6.5 Nonisentropic Full-Potential Formulation

An interesting exposition of various types of potential formulations
available for approximating the Euler equations is presented by Klopfer and
Nixon (ref. 113). Besides the standard mass-energy formulation in which the
momentum is not conserved, other formulations that conserve momentum and
energy or mass and momentum are discussed. Crocco's theorem is rederived
with suitable conservation errors included for each of these formulations.
It is shown that the isentropic assumption is not necessary in conjunction
with the velocity potential formulation.

An interesting nonisentropic full-potential formulation is derived in
reference 113 such that the resultant shock polar is identical to the Euler
shock polar. The nonisentropic potential formulation is given by (two-
dimensional Cartesian coordinates)

(pg ), + (mty)y =0 (6.32)
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. 1/y-1
- -1
o= [x P11t ¢»§)], (6.33)

where ¢ 1is the standard velocity potential, p 1is the fluid density, y is
the ratio of specific heats, and K 1is a function of the entropy (s)
defined by

K = e(87S0)/cv (6.34)

In equation (6.34) s, 1is the free-stream value of the entropy and c¢y 1is
the specific heat at constant volume.

Assuming that the shock waves are normal to the u-component of velocity,
a locally one-dimensional assumption can be made (although as pointed out in
ref. 113, this need not be the case). From equation (6.33) and the Euler
shock-jump relations, the following relation for K can be derived:

uf - L

Kee—m Y+l 1Y (6.35)
] - Yol 2\,
y+1 1 '

where u, 1is the normal velocity upstream of the shock. Values of K equal
to 1 correspond to free-stream flow; values of K larger than 1 correspond
to an entropy increase associated with a shock wave.

Implementation of this scheme requires the ability to detect the posi-
tion of a shock wave, which is easily accomplished for normal shocks. Then
the upstream velocity (u,) must be extracted from the flow field. Next, K
is computed from equation (6.35) fecr each streamline. This can be done
iteratively, but in reference 113 a "C" mesh topology is used and it is
assumed that each £ coordinate line is approximately a streamline. The
final modification involves a change in the Kutta condition. The far-field
circulation is no longer given by the velocity potential jump at the trailing
edge. Now it must be computed from the airfoil circulation and the circula-
tion generated around the wake, which is due to the jump in K across the
wake.

Computed results taken from reference !13 are shown in figure 21 for an
NACA 0012 airfoil at a free-stream Mach number of 0.80 and an angle of attack
of 1.25°. The three curves shown correspond to an Euler solution (ref. 33),
a full-potential solution (ref. 34), and a solution from the Klopfer-Nixon
nonisentropic potential formulation. For this case, the full-potential solu-
tion exhibits a strong shock at the airfoil trailing edge. The local shock
Mach number is approximately 1.5, far exceeding the full-potential formula-
tion limitation. The nonisentropic formulation, however, essentially pro-
duces the Euler solution. Even the lower-surface shock wave, which was not
predicted in the isentropic full-potential formulation, is accurately pre-
dicted by the nonisentropic formulation. Thus, Euler~like solutions can be
produced with the nonisentropic full-potential formulation in just a fraction
of the computer time required by the Euler equatioms.

Nonunique solutions to the full-potential equation were reported by
Steinhoff and Jameson (ref. 114). That is, depending on initial conditionms,
several drastically different flow-field solutions were obtained for the same
airfoil coordinates with the same free-stream conditions. These nonunique
solutions only occurred for a range of free-stream Mach numbers that produced
relatively strong shock waves. Thus, the cause for the nonuniqueness may be
associated with the large disagreement that exists between the isentropic

41

< i T T i ki ek s A o i 2




FHm e FRRUE RO AE o

full-potential and Euler shock polars for strong shock waves. If this is the
case, the nonisentropic full-potential formulation of Klopfer and Nixon,
vhich possesses the Euler shock polar, may represent a solution to the
nonunique full-potential problem.

6.6 Other Spatial Differencing Schemes

Many other spatial differencing schemes suitable for the solution of
transonic flow problems based on potential or potential~like formulations
have been presented. A few of these schemes are briefly discussed in this
section. Of particular note are the field panel method of Piers and Slooff
(ref. 115); the finite-element method of Vigneron et al. (ref. 116), and the
penalty function method described by Bristeau et al. (ref. 117), Periaux
(ref. 118), and Bristeau et al. (ref. 119). In the last approach, a least-
square finite-element formulation is used to discretize the full-potential
equation in conservative form. To exclude expansion shocks the least-square
functional is modified to include a penalty function. This penalty function
takes on large values for solutions containing nonphysical expansion shocks,
that is, for solutions with streamwise positive jumps in velocity, and small
values for solutions with proper entropy increasing shocks. In a sense, this
penalty function apprecach is a dissipative device similar to artificial vis-
cosity that is designed to exclude physically unrealistic expansion shocks.

Another approach suitable for the prediction of transonic flow fields is
based on the stream function formulation. Early pioneering work was done in
this area by Emmons (refs. 120-122). Mpnre recently, Hafez and Lovell
(ref. 123) presented a stream-function formulation suitable for solving
transonic flow. %..e stream-function equation is given by (two-dimensional

Cartesian coordinates)
¥ Y
(_5) +(_x) - - (6.36)
p % p y

where

L2 1/y=2
- - p2 + 2
p=eAS[1-Y21M§,("21-1>] (6.37)

and w is the vorticity which is computed from the entropy rise across the
shock (As).

In this approach the stream-function equation is discretized using the
artificial density concept of reference B4 to stabilize the scheme in super-
sonic regions. A unique solution to the doubled-valued density problem,
typically associated with transonic applications of the stream-function for-
mulation [see eq. (6.37)], is presented by Hafez and Lovell. 8ince the
irrotationality assumption does not have to be made 37 the stream-function
formulation, results with vorticity and entropy increases across shock waves
can be computed. This is highly attractive since solutions to the Euler
equations can be simulated with this formulation while only requiring the
numerical solution of a single second-order PDE. In addition, because the
form of the stream-function equation and the full-potential equation are
nearly the same, most solution schemes for the potential formulation can be
used to solve the stream-function formulation.

The two drawbacks associated with the stream-function formulation are its
increased complication caused by the double-valued density relation and
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difflculty in extending it to three-dimensional flows. A three-~dimensional
formulation is presented in reference 123 but not implemented. The formula-
tion expands to three equations which are probably still easier to solve than
the Euler equations; however, until comparisons are made, final conclusions
cannot be drawn.

7. ITERATION SCHEMES

The next subject of discussion involves the iterative process by which
the initial solution is evolved into the final solution. The iteration
scheme 1s primarily responsible for the amount of computational work associ-
ated with each algorithm through the number of iterations required for con-
vergence. In recent years, many researchers have experimented with different
techniques for reducing the number of iterations associated with transonic
flow computations. In this section we will look at the iteration schemes that
have proved to be most successful in reducing the computational cost relative
to older more standard iterative schemes such as SLOR.

7.1 The Alternating Direction Implicit Scheme

The alternating direction implicit (ADI) scheme has already been dis-
cussed (sec. 3.7) for solving Laplace's equation. In this section, an ADI
scheme suitable for solving the conservative full-potential equation for tran-
sonic flow is presented. The ADI factorization used here is basically the
same as that discussed in section 3.7 and can be stated by writing the stan-
dard N-operator as follows (see also ref. 108):

1 n
NC L ta-34a85)@ - ERAJSR)ci’j (7.1)

n T e

i,j a §1°g

where a 1is an acceleration parameter (to be discussed shortly) and Ay and
Aj are defined by

@), we@) =
=\ A, =l— 7.2
1 J i~1/2,3 3 J i,j-1/2

In equation (7.2) the density coefficients, p and § are defined by equa-
tion (6.11) and A,, A3, and J are metric quantities defined by equa~

tions (5.5) and (5.6). The ADI scheme of equation (7.1) is implemented in a
two-step format given by the following.

Step 1:
n n
(a - KEA1§£)fi’j = auldy (7.3a)
Step 2:
n n
(o - 3nAj§n)Ci’j = £y (7.3b)

In equations (7.3), w 1is a standard relaxation factor and f?, is an inter-
mediate result stored over the entire finite-difference mesh. %he residual,
L¢2’i, is defined by equation (6.10). Step 1 consists of a set of tridiagonal
matrlx equations along the § direction, and step 2 consists of a set of
tridiagonal matrix equations along the n direction. The construction of
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this ADI scheme does not automatically provide the necessary ¢g¢ to stabi-
lize supersonic regions. However, this type of term can still be included
by adding -

nglUj_,jISg and :Bnivi’jhsn (7.4)

inside the parentheses of the first and second steps, respectively. The
deuble-arrow notation on the operators of expressions (7.4) indicate that the
difference direction is always upwind, and the sign is chosen so as to
increase the magnitude of the matrix diagonal coefficient. The contravariant
velocity component scaling used in expressions (7.4) provides a smooth tran-
sition from forward to backward difference directions when the flow direction
changes sign. The B; and By, coefficients are constants specified by the
user according to need.

Stability of the ADI scheme as given by equations (7.1)~(7.3) can be
investigated by considering a simplified form given by

n

~(a = 8 )(a - § y)ci .+ ow(s, + syy)q,‘i"j =0 (7.5)

y 33
This is essentially the scheme presented in section 3 for solving Laplace's
equation. Other; more complex model equations can be used, but the present
one will allow essentially the same conclusions with less work. The amplifi-
cation factor for the algorithm of equation (7.5) is given by

a, +a, - wa,

G = (7-6)
ADI a, +a,
where
a, = o + 4 (cos aAx ~ 1)(cos bAy - 1) 2 0 7.7)
anszz
2 2
a, = ~—— (cos aAx -~ 1) - —— (cos bdy - 1) 2 0 (7.8)
rx? Ay2

The purely real amplification factor is always less than or equal to 1, pro-
viding 0 < w £ 2 and o 2 0. Because the only condition for stability on
the o parameter is that it be positive, the ADI scheme is said to have
unconditional linear stability, as expected for an implicit scheme.

The ADI amplification factor can be factored into a special form given
by (for w = 2):

[a _ 2(1 ~ cos an)][a _2( - cos bAy)]

sz Ayz .
Gyt = - : = 1 (7.9
ADI o + 2(1 cos alAx) o + 2(1 cos bAy)
Ax? Ay2

Note that the x and y directions decouple. Thus, the amplification factor
can be minimized for a particular eigenvalue associated with (for example)
the x-~direction by choosing o to satisfy

o = 2 (1 - cos ahx) (7.10)

Ax?
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The amplification factor for this value of a and for this eigenvalue is
actually zero. For a problem with NI grid points in the x-direction,
corresponding to NI eigenvalues, the solution will converge to zerc error
after NI dterations. Of course, this 1s only true for a linear problem.
Precise estimation of the eigenvalues for a nonlinear problem is generally
not possible. Instead, a repeating sequence of a's i1is used with each ele-
ment of the sequence chosen to maintain small values of IG' for a given
range of eigenvalues (ref. 124). A suitable sequence of a's presented in
Ballhaus et al. (ref. 125) is given by

*

-1/M-1
ak = aH(uL/aH)k / k = 1| 2| 3; . . .y M (7011)
where M 1is the number of elements in the sequence. The sequence endpoints
can be estimated by using equation (7.10). For instance, the lowest eigen=-
values, corresponding to low-frequency errors, are approximately given by
a - 1, which yields

2

o 8§ —— (1 - cos alx)
ax?
. 2 ax? | ax®
=,sz[-(l 8 ,,)] (7.12)
21
For high~frequency errors aAx ~ 7, which yields
4
g — (7.13)
H ax?

In practice, it is well advised to "optimize" both ay, and ay by trial-and-
error numerical experimentation. Of course, this has to be done only once
for each code, for aqj and ay do not strongly depend on the characteristics
of the solution being computed.

The ADI scheme just presented has been used to compute transonic flow in
a number of different applications; however, the results will not be presented
uatll after the next section. The iteration scheme presented in the next
section, AF2, will then be compared and contrasted with the ADI scheme in
section 7.3.

7.2 The AF2 Approximate Factorization Scheme

The AF2 scheme was first presented in reference 126 for solving the low-~
frequency (unsteady) TSD equation. This algorithm was subsequently applied
to the solution of the steady TSD equation (ref. 125) and the conservative
full-potential equation (refs. 83 and 84). The AF2 fully implicit scheme can
be expressed by choosing the standard N-operator as follows:

n

NC =
i3

1 n
-2 (- Enaj)mﬁn - §€Ai§g)ci’j (7.14)

where, as with the ADI scheme, Ay and Ay are defined by

v () ¢ () .15
= { - an A, =[— 7.15
L J i-1/2,j J J i,3-1/2
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In equation (7.15) the density coefficients, p and 5, are defined by equa-
tion (6.11) and A,, A,, and J are defined by equations (5.5) and (5.6).
The AF2 scheme is implemented in a two-step format given by the following.

Step 1:

(a - EnAj)f‘i"j = amL¢?’j | (7.16a)

Step 23

n

n —
8, - T 80ch 4 = £y

(7.16b)
In equations (7.16), w 1is the usual relaxation factor, o 1B a convergence
acceleration parameter cycled over a sequence of values [see eq. (7.11)], and
fg,j is an intermediate result stored over the entire finite-difference mesh.
Step 1 consists of a set of bidiagonal matrix equations along the n-direction,
and step 2 consists of a set of tridiagonal matrix equations along the
E-direction. With the AF2 factorization, the n-difference approximation is
split between the two steps. This generates a ¢n-type term, which is useful
to the iteration scheme as time-like dissipation. The split n term also
places a sweep direction restriction on both steps, namely, in the negative
n-direction for the first step [eq. (7.16a)] and in the positive n-direction
for the second step [eq. (7.16b)]. Flow direction imposes no sweep direction
restrictions on either of the two sweeps.

The N-operator, as presented in equation (7.14) (see ref. 34), 1is some-
what different from the AF2 scheme presented in references 83 and 125. For
the AF2 factorization, the N-operator must be written so that either the
E~ or the n-difference operator is split between the two factors. This con~
struction generates either a ¢py-type or a ¢pc-type term and, if properly
differenced, provides time-dependent dissipation to the convergence process.
For the "O" mesh topology (see fig. 10), an algorithm with the £-direction
split produces a ¢g¢ term which is properly differenced either above or
below the airfoil. “Since the supersonic zone can generally exist on both the
upper and the lower airfoil surfaces and since the supersonic zone is usually
the most difficult in which to maintain computational stability, it is
desirable to keep the ¢Et term differenced in the upwind direction on both
the upper and lower surfaces. Thus, the N-operator presented in equa-
tion (7.14) from reference 34 splits the ri~direction. This allows control
of the "¢gr term because it is added explicitly and is not part of the
factorization.

Of course, with this N-operator construction, the ¢nt term is upwind
differenced in the forward half of the mesh and downwind differenced in the
aft half. For this formulation, adverse effects for cases with supersonic
flow at the trailing edge may be anticipated but none have been experienced.
In fact, cases with free-stream Mach numbers near un’'ty have been computed,
in which the trailing edge is entirely embedded in supersonic flow with no
adverse effects (ref. 86). The precise reason for this behavior is unclear.
The spatial differencing scheme, which is differenced in the upwind direction,
and the explicitly added ¢£t term, which is also always differenced in the
proper manner, may overshadow any adverse effects introduced from the ¢nt
term.

The ¢g¢-type term is included (if necessary) by adding

Iaé?% (7.17)
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inside the parentheses of step 2 [see eq. (7.16b)]. As with the ADI scheme,
the double-arrow notation indicates that the difference direction is always
upwind, and the sign is chosen so as to increase the magnitude of the matrix
diagonal coefficient. The parameter B 1is fixed at a value of 0.3 in sub-
sonic regions. In supersonic regions, B is initialized according to user
specifications, for example, to 4.5, and then updated using special logic
(see ref. 111) given by

If RATIO < 2.0 then A" = 0.98 g ')
If RATIO > 2.1 then 8" = 1.1 g™}
, > (7.18)
If g% > BHIGH then B = BHIGH
If g% < BLOW then B" = BLOW
where
n n
RATIO = —RAVG _ , _RMAX (7.19)
rave™™M  pax™™
BHIGH = g% + 1 , BLOW = g - 1 (7.20)

In equation (7.19), M 1is the number of elements in the « sequence, and
RAVG is the nth iteration average residual. The logic defined by equa-
tions (7.18)-(7.20) monitors solution convergence through the parameter RATIO.
If convergence is progressing satisfactorily, B is reduced; if not, B is
increased. The parameters BHIGH and BLOW are upper and lower bounds which
limit the amount of B wvariation. This update scheme for B i1s similar to
the scheme presented by South et al. (ref. 87).

In addition to the above logic, other larger increases (or decreases) in
B are possible. During the iteration process, the base value of B, includ-
ing the values of BHIGH and BLOW, are increased or decreased, if the devel~-
oping solution requires more or less time-like dissipation. This logic,
largely developed on a trial-and-error basis, automatically keys on the
growth rates of the number of supersonic points and the amount of circulation.
If these quantities grow rapidly, then R, BHIGH, and BLOW are all increased;
if they grow slowly, then these quantities are decreased. Thus, with this
type of logic, the time-like dissipation can be automatically adapted to each
individual solution.

Stability of the AF2 iteration scheme [eqs. (7.14)-(7.16)] can be inves~-
tigated by considering a simplified algorithm given by

(a§x - 8, (o - Sx)c:’j +aw(s  + 6yy)¢2’j =0 (7.21)

This is essentially a scheme for solving Laplace's equation. The standard
von Neumann test yields an amplification factor given by

a, + (1 - m)a2

G = | (7.22)

AF2 al + az
where
a, =L (1 -e%) 42 (o5 bay - 1)(IX - ) (7.23)
Ax 2
aAxAy
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a, = - 2 (cos aAx - 1) = —2—-(cos bay - 1) 20 (7.24)
Ax? Ay2

Unlike the ADI scheme amplification factor, which was purely real, the AF2
amplification factor is complex and, therefore, a little more difficult to
analyze. However, the imaginary parts in both the numerator and denominator
are the same. Thus, an equivalent condition of stability is given by

a; + (1 - w)az

-1 < PY—— <1 (7.25)

where

a; = Re(a,)

a
2. - +
A (1 cos alx)

Il

(cos bAy - 1)(cos anx - 1) 2 0 (7.26)
anAy2

The expression given by equation (7.25) is of the same form as the amplifica-
tion factor for the ADI scheme [eq. (7.6)] and, therefore, is always satis~-
fied, providing 0 ¢ w ¢ 2 and a 2 0. Thus, the AF2 scheme has the uncon-
ditional linear stability typically associated with a fully implicit
iteration scheme.

‘There is an interesting aspect of the stability of the present AF2
scheme associated with the airfoil surface boundary condition, as discovered
by South (ref. 127). The residual operator airfoil surface boundary condi-
tion is that of flow tangency and is implemented by reflection. Another
aspect of the surface boundary condition is that the n-direction difference
on f at the airfoil surface is arbitrarily set to zero. South noted that a
stability analysis using the proper airfoil surface boundary conditioms (with
reflection condition included) produces the fellowing stability condition:

a 2 ph,w (7.27)

That is, the o parameter (or equivalently the inverse of the time-step) is
restricted at the airfoil surface by the condition given in equation (7.27).
The quantity A,; 1s effectively the cell aspect ratio (see sec. 5.1). Thus,
as the mesh is clustered toward the airfoil surface, the stability condition
(7.27) becomes more restrictive and, unless the a sequence is suitably modi-
fied, divergence can result.

South presented a solution to this problem which consisted of an appro-
priate modification of the N-operator at the airfoil surface. By modeling
the surface N-operator after the surface residual operator, uncounditional
linear stability was restored.

Finding values of o that cause the AF2 amplification factor to be zero
for a given eigenvalue is difficult because the AF2 amplification factor is
complex. However, values of & can be determined which do minimize the AF2
amplification factor (see ref. 125) and are given for the:low- and high-
frequency limits as follows: '

a = 1, oy = 1/A (7.28)

Notice that the high~frequency endpoint for the AF2 scheme is quite different
from that of the ADI scheme but that the low-frequency values are the same.
Again, in practice, it is well advised to optimize both endpoints by
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trial-and-error numerical experimentation. This, however, need only be done
once for each code, for solution parameters such as Mach number, angle of
attack, and alrfoll coordinate variations do not greatly affect the optimal
a sequencec

The AF2 algorithm discussed above has been coded into a user-oriented
computer code called TAIR (Transonic AIRfoil analysis). Computational
results produced with TAIR are now presented. The first result involves the
supercritical Korn airfoil at a free-stream Mach number of 0.74 and an angle
of attack of 0°. Pressure coefficient distributions for this slightly off-
design case are compared in figure 22, with a result from the GRUMFOIL com-
puter code (ref. 128). The GRUMFOIL computer code has available a viscous
correction option which was not used for this calculation. The two results
are in excellent agreement. The rms error convergence history curves for
this calculation are presented in figure 23. The rms error at iteration
n (ERMS) is defined by
%(“ C )21/2

Cp, = C
& Py © Py

ERMS = N (7.29)

where Cgi is the surface-pressure coefficient at the ith grid point and
the nth iterationm; EPi is the surface-pressure coefficient at the dith

grid point taken from the converged solution; and NI is the total number of
surface grid points. Using EpMg to compare convergence performance is a
much more quantitatively correct procedure than using the standard maximum
residual quantity. (More discussion of this point can be found in refs. 83
and 129 and in sec. 7.3 of these notes.) The three curves shown in figure 23
correspond to the following iteration schemes: (1) AF2, (2) hybrid, and

(3) SLOR. The hybrid scheme is a combination semidirect/SLOR iteration
scheme developed by Jameson (ref. 85), which is cowmposed of one semidirect-
solver iteration followed by seversl SLOR iterations. The purpose of the SLOR
iterations is to smooth high-frequency errors generated by the direct-solver
step in regions of supersonic flow. For this calculation, the AF2 scheme con-
vergence rate is about 5 times faster than that of the hybrid scheme and about
10 times faster than the SLOR rate.

Additional results obtained from the TAIR computer code are shown in
figures 24 and 25. Figure 24 shows a pressure coefficient comparison with
experiment taken from reference 111. The airfoil is the supercritical CAST 7
and the Mach number is 0.7. The agreement is quite good. Figure 25 shows
Mach-number contours around an NACA 0012 airfoil immersed in a 0.95 Mach free
stream at an angle of attack of 4° (taken from Holst, ref. 130). The Mach
number contours clearly illustrate the existence of a so-called "fishtail"
shock-wave pattern downstream of the airfoil trailing edge. This difficult
calculation demonstrates the convergence reliability associated with the AF2
transonic relaxation procedure.

The AF2 scheme has been implemented in a number of different applica-
tions, including airfoil calculations by Holst (ref. 34) and Atta (ref. 131);
cascade flows by Kwak (ref. 132); wing geometries by Holst (ref. 130) and
Holst and Thomas (ref. 133); and in wing/pylon/nacelle calculations by Atta
and Vadyak (ref. 134). In addition, two other factorizations similar to the
AF2 scheme, have been presented by Benek et al. (ref. 135). These two formu-
lations are called AFZ2 and AFZ and are both used for three-dimensional
transonic wing calculations. The AF22 scheme is very similar to the standard
AF2 scheme used in refercnce 130. The AFZ scheme is a simplification of the
AFZ2 scheme which inverts matrices along only the wraparound and normal-like
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directions, not the span direction. Thus, this scheme is implicit in only
two directions, whereas the standard AF2 scheme is implicit along all three
coordinate directions. Despite this feature, the simpler AFZ scheme has
almost the same convergence properties as the AFZ2 scheme. Numerical results
using the three-dimensional AF2 scheme of reference 133 will be presented in
section 8.

7.3 Convergence Characteristics of SLOR, ADI, and
AF2 Iteration Algorithms

Numerical results comparing the convergence characteristics of the twc
fully implicit algorithms just presented (ADI and AF2) with the SLOR algo-
rithm are now presented. All three iteration schemes have been applied to
the same artificial-density, spatial-differencing scheme for the conservative
form of the full-potential equation. A two-dimensional, 10Z-thick, circular-
arc airfoil with small-disturbance boundary conditions is used as a test case.
The finite-difference grid is Cartesian with variable spacing in both the
x and y directions. Both subcritical and supercritical cases are considered
(M, = 0:7 and 0.84, respectively). Pressure coefficlent distributions for
these two cases are displayed in figure 26. Note the perfect symmetry asso-
ciated with the subcritical case and the existence of a moderate strength
shock at about 807 of chord for the supercritical case. For more details
about these calculations see reference 83.

Convergence characteristics for the suberitical case are displayed in
figure 27. All of the convergence parameters for each scheme have been
selected by a trial-and-error optimization process. Based on a six-order-of-
magnitude reduction in the maximum residual, the ADI scheme 1is about twice as
fast as the AF2 scheme and about 16 times faster than SLOR, in terms of iter-
ation count. However, the ADI and AF2 schemes take about 50% and 30% more
CPU time per iteration, respectively, than SLOR; this should be considered
when speed ratios based on the total amount of computational work are desired.

Convergence characteristics for the supercritical case are displayed in
figure 28. Again, the convergence parameters have been optimized by a trial-
and-error process. Based on a six-order-of-magnitude reduction in the maximum
residual and in terms of iteration count, AF2 1s slightly more than twice as
fast as ADI, and about 11 times faster than SLOR. The number of supersonic
points (NSP) plotted versus iteration number for the supercritical case is.
shown in figure 29. The AF2, ADI, and SLOR schemes reach the final vaiue of
NSP in 29, 103, and 320 iterations, respectively,.

The AF2 iteration scheme was relatively consistent in terms of conver-
gence speed for both cases. The ADI iteration scheme, on the other hand, dis-
played remarkable speed for the subcritical case but was a disappointment for
the supersonic case. This is because the ¢gpr~type error term produced by the
AF2 factorization is more suitable for supersonic regions than the ¢ ~type
error term resulting from the ADI factorization. In fact, the ¢ -type error
term has been shown to be destabilizing in the supersonic region (see
ref. 29).

Relative levels of convergence for AF2 and SLOR for given reductions in
maximum residual are compared in figure 30. The solld lines represent the
final solidly converged solution. The other results represent intermediate
AF2 and SLOR solutions in which the maximum residual has been reduced by one,
two, and three orders of magnitude {figs. 30(a), 30(b), and 30(c), respec-
tively). It is immediately obvious that reducing the maximum residual by
equal amounts for the AF2 and SLOR schemes does not produce intermediate
results with the same level of error: This behavior can also be observed by
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comparing the maximum residual history curves of figure 28 with the rms error
history curves given in figure 31. The rms error 18 computed from a formula
similar to equation (7.29). The SLOR residual crops very rapidly initially
and then levels off. The SLOR rms error drops gradually. Therefore, at the
"knee" in the SLOR residual history curve, even though the residual has
dropped by about three orders of magnitude, the actual rms error has dropped
by only one order of magnitude. In contrast, both maximum residual and rms
error results for the ADI and AF2 schemes are nearly straight lines with
about the same slope.

This behavior is the result of two factors (see refs. 83 and 129):
(1) the AF2 scheme treats all error components equally well (approximately),
whereas the SLOR scheme performs efficiently on only the high~-frequency error
components; and (2) it can be shown that the residual is a weighted sum of
errors, in which the weighting factors are the eigenvalues of the finite-
difference scheme. The eigenvalue for high-frequency errors is 0(Ax~2); for
the low-frequency errors it is 0(1). Hence, the residual is heavily influ-
enced by the high~frequency errxcrs. Therefore, the maximum residual operator
should not be used as the basis for comparing convergence performance between
iteration schemes with different characteristics (for example, AF and SLOR
schemes). The rms error is much better suited for this purpose. In prac-
tice, using the maximum residual to monitor convergence for either AF or
SLOR is the most convenient method (since error is unknown). However, the
convergence criterion based on residual should be adjusted (by experience) in
accordance with the solution procedure in use.

7.4 AF3 Approximation-Factorization Scheme

Another interesting approximate-factorization scheme, introduced by
Baker (ref. 136) for solving the nonconservative full-potential equation is
now discussed. The AF3 scheme is given by

n n
( acﬁy - A8 )+ ?y)ci’j = ouldy (7.30)
for subsonic regions of flow and by

(—achy - Acéxx - Augx)(a + gy)cg,j = amL¢?’j (7.31)

for supersonic regions of flow (when u > 0). The difference direction on the
third term of the first factor is reversed when u < 0. The coefficients A,
C, Ac, C., and A, are determined from the nonconservative full-potential
equation written in canonical form (stream and stream-normal coordinates),

and are given by

2 2 2
u \
A e R
a q q
c = fy -\ o v ’ (7.32)
u - 2) 2’ c - 2
a q q
A=A, +A, C=C, +Ce

where u and v are the velocity components along the x and y directions,
respectively; a 1is the local speed of sound; and q is the magnitude of the
velocity vector. As in the previous AF2 scheme, w is a relaxation factor,
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o an acceleration parameter (cycled over a sequence of values), and L¢2 j
is the nth iteration residual defined by '

n n

for subsonic regions of flow and by

n = - 4 n .
Loy, g % Acbyx ASS, + Boh b 8,8, + L) x%y + e, +C u$y§ RUA
(7.34)
for supersonic regions of flow (whea u > 0 and v > 0). The additional .
coefficients B, and B, are given by
2
B = S 14 - 2uv 1,
R AR (7.35)

The AF3 factorization is similar to the AF2 factorization and produces
exceptional improvements in computational speed. This fact is illustrated in
figures 32 and 33 (taken from ref. 6). Figure 32 shows the pressure coeffi-
client distribution about an NACA 0012 airfoil at M, = 0.75 and a = 2° for
several different levels of convergence. After just 10 AF iterations, which
correspond to about 13 SLOR iterations, the solution is nearly converged.

The AF3 convergence history for this case 1s compared with an SLOR convergence
history in figure 33. The SLOR convergence history is enhanced by using the
standard grid refinement procedure involving two grids, one coarse and one
fine. For this case, the SLOR scheme required over 400 ilterations to reach
plottable accuracy; the AF3 scheme reached plottable accuracy in about

20 iterations (26 equivalent SLOR iterations).

The two-dimensgional AF3 scheme just discussed has been extended to
three dimensions by Baker and Forsey (ref. 137). Solutions of the nonconser-
vative full-potential equation have been obtained for wing and wing/fuselage
combinations with a factor of 4 or 5 increase in computational efficiency
relative to standard SLOR schemes,

A theoretical analysis for various AF schemes, including ADI, AF2, and
AF3, is presented by Catherall (ref. 138). In this study, an improvement in
computational efficiency is obtained when the contributions of the transfor-
mation metrics are properly split between the two factors. In addition,
optimal values for the acceleration parameter sequence o and the relaxation *
factor w are derived and discussed.

7.5 Multigrid Iteration Schemes

The multigrid iteration scheme 1s enjoying a wave of popularity that has
included applications in a host of different areas. This scheme is actually
a convergence acceleration technique and requires a base iteration scheme,
for example, SOR, SLOR, ox AF. Multigrid schemes have existed for quite some
time, having been first introduced by Fedorenko (ref. 139) in 1964. Since
then, several authors have analyzed the technique, including Balkhvalov
(ref. 140) and, more recently, Nicolaides (ref. 141) and Hackbusch (ref. 142).
The most significant aspect of the multigrid iteration scheme is fast con-
vergence. This fast convergence is produced by using a sequence of grids
ranging from very coarse to very fine. Each grid is used to eliminate one
small range of errors in the error frequency spectrum, namely the errors of
highest frequency supported on each mesh. Many relaxation schemes exist that
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work very well on high-frequency errors, for example, point-Jacobi and AF
schemes (with properly chosen acceleration parameters). One of these relaxa-
tion schemes is used on each mesh to remove the high-frequency error. A
desirable aspect of this approach is that the high-frequency error on the
coarsest mesh 1s actually the lowest frequency error existing in the problem.
Because this usually troublesome low-frequency error is efficiently dealt
with on a coarse mesh, very little computational work is expended in removing
it from the solution. Thus, a tremendous convergence rate enhancement is
obtained.

Implementation of a typical multigrid scheme is described in general
terms as follows: Suppose we desire a solution to

Py = £ (7.36)

where Lh is a typical linear difference operator which approximates a dif-
ferential operator L on a mesh associated with the grid spacing h. The
quantity f contains the problem boundary conditions. Let

¢ =u+v (7.37)

where u is an approximation to ¢ and v represents an error. Therefore,
as the iteration scheme converges, u - ¢ and v -+ 0. The basic multigrid
scheme can be expressed by

2h

‘v + I2h

: abu -f) =0 (7.38)

L

where Lzh is a finite-difference operator which approximates L on a mesh
associated with the grid spacing 2h, instead of h, that is, twice as coarse
as the original mesh. The operator Iﬁ is an interpolation or averaging
operator which transfers values of the residual (Lhu - f) from the fine mesh
to the coarse mesh. After the coarse mesh corrections, v, are obtained, they
are transferred back to the fine mesh by using

h
ute® o=y o+ Izhv . : (7.39)

where I?h is an interpolation operator. The process can 2ontinue to
coarser meshes so that ultimately just one or maybe several mesh cell widths
span the entire domain of interest.

To extend the idea to nonlinear problems a simple modification is help-
ful. By adding and subtracting L3Py  from equation (7.38) the new form
becomes

LM = (7.40)

where

u-+v

ot
L}

(7.41)
h Izh

S abu - £)

+h
It

The quantity 1 represents a new or improved estimate of ¢ which is deter-
mined from the coarse mesh. The quantity f 1is a modified right-hand side
which essentially represents the difference in residuals between the h and 2h
meshes. New updated coarse values are transferred back to the fine mesh by
using
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Thus, the error quantity v does not have to be stored as in the original
version.

Applications utilizing the multigrid scheme were slow to materialize
after its introduction, primarily because of difficulties in implementation
and general underestimation of the putential of multigrid enhanced schemes.
The first work to apply the multigrid scheme numerically was that of Brandt
(ref. 143) in 1972, Later, the multigrid scheme was formulated in general
terms by Brandt (ref. 144). In this latter reference, a good historical
background of the multigrid scheme iIs presented, including a revizw of
related earlier work.

The first use of the multigrid scheme for transonic calculations was
presented by South and Brandt (ref. 145). In that study, numerical solutions
of the TSD equation for nonlifting airfoils were obtained. The speed of an
optimized SLOR scheme was improved by a factor of 5 on uniform meshes and by
a factor of 2 on stretched meshes. A primary difficulty reported by South
and Brandt involved the existence of a variety of limit-cycle oscillations
betwzen several grids, thus inhibiting convergence. This problem seemed to
be the result of insufficient smoothing of the high-frequency errors on one
grid befeore passing to the next coarser grid. South and Brandt concluded that
the SLOR base algorithm used in the multigrid scheme did not have uniform
smoothing properties in both directions, especially for nonuniform, highly
stretched meshes. They hypothesized that alternating the SLOR sweep direction
or utilizing an ADI iteration scheme as the base algorithm might solve this
problem.

Another approach, proposed by Arlinger (ref. 146), is to refine or
coarsen the mesh in only one coordinate direction while doing line relaxation
along the opposite direction. This technique produced a convergeance rate
acceleration but did not take full advantage of the multigrid scheme. To
date, the most successful application of a multigrid convergence acceleration
scheme to a practical transonic problem is the work of Jameson (ref. 147).

In that study, the full-potential equation in conservative form is
solved, using a multigrid scheme with a specially counstructed AF base itera~
tion scheme. This scheme, when applied to the following linear model
equation,

Adyy *+ By =0 (7.43)

is given by

n n ;
(s - A8 _)(S - Bny)Ci’j = uSLey (7.64)

where A and B are constants, w 1is the standard relaxation fector, and
S and L. are operators defined by

S = ag + ay8 + 0,8 (7.45)

and

Loj,y = (A8, +BS )oY (7.46)
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"In equation (7.45) 04y Oy, and G, _are parameters that depend on flow type
and user input. The quantities &, and 8y denote first-order-accurate
upwind difference operators in the x and'y directions, respectively.

The Jameson scheme uses a recursive approach for implementing the multi-
grid philosophy, instead of the adaptive apprecach advocated by Brandt
(refs. 143 and 144). In the adaptive multigrid approach, the decision to
proceed to the next mesh, either coarser or finer, is based on a convergence
rate criterion. If the solution residual is dropping slowly, the iteration
process proceeds to coarser meshes. Conversely, 1f the solution residual is
dropping rapidly, the iteration proceeds to finer meshes. In the recursive
approach of Jameson, a single multigrid cycle starts with an AF iteration on
the finest mesh, followed by an AF iteration on the second finest mesh, etc.
This continues until the coarsest mesh is reached. Then the process is
reversed, starting with the coarsest mesh and ending with the second finest
mesh. Therefore, each multigrid grid cycle consists of one AF application on
the finest mesh and two applications on each of the remaining meshes. If a
fine grid AF iteration is defined as a unit of work, then one multigrid
cycle, using the recursive approach, requires about 1-2/3 work units plus
interpolation operations.

Results produced by the Jameson multigrid scheme are displayed in fig-
ures 34 and 35. The pressure coefficient distribution for an NACA 64A410 air
foil at a free-stream Mach number of 0.72 and at an angle of attack of 0° is
displayed in figure 34. A moderate-strength shock exists at about 60% of
chord., Notice that the residual has been reduced below 10E-12 (see fig. 34),
which is approximately an eight-order-of-magnitude reduction from the initial
value; the reduction was achieved in only 29 multigrid cycles. Convargence
histories for this case, which were computed using different numbers of
meshes (from one mesh, that is, no multigrid, up to five meshes), are shown
in figure 35. The convergence rate (CR), which is defined as the mean
reduction in the average residual per unit of work, is also displayed for
each curve. Increasing the number of meshes or, equivalently, increasing the
coarseness of the coarsest mesh, greatly improves the convergence rate.

Other researchers have used the multigrid algorithm to sove the full-
potential equation in a variety of applications: Fuchs (ref. 148) and
Deconinck and Hirsch (ref. 150), for two-dimensional applications; Arlinger
(ref. 150), for axisymmetric calculations; McCarthy and Rehner (ref. 151) and
Brown (ref. 152), for three-dimensional engine-inlet calculations; and
Shmilovich and Caughey (ref. 153) and Caughey (ref. 154), for three-
dimensional wing calculations.

7.6 Other Iteration Schemes

The strongly implicit procedure {SIP) introduced by Stone (ref. 155) has
been applied to the numerical solution of the full-potential equation for
transonic airfoil calculations by Sankar and Tassa (ref. 156). Additional
applications include those of Sankar et al. (ref. 157), for steady transonic
wing calculations, and Roach and Sankar (ref. 158), for transonic cascade
calculations. In all cases the SIP solution algorithm displayed good conver-
gence characteristics as a relaxation scheme. In addition, the SIP algorithm
has the ability to compute time-accurate flow fields; see Sankar et al.

(ref. 159) for unsteady wing calculations.

The SIP iteration scheme requires three additional arrays of storage
(five arrays for the SIP scheme, two for the ADI or AF2 schemes) and requires
a few more operations to invert the resulting matrix equations. The SIP
method has a builit-in mechanism for matrix conditioning. That is, the scheme
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automatically adjusts the matrix diagonal entries so that the matrix is well
conditioned, even in regions where the mesh spacing becomes coarse. Addi-
tional properties regarding the SIP iteration scheme are discussed in
reference 157,

Several researchers have presented new algorithms especially designed
for vector computers, including Keller and Jameson (ref. 160), Hafez et al.
(ref. 84), Redhead et al. (ref. 161), Hotovy and Dickson (ref. 162), and
South et al. (ref. 87). Vector computers offer greatly enhanced computing
speeds arising from the ability to operate on many calculations simultaneously
(parallel machines) or in an assembly line fashion (pipeline machines).

[See Bailey (ref. 163) for more discussion of computer architectures.] 1In
references 84, 160, and 162 the algorithm's vector characteristics were
stressed above all else. As a result, these vector algorithms could process
very large numbers of grid points per second but usually required more
iterations than standard SLOR to converge.

In South et al. (ref. 87) an algorithm called Zebra II, which is highly
vectorjzable and requires about the same number of iterations to converge as
does SLOR, is described. This algorithm is an explicit, or point, scheme
which mimicks a full-plane SOR algorithm and is designed to solve the conser-
vative full-potential equation.,

The Zebra I1 algorithm takes a step in the right direction, but other
approaches for vector computation may still be superior. A theoretical study
comparing the vector processing attributes of four transonic full-potential
algorithms (SLOR, ADI, AF2, and Zebra II) was performed by Holst (ref. 164)
utilizing a mathematical model of a pipeline vector computer. The results of
this study indicate that implicit algorithms, which contain nonvectorizing
matrix inversions, still enjoy an overall supremacy on vector computers rela-
tive to explicit, or point, iterative techniques, when all aspects of effi-
ciency are taken into consideration. Results from a vectorization study per-
formed on a three-dimensional transonic wing code will be presented in the
next section. '

Other iteration schemes suitable for producing fast convergence for the
full-potential equation include the extrapolation schemes of Hafez and Cheng
(ref. 165), Caughey and Jameson (ref. 49), and Yu and Rubbert (ref. 166); the
conjugate-gradient methods of Bristeau et al. (ref. 119), Glowinski et al.
(ref. 167), Chattot and Coulombeix (ref. 168), and Wong and Hafez (refs. 169
and 170); and the minimum residual method of Wong and Hafez (ref. 171). The
work of Wong and Hafez (ref. 169) provides an interesting discussion of itera-
tion schemes for solving the full-potential equation. Results are presented
for several schemes, including SLOR, two variations of the ZEBRA scheme men-
tioned above, and conjugate-gradient schemes with several types of precondi-
tioning combined with both SLOR and ZEBRA schemes. These schemes are applied
to two spatial discretization schemes, including a finite-difference scheme
and a finite-element scheme. It is found that the combined iteration schemes
are superior to the standard SLOR scheme by as much as a factor of 10 for
subcritical cases and by at least a factor of 2 for tough transonic cases.
Details of each of these schemes can be found in the refsrences cited above.

The multiline, or block, iterative schemes presented in Hafez and Lovell
(ref. 172) represent another competitive form of relaxation algorithm. In
this type of scheme two or three lines of the grid are treated in the same
matrix inversion. Thus, the amount of implicitness normally associated with a
single line inversion scheme such as SLOR, is greatly increased. Several
convergence rate comparisons are presented in reference 172 and indicate com-
petitive computational efficiencies for the multiline schemes relative to
other types of iteration schemes. In addition, with red-black ordering of the
blocks, these schemes are easily vectorized.
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8. APPLICATIONS IN THREE DIMENSIONS

Extension of the ideas presented in the previous chapters to three
dimensions, for example, wing and wing/fuselage calculations, is very much
complicated by storage and computer time requirements. Nevertheless, the
benefits to be cbtained are large and much work has been done in this area.
In this section a brief review of existing techniques including specific
aspects of a number of widely used three-dimensional transonic computer codes
is presented. For a more detailed review of this and other related subjects,
see reference 2.

8.1 Computer Ccde Characteristics

Several computer codes designed to solve the three-dimensional transonic
flow over wing and wing/fuselage configurations have been developed and are
currently in wide use in the aircraft industry. A few of these codes are
listed in table 2 along with specific references describing the details of
each code. Note that both conservative and nonconservative forms of the
full-potential formulation are represented. More discussion concerning the
various transonic potential formulations, including both full-potential and
TSD forms, is given in chapter 2 of reference 2.

The iteration schemes used by the codes listed in table 2 are predomi-
nantly SLOR. The newer approximate-factorization or multigrid schemes are
utilized in only the more recent codes. This produces very slow and thus
costly convergence for most of the older codes and makes them relatively
expensive to run. One feature generally used in SLOR codes to improve com-
putational efficiency is the use of grid refinement, that is, the use of a
coarse-medium-fine grid sequence to accelerate convergence. Converged results
from the coarse mesh are interpolated onto the medium mesh, then reconverged
and finally interpolated from the medium mesh tc the final fine mesh. Thus,
a good initial solution is provided for the fine-mesh calculation. Use of
this grid sequence philosophy increases the computationgl efficiency by a
factor of 2 or 3 (at least for crude levels of convergence).

The overall computer time required for a complete transconic wing solution
varies greatly, depending on the level of convergence desired, the number of
grid points used, ind the type of formulation chosen. Even the amount of
computer time reported by two different users from the same computer code can
be different by factors of 3-5, simply because of the level of convergence
desired and the number of grid points used. Computer time comparisons which
address most of these aspects are given in table 3 (taken from Hinson and
Burdges (ref. 185). Note that all codes compared have about the same number
of wing-surface grid points, whereas the total number of field points is quite
different. The Bailey-Ballhaus code (see ref. 186) uses a concept called grid
embedding (first introduced by Boppe (ref. 187) to more adequately cluster
grid points at the wing surface). This concept is very attractive because
the resulting mesh topology is much more efficient and the wing-surface
results do not seem to be affected by this treatment. Grid embedding has not
been used extensively with the full-potential formulation, probably because
of the resulting mapping complications. In addition, full-potential grids
are generally more efficient than TSD grids (that is, TSD grids without
grid embedding), and therefore, grid embedding would not be as useful in the
full-potential formulation. (See Brown, ref. 188, for one application using
the full-potential equation and embedded grids.)

All three results shown in table 3 were obtained for the same transonic
wing at identical test conditions. All three codes used a coarse-medium-fine
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sequence. Convergence was monitored by examining the pressure distribution
histories at two span locations. The Bailey-Ballhaus TSD code converged in
approximately 200 iterations, the FLO22 code in about 50-100 iterations, and
the FLO27 code in about 200 iterations. For these conditions, the FL027 code
solution time is approximately twice that of the FLO22 code and about 5 times
that of the Bailey-Ballhaus code. The convergence characteristics were
essentially the same for both the conservative and nonconservative options
available in the Bailey-Ballhaus code. For more information about this set
of comparisons see reference 185,

Another computer time comparison is reproduced in table 4 from refer-
ence 183, In this comparison, results from the FL0O28 computer code on the
CDC 7600 computer and the TWING computer code on both the CDC 7600 computer
and the new Cray-1S vector computer are presented. The recently introduced
TWING computer code is similar to the FL028 code in that it solves the three-
dimensional full-potential equation in conservative form, but different in
that it uses the fully implicit AF2 iteration scheme (see sec. 7.2).

The results for both codes presented in table 4 have been obtained from
the same problem (ONERA M6 wing, M, = 0.84, o = 3.06°). The convergence
parameters from both codes have been approximately optimized by a trial-and-
error process. The TWING results are based on an 83-iteration rum in which
the center-span lift changed by 0.03% in the last 30 iterations. The FLO028
results are based on a coarse-medium-fine mesh sequence with 50, 50, and
283 iterations, respectively. The total lift for this run changed by 0.49% in
the last 100 iterations of the fine mesh., Because FLO28 uses a less efficient
mapping, more field points are required to achieve approximately the same num-
ber of surface grid points used in the TWING code.

Immediately obvious from table 4 is that TWING sets up the 1lift much
faster than FL028 (14 times faster for 98% of the lift) when both codes are
run on the same computer (CDC 7600). Of course, this improvement is due to
the advanced fully implicit iteration scheme utilized by TWING (see sec. 7.2
for more discussion of this point). In addition, the vectorized version of
TWING run on the Cray-1S vector computer is about 11 times faster than TWING
run on the CDC 7600 computer. These run times are for the flow-solver portion
of both codes only and do not include times for grid generation, initializa-
tion, or solution printout.

The speed improvement offered by TWING is, of course, largely a result
of the faster computer hardware associated with the Cray-1S computer. But
another important reason for the improvement is that the AF2 iteration scheme
in the TWING code is highly vectorizable. All the interior grid point opera-
tions perfcrmed by the TWING code vectorize, including all operations asso-
ciated with the matrix inversions of each sweep, the upwinding logic asso-
ciated with the density coefficients, and the logic associated with the ¢g¢
time~-like damping term. Despite this complete vectorization, the code is
almost completely written in FORTRAN and will run on any standard computer
with a FORTRAN compiler. The FL028 computer program would benefit from the
vectorization offered by the Cray computer, but would have difficulty obtain-
ing the level of efficiency achieved by the TWING computer code. This is
because a portion of the SLOR algorithm used within FLO28 is inherently recur-
sive, and, therefore, not vectorizable. For more information regarding these
results see reference 183. )

The Jameson-Caughey nonconservative full-potential computer code (FL022)

uses a sheared parabolic coordinate system which can be defined by (see
ref. 173)
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(8.1)
Z; = 2

where z 1is the spanwise coordinate, and x, and y, define a singular line

of the coordinate system located just inside the leading edge. The effect of

this transformation is to unwrap the wing to form a shallow bump (see fig. 36):
¥y = 8(x1,yy) (8.2)

Next, a shearing transformation is used

£ =x
n=y; - S(xlnyl) (8.3)
L =2z

to map the wing surface to a coordinate surface. Finally, the £, n, and ¢
coordinates are stretched with suitable stretching formulas. A more reveal-
ing diagram of the overall wing grid system shown in the physical domain is
reproduced from reference 189 in figure 37. Note that the airfoil cross-
sectional grid produced by this transformation technique is of the "C" mesh
variety.

An interesting aspect of the FL022 algorithm, created by the grid topol-
ogy, is the orientation of the tridiagonal matrices used in the SLOR iteration
scheme. This aspect is illustrated in figure 38, which has been taken from
reference 173. This diagram shows the computational domain in a spanwise
cross—sectional plane; note the orientation of the streamlines. The purpose
of sweeping through the mesh in this fashion is to always avoid sweeping in an
upwind directior in the supersonic region. If this procedure is not followed,
unstable operation could result.

The Jameson—Caughey FLO27 computer code is capable of treating the flow
about isolated swept wings or wings mounted on an infinite cylinder. The
FLO28 code is a closely related derivative of FL027 which allows more sophis-—
ticated treatment of the fuselage. The FLO30 code allows a still more sophis-
ticated treatment of the wing/fuselage problem. The relative level of
sophistication of each of these formulations is displayed in figure 39 (taken
from ref. 190). The actual transformation used for most FL027 and FLO28 wing
calculations is very similar to the transformations described for the FLO22
computer program and will not be discussed further.

The ONERA transonic full-potential code of Chattot et al. (ref. 107) is
capable of treating the flow about isolated wing geometries. The mapping
used is similar to the previous descriptions and will not be discussed further.
This code, like the more recent FLO codes (FL027, FL028, and FL0O30), uses
numerical evaluations of the metric quantities and, therefore, could support
mesh generation routines of varying types provided they all used the same
general topology.

Most full-potential codes are designed for either comservative or noncon-
servative spatial differencing schemes. However, the ONERA code includes
options for both forms. This allows direct comparison of the two forms in a
format that is unencumbered by different iteration algorithms, grid topologies,
or programming styles. Such a comparison is shown in figure 40 for a rectan-
gular planform, nonlifting NACA 0012 wing at a free-stream Mach number of
0.85. The conservative result produces a shock that is too strong and about
10%-15% downstream of the experimental shock position. The nonconservative
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shock location is incorrect in just the opposite direction; it is too weak
and too far forward. This type of disagreement between conservative and non=-
conservative forms is characteristic. The code user should be aware of which
formulation is being used and how the resulting solutions should be
interpreted.

The ARA full-potential wing/body code of Forsey and Car (ref. 178), is
capable of solving the nonconservative full-potential equation about isolated
wings and wing/body combinations. Bodies must be circular in cross-section
although the body radius may vary axially. This has the effect of providing
a relatively good wind/body interference simulation but does not produce good
finite-length body effects.

The mapping procedure used in the ARA code is implemented in two phases.
First, the body is transformed via conformal mapping into a slit that corre-
sponds to a portion of the symmetry plane. Because each body cross section
is constrained to be circular, this mapping is analytic. Next, the wing lead-
ing and trailing edges are extended to infinity to produce a "flat-plate wing"
outboard of the tip. Each flat-plate wing cross section is mapped to the
interior of a circle using an analytic conformal mapping, and each finite~
thickness wing cross section is mapped using a numerical conformal mapping.
Thus, the total effect of this transformation is to map the surface of the
wing (including the flat-plate wing extension) to the inside surface of a
circular cylinder and the free~stream outer boundary to the circular cylinder
center. Unlike the FLO full-potential codes (F1022, FL0O27, FLG28, and FL0O30),
which use a "C" mesh topology about each wing span station, the ARA code uses
an "0" mesh topology. This produces a somewhat more efficient mesh for the
ARA code; that is, for the same number of total grid points, the ARA code mesh
puts about 30% to 40% more points on the wing surface than a typical FLO code
mesh.

The TWING code is capable of treating isoclated-wing or simplified wing/
fuselage geometries. The finite-difference grid is generated by an elliptic~
solver numerical grid-generation procedure; it is described in Holst and
Thomas (ref. 133). An example grid generated using this procedure is dis-
played in figure 41 (taken from ref. 191). The geometry used is a highly
swept, low-aspect-ratio wing with a large amount of twist (Hinson-Burdges
Wing C, see ref. 185). Figure 41(a) shows the entire planform view of the
wing. Three airfoil cross-section plots of the grid are displayed in fig-
ures 41(b)-41(d): (1) at the wing root, (2) just inboard of the tip, and
(3) just outboard of the tip, respectively. The exact positions of these
cross-sectional plots are shown in the planform view of figure 41(a). The
x/c and z/c Cartesian coordinates displayed in figures 41(b)-41(d) are
plotted to the same scale and are normalized by the root chord, c. Note the
large amount of twist and the efficiency with which the "0'" mesh topology
clusters grid points about each airfoil cross section.

Finally, figure 41(e) shows a perspective view of the Wing C grid as
generated by the TWING computer code. The symmetry plane, wing surface, and
vortex sheet grids are all displayed. For clarity, only every fourth grid
line in the wraparound direction is plotted. This view (except for the
trailing-edge vortex sheet) corresponds very closely to the view of the actual
wing mounted in the wind tunnel,.

8.2 Results Obtained with Existing Codes

The next item of importance is accuracy. That is, how well do these
codes actually predict transonic-wing, flow-field physics? In this section,
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computed results collected from a variety of sources will be displayed in an
attempt to quantify the answer to thils question.

A series of results taken from reference 107 is showm in figure 42.
Three numerical results, Jameson (conservative), Bailey/Ballhaus (ISD con-
servative, see ref. 186), and ONERA (nonconservative) are compared with
experiment at a wing semispan station of 20%. The configuratjon used for
this set of calculations is the ONERA M6 wing at M, = 0.841, o = 3°., (See
ref. 192 for more information on the experimental results and geometrical
characteristics of the ONERA M6 wing.) This frequently used ONERA M6 test
case represents a difficult test for a transonic flow calculation procedure
because of the existence of a double shock. The double-shock structure is
preducted by all three results with some variation in the second shock posi-
tion. The conservative results predict a somewhat stronger secund shock
slightly downstream of the nonconservative shock.

Results from the ARA full-potentiai code (taken from ref. 2) are pre-
sented in figures 43 and 44. The wing/body configuration used in this cal-
culation is shown in figure 43. The body was a circular cylinder of constant
radius, and the mid-mounted wing had the following characteristics: AR = 6,
TR = 1, sweep = 25°., The wing had a constant supercritical airfoil section
and was used without twist. Viscous effects were simulated by the addition
of a displacement thickness obtained from a two-dimensional transonic viscous
code (see ref. 193).

Computed results for a free-stream Mach number of 0.86 and an angle of
attack of 4.2° are compared, in figure 44, with experimental results for the
same Mach number and two angles of attack, 4.6° and 3.7°. The calculation
was performed with the usual grid sequence involving 300, 100, and 160 itera-
tions on the ccarse, medium, and fine meshes, respectively. The finest mesh
for this case consisted of 160 % 20 x 24 = 76,800 grid points. The computa-
tional time required for this calculation was equivalent to about 25 min of
CPU time on the CDC 7600 computer. Results are shown for three span stations
(y = 0.37, 0.55, and 0.73), and are generally in excellent agreement with
experiment. Note the unusually sharp shock capture displayed in figures 44(b)
and 44(c). This is a result of the efficient mesh topology used in the ARA
full-potential code in conjunction with a relatively fine mesh.

Additional results computed from the ARA full-potential computer code
are displayed in figures 45-47 (taken from ref. 137). Figure 45 shows the
wing/fuselage geometry used in this calculation. For more details regarding
this configuration, which has been designated as an AGARD test case for three-
dimensional method evaluation, see reference 194. Pressure distributions for
this geometry at M, = 0.9 and o = 1° are displayed in figure 46. These
results were computed on a relatively coarse mesh consisting of
80 x 24 x 10 = 19,200 points. The agreement between the computed and experi-
mental results is good at all three semispan stations shown in figura 46.

The results just presented have been computed with the new version of the
ARA code which uses the AF3 approximate-factorization scheme of Baker and
Forsey (ref. 137). Lift development versus the equivalent number of relaxa-
tion iterations is presented for this case in figure 47. Four curves are
displayed corresponding to AF and SLOR iteration schemes applied to the wing/
body configuration of figure 45 and a wing-alone variation of the same con-
figuration. The AF3 convergence rate displayed in figure 47 is far superior
to the SLOR convergence rate for both the wing-alone and the wing/fuselage
cases. The SLOR scheme used in figure 47 did not use the standard grid
sequence which would have improved convergence. However, the AF3 scheme still
possess a large advantage over the SLOR scheme in convergence speed.
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Pressure comparisons for the FLO22 and FLO27 computer codes are pre-
sented in figures 48 and 49 for a high-aspect~ratio (AR = 10.3) supercritical
wing tested by NASA Langley (taken from ref. 195). The wing is swept 27° at
the quarter chord line, and has streamwise section thickness ratios of 14.9%
at the fuselage junction, 12% at the trailing-edge break, and 10.6% at the
tip. (See ref. 196 for a more detailed description of the geometry and
experimental results.) Viscous effects were modeled by a two-dimensional
integral boundary-layer method applied in streamwise strips. The calculation
angles of attack were determined by matching the experimental 1lift
coefficients.

Figure 48 presents results from FL022; FL022 does not model the Zuselage
used in the experiment. In an attempt to account for the fuselage interfer-
ence effect, this calculation was run at a free-stream Mach number of 0.80,
whereas the experiment was run at 0.79. Agreement is good everywhere except
near the inboard stations, where details of the fuselage interference are
probably important.

Figure 49 presents results from FLO27 for the same case as that shown in
figure 48. TFor this case, however, the fuselage is modeled as an infinite
cylinder with a radius equal to the maximum radius of the fuselage on which
the wing was mounted in the experiment. The low-mounted position of the test
wing was also simulated in the numerical calculation. For this case, the
aeroelastic deformation of the model was estimated by introducing 0.36° of
wash out (negative twist) at the tip. This aevoelastic twist was added
linearly from the trailing-edge break to the tip; it was not included in the
FLO22 calculation of figure 48. The Mach-number correction used for the
FLO27 result was 0.007 and was applied to account for the effect of the
finite fuselage used in the experiment. It is clear from figure 49 that
representation of the effect of a finite fuselage by a simple Mach-number
shift is an oversimplification. The results in figure 49 are in better agree~
ment with experiment near the root station than the results of figure 48, but
in poorer agreement .outboard near the tip. Nevertheless, reasonable agreement
is obtained in both cases by making these ad hoc adjustements or calibrations.

A relatively simple, but adequate way in which to introduce fuselage
effects into isolated-wing codes is discussed in Verhoff and O'Neil (ref. 190)
and by Van der Vooren et al. (ref. 197). In the latter approach, spanwise
velocities are prescribed at the vertical wing-root plane in the FL022 com-
puter code. These velocity components are determined from a panel-method
calculation for the complete wing-body configuration. Pressure distributions
showing the success of this technique are presented in figure 50. Numerically
computed results with and without this root-plane modification are compared
with experiment at four semispan stations. In this calculation the fuselage
effects are extremely important immediately at the root plane but die out
rapidly as midspan is approached.

The next result presented in this section is from the Yu computer code
(refs. 181 and 182). This code is basically a modified version of the
Jameson-Caughey finite-volume code. The primary improvement in the Yu code
is a new efficient and flexible grid-generation method based on the body-
fitted coordinate method of Thompson et al. (refs. 36-38). In this approach,
a set of nonlinear elliptic equations is solved numerically to determine the
three~dimensional grid. The interior grid distributions are controlled by the
boundary grid distributions in a manner developed by Thomas and Moddlecoff
(ref. 39). For more information about this grid-generation technique see
section 5.2.

Results from the Yu code (taken from ref. 2) are presented in figures 51
and 52. The wing/fuselage configuration is shown in figure 51. In this

62




e Rt 2

calculation procedure the restriction to simplified fuselage geometries is
not required; reascnably complex geometries can be accurately simulated. In
this case, the flow field about the Boeing 747-200 wing/fuselage geometry is
computed for a free-stream Mach number of 0.84 and an angle of attack of 2.8°.
The section pressure coefficient distributions are compared with experiment

at three span stations in figure 52. The agreement at each station is
excellent.

A comparison of FL028 and TWING results with experiment for the

ONERA M6 wing at M, = 0.84 and a = 3.06° is presented in figures 53-56
. (taken from ref. 133). The finite-difference grid used by TWING for this

calculation consisted of 89 x 25 x 18 = 40,050 points (wraparound, spanwise,

and normal-like directions, respectively) with 89 x 17 = 1513 points on the
‘ wing surface. The FL028 results were computed on a mesh with

120 x 16 x 28 = 53,760 points (wraparound, normal-like and spanwise direc~-

tions, respectively) with 75 x 18 = 1350 points on the wing surface. The

TWING cross-sectional grid uses the "0" mesh topology, and FLO28 uses the

"C" mesh topology. This produces a somewhat less efficient mesh for FL0O28

relative to TWING and is the basic reason for comparing solutions computed

on different size meshes.

Pressure coefficient comparisons are presented in figure 53 at four dif-
ferent semispan statious (n = 0.20, 0.44, 0.65, and 0.90). The general
agreement of the results is good, especially considering the coarseness of
the meshes involved. The largest discrepancy arises at the aft shock. The
FLO28 shock is in better agreement with experiment, being very close or
slightly upstream, and the TWING shock is slightly downstream. Since these
two codes are conservative inviscid formulations it 1s expected that the
inclusion of viscous effects would move this shock forward. Such a movement
would bring the TWING result into better agreement with experiment and have
the opposite effect for the FL028 result.

The overall shock sonic-line position for all three results is compared
in figure 54. These results correspond to the shock sonic line computed by
linear interpolation and do not necessarily reflect the position of the
steepest shock pressure gradient. The experimental points almost exactly
split the two numerical results, with FL028 being upstream and TWING
downstream.

The convergence properties of the TWING computer code for the ONERA M6
wing problem just presented are displayed in figures 55 and 56. The conver-
gence parameters for this case have been approximately optimized by a trial-

. and-error process. Figure 55 shows the buildup of the number of superasonic
points (NSP) and the center-span, section-lift coefficient with iteration
number (n). Also plotted along the horizontal axis is the CPU time asso-
ciated with both the CDC 7600 and Cray 1S computers. (Note that the computer
times for this case have already been presented and compared with the FL0O28
computer times in section 8.1; see:table 4). Each symbol plotted (fig. 55)
represents one cycle in the o acceleration parameter sequence. At
24 iterations, or three o cyclen, the solution is nearly converged. This
corresponds to just 4.8 sec of CPU time on the Cray 15 vector computer!

The rate of development of the pressure coefficient distribution at one
selected semispan station (n = 0.18) is presented in figure 56. The solution
aiter 20 iterations is compared with the tightly converged solution after
80 iterations. Very little disagreement exists, except at the shock, where
about six or eight points have not quite converged to their final steady-
state values.




The next result presented is a TWING calculation (taksn from ref. 191)
for the Wing C configuration described in Hinson and Burdges (ref. 185) (see
also ref. 198). This wing geometry 1s characterized by a small aspect ratlo
(AR = 2.6), large sweep (Ayp = 45°), small taper ratio (TR = 0.3), and has a
large amount of twist (twist = 8°). The grid for this configuration has
already been presented in figure 41; it consists of 127 x 27 x 20 = 68,580
points with 127 x 17 = 2159 points on the wing surface. Pressure distribu-
tion comparisons between the TWING results and experiment are shown in
figure 57. For this case, the experimental Mach number and angle of attack
were 0.85 and 5.9°. The computational Mach number and angle of attack were
0.83 and 5.0°. The numerically computed corrections (AM = -0.02 and
Aa = -0.9°) were determined by trial-and-error; they represent (approxi-
mately) the best experimental/numerical correlation for this set of condi-
tions. The set of corrections determined for these data in reference 198 -
(AM = -0.005 and Ao = =0.9°) are similar to but smaller than those computed
by TWING.

The agreement for this case 18 quite good everywhere except at the tip,
where the need for viscous corrections is apparent. Of particular note in
this calculation is the ability of the TWING code to predict the oblique
shock, which exists at both the third (y/c = 0.5) and fourth (y/e = 0.7)
semispan stations. The differencing scheme in this region is entirely first-
order accurate and yet little shock smearing is exhibited.

To obtain an idea of the effects of the angle of attack (Aa) and the
Mach number (AM) corrections, several results are shown in figure 58 (taken
from Subramanian et al., ref. 191). Pressure distributions at two semispan
stations for the Wing C configuration just discussed are compared with
experiment for several conditions: (1) the uncorrected experimental condi-
tions (M, = 0.85, a = 5.9°); (2) the corrected experimental conditions,
using the corrections cited in reference 198 (M, = 0.845, o = 5.0°); and
(3) the corrected experimental conditions, using the corrections computed in
reference 191 (M, = 0.83, a = 5.0°). As seen‘in figure 58, the angle-of-
attack correction 'is more important than the Mach-number correction. The
corrections cited in reference 198 yield a reasonable solution in the present
case, primarily because both angle-of-attack corrections are the same.

The last set of results is from a version of the FLO30 computer code in
which a sophisticated viscous correction model has been added by Streett
(ref. 199). This model consists of a three-dimensional, integral boundary-
layer method based on the work of Stock (ref. 200) and Smith (ref. 201). 1In
addition, a strip wake model accounting for thickness and curvature effects
is also included. Results using this computational technique are displayed
in figures 59 and 60. : . ‘

Figure 59 shows a pressure coefficient distribution compared with
experiment for the Hinson-Burdges Wing A geometry at M, = 0.819 and
a = 1.96° (see ref. 185). Three semispan stations are showm, n = 0.28, 0.50,
and 0.68. In this case, the experimental Mach number and angle of attack
are matched. Note the excellent agreement with experiment.

Figure 60 shows the lift reduction owing to viscous effects, R, which
is defined by

o _ S anviscia ~ S

C (8.4)
f,inviscid

plotted versus span station for the advanced transport configuration pre-
sented in reference 196. The Mach number and angle of attack for both the
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experiment and the computation were 0.78 and 1.65°, respectively. The two
curves displayed in figure 60 correspond to the full wake model of Streett
(ref. 199) and a similar wake model without curvature effects, Viscous
effects are very important for this calculation, as shown by both curves in
figure 60. In addition, the wake~curvature effect is shown to be substantial
outboard of the mid semispan position, especially near the wing tip.

The preceding results are offered in an attempt to answer the question
posed at the beginning of this section: How well do these schemes model
transonic flow~field physics? In some cases, the modeling is quite good, in
other cases not so good. The subjects of geometrical modeling and viscous
corrections play the most important roles in obtaining good experimental/
numerical correlations. Other effects, such as wind-tunnel-wall interfer-
ence, tunnel flow angularity, model distortion, numerical truncation error
(coarse mesh effects), and lack of solution convergence, also must be con-
sidered in the final analysis.

Most of the three~dimensional results presented in this section show at
least one new or different attribute; for example, computational efficiency,
geometrical generality, or good viscous corrections. In most codes, only
one area is fully developed; thus, many codes exist that are, for example,
very accurate but very slow or that are very fast but do not contain accurate
viscous effects. Consequently, there will have to be additional research in
consolidation of techniques before truly useful transonic codes can be made
available. The ultimate transonic code must have good characteristics in all
respects — accuracy, speed, reliability, and the capability of solving flow
fields over a variety of different aircraft configurations.

9. SUMMARY AND RECOMMENDATIONS FOR FUTURE RESEARCH

The numerical solution of the transonic full-potential equation has
received much attention within the CFD research community in the past
10-12 years. The purpose of these notes has been to review selected topics
associated with this field of research. Classical relaxation schemes and
early ideas associated with trahsonic potential schemes were touched upon
first. Current research acticities were then discussed, with emphasis on
grid-generation techniques, spatial differencing schemes, and iteration
schemes. Special emphasis was placed on the convergence acceleration char-
acteristics of iteration schemes since this aspect largely controls compu-
tational cost. Finally, a series of three-dimensional results from a variety
of different sources was presented, thus providing the reader with a good
basis for evaluating the state of the art in this field.

One obvious conclusion from this presentation is that the numerical solu-
tion of the full-potential equation is highly developed. The aircraft
industry utilizes, on a routine basis, numerical solutions of the full-
potential formulation to gain insight into the transonic flow fields for
many two- and three-~dimensional applications. It is projected that with the
cost of computations going down and the cost of wind-tunnel tests going up,
the use of these computational tools for the design and development of modern
aircraft will increase steadily in the future.

Before the application of these schemes can become truly production-
oriented, there will have to be improvements in several areas. First, com-
puter codes must be more flexible and, therefore, applicable to a larger
range of geometries. Advances in this area are largely paced by developments
in surface-geometry representation and grid generation. Second, accuracy
must be improved. This includes relatively simple areas including
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boundary~condition application, metric differencing, and grid-point cluster-
ing in regions of large solution gradients, as well as more complicated
aspects associated with viscous effects. Third, in the area of viscous
effects, the accurate prediction of moderate separation regions must be
improved. And fourth, the computational efficiency and reliability of these
schemes should be improved. That is, application of a specific technique to
a slightly different geometry or new set of free-stream conditions should
not result in divergence or a significant loss of speed.

As indicated in the last section, significant progress has been made in
many of these areas. However, most of the computer codes in existence today
have serious failings in one or more of the areas mentioned above. Therefore,
a clear-cut line of future research is in consolidating the advances that
already exist. The ultimate computer code must contain all of the character-
istics mentioned in the preceding paragraph: generality, accuracy, reliabil-~
ity, and computational efficiency.

This type of research is more atuned to applications rather than basic
algorithm development, but research associated with basic algorithm develop-
ment®is also required. Many of these topics are associated with grid-
generation algorithms. Interface differencing procedures associated with
overlapping grid systems or component adaptive grids need to be investigated.
This approach seems to be the best way {(at least for finite-difference dis-
cretization schemes) of eventually producing transonic flow solutions about
complicated geometries — for example, over a complete aircraft. Other
research opportunities associated with the full-potential equation exist in
the area of solution-adaptive grids. This would produce improvements in both
computational and storage requirements and at the same time be directly
applicable to other equation formulations.

Additional basic research associated with the full-potential equation in
the areas of computational efficiency or algorithm accuracy or both will
still be important in the years to come, but the trend in this regard is seen
to be more in the direction of the Euler and Navier-Stokes equations. With
these equation sets, more complete and, therefore, more accurate descriptions
of the flow field physics, will be possible. The main advantage this pro-
vides is the analysis of off-design conditions with significant viscous
effects, including massive separation (Navicr-Stokes equations) or in the
analysis of flow fields with significant vorticity interaction, for example,
in a closely coupled wing-canard configuration (Euler equations). The major
problems associated with these equation sets are obtaining sufficient compu-~
tational efficiency, geometrical generality, and, in the case of the Navier-
Stokes equations, adequate turbulence models.

In this regard the full-potential formulation may provide a signlficanr
benefit. Formulations that effectively simulate the Euler formulation {for
example, the nonisentropic full-potential formulation presented in sec. 6.5)
can be developed as a much cheaper alternative to the Euler equations. In
another type of application, the standard full-potential formulation could be
used to accelerate convergence for the Euler or Navier-Stokes formulations.
In many transonic cases of interest, solutions of the full-potential and
Euler formulations are very similar. A full-potential sclution could be used
as an "initial guess" for the Euler calculation, and thus significantly
reduce the computational effort associated with the more expensive Euler cal-
culation. In still another application, the full-potential equation could be
used in regions of the flow field where the irrotationality and isentropic
assumptions are valid, leaving the regions with significant entropy and vor-
ticity gradients for the Euler equations. For many calculations these
regions may be very important but confined to only a small portion of the
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entire flow field. Thus, a large improvement in computational efficiency
can be gained by the use of such a hybrid scheme.

In summary, research opportunities assoclated with the full-potential
formulation are numerous and varied. They range from the development of
application codes to basic algorithm research. The use of these methods in
practical applications to predict transonic flow fields about general three-
dimensional configurations is increasing and is expected to help aircraft
designers produce more efficient aircraft at less cost.
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TABLE 1. CONVERGENCE RATE ESTIMATES FOR
VARIOUS RELAXATION SCHEMES (FROM
REF. 9)

Algorithm Number of iterations?
Point-Jacobi 2/A%
Point-Gauss-Seidel 1/4%

SOR 1/24
Line-Jacobi 1/4%
Line-Gauss~-Seidel 1/24%

SLOR 1/2/2A

ADI -log(A/2)/1.55

“Number of iterations required for a one-
order-of-magnitude reduction in error
[Num, see eq. (3.45)].
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TABLE 2.

SOME EXISTING THREE-DIMENSIONAL FULL-POTENTIAL CODES

Code name 3 Eq. Iteration )

(ref.) Date type schemeg Grid Remarks (ref.)
FLO22 1974 NC SLOR Sheared Isolated wings,
(29,173) : conformal viscous option (174)
Reyhner 1976 NC SLOR or Sheared Axisymmetric inlets
(175,151) MG/SLOR Cartesian, (a > 0) with or

nonaligned without center bodies

FL027,FL028, 1977 C SLOR Sheared Wing and wing/body
FLO30 conformal {tunnel walls (176)]
(52-54) [AF version (135))
Dassault 1977 C Optimal Finite Wing, wing/body and
(177) control element wing/body/nacelle

conjugate

gradient
ONERA 1978 C or SLOR or Sheared Isolated wings
(107) _ NC AF conformal
ARA 1978 NC SLOR Sheared Wing and wing/body
(178) conformal  [AF version {137)]
Eberle 1978 C SLOR Finite Isolated wings
(179) element
Chen and 1979 C or SLOR Sheared Axisymmetric inlets
Caughey NC conformal (o > 0) with and
(180) without centerbodies
Yu 1980 ¢ SLOR Elliptic Wing/body and
(181,182) solver wing/body/nacelle
Sankar, Malone, 1981 C AF Sheared Isolated wings
Tassa (157) conformal [Unsteady option (159)]
TWING 1982 C AF Elliptic Wing and wing/body
(133,183) solver
TUNA 1982 C AF Elliptic Isolated wings
(184) solver (Unsteady option)

aNC = ponconservative; C = conservative.

b

SLOR = successive-line over relaxation; MG = multigrid; AF = approxi-

mate factorization.
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TABLE 3. GRID FEATURES AND COMPUTING TIMES FOR SEVERAL TRANSONIC WING
COMPUTER CODES (FROM REF. 185)

Total Approximate

Wing chordwise Wing spanwise field CPU time.a Number of

XL SRR

Code grid points grid points points ain iterations
Bailey- 37 25 41,000 6 200
Ballhaus
FLO22 61 (root) 21 159,000 15 50-100

40 (tip)
FLO27 51 21 90,000 30 200

%cpe 7600 computer.

TABLE 4. A COMPARISON OF CODE EXECUTION SPEED FOR THE
ONERA M6 WING AT M, = 0.84, a = 3.06°
(FROM REF. 183)

TWING: TWING: TWING:
FLO28 scalar vector vector
(ref. 133) (ref. 183) (ref. 183)

Computer CDC 7600 cDbC 7600 CDC 7600 Cray-15
Field points 53,760 40,050 40,050 40,050
Surface points 1,350 1,513 1,513 1,513
Time for 98% 742 64 53 4.8
11ft, sec
Ratio 155 13 11 1
84




CHARACTERISTICS

Fig. 1. Typical transonic flow
field about an airfoil.

@Mm<1

Fig. 4. Characteristics and the ISD
equation.
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SHOCK

FULL POTENTIAL FLOW
16

RANKINE-HUGONIOT

Fig. 2. Typical transonic flow 14 FLow. \
field about a swept wing.

TSD FLOW
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e T R EE
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DEPENDENCE //// Q M,
/f Fig. §. A comparison of the isen-
" charadtenisTics tripic shock-jump relation and the

Euler shock-jump relations (ref. 12).

Fig. 3. The domaine of dependence and
influence for steady supersonic flow.
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Fig. 6. A summary of various
classical relaxation schemes. , VT
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Fig. 7. A comparison of convergence Fig. 9. A echematic representation
rate estimates for the relaxation of the rotated differencing scheme of
schemes of figure 6. Jameson (ref. 29).
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Fig. 12. Firite-difference grid about
a highly cambered 12 to 1 ellipse,
with eontrol terms activated (ref. 41).
(a) Bntire geometry. (b) Trailing-
edge close-up.
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foil transformation:
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Fig. 11. Finite-difference grid about
a highly cambered 12 to 1 ellipse, no -
control (ref. 41). (a) Entire geome-
try. (b) Trailing-edge close-up.

‘ :
(b) Close-up of the trailing edge.

Fig. 13. Finite-difference grid about
a highly cambered thin ellipse gener-
ated via the parabolic scheme of
Nakamura (ref. 44).
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Fig. 14. A wing/fuselage grid generated via the parabolic scheme of
Nakamura (ref. 45). ‘

r}/
1
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L _ 1.5 i I A : . ]
0 2 4 8 8 1.0
x/c
(a) Solution-adaptive grid. (b) Cp distribution.

Fig. 15. An example solution-adaptive grid applied to a transonic airfoil
caleulation: NACA 0012 airfoil, M, = 0.75, a = 2° (ref. 75).
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F?lg. 16. Pressure coeffwzent distributions for the NACA 0012 a'LI'fO’LZ at

w = 0.75 and o =

density computed at node points and armfwzal vis-

aosv,ty parameter v (-omputed at haZf points (ref. 86).
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Fig. 17. Pressure coefficient distributions for the NACA 0012 airfoil at
= 0.75 and o = 2° both density and artificial viscosity parameter v

c:mputed at node points (ref. 86).
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Fig. 18.
My = 0.85 and o = 0° artifieial viscosity parameter v

points (ref. 87).
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Fig. 19. Pressure coefficient distributions for the Korn airfoil at its
design point (M, = 0.75 and o = 0.12°) showing the effects of different
spatial dszerencwg schemes on the solution (ref. 109).
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Fig 20. Mesh refinement study for the NACA 0012 airfoil at M, = 0.75,

= 2°, showing the effects of grid coarseness on several spattal dszerenc-
wg schemes (ref. 109).
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Fig. 21. Airfoil pressure coefficient

comparisons of the nonisentropic and Fig. 22. Pressure coefficient compar-
isentropic full-potential formulations ison for the Korn airfoil at

and the Euler formulation (ref. 113). My = 0.74 and o = 0° (ref, 111).
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Fig. 23. Convergence history comparison for the Korm airfoil at M, = 0.74
and o = 0° (ref. 111).
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Fig. 24. Pressure coefficient compar-
igon for the CAST 7 supercritical air-
fotl at Mgy = 0.7 (ref. 111).

Fig. 25. Mach-number contours about
an NACA 0012 airfoil at M, = 0.95
and o = 4° (vef. 130).
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Fig. 26. Suberitical and supercritical

L
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solutions used for the convergence

history comparisons of figures 27-31 (ref. 83).

93




10? O AF1 (o =004, = 100,060)

O AF2{x =04, ay =100
- SLOR

10t
100
! 10"

[
~ 102

-3 ..
10 . We0R ¥ 1,86
10-‘ -
10-5 1 | | 1 | | ] i ] | 3
0 40 80 120 160 200 240 280 320 360 400 44

NUMBER OF ITERATIONS ~ n

Fig. 27. Maximun residual convergence history comparison, suberitical case,
M, = 0.7 (ref. 83).
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Pig. 28. Maximum residual convergence history comparison, supercritical case,
My, = 0.84 (ref. 43¢,
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Fig. 29. Development of the supersontic region, M, = 0.84 (ref. 83).
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(b) Maximun vesidual veduced two orders of magnitude.

Pig. 30. Intermediate solution comparisons after specified reductions in the
maximum residual, supercritical case, M, = 0.84 (ref. 83).
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Fig. 30. Concluded.
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Fig. 31. Root-mean-square error convergence history comparison, supercritical
case, M, = 0.84 (ref. 83).
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Fig. 32. Development of the pressure coafficient distribution with iteration
number for the AF3 iteration schema, NACA 0018 airfoil, M, = 0.75, a = 2°
fref. 8).
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Fig. 33. Convergence history compari-
son showing the AF3 and SLOR iteration

schemes, NACA 0012 airfoil, M, = 0.75, fv
a = 2° (ref. 6).
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Fig. 34. Converged pressure coeffi-
cienif distribution from the FI:036'. Fig. 36. Construction of the sheared
multigrid code, NACA 644010 airfoil,  parabolic coordinate system used in
M, =072, o =0° (ref. 147). FLo22 (ref. 173).
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PLANE OF
SYMMETRY -

Fig. 37. GSheared parabolic coordinate
system used in FLO22 (ref. 189).
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Fig. 38. Marching directions of
relaxation scheme used in FLOZ2
(ref. 173).
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Fig. 39. Comparison of the various
FLO code geometry modeling capabili-
ties (ref. 190).
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(ref. 107),
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Fig. 41. Numerically generated finite-
difference mesh about the Hinson-
Burdges Wing C configuration

(ref. 191).
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Fig. 42. Inviscid pressure coeffi-
atent comparisons for the ONERA M6
wing configuration, M, = 0.841,

a = 3° (ref. 107).
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Fig. 44. Pressure coeffictent compar-
isons for the configuration of fig-

details used for the results presented ure 43, M, = 0.86 (ref. 2).

in Fig. 44 (ref. 2).
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Fig. 44. Concluded.
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== THEORY
O D EXPERIMENT

Fig. 45. Wirg/juse¢lage details used Fig. 46, Pressure coefficient com-
for the results presented in fig- parison for the configuration of fig-
ures 46 and 47, RAE wing A + body B2 ure 45, M, = 0.9, a = 1° (ref. 137).
(ref. 137).
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Fig. 48. Comparison of FL022 results  Fig. 49. Comparison of FL027 resulis

with experiment for NASA supercritical with experiment for NASA supercritical
wing, Re = 2.4 million (ref. 195). wing, Re = 2.4 million (ref. 195).
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Fig. 52. Pressure coefficient comparisons for the configuration of figure 61,
M, = 0.84, o = 2.8° with boundary layer (ref. 2).
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Fig. 88. Pressure coefficient comparisons for the ONERA M6 wing, M, = 0.64,
a = 3.06° (ref. 133).
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Fig. 56. Comparison of partially and fully converged pressure coefficient
distributions at n = 0.20, ONERA M6 wing, M, = 0.84, o = 3.06° (ref. 133).
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Fig. 57. Comparison of TWING pressure distribution with experiment, Himson-
Burdges Wing C (ref. 191).
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Pig. 58. Effect of Mach number and
angle-of-attack corrections on the
Hinson-Burdges Wing C pressure coeffi-
eient distribution (ref. 191).

Fig. 59. Comparison of FLO30 pressure
coefficient distribution with experi-
ment, three-dimensional viscous cor-
rections ineluding wake with thickness
and curvature effects modeled, Hinson-
Burdges Wing A, M, = 0.819, o = 1.96°
(ref. 199).
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Fig. 60. Lift reduction owing to vie-
cous effects, R, versus semigpan sta-
tion, advanced transport configuration
of reference 196 (ref. 199).
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