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NOXESCLATt.:RE 

" ' 

" thrust cofficient • T/osnZa2 

E elliptic integral of tho second kind 

K elliptic intogral of the fint kind 

R rotor radius 

s rotor disc Area • :fa: 

T rotor thrust 

b blade chor~ 

k modulus of elliptic integ!al 
.. "' 
-i, 

p distance between airfoils 

r radial location of originating vortex nondimensionalized by R 

u radial component of induced velocity 

v axial component of induced v~locity at actuator disc 

w axial component of induced velocity 

ws self induced velocity on curved vortex 

z vertical distance nondimensionalizcd by R 

r circulation 

vortex core radius 

n rotAtional speed, sec-I 

y distributed vorticity on blade 

~ radial station at which induced velocity is desired nondlmenalonali:ed by 

\ L~flow ratio, w/na 

~,'¥ az1l:luth of any point relative to blade 

L
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SmmRY 

. .. 

This report is volume I of a three volume I1criu entitled 

"Freo ~4ko Techniqll!lR for Rotor Aerodvnamic Analysts" And covering tha 

following topics: 

Volume I (present volume) "SUml"..llrv of R09ults lind Background Theory" 

reviews the results obtained to date using both complete and 

Simplified wake models and summarizes the theoretlcml background on 

which thesa modeb are based. 

Volume II "\'ortex Sheet Models" (Raf. S) presents the reaults of 

cocput3tions using complete and modifiad vortex sheet models and 

tasts the sensitivity of the solutions to various assumptions used 

in the devftlopment of the models. Tha complete codines are included. 

Volume tIl "Vortex Fll:1ment Models" (Ref. 6) discusses result. 

obtained using a vortex filacent model. as opposed to sheets. again 

using various CloddUng techniques and includinl; the computer codings • 

. c 
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SECTION I INTItODUCTlml 

Thin report will diacuso results obtained to date during the dovelopcent 

of 4 consistent aerodynamic theory for rotors in hovering flight. Methods of 

aerodynamic ~aly8is have been developed which are adequate for general deaisn 

pUrpOSQB until such time 49 more elaborate solutions become available, in 

particular solutions which include real flcida effects. It is racognized that 

such 901utions are not yet within the capability of even the most powerful 

cocputational facilities. Nevertheless it is hoped that continued research, 

both experimental and cocputational. will lead to further definition of the 

real fluids problem and narrow the range of empiricisM now required to handle 

the!Je effects. 

.-~. Several problems were encountered in the course of this development, 

and mAny remain to be solved, however it is felt that a better understanding 
':;' 

, of tho aerodynamic phenomena involved has been obt4ined. Remaining 

uncertainties are discusaed in the follOwing sections and in the companion 
" , , 

. ;.~ volumes (Refs. Sand 6) covering this study • 
" 

11 
Experimental investigations (Refs. 1. 2, 3, 4) have shown that the 

,~ 

;. wake geometry of 4 hovering rotor differs apprec1ably from the simple spiral 
'. 
~ 

form of constant diameter assumed in classical theory. The airload distribution 
" 

" , on 4 rotor blade is critically dependent on this geometry and particularly 

,-

'\ 
on the distance between tho blade and the tip vortex generated by the previou9 

"' 

,- blade at their first encounter. as indicated in Fig. 1, and on the structure 
.. ,.;. 

of the vortex at this encounter. There is strong experimental evidence that 
':' 

this vortex. trailed initially from the blade as the bound circulation drops 

rapidly from a peak at about 90% of rotor span to the tip. rolls up rapidly 

into a tight and strong tip vortex whose strength is close to the maximum 

strength of the bound circulation on the rotor blade. What i~ not known is 
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the azimuth locations over which this roll up occurB, the structure of the 

resultant vortax core and the ~utually in~uced velocitios in the near wake 

during the roll up process. These velocities are important in determining 

the vertical location of the vortex at first encounter. 

It io convenient to consider the wake as divided into three segments. 

The first segment, the near wake, contains that portion of the wake attached 

to a particular blade and before first encounter with a following blade. The 

second segment, the intermediate wake, includes the wake from the first 

encounter through two or more spirals. The third segment, the far wake, 

contains the res~ of the wake to infinity. It is generally a reasonable 

approximation to treat only the first two segments of the wake as free, that 

is with a geometry determined by the induced velocities in the wake, and to 

consider the far wake 8S a vortex cylinder of constant radiu9 and strength 

determined by the radius and vortex spacing at the end of the intermediate 

wake. Calculation of the intermediate and far wake geoaetriea requires 

extensive computat.ional capabilities, but otherwise present no ser~ous problem. 

There is Bome question ~s to the suitability of uoing a fixed geometry tar 

wake, as discussed in section IV, however, as might be expected, 1ssumpti~ns 

relating to the far wake do not appear to have a major impact on the solutions. 

Of morc concern is the treatment of the near wake. Figure 2 shows a 

typic~l spanwise distribution of bound circulation on a two-bladed rotor from 

both the experimental results of Ref. 4 and the analytical results of Ref. 7. 

The rapid drop off"of circulation over the outer portion of the blade results 

in a trailing wake system which may be modelled mathematically as a series of 

curved vortex filaments as ahown in Fig. 3. The induced velocities acting 

on this system of vortex filaments from the far and intermediate wakes can 

::. 
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btl re:lldlly detormined given the wake geometry. However it is primarily the 

mutually induced velocities due to the near wake which determines the roll 

up process and hence the eventual near wake displacements. 

In section II of this report various models are discussed for detc~ining 

tho near wake displacements and it is shown that reasonable agreement with 

experimental results are obtained with versions of the following three models 

a) A model in which the near acd intel~edlate wakes are 

represented by spiral vortex sheets which arc assumed 

to roll up following variouo schedules (Ref. 5) 

b) A model in which the wake is represented by spiral 

vortex filaments (Ref. 6) 

c) A simplified model in which the wake i9 represented 

by either vortex rings or doubly infinite line 

vortices (Ref. 7) 

Section III examines the roll up process of the tip vortex in greater 

detail and presents an alternate treatment of the entire near Wilke and its 

roll up process with suggestions for a more elaborate approach to the problem. 

Section IV briefly discusses far wake effects and shows the dependence 

of wake geometry on the persistence of circulation in the far wake. 

SectIon V presents the background theory used In the development of 

the various wake models. 

Section VI swm:larizes conclusions from this study and presents 

recommendations for further investigations • 
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g£T~ I VO!tTE.,{ WAKE MODELS 

The various wake models and their evolution to the final version using a 

combination of vortex sheets and vortex filaments are discussed in detail in 

Refs. S and 6 which form Volume II and III of the present series. The first 

wake modal used was originally dcvQloped in Ref. 8 for the treatccnt of wind 

turbine wakes. The snoo model was applied to a hovering helicopter rotor 

and preliminary results using this program ~ere prcsented in Refs. 9 and 10. 

Ref. 9 reported progreos at midpoint in the original contr~ct schedule. 

comparing results using the original program with the experi=ental data of 

Refs. 2. 11 and 12. Discrepancies were noted and plans for future research 

outlined. Ref. 10 reported progress at a later point in the contract 

,~. ' 
schedule. and included results from the first two of five free vortex 

models developed during the course of the investigation. The vorte~ sheot 

models of Ref. 10 contained an inadvertent doubling of the'strength of the 

far wake which resulted in a small error. corrected in the later models d1s-

cussed in Ref. 5. Again. discrepan~ies with the experimental results uere 

noted which were attributed to the termination of the vortex sheets in less 

than one spiral. Attempts to extend the solution beyond 360· were un-

successful because of lack of convergence. The solution was based on 

iteration of the wake geomel / which required an appreciable amount of CPU 

time due to the comrlexity of the diatorting vortex sheet model. The problem 

with convergence was believed due to the roll up of the vortex sheet which 

was not being properly modelled because of the coarseness of the mesh re-

quired to keep CPU time to manageable proport1onft, of ~be order of 4n hour. 

Tr.e four vortex sheet models developed in Voluce !1 may be summarized 
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as follows: 

MODEL 1 Essentially the same ao Ref. 8, in which the near and 

interoediate wakes nrc represented by 4 segmented vortex oheet 

connecting a tip and root vortex. The far wake is represented by 

vortex cylinders as in Ref. 7. 

MODEL 2 The near wake is treated as in Model 1 until an azimuth 

of ~ - 255-, after which it is rolled up into three vortex filaments 

as in Ref. 7. The location of these filaments at ~ • 255- is 

dcteroined as 1f the filaments had rolled up tmmediately at ~ • o. 

MODEL 3 Same as Hodel 2. except that the near wake is rolled up 

before first encounter. at ~ • 45°, and is assumed to remain in the 

rotor plane until roll up. The geometry of the rolled up vortices 

at .~ • 45° is detennined as in Model 2. This avoidn the lengthy 

computations required to establish the geometry of the vortex sheets 

and hence is co~putationally much more efficient than Model 2. 

MODEL 4 Same as Model 3. except that the full vortex sheet ~odel, 

including tip and root vortices. is used to establish the geometry of 

the vorte~ filaments at roll up. 

In addition a filamentary wake model. ModelS, was developed as dis-

cussed in Volume tIl. Ref. 6 • 

HOVEL 5 The filamentary near wake is allowed to roll up as 1n Model 2, 

but to ¢ • 70°, after which the centroid of the partially rolled up wake 

1s used to describe the wake geometry. The roll up process is similar 

to thllt of the ~!odel 2 vortex sheets shown 1n Fig. 4. 
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The continuing investigations discussed in Section III indicate that 

the roll up with a more finely modelled near wake with trailing fi1acents 

located approximately every .3% span at the tip would be much faster than 

with the relatively coarse mesh size with a minimum spacing of 2% of the span 

used with the vortex sheet model. The roll up predicted by the vortex sheet 

model at the first intersection (180°) is shown in FiB. 4. Although the 

start of roll up is clearly evident, it is not nearly as tight as predicted 

by the finer mesh model of Section III as shown in Fig. 10. The location 

of the tip vortex close to but above the blade most probably c~used the 

oscillatory divergence of the solution • 

In the meantime, a separate investigation had'been conducted in which 

attempts were made to develop a simplified model of the wake which could be 

used to aid 10 clarifying the physics of the problem. This investigation 

resulted in the development of the analytical technique described in detail 

in Ref. 7. with later results appearing in Refs. 13 and 14. The simplified 

program is capable of predicting wake geometry and air loads in a few 

seconds of CPU time and with reasonable accuracy. Velo~ities are 

computed in the wake immediately behilld ea-:h blade only, and these 

velocities are averaged in order to obtain wake displacements. The 

averaging process in the near wake was based on experience with the 

more complete solution (see page 8 and Fig. 7) and avoids the ne~d for 

computat ion of the wake displZlc.ements during the roll up process. 

Some of the results obtained with the simplified model arc shown 

in Fig. 2. The computed results are in reasonable agreement with test 

data as regards bound circulation distribution and geometry. Some dis-

crepancies exist in the region of the drop off of circulation near the 
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80% span point for reasons which are not clear but which are believed to 

be associated with the spanwise flow and real fluids effects discussed in 

Ref. 14 and in Section III. 

The simple model was baaed on the assumption that the trailing wake 

of the blade rolled up almost 1Jnmediatel~' according to the Bctz criteria 

of conservation of angular and linear ~ocenta (Ref. 7) and only the rollc 

up wake need be considered in the intermediate and far wakes. The near 

wake was treated as a relatively fine series of semi-infinite vortex fila-

ments extending from the blade and was used only in determining the bound 
" ":--~ 

circulation distribution on the biade itself in the presence of induced 

velocities from the rolled up Vortices. Fig. 5 indicates schematically 

the Simplified wake model. The velocities induced by the vortex rings and 

cylinders could be expressed as elliptical integrals amenable to rapid 

series solution. consequently CPU time was kept to a minimum. 

In view of the success of the simplified model it was decidEd to 
. ' 

use a similar roll up schedule for the more detailed models. The vortex 

sheets were therefore rolled up, again according to the Betz criteria, at 

various points in the ncar wake thereby avoiding the ?roblems with the slow 
. ," ~ 
<" . 

roll up predicted by the coarse meshed model discussed above. Volume II 

(Ref. 5) contains a detailed discussion of the various attempts to obtain 

satisfactory results with this model. Typical final results (Fig •. 6) 

show reasonable agreement with test data. 

'{.. It became evident in the development of this revised vortex sheet 

model that a problem existed in determining the local velocities con-

tributing to the displacement of the tip vortex, either rolled up or in 

sheet fore. between its generation by one blade and encounter with the 

.":: following blade. The rolled up tip vortex is located at approximately 
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97.5% of the span and the computed velocities at the blade tip and at 95~ 

span typically are as shown in Fig. 7. One possibility would be to average 

the velocities at these two stati~ns giving the results snown by the heavy 

line in Fig. 7. this was the basis for adopting the averaRi~g proce9s in 

the simplified solution of Ref. 7 and in Ref. 5 as a reas,-'nable approximation 

for determining the position of the rolled up ti? vortex at first encounter. 

However such treatment of the tip vortex is an approximation only and not 

necessarily the true mechanism determining its migration in the near wake. 

In an attempt to obtain a clearer understanding of these proulems, 

Model 5 was developed as described in Ref. 6 with the wake represented by 

vortex filaments rather than "Jortex sheets. The original vort~..: sheet model 

was developed "n the basis of experience with an earlier filalIl.entary wake 

model developed in Ref. 15 for the forward flight case where it was found that 

a better representation of blade loads could be obtained if the wake at first 

encounter were represented by a vortex sheet rather than a concentrated curve.d 

vortex. However, in hovering flight, and at least for the two claded case, 

the vortex at first encounter is sufficiently far below the bla~e so that the 

filamentary representation of the wake is adequate. Certainly the computational 

difficulties encountered in matching the edges of the segments of the dis-

torting sheets are avoided. 

Results from the filamentary model are discuss~d in detai.l in Vol. III 

(Ref. 6), together with conclusions as to its limitations and that of the 
i-

other models. The predicted wake geometry agrees well with the experimental 

data although the previously noted dip in bound circulation near 80% span 

per$ists and requires somewhat arbitrary assumptions as to core size to 

improve agreement with test data. 

It should be noted that the change in lift at the 80~ span may be 

sufficiently rapid to trigger separation of the type first noted in Ref. 16, 
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and discussed in Ref. 14. ~h~n a close blade/vortex encounter occurs. 

Further=ore. there exists At the 80: span 4 ~4ka induced rndial velocity of 

the order of 10% of the tangential velocity due to bl:de rotation. Tho flow 

will therefore approach the blade at an anglo of the order of 5- ~h:ch will 

introduce further second order cffects sieilar to the eff~cts of sweep. 

more complete lifting surf3cc solution of the type disculIScd in Ref. 17. 

rather than 4 lifting line solution. 1s required in order to investignte 

such effetcts. 

. 
n 
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SECTION tIl \'cnn:x HOLL-CP 
. I 

Re~ent interest In tho foroation of \~rtlcos froo fixed wind 41rc~Ait 

haa st~ul4tcd the devclopaont of coaput4tion technlqu~s for predictlns tho 

gcomot riu of rolled up three di%:lcnaional vortex sheots. In these tftchniques 

the sheet is treAted AS 4 .:ollectlon of Una or point vortices and thair 

motions tracked 4S they diotort under their mutual int~rforencQ velocities 

usln& vAr10us computational methuds. 18 
So~a of tho e~rliost work i. quoted 

10 Rof. 19, pp. 589-590. Subsequent efforts to dupliCAte thoso results with 

4 Unor grid rasulted 1:1 chaotic Qotions, partlculOirly in the tighter portions 

of tho spiral. Introduction of artlficial visco~lty rosulted in ~oro orderad 

solutions but, unfortutllltoly, dc;umuetlt on the de&reo of "!scodty introduced. 

~st rocent efforts hAve concentrated on tho Euler-Lcgrangc solutions 

1n which 4 ser1~s of point vortices Are tracked in Il L,sr4nglan fraco of 

reference and rcfGrr~d back to on EuleriAn fr~e f~r solut1on of the equations 

of flt:l'" Thls "cloud in cell" technique WAS appl1t!d to the roU up af 

vortex ahects froo " "ing 1n Raf. ~O and core recently 1n Ref. ~l. In Ref. ~~ 

tho two d~cn9ion4l approximation to the rotor "4ke developed in Raf. 7 "A8 

appliud to the cocputation of tho roll up of 4n 4ssu~.d straight "ake froo a 

rotor bbde 411 it dcsc~nJcd in hovering flight. A typical solution is sho\o.'tl 

in Fig. S which cloarly indiCAtes the roll up proccs~. rice did not peroit 

cooplet1ng the study to 4 converged solulion. Thi& ~~rk i5 being continued 

using the three dlocnsional n:od·,t of Ref. 7 which allows for curvature in tho 

\Jake. Prcl1l:1inary work has conccntt'llt!ld on dC!tem~nins the effac.ts of coll 

9i:e 45 on~ nunsure of the J~grce of 4rt1(lci~1 v1~co~ity introduced in the 

solution. ~ependence of the solution on the 4ssu~ed cell si:o r~o3in9 4 natter 

of concern. 

l 
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In this section we will discuss 4 further approach to the probl~ of 

vortex sheet roll up in which the wnke is modelled as a curved o~~ies of 

vortex filaments and their roll up predicted using the Biot-Savart relation-

ships. In Ref. 6 the cocplete solution has been obtained for 4 series of 

spiral vortex !llm:ents, but only a li.:11ted nu::1ber of such flllllllentB could 

be used in order to keep the ~PU tioo reasonable. In this section the roll up 

of the ncaf wake only will be considered and a sicpl1f1ed appro:ac:1 taken in orC1er 

to clni.:1i:e the r~quired cocputer t~e and clarify the nature of the problem. 

Referring to Fig. 9, it is necessary to compute interferer~a velocities 

between any two vortex filacents everywhere in the first spiral and integrate 

these velocities to obtain displacement. If it is desired to cocpute the 

velocity induced at any ~oint A by another vortex fila~ent H, tnen lt is is 

clear that the velocity at A due to B would be prtc4rily due to that portion 

of B closest t'J A. The rest of the spiral vortex fll:mcnt B t:\.3y be approxi-

=ated by a vortc~ ring and the velocities cooputed readily by the techniques 

discussed in Section V using the Biot-Savart relationships und lognrithcic 

series solutions for the resulting elliptic integrals. The displacecont of 

any vortex oay be comp~ced by integrating the total induced velocity on a 

vortex due to contributi~ns from all other vortices in the near wake ovcr an 

increment of t!co reprcsented by a smnll change in a::1:uth, starting froc the 

blade in question. using standard techniques of intcgr~tion such as fourth 

order Runge/Kutta formula~. With this simplified ~del it is possible to set 

up 4 cuch finer wake structure. thereby presucnbly achieving a more realistic 

wake roll up. 

ThIs technique ~llS first used to examine the roll up of the curved 

vortex generated froc the tip ~f the blade using 3 fiDe distribution of 

fll3Ccnts. A typical result is shown 1.n Fig. 10. ~1netcen filaments !o'ere 



-. 

generated from the outer six percent of the blade with an assumed core size 

of 1% of blade span. ~Ogt of the vorticity is contained in tho numbered 

vortex filaments and in particular the first six 4S in evident froc the table 

showing the strcngt~ of each vortex filament, g, where g is equal to f/QR2 

with a maximum value of .02 at 94% span. It may be deduced from Fig. lQ 

that the vortex rolls up very rapidly, first rising and then descendL~g. 

Roll up apparently occurs 4 few chord lengths behind the rotor blede, as may 

be expected from the experime~tal evidence. 

The vertical dIsplacement of what is apparently the vortex core is 

characteristic of a curved vortex sheet and not a straight sheet. In the latter 

case, it may be shown that no vertical displace=ent of the centroid of vor-

ticity will occur if the effect ~f blade bound vorticity on the wake is 

neglected. 

The wake displ4c~en~9 due to the bound vorticity of one blade will, 

to fir3t order. be cancelled by that of the following blade. reSUlting in no 

net displacement of ~he vortex filaments, whether curved or str~ight, due to 

bound circulation. Fig. 11 shows the displaceoent of 4 fre~ vortex with 

.and without the presence of bound vorticity computed using the analytical 

techniques discussed in Section V. The net effects are eVidently ~ll 

ever}~here in the wake and essentially zero at the first encounter with the 

following blade. Consequently the bcund Circulation has not been included in 

the results of Fig. 10 in order to clar.ify the core icportant ~ffccts due to 

the cutually 1~duccd velocities of the free vorticities. It should be noted 

that the bound circulation is included in all the cocplete solutions dis-

cussed in Vols. II and III. 

Two factors rc~~in of concern 1n the roll up predictions: the step size 

used 1n the integration of velocity in order to obtain displacecent and the 

,-
\. 
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Assumed vortex core size. The effect of core size on the displacement of the 

centroid of vorticity is shown in Fig. 12. Evidently the displacement 1s 

dependent on the a3sumed core size. When zero core size is used the reDults 

tend to becone chaotic near the centroid of the cpiral as previous invcsti-

gators have found. FurthQrmore the solution becomcs more sensitive to the 

interval size used in integration whereas this is not the case for a solution 

containing a sufficient amount of artificial viocosity as shown in Fig. 12. 

For a tva bladed rotor Fig. 2 indicates that the tip vortex at first 

encounter is located approx1cately 5 to 6% of the span below the following 

blade, as shown both analytically (Ref. 7) and cxper1cent4l1y (Ref. 4). 

Con6e~uently, the differenceo in the vertical displacement of the centroid 

of the rolled up vortex with various assuc~tions an to core size, of the 

order of less than 1% of the blade span at first encounter, may not appear 

to be crucial. However blade airloads are sena1tive to the location of the 

tip vortex at this first encounter and the dependency of the solution on 

assumption 4S to core size remains of some concern. Experimental evidence 

(r.ef. 23) indicntc& vortex core sizes of the order of 1% of the span, but 

these measurements are presumably of tho rolled up vortex core, which cay 

not necessarily be the core size of the filaments which codel the sheet 

4S it leaves the blade. A great deal core anQlytic~l and experimental 

investigation in necessary before tilis problem cay be completely resolved. 

It is p06sible that simplified for:ns of the llavier-Stiltkes equations for 

spiraling vortices ·will have to be developed in order to obtain a better 

understanding of the phenomenon of roll up and migration of the tip 

vortex generated by 3 rotating bl~de. 

As a first attecpt to extend this investigation ~a the compl~te wake, 

an approximate solution was obtained using 24 vortex f!l~ments for the near 

wake. A converged solution ~a5 first obtained uaing :~e fast free wake 
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tachnlquoD of Ref. 7, whare tho near wAke il Assumed to roll up almost 

instantly. Tho resulting wake geometry waG then used to predict tho 

lntarmcdlato cnd fer wake velocities At the blAde and these wcre cdded 

to those computed fro~ tho flne (now curvod) near w4k~ by interpolatlon. 

Tho results aro shown in Fig. 13 whlch clearly shows tho roll up of tho 

tlp vortex and tho lnltial roll up of tha first centor vortex. Tha 

sudden jump in displacement betwean tho tip vortex and tho conter shoet 

has frequently been oboervod in exporimental investigatton. 

The next step will involve modiCyin& either the f.nt frco wAko model 

of Rof. 7 or tho complete codel of Refs. 5 or 6 to Includo tho fino neAr 

wake characteristics indiCAted in Fig. 12 And compl"ting tho iter4cion for 

blolde loads. 
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FAR WAKE EFFECTS 

Another effect requiring more detailed modelling than is poaoible 

with the progrAms of Rota. S Bnd 6 is that duo to tho for wake. In the 

freo wAke analyoes, the far wAke io reprosented by semi-infinite vortex 

cylinders who.e contributiona to the induced velocities at tho blAde ore 

SmAll. However tho influence of thace vortex cylindcro io core noticeable 

on the scometry of the intQrmod14ta wake end may thoreby indiroctly affect 

tha induced volocities At tho blade. Aleo it hac baen pointed out in Ref. 3 

that exper1cental Qvidence indiCAtes 0 pOGolbte expansion of tho uake 

soveral spirals below the rotor. 

The faot free wake technique of Rof. 7 allova a closor examination of 

tho intcrmadiatc WAke by the introduction of mAny more spirals than is 

feAsible with tho complete solutions. FiB. 14 shows tho standard !olution 

using the vortex cylinder represontation for the far wake for the usual tvo 

spirals per blade before starting the far uake and for a case with nino 

spirals which may be expected to bring the far wake sufficiently fer away 

"from tho blade 00 411 to make its effects negligible. The! reoults t!hou that 

the solution is essentially independent of the number of spirals, providin& 

At least four are taken in the intermediate uake. Fig. 15 ahows the came 

solution but without the constraint of a fixed far wake. The effect on rotor 

performance is small ao may be expected, but lt in interesting to note a~ 

expansion of tho interrna114te WAke which cay be Attributed to tha intormingling 

of the outboard center and t1p vort1cQo 1n II typ1cal Kclvln/llelmholt:: 1notll-

billty. Continuation of thQ solution uith core spirals may bo expected to 

show An oscillatory eXlll1nsion and contraction. Further experimental and 

analytical investigation of the growth And dissipation of the far wake would 

appear to be desirable. 

_1.. ________ • ____ .' ______________ " .. __ . ____ , ___ •• __ . __ 
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SECTION V DEVELOPME.'1T OF ANALYTICAL TREAT!1EUT 

Velocity Induced by a Vortex Ring 

As discussed in Section III the roll up of tho ncar wake oay be com-

puted by considering the velocities on one element, A, (Fig. 9) of the near 

wake due to all other elements by treating the opiral wake aa a seriell of 

vortex rings. This aosumption neglects the effects of distortions in those 

portions uf the wake far from the element in question, evidently a reasonable 

approximation since these distortions are s~ll relative to tho radius of 

the spiral. The relative positions of all elements in the wako in the 

vicinity of the element A, however, are correctly modelled. 

If r is tho radius of the vortex ring B of Fig. 9, n is the radial 

location of A and z is the relative vertical pOSition assumed independent of $ 

(no distortion of the ring) then the vertical component of velocity induced 

at n due to the vortex ring B is (see, for example, Ref. 24) 

W II 
r 

47TR 
r(r • n cos $) d¢ 

(n 2 + r2 + 1.2 - 2rn cos¢)3/2 
r 

D - I, 
47TR 

With the substitution ~. 7T. 2:p such that cos.p· 2 sfn2 '1 - , 

-r( r + n 21'1 sfn l'b) dt/J 
(1"2 + 1'12 + l. 2rn - 4rl'l sfn :p )3/2 
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and dncc the integrand 19 aymmetricnl about 4> a. 0 the integral need be 

evallJated only from 0 to TT/2. After some llUln1pulation one obtaina 

B I1T/_2 __ S;.;i~n_2.,..,~--,~ 
( 1 If S i J IP ) 3/2 

o 

where k2 • 
A • 

4r(n + r) 
B • 

These integrals may bo evaluated by standard methods for complete 

elliptic intervals of the first kind 

f
1T/2 

K • 
o 

and second kind 

E • 

noting that 

and dK 
ilk 

:z 

f 

dE 
dk 

:s 

I
TT/2 

(1 

o 

k Sin2j! cilJ 
- k2s1n2~L,)j/2 ( 1 

k s fn 2.!J -

,. 

f (1 - k2s1n2!J)1/2 

1 ( 
k 1 

dill 

E K) _ k2 -

1 
II k (E - K) 

18 
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~ ( E _ K) 
kG 1 _ k2 

which, after substitution for A and B becomes 

from which w may be evaluated for nny value of k. 

19 

In the absence of a computer with a library of elliptic functions it . 

i9 convenient to use series solutions for E and K. The most suitable for 

the present application are Cayley's logarithmic series because of their 

rapid convergence, although care must be taken in the vicinity of k
2 ~ 1. 

From Ref. 25, 777.3 3nd 777.4, and defining 

F II 1n ( 4 ) 11=k2 ' 

E • 1 + .5(F - .5){1 - k2) + ~ (F - 1 - h-)(l - k
2

)2 + ---

K • F + .25(F - 1)(1 - k
2) 

9 1 2)2 + - (F - 1 - -) (1 - k + ---64 6 

The radial component of induced velocity at n is 

u • 
.L 
4nR 

which, following the same procedure used above may be evaluated as 

u ,. 
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A self induced velocity ui11 exist on the ·curved vortex, whict. ;;l.~ . 
Ref. 26. may be expressed as 

ws • 4;R [~n{8r/Ar) - t] 
where Ar is the core radius. 6r Ref. 27 suggests a value of -- of .025 r 
as typical for helicopter rotor loadings. The cT.perimental results of Ref. 21 

6r indicate that - could vary from .01 to .03, depend inS on the proxir:1ity of r 

the vortex to first encounter. hence the term in brackets could vary from 

about 5.5 to 6.2. Since the singularity is logarithmic, and the contribution 

of the self induced velocities is small. the solution is not sensitive to an 

exact definition of 6:. A value of WS. 4;R [6] has been used for all 

the cases of Fig. 12. 

In r~f. 7 it was shown that the drop off of bound circulation at the 

tip of a rotor blade cay be closely approximated by an expression of the 

form 

which has been used in deteraining the strength of the trailing vortex 

system for the computation of the tip vortex roll up of Fig. 10. However 

in the case of Fig. 13. the computed bound circulation distribution has been 

used. 
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In order to examine possible effects of the bound circulation on the 

near wake displacements, a simple case of two parallel infinite blades of 

chord b operating in a wind stream of velocity V and subjected to a uniform 

do~~wash u will be considered, but with the blades treated as airfoil3, or 
o 

lifting surfaces. rather than lifting lines. since the effects of the bound 

circulation are expected to be of importance primarily in the vicinity of the 

surfaces themselves. 

The bound circulation may be represented by a series (see. for example. 

Ref. 19.). of the form 

CD 

y(x) • A cot i ~ L An sin n6 
o 2 n-\ 

where x = ~(1 - cos 6). 

" 
The velocity induced on the airfoil by the element of vorticity y(x)dx is 

A 
v(x) = _0 + , A 

L ; cos n6 

For a flat airfoil in steady flow. only A is nonzero. 
o 

It is desired to find the displacemen~ of any element in the wake 

between the airfoils when both are at an angle of attack a. 

Boundary conditions on the blade require that. for a. 

v(x) = Va 

-----" .. ·- .... ·....,._ ....... ~-, ___ "' ... ,· .... ;; .. :~,..~_r._w.~'JI\=::·"!.. __ ..... 4#_ .... _'__ • ..:._:=.-_ ~. ___ ~ 
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everywhere on the blade whence 

A = 2Vo. 
o 

and, since 
sin e co t e = .".-~"-"-1 - cos e 

y{x) 
sin e 

= 2Va 1 - cos e 

= 2Vo./ L-:2. 
x 

22 

Referring to Fig. 16, the velocity at any distance t behind the first airfoil, 

and p _ t ahead of the second airfoil, due to an eleI:lent of bound vorticity 

y(x) on each airfoil is 

Au - Y (X) dx [ C; + b - X 
- 2~ {~ + b _ X)2 + Z2 

p - C; + X 

{P - t + xP + Z'] 
If a steady uniform velocity u exists perpendicular to the airfoils, for 

o 
example from the rest of the wake, then the vertical velocity at ~ is 

dz = LAU + U 
dt 0 

or, since 

u 
dz = [L 6VU + -+ ] d~ 

whence 

Z F.f j xr 0. IY [ b + t; - x 
~~-al x-a ~ ---x--- (b + ~ - X)2 + Z2 

P - f; + x ] dx + ~o t d~ 
{P ~ + X)2 + Z2 ~ 
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which may be readily programmed fer direct numerical !utegration. Fig. 11 

shows the results obtained for the case of a • .1 radi~ns on both airfoils. 

Evidently the displacements are everywhere smdll, and essentially zero Gt 

the second airfoil. Fig. lIe shows the displacements when u/V - A has 
o 0 

a typical value of .02. 

The actual conditions could of course differ from those of the 

simplified model used here. The bound circulation varies along the blade 

and particularly near the tip. The trailed tip vortex moves rapidly 

'.' inboard and therefore may encounter a slightly different velocity fiela due 

to the bound circulation near the second blade. In order to examine the 

extreme of such a conditIon Fig. lIe shows the case where the bound circu. 

lation on the second airfoil was set equal to zero. The solution then 

reverts to the familiar case of the downwash behind a lifing airfoil. The 

z displacements are still small, of the order of 20% of the ¥ertical dis-

placement at first encounter fer a two bladed rotor. The bound ci~culation 

has been included in the models used in Volumes II and III, although its 

effect was found to be negligible. Ir.s neglect in the simplified solutions 

of Section III appears to be a reasonable approximation • 

• 
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SEcrIO~ VI 

Conclusions 

1) Free wake techniques or varying co::p1elCity have becn developed 

for predictlng alrloads on rotor blades. all of whlch agree well with 

expericcntal ·observation of both the bound circulatlon distribution and 

waka geo::letry. 

2) S1cplified cadels in whl~h velocltle8 arc cooputed only in the wake 

directly behind each blade and avC!nged to obtAin uake displacC!':IcntIJ give 

results 10 agreeccnt with tho :ore completc solutions in which wako velocities 

are cocputed everywhere in the near and Intoroediato wakes. 

3) Tcchniques l~ve been developed for prC!dictln~ the =i&ration of the 

tip vortex 10 the nCAr wako for the comrlete solution, however uncertainties 

as to the exact roll up mechanism and ncur woke geometry still r~~31n. 

4) An analysls of the roll up oechAnlsc in tho ncar wake uslng a 

sicplified codel whlch permits usc! of a f10e trailing wAkc indicates that 

roll up of the tip vortex is essentially cocpletcd In a few chord lengths 

behlnd 11 blAde. 

5) The vertical displacement of the centroid or vorticity in the near 

Jake derends on the assuocd core si:e (artlflcial viscosity) of th~ vortex 

~il~cnts representing this wake and the solutions beca~e chaotic for small 

or %ero values of core si:e. 

6) Usc of 4 rigld far wake has 11ttle effect cn the predicted blade 

loads but does affect the g~ometry of the Interoed1ate wake. 

7) Effects of bound vorticity on ncar wake d1!iplac .. ~ent:l nrc negligible 

and its nc~lect 1n tho s1=pLlficd solution is justified. 



~ecococndat10n. 

1) Extend either tho s~pllfled or more dct31tcd solut!on. to includo 

4 =oro r.coploto reproscntAtion of tho near wAko vortex roll up and itorate 

for a flnal converged BOlution using th~o more complete wake 8e~etry. 

2) Develop core !oreal techniques for including the affacts ot visco.ity 

10 tho detcr:1oation of wake scom~try. 

3) Extend tho solut10n to include a 11!t1nS surfaco representation of 

the blade for uac with rot~ra h4Vin& four Qnd core blades and in order to 

~llow for tho eff~cts of spnnwiso flow &lonR the blade. 

4) Obtain e~poricental verification of bl~d8 bound vortic!ty distri

bution and wako gcooetry for rotors with four And more blades. 
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FIRST ENCOUNTER 

Fig. 1 Geometry of first blade vortex encounter. 
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Fig. 2 Blade bound vortex distribution and ~nke geometry as predicted 

by methods of Ref. 7 compared with exper1cental results of 
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Fig. 3 
Representation of trailed vorticity from blade tips by serles 
of Vortex fllac~nts. 
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a) 

b) 

c) 

Fig. 5 Ceometry of model using vortex rings and cylinders to represent 

the wake. 

n) Side view of rotor wake model showing intercediate and far 

wakes formed from vortex spiral - 2 blades. Tip vortex only 

shown. 

Blade One --- --- Blade Two 

b) Plan view showing near wake 

c) Formation of intermediate wake 
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g 

o 

Final results froe complete vnke model of Ref. 5 shoving effect 

of different roll up schedules on the bound circulation and wake 

geometry. 

------- Outboard center vortex rolled up from peak to 82.5% 

Outboard center vortex rolled up from peak to 71.57. 

d 
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Fig. 10 Predicted roll up of tip vortex - near wake only considered. 
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(b) Same but with bound circulation on originating surface only 

(c) SaQc as (4) but including a steady inflow of X • .02 

(d) Effect of steady inflow X • .02 without bound circulation 
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Fig. 15 Effect of eliminating far wake with extended interoediatc weke. 
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