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LIFTING SURFACE THEORY FOR A HELICOPTER ROTOR IN FORWARD FLIGHT
Harry L. Runyan and Hsiang Tai
Abstract

A 1ifting surface theory has been developed for a helicopter rotor in
forward flight for incompressible flow. The method utilized the concept of the
linearized acceleration potential and makes use of the vortex lattice
procedures. Results in terms of 1ift coefficient slope for several forward
flight conditions are given.

1. INTRODUCTION

Rotating lifting surfaces are an integral part of the propulsive unit of
every aeronautical and rautical vehicle, from the compressor and turbine bladzs
of jet engines, the pumps for rocket engines, to propeller and helicopter
rotors. The aerodynamics of these rotating elements has been under extensive
study since the advent of the airplane and with a combination of experimental
and analytical approaches, succcessful designs have “een achieved. In many
cases, two-dimensional theory has been used, usually modified by an assumed
spanwise distribution, and inflow angles. A practical lifting surface theory
has not been developed for the compressible rotating case for the general case
of a helicopter in forward flights., It is the purpose of this report to present
a2 liftina surface method within the limits of linearized theory.

The method is based on the concept of th- acceleration potential,
originally introduced by Hans Kussner (ref. 1). The method was first applied to
an oscillating wing in uniform translatory motion by one of the authors
including compressible flow in 1957 (ref. 2). The acceleration potential
approach has now become standard in the determination of the unsteady

aerodynamics forces for flutter studies.
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The first use of the acceleration potential approa.n for a rotating system
was made in a paper hy Hanaoka (ref. 3) for the incompressible case in a paper
directed at application to the mirine progeller. The acceleration potential has
been used in the past in studying the oropeller noise problem, but in all of
these noise propagation cases the problem was specialized early in the
analytical development to the so-called far-field case usually with the
stationary observer, whereas the 1ifting surface theory is essentially concerned
with the details of the near-field case for a co-moving observer as well as the
satisfaction of certain boundary conditions. Dat, (ref. 4), has derived a
general expression for an acceleration doublet for any motion. His development
has been used as a basis for this investigation. The procedure developed here
iﬁvo]ves the precise numerical intearation over the surface of the rotor. It is
hoped that the method lays fundamental ground work for propeller and helicopter
unsteady, three dimensional compressible aerodaynamic theory.

With regard to the contents of the report, the next section contains a
brief derivation of the fundamental equations, including a discussion of some
implications of the equations. The third section contains a description of the
method of solution. Finally, the results of some preliminary calculation for
the incompressible case are given.

2. BASIC EOUATIONS

The fundamental equation required for the solution of the lifting surface
problem relates the downwash velocity (velocity normal to the 1ifting surface)

to the unknown pressures on the rotor blade.
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The acceieration potential method will be used in the analysis. The
acceleration potential, y, is defined as
P - Pe = =p¥ (2.1)

Rernoulli's equation for pressure in terms of the velocity potential, ¢, is

P - P = g (2.2)

where the operation L represents the substantial derivative. For a wing
dat

defined as

translatin~ in the x-direction with velocity U, the equation can be written

P -p_ = -pV —g ul
or

+ ug_g.) (2.3)

For wings oscillating in harmonic motion such as in flutter, an harmonic

substitution can be made to obtain

9
b= -(io s+ ugd)
Solving for ¢ gives At
e U  x lﬁi
¢ =—g— | wlry.z)e " dx (2.4)

Since the motion of a rotating helicopter blade is non-harmonic, this

procedure is not practical, thus the relationship is

n
v (2.5)
Equation (2.5) can be integrated with respect to t to give

o = b it (2.6)
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“inally, the downwash is derived

t
3¢ 3
we 3% - -.f vdt (2.7)

3. ARRITRARY MOTION OF AN OSCILLATING DO!'RLET IN COMPRESSIBLE FLOW

The expression for an oscillating doublet moving in an arbitrary manner in
compressible flow was derived by Dat (ref. 4). A concise derivation of the
doublet expression is given below.

The expression for an accelerating source is

v ihit - q(:o.r) —
an|P - B()j[1 - gt eIl = Tgtrd] (3.1)
a|i5 - ﬁo(r)|

where 30(1) the vector position of the source at time 1, P is the position
of the field point, Vo(r) is the velocity of the source point at time T,

"a" is the speed of sound and q is the strength of the source.

An auxiliary equation which relates the time interval t - t between the
time the source emits a disturbance at t and the time at which it is rec2ived
at the field point at t, to the distance bhetween the two points ic given below

_'ﬁ - ﬁo(t”

t - 1= 3 (3.2)

A doublet may be formed by placing a source and a sink in close proxi:ity

and allowing the distance to approach zero, while at the same time maintaining
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the product of the distance and the source strength finite. This result may

also de accomplished by performing a differentiation in the proper direction.

+
NDat applies this second technique by first defining a vector distance N

+ <> > >

D=P-P -&n (3.3)

where £ is a parameter and A, is the unit vector which is in the desired

+ * >

direction, Substituting D for P - Py 1in equation (3.1) gives

v = q(z)

w01 - 2 ) (3.4)
a|f‘|
The doubhlet is now obtained by applying the derivative with respect to ¢ and
letting & + 0 or

Y

S
“’n =(_) (?.5)
to give ® s
; dvo R
] b _ald - g - R
R
4na|ﬁ| [1 ] 4na2|ﬁ|3[1 - ETET]

ql(a? - Vg 2)8 fy - a|D |(V ch) (M- B R

T .8 3
ars? 1|1 - _gm_]

o)
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>3

an
q 9 ..541 _
+ L (3.6)

[
4na|3|2[1 - —°—]
a|D|

This expression checks an expression derived in a different manner in ref. 7.
4.  INCOMPRESSIBLE FLOW. - The incompressible case may be obtained by

letting a -~ = to get
- ->

qD - o

3 (4.1)

w =
D 41r|5|

the downwash equation may now be written

ST by Ao 3(% - D)(#, - D) w2
W=—=>2— [ q(r.,t - dr (4.2
on 4 o 313 L]
= D] 0]

->
The integral equation relating the known downwash, w(P,t) to the unknown
pressures, q(ro,r), is given by the following equation for incompressible

flow

N . ¢ ﬁo . n
w (p,t) * % Chord” Spanf ! q(r'o’T) —_]}gfi

-0

3P -n P n
e dc dr, dt (4.3)
+ 5
|D]

- - ->
In eq. (4.3), D = P(r,t) - Po(ro,r) denotes the distance between the position
vectors of the downwash and doublet points relative tuv a fixed coordinate

system, where r, r_ are measured radially along the span; t,r are the

(o
independent time variables of the dowrwash and doublet point respectively.
Q(ro") is the T1ift strength per unit length of span; p is the density of
the fluid. n and Ko are the unit normai vectors perpendicular to the
surface at the downwash and doublet point, respectively.
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The finel downwash equation involves a double integration over the surface
of the blade which has proved to be a stumbling block to the efficient
application of 1ifting surface theories. Most of the research directed towards
the application of the kernel function for the planar wing in uniform motion has
peen aimed at devising feasible and adequate means for accomplishing this
integration. Of the several techniques available, the one selected for
application to the rotor case is termed the doutlet-lattice method, a principal
assumption in the method is the placement of line loads at the 1/4 chord of the
wing and the satisfaction of the downwash condition at the 3/4 chord location of
each element. This would make eq. (4.3) tractable, namely by yielding a set of
Tinear equations for qj . The total 1ift of the blade at the time t, or

equivalently at certain azimuthal position will be Jqi(t).
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Integration over 1, it is tantamount to considering z11 positions successively
occupied by each 1ifting element in the past, which amounts to scannirg the
whole wake. The blade has the cord ¢ =2nd length Rt - Rg, Rg being the

root of the blade, Rt is the maximum length of the blade. Suppose at the

time origin, the blade romentarily coincide with the coordinate system along the

x-axis as shown in the sketch.




UGl rAGE 1S 9
OF POOR
The blade executes a courterclockwise rotation with angular velocity
Q while moving with velocity U along the negative x direction and W along
the positive z direction. Since the quarter line method has been adopted, the
doublet pnint lies 1/4 ¢ ahead and downwash point lies 1/4 ¢ aft of the
midchord. The positions of the doublet point as well as the downwash point can

be established as follows. The Cartesian components of the doublet position are

Xg = -t + rg cos(@t) - c/4 sin(Qt)cosag
Yo = o sin(Qt)+ c/4 cos{Qt)cosay
Zg = Wr + (c/8) sin a4 (4.4)

With the substitution of ¢ + -c, rg +r, T+t the position of the downwash

point is given by

x = =Ut + r cos(Qt)+ c/4 sin(Qt)cos a

r sin(2t)- c¢/4 cos(Qt) cos a (4.5)

"

L

zZ =Wt - c/8 sin a
In eqs. (4.4) and (4.5), the angle a,ay are the twist angle of the blade

defined below
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tan a = L
U s|n!!it§+ Ni

- W (4.6)
o U sin(at)+ ron

tan a

This means that the twist argle is determined by the velocity vector at the time
t (i.e., the final time) which implies that the angle of twist is constant in
time, and is only a function ¢f radial distance. Therefore, the reference plane
(defined by the doublets and downwash points) is a twisted surface. Only when
the doublet (hereafter denoted as d.b.) and the downwash point (hercafter

denoted as d.w.) possess the same radial distance, r = rgo, then the d.b. and

d.w. lie i a plane (i.e., h || fo at T =t).
From eq. (4.4) the doublet velocity can be computed, namely the time

derivative of the position vectors.

> . + . » « >
= X1 i a

Vo = %ol * ¥l * 2k (4.7)
where

Xg = -U-r.Q sin(2t)- c/42 cos(Qt)cos a,

Yo = Mg €OS QT - c/4 sin(Qt)cos g

z =W -~ + + +
To determine n, 2 a function of 1, write vo =V 6 + W, where VO' is the

projection of doublet velocity on the horizontal plane. Write

> -+ > +>
n, = zoi + e nok (4,8)

+>
where 20, My Ny are the directional cosine of the urit vector No* Form the

+» +> +» +»
vector quantity S by demanding S =V ' x W
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> +
S = (-l - rof sin(Qt)- ¢/42 cos(Qt)cos ao)i + (ron cos ATt

+* >
- cQ/4 sin(Qt)cos a)jl x Wk (4.9)
+*>
= WU + r Q@ sin(Qr)+ c/4Q cos(Qt)cos a )j + YW(r @ cos{Qr)
) 0 0

+

- cQ/4 sin(Qt)cos a)i

It is now required that ., ls
and n Lv (4.10)

+
o] =2

From (7), (8) and (9), there is obrained

Wil + rof sin(Qt)+ c/4Q cos(Qt)cos ao)

L =
0 —T‘ﬂ'
vz ] ]
vc o *Y%
W(ron cos @t - cR/4 sin @t cos a
m = -
0 b/z————rf
W- + vV
0
Vo'
4 =

>
where V ' is the magnitude of Vo'

11

(4.11)
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Vo‘2 = (U + Fof sin(Rt)+ c/4a cos(Qrt)cos ao)2 . (ron cos(Qr)

- c/4 sin(Qrt)cos °o)? (4.12)

>

Ry the same procedure, n 1is ¢ rived hy making the appropriate substitutiors,
+> +* > +

C*+-C,a *a, T+t, etc (i.e.y n =21 +mj + nk) to get

g = Wy + ra sin(at)- c/42 cos(at)cos a)

2 4
‘/w?- Voey

m = -W(ra cos(at)+ cR/4 sin(at)cos a) (4.13)
2 % 2L
W-v + v
vl
n=

where
v? . (U + rQ sin(Qt) - c/4Q cos(Qt)cos u)2 + (rQ cos(qt)+ cn/4 sin(m:)COSa)2
(4.14)

since

+ » + » + +> - +
Po=xi +yj + 2k, P =xi+yj+2zk (4.15)
0 0 0 0

> 2 b d b4

<+
a vector D is defined as D = P - P5; then the magnitude |ﬂ| in eq. (1) can

be expressed as



ORIGIVAL Phue S 13
OF POOR QUALITY

= {[U(t-t) + r cos(at)- P cos(Rt)+ c/4(sin(at)cos a + sin(Qt)cos ao)]2

|

+ [r sin(at)- Py sin(Qt)-c/4(cos(at)cos a + cos(At)cos %)]2

+ [H(t-) -c/8(sin a + sin a )1°}}/2 (4.16)

The final equation may now be written as

| Aefi =3(Rh (R Ry
W= s é [ alrg,t)| 'ﬁ|3; ] ddr, (4.17)
0

i

where ﬁn is a unit vector in the D direction, namely, En = —

%]

This integral equation was solved for the unknown q(rg,t) by using a
collocation process based on the vortex lattice assumption (ref. 6). The kernel
is singular when D = N, and this was handled by use of the finite part
technique (ref. 5). The remainder of the integrations was accomplished
romerally.
5. RESULTS AND DISCUSSION

The foregoing procedure was applied to a rotor haviug the dimension shown
in fig. 1. The rotor was divided into 5 equal spanwise sections. The vortex
lattice approximation was used which resulted in the placement of a vortex at
the 1/4 cherd positon on each section and a downward point was located at the
center of each span section and was placed at the 3/4 chord position as

indicated on the figure,
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The esults of calcuiations are given in fig, 2-4 for three cases. For all
calculation the rotor speed was held constant at 30 rad/sec and the vertical
velocity was 20 ft/sec. On figure 2 is shown the overall lift curve slope,

CLa’ for 100 ft/sec forward velocity plotted against azimuthal angle. For

the range of angles from approximately 90 degrees to 270 deg-ees, the 1ift curve
slope is nearly cunstant. However, for the position of the angular position
between 315 degrees to 67.50 the 1ift curve slope is considerably lower., It
could be su-mised that with the rotor in a trailing position, that the effective
aspect ratio of the rotor is lower than at other azimuthal positions and would
accordingly have a lower left curve slope.

On figure 3, the forward velocity has been increased to 200 ft/sec. Note
that a large increase in CLG is found at 225 degrees. This one point is
suspect, in as much as the stall region is being approached and the thecry is
based on linear approximations. Note that the region close to 0 deg. azimuth
CLQ: is again low, where the minimum CLQ is 3.4 as compared to 3.9 for
the 100 ft/sec case.

On figqure 4, the case for a forward velocity of 300 ft/sec is shown. For
this case, the rotor is definitely stalled in the azimuthal region & = 270°
to 3159,

6. CONCLUDING REMARKS

A lifting surface theory has been developed for a helicopter rotor in
forward flight for incompressible flow. The method utilizes the concept of the
linearized acceleration potential, and makes use of the vortex lattice procedure
which has been successfully used for the non-rotating case.

Results are shown for three forward velocities, U = 100, 200 and 300

ft/sec. The vertical velocity was held constant at W = 20 ft/sec as well as the
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rotation speed, @ = 30 rad/sec. For regions when the rotor blade was in a

stalled condition the analytical results are not applicable and these regions

are easily discernible in the plots. A significant finding in the results is

the degradation in the 1ift curve slope, €| jin the neighberhood of 8 =
a

0 deg. It should be pointed out that if two-dimensional coeffic’ents were used

in an analysis that this degradation in C_ would not be found.
a
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