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LIFTING SURFACE THEORY FOR A HFLIc.nPTF.R ROTOR IN FORWARD FLIGHT

Harry L. Runyan and Hsiang Tai

Abstract

A lifting surface theory has been developed for a helicopter rotor in

forward flight for incompressible flow. The method utilized the concept of the

linearized acceleration potential and makes use of the vortex lattice

procedures. Results in terms of lift coefficient slope for several forward

flight conditions are given.

A. 	 INTRODUCTION

Rotating lifting surfaces are an integral part of the propulsive unit of

every aeronautical and nautical vehicle, from the compressor and turbine blades

of jet engines, the pumpe for rocket engines, to propeller and helicopter

rotors. The aerodynamics of these rotatin g elements has been under extensive

study since the advent of the airplane and with a combination of experimental

and analytical approaches, succcessful designs have ' peen achieved.	 In many

cases, two-dimensional theory has been used, usually modified by an assumed

spanwise distribution, and inflow angles. A practical lifting surface theory

has not been developed for the compressihle rotating case for the general case

of a helicopter in forward flights.	 It is the purpose of this report to present

a lifting surface method within the limits of linearized theory.

The method is based on the concept of the acceleration potential,

originally introdured by Hans Kussner (ref. 1). The method was first applied to

an oscillating wi , ig in uniform translatory motion by one of the authors

including compressible flow in 1957 (ref. 7). The acceleration potential

approach has now become standard in the determination of the unsteady

aerodynamics forces for flutter studies.
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The first use of the acce l eration potential approat.r, for a rotating system

was made in a paper by Hanaok3 (ref. 3) for the incompressible case in a paper

Oirected at application to the m<rine propeller. The acceleration potential has

been used in the past in studying the oropeller noise problem, but in all of

these noise propagation cases the problem was specialized early in the

analytical development to the so-called far-field case usually with the

stationary observer, whereas the lifting surface theory is essentially concerned

with the details of the near-field case for a co-moving observer as well as the

satisfaction of certain boundary conditions. Dat, (ref. 4), has derived a

general expression for an acceleration doublet for any motion. His development

has been used as a basis for this investigation. The procedure developed here

involves the precise numerical integration over the surface of the rotor. It is

hoped that the method lays fundamental ground work for propeller and helicopter

unsteady, three dimensional compressible aerodynamic theory.

With regard to the contents of the report, the next section contains a

brief derivation of the fundamental equations, including a discussion of some

implications of the equations. The third section contains a description of the

method of solution. Finally, the results of some preliminary calculation for

the incompressible case are given.

?.	 RAs I f. Fnl IAT 1 ONS

The fundamental equation required for the solution of the lifting surface

problem relates the downwash velocity (velocity normal to the lifting surface)

to the unknown pressures on the rotor blade.



or

a^ +tom- -(	 ax)
(2.3)
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The a,-,-eieration potential method will he used in the analysis. Tl,e

acceleration potential, W, is defined as

p - pm = -P^	 (2.1)

Rernnulli's equation for pressure in terms of the velocity potential, m, is

defined as	
(2.?)

n
p - Pm=

where the operation 
TT 

represents the substantial derivative. For a wing

translatin- in the x-direction with velocity 11, the equation can be written

p - p m = -PV =P(aO +I1)

For wings oscillating in harmonic motion such as in flutter, an harmonic

substitution can he made to obtain

_ -(iw ^ + l^)

Solving for	 9iveS
-iwx	

iwX
U	 x

m =	 u	 I v( T ,Y,Z)e U da	 (?.a)

Since the motion of a rotating helicopter hlade is non -harmonic, this

prc,cedure is not practical, thus the relationship is

_ Tt.-	
(2.5)

Equation (?.5) can he ir,tegrated with respect to t to give

^ =	 jt ydt	 (2.6)
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4'inally, the downwash is derived

t

W 
= an - ail	 J ydt	 (2.7)

3. ARBITRARY MOTION Or AN OSCILLATING D01 I RLET IN COMPRESSIBLE FLOW

The expression for an oscillating doublet moving in an arbitrary manner in

co.--. ressihle flow was derived by Oat (ref. ')_ A cnncise derivation of the

doublet expression is given below.

The expression for an accelerating source is

01^oIT)

I:	

^0(T)•[^ - ^o(T)]

o

where ^ o (T) the vector position of the source at time T, P is the position
i

of the field point, %(T) is the velocity of the source point at time T,

"a"	 is the speed of sound and q is the strength of the source.

An auxiliary equation which relates the tim,- interval t - T hetween the

time the source emits a disturhance at T and the time at which it is received

at the field point. at t, to the distance hetween the two points is given below

1 ^ - ^n(T)j
a

A douhlet may he formed by placing a source and a sink in close proxii..ity

and allowinq the distance to approach zero, while at the same time maintaining

^L s !I,Lj =



	

wil ,. jw%X6 VALE IS
	

5
OF POOR QUALITY

the product of the distance and the source strength finite. This re! •.ult may

also be accomplished by performing a differentiation in the proper direction.

flat applies this secnnd technique by first defining a vector distance n

I)=P - Po -	 n o	(3.3)

where ^ is a parameter and no is the unit vector which is in the desired

direction.	 Substitiiting D for P - Po in equation (3.1) gives

s

all

The douhlet is now obtained by applying the derivative with respect to E and

letting ^ + n or

3'
vn =(ay )	 (^.^)

to give	 i

dV

	

aT	 no	 q(M	 )(^	 no)

^n	 4,ra(^2	
X0.7	

and	
3	

-^0.^3I I	 1	 a P	 a I C I [ 1	 a ^ I

	

g [( a 2 - Vo)^ ' no - aIDI(^o	 ^0 ) + (^^ '	 )(^0	n0)]

V	 3
4,ra 2 1f  3 [1 -	

0

77F
 

1
1
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q D	

aT	 .
+	 (3.6)

2	 Vo	 D 2
4,^aIDI	 1 - 

aID

This expression checks an expression derived in a different manner in ref. 7.

4.	 INCOMPRESSIBLE F LOW. - The incompressible case may be obtained by

letting a	 W to get

_ qD	 no

wD4,rIDj3	
(4.1)

the downwash equation may now be written

aI 'D1	 t	 n	 n o	3(n	 D) (n o ' D_)
w = an
	 4n	

f q(ro ,T)	 3 -	 5	 dT	 (4.2)
SDI

The integral equation relating the known downwash, w(P,t) to the unknown

pressures, q(r o ,T), is given by the following equation for incompressible

flow

y	 1	 t	 no.n
W 

(P ' t) - 47Ta Chord f Spanf _f q(r o' T)	 IDI3

do dro

D	

dt	 (4.3)

^I5

In eq. (4.3), D = P(r,t) - P 0 (ro ,T) denotes the distance between the position

vectors of the downwash and doublet points relative to a fixed coordinate

system, where r, r  are measured rad i ally along the span; t,T are the

independent time %l ariables of the dowrwash and doublet point respectively.

q (r
0
97) is the lift strength per unit length of span; a is the density of

the fluid. n and no are the unit normal vectors perpendicular to the

surface at the downwash and kA- blet point, respectively.

-3 P ' n P	 n
0	 0
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The fin?l downwash equation involves a double integration over the surface

of the blade which has proved to be a stumbling block to the efficient

application of lifting surface theories. Most of the research directed towards

the application of the kernel function for the planar wing in uniform motion has

been aimed at devising feasible and adequate means for accomplishing this

integration. Of the several techniques availahle, the one selected for

application to the rotor case is termed the doutlet-lattice method, a princ-'Ipal

assumption in the method is the placement of line loads at the 1/4 chord of the

wing and the satisfaction of the downwash condition at the 3/4 chord location of

each element. This would make eq. (4.3) tractahle, namely by yielding a set of

linear equations for qi . The total lift of the blade at the time t, or

equivalently at certain azimuthal position will he jgi(t).



n . ^' W

iA

at i

W t 
I ^z^
\	 I

1Lt

of t =

Y

n

2 ^
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Integration over T, it is tantamount to considering ?.11 positions successively

occupied by each lifting element in the past, which amounts to scanning the

whole wake. The blade has the cord c ?nd length Rt - Rs, Rs being the

root of the blade, R t	is the maximum length of the blade. Suppose at the

time origin, the bladQ momentarily coincide with the coordinate system along the

x-axis as shown in the sketch.
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The blade executes a courterclockwise rotation with angular velocity

n while moving with velocity U along the negai,ive x direction and W along

the positive z direction. Since the quarter line method has been adopted, the

doublet point lies 1/4 c ahead and downwash point lies 1/4 c aft of the

midchord. The positions of the douhlet point as well as the downwash point can

he established as follows. The Cartesian components of the douhlet position are

xo = -UT + ro COS (QT ) - c/ a sin(i2T)cosaO

y o	ro sin(QT)+ c/4 cos(SZT)cosao

zo = WT + ( c / 4 ) sin ao	 (4,4)

With the suhstitution of c + -c, ro ; r, T + t the position of the downwash

point is given by

x = -Ut + r cos(ot)+ c/4 sin(sit)cos a

y = r sin(sit)- c/4 cos(Qt) cos n
	

(4.5)

z = Wt - c/4 sin a

In egs (4.4) and (4.5), the angle a,ao are the twist angle of the blade

defined below
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tan a =	 Ws n Qg -T+-	 l

tan a -	 W	 (4'6)o	 11 sin , S2t + r0Sl

This means that the twist argle is determined by the velocity vector at the time

t	 (i.e., the final time) which implies that the angle of twist is constant in

time, and is only a function c° radial distance. Therefore, the reference plane

(defined by the doublets and downwash points) is a twisted surface. Only when

the douhlet (hereafter denoted as d.h.) and the downwash point (hereafter

denoted as d.w.) possess the same radial distance, r = ro, then the d.h. and

d.w. lie :,n a plane (i.e., n II no at	 T = t).

From eq. (4.4) the do-iblet velocity can he computed, namely the time

derivative of the position vectors.

+	 . +	 . +	 . +
V o = x 0 i + y 0j y z 0 k	 (4.7)

where

X0 = -ll - r oll sin(QT)- c /AQ cos(QT)coS a0

y 0 = r 	 COS QT - CSl /4 sln(2T)COS a0

z - IJ	 .%	 +

To deterriine n o as a function of T, write V 0 = V o + W, where V o '	 is the

projection of doublet velocity on the horizont-il plane. Write

n rl = JC 0 + m n .j + n 0 k	 (4.R)

where Z 0 m 0 no are the directional cosine of the -grit vector n o . Form the

vector quantity S by demanding S= V 	 X I-I
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S	 r 	 sin(AT)- C/ 4 ,1 COS( SI T)COS a0 )1 + (r an cos QT

- csl/4 sin(SIT)Cos a)jl X A	 (4.9)

= W(II + r Q sin(RT)+ r_/40 C,OS(QT)coS a )j + W( r n COS(QT)

0	 0	 0

- CSl / 4 sin(QT)cos a)i

It is now required that 	 nu	 l S

and	 nO 1 v 

In o l = 1

From (7), (R) and (9), there is Ohi.ained

W(II + r 00 sin(QT)+ C/4Sl C0s(QT)C0s a0)

O --- ,^T
V	 + VO	 O

W(r 00 COs OT - cQ/4 sin OT COs a0
m = -
0	 /^

lJ + V 0

V
r

0
=	 —

0

VW 2 + Vo2

i
where	 VO' is Vie magnitude of VO'

(4.1(1)

(4.11)
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Vol? = (U + r 
0 
Q sin( QT)+ c/4ri CO3(QT)COS a0 ) 2 , (r 0Q COS( QT)

- CQ/4 sin(QT)COS a 0 )
	

(4.1?)

Ry the sane procedure, n is c rived by making the appropriate suhst.itutinis,

C + -c, a 0 + a, T + t, etc. (i.e., n = xi + m j + nk) to get

= W ,j + rr:_s'n(Qt)- c,'40 cos(Q+.)cn s al

I/W ? v
	 v

m = -W(rs! cos(r'it)+ CQ / n sin(Qt)cos a)

ld ? V	 +

V^
n=	 —

W? + V

where

V 02 = (u + rQ sin(Qt) - c/4Q cos( Qt)Cos a)'' + (ro r_os(Qt)+ c:Q/4 sin(ot)cosa)2

(4.14)

sirce

+	 +	 +	 +

xi + yj + zk,	 P= x i+ y j+ z k
	

(4.1^)

O	 o	 O	 o

+	 +	 +	 +	 a

a vector D is defined as n : P - Po; then the magn i tude f p l in eq. (1) can

he expressed as
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I CI = {[II(T-t) + r cos(slt)- r0 cos(91T)+ c / 4(sin(Qt)cos a + sin( SIT)COS 00)12

+ [r sin(s2t)- r0 sin( s1T)-c/4(cos(Qt )cos a + cos( nT )cos ao)]2

+ [W(t-T) -c/4(sin an + sin a 
)i 1 } 1/2
	

(4.16)

The final equation may now be written as 	 j

n • n -3(n • n (n •n )
W = 4np P f_m q(r0 ,T)[	 0	

3n 
n o .n
 (4.11)

o	 II

where nn is a unit vector in the ^ direction, namely, nn

ICI

lnis integral equation was solved for the unknown q(ro,T) by using a

collocation process based on the vortex lattice assumption (ref. 6). The kernel

is singular when n _ n, and this was handled by use of the finite part

technique (ref. 5). The remainder of the integrations was accomplished

r-merally.

5.	 RFSIILTS ANn nISCIISsioN

The foregoing procedure was applied to a rotor having the dimtosion shown

in fiq. 1. The rotor was divil p d into 5 equal spanwise sections. The vortex

lattice approximation was used which resulted in the placement of a vortex at

the 1/4 thud positon on each section and a downward point was located at the

center of each span section and was placed at the 3/4 chord position as

indicated on the fi.;ure.



OftIGiN R rUALITrOF POOR Q
14

The Psults of calculations are given in fig. 2-4 for three cases. For all

calculation the rotor speed was held constant at 30 rad/sec and the vertical

velocity was 2n ft/sec. On fi gure 2 is shown the overall lift curve slope,

C La , for inn ft/sec forward velocity plotted against azimuthal angle. For

the range of angles from approximately 90 degrees to 2.7n deg, •ees, the lift curve

slope is nearly constant. However, for the position of the angular position

between 315 degrees to 67.5 0 the lift curve slope is considerabl ")wer. It

could be sti •mised that with the rotor in a trailing position, that the effective

aspect ratio of the rotor is lower than at other azimuthal positions and would

accordingly have a lower left curve slope.

On figure 3, the forward velocity has heen increased to 200 ft/sec. Note

that a large increase in CL., is found at 225 degrees. This one point is

suspect, in as much as the ,tall region is being approached and the theory is

based on linear approximations. Note that the region close to n deg. azimuth

C La , is again low, where the mininum CL(, is 3.4 as com[ared to 3.9 for

the inn ft/sec case.

On figure 4, the case for a forward velocity of NO ft/sec is shown. For

this case, the rotor is definitely stalled in the azimuthal region e = 27nO

to 3150.

F. CONCLUDING REMARKS

A lifting surface theory has been developed for a helicopter rotor in

forward flight for incompressible flow. The method utilizes the concept of the

linearized acceleration potential, and makes use of the vortex lattice procedure

which has been successfull,- used for the non-rotating case.

Results are shown for three forward velocities, li = inn, 200 and 3nn

ft/sec. The vertical velocity was held constant at W = 2.O ft/sec as well as the

V
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rotation speed, n = 3n rad/sec. For regions when the rotor blade was in a

stalled condition the analytical results are not applicable and these regions

are easily discernible in the plots. A significant finding in the results is

the degradation in the lift curve slope, C L . , in the neighborhood of 6 =

0 deg. It should be pointed out that if two-dimensional coeffic*ents were used

in an analysis that this degradation in CL would not be found.
CL

nrrrnrw,rr
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