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SUMMARY

A study of the use of a flight director by general aviation pilots in a six-
degree-of-freedom, fixed-base simulator has been conducted. The task performed was
an instrument landing system (ILS) approach to landing. A special feature of the
tests was that the sensitivities of the glide-slope and localizer signals were kept
constant at values corresponding to either 5 n.mi. or 1.25 n.mi. from glide-slope
ground intercept during any given test run., The flight director command needles were
driven by an autopilot command law. Time histories of the pilot-aircraft-display
system responses and standard deviations and means of the glide-slope and localizer
errors were obtained.

The test results show that the pilot-aircraft-display system responses with the
flight director were very similar to the autopilot-aircraft responses, Without the
flight director command needles, using only the raw data indicators for quidance, the
pilot-aircraft-display system exhibited less damping than with the flight director.
The standard deviations of the glide-slope and localizer errors showed a correspond-
ing degradation without the flight director. The sensitivity of the flight director
command laws was judged to be about as high as it could be in these tests and pre-
cluded any further improvement in system tracking performance by increasing the gains
in the command laws.

INTRODUCTION

Experiments with a flight director display have been conducted as part of a
series of tests to determine the pilot-aircraft-display system response with general
aviation flight instruments under instrument flight conditions. This effort is a
part of the overall effort to determine the effect of instrument configuration on the
control of the position of the aircraft and on the safety of flight., These studies,
such as references 1, 2, and 3, have made it clear that the instrument configuration
does have a major influence on the precision of control of the position of the air-
craft. 1In reference 1, with conventional instruments such as the horizontal situa-
tion indicator (HSI) and the course deviation indicator (CDI), it is shown that the
period of the dominant lateral mode of motion is 60 to 40 sec, and that this mode of
motion can become unstable as the aircraft approaches the middle marker during
instrument landing system (ILS) tasks. 1In contrast, the use of a pictorial display
presented on a cathode-ray tube can result in stable, 10-sec system periods, as shown
in references 2 and 3. The differences in pilot-aircraft-display system periods
illustrated in these two cases indicate that differences in system tracking perfor-
mance are to be expected, and references 2 and 3 also present data on this point,

The studies in references 1 and 3 and the present study use the same simulator, air-
craft model, and turbulence model.

The present study was aimed at establishing the system periods and performance
that can be obtained with a flight director in an instrument approach task. The
command laws used to drive the flight director command bars were the autopilot laws
used in the study of reference 4 and described in references 5 and 6. A test format
similar to that used in reference 1, where the glide-slope and localizer sensitivi-
ties were kept constant during any given run, was used. The pilot~aircraft-display



system response to initial errors, and the standard deviations and means of the
glide-slope and localizer errors in the presence of winds and gusts were obtained.

SYMBOLS
Gu’Gv’Gw gust ?pectrum transfer functions
h altitude, m
Lu’Lv'Lw gust characteristic wavelengths, m
P probability that the scores are equal
s Laplace operator, sec |
TR aircraft lateral roll time constant, sec
TS aircraft lateral spiral time constant, sec
ug,vg,wg orthogonal random gust components, m/sec
v velocity, m/sec or knots
a angle of attack, rad
B angle of sideslip, rad
Ah glide-slope error, m
Ay localizer error, m
6a aileron deflection, rad
6e elevator deflection, rad
CDR aircraft lateral Dutch roll damping ratio
Cphugoid aircraft longitudinal phugoid damping ratio
CSP ' aircraft longitudinal short-period damping ratio
6 angle of pitch, deg or rad
Oyt Oy Oy gust transfer function amplitudes, m/sec
¢ angle of roll, rad or deg
b angle of yaw, rad or deg
Whr aircraft lateral Dutch roll frequency, rad/sec



ubhugoid aircraft longitudinal phugoid frequency, rad/sec
ugp aircraft longitudinal short-period frequency, rad/sec

Nondimensional stability derivatives:

CLG lift coefficient due to elevator deflection
e

CIB rolling-moment coefficient due to sideslip

CnB yawing-moment coefficient due to sideslip

Cné yawing-moment coefficient due to aileron deflection
a

CYB side-force coefficient due to sideslip

Subscripts:

c command

trim trimmed

Abbreviations:

CDI course deviation indicator

defl. deflection

HST horizontal situation indicator

IFR instrument flight rules

ILS instrument landing system

Std. dev,. standard deviation

A dot over a symbol denotes a derivative with respect to time.

DESCRIPTION OF EXPERIMENT

The purpose of these tests was to determine the pilot-aircraft-display system
response with and without a flight director in an ILS landing approach task with the
glide-slope and localizer sensitivities set at values corresponding to 5 n.mi. and
1¢25 n.mi. from the glide-slope ground intersection., The following sections describe
the aircraft model, the subjects, the wind inputs, the instrument signals, and the
test procedure used in the simulation. The autopilot command laws used to drive the

flight director needles are described in the appendix.




Aircraft Model

A six-degree-of-freedom, nonlinear model was used to simulate a typical high-
wing, four-place, single-engine, general aviation airplane in this study. In addi-
tion to nonlinear kinematics, the following nonlinear aerodynamic factors and other
special features were included in the model:

1. Nondimensional 1ift and drag coefficients were a function of a2 as well as
of «a.

2. Nondimensional stability coefficients C, , C , C. , C , and C
. Y L6 1 1’16 n
were a function of a. B o B a

3. Asymmetric forces and moments as a function of thrust coefficient were
included.

4. A hydraulic control loader provided control forces as a function of aerody-
namic hinge moments.

5. A sound system provided realistic engine and airstream noise.

The nominal approach speed used in these tests was 85 knots. At this airspeed
the small perturbation response of the aircraft was as follows:

Longitudinal response: u%p = 2,01 rad/sec Csp = 0,55
wphugoid = 0,21 rad/sec Cphug01d 0.015
Lateral response: Whr = 1.95 rad/sec CDR = 0.21
TR = 0,2 sec TS = 44 sec

These aircraft response characteristics meet satisfactory handling quality require-
ments except for the phugoid damping, which is low.

A photograph of the simulator instrument panel, including the flight director
instrument, is shown in figure 1. The flight director instrument provided pitch and
bank information and raw data glide-slope and localizer indicators in addition to
the flight director information. An HSI that provided heading information as well
as duplicate glide-slope and localizer raw data was mounted directly below the
flight director. Airspeed, altitude, vertical speed, and turn and bank instruments
were also provided. The autopilot control panel can be seen to the right of the
instruments. The angle-of-attack indicator seen at the left was not operative. The
cathode-ray tube, which was an experimental display shown above the autopilot control
panel, also was not in operation.

Subjects

Seven general aviation pilots took part in these tests. The subjects were all
instrument rated, but they had varying amounts of experience. They were engineers



working at the Langley Research Center who flew their aircraft on an occasional
basis. All but subject 4 had considerable fixed-base simulator experience. These
tests were the first experience in a fixed-base simulator for subject 4, The
subjects' ages and accumulated flight hours are listed in the following table., The
IFR time given for the subjects includes simulator time.

Previous
Subject | Age | Total flight hours | IFR flight hours | flight director

experience

1 55 325 50 Yes

2 24 400 60 No

3 46 400 70 No

4 33 485 100 No

5 33 1400 400 Yes

6 38 1600 400 Yes

7 37 2600 525 Yes

Wind Inputs

In some of the tests conducted as a part of these experiments, wind inputs were
used as forcing functions. These wind inputs consisted of a steady crosswind of
1.22 m/sec and a random input used to represent gusts, These inertial axis gust
inputs u_,v _,w were generated using random-number generators and filters based on
the Dryden gust model (ref. 7). The filters were
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The scale lengths were

h (For h » 535 m)

44h1/3 (For h < 535 m)

The overall gust amplitude was adjusted so that the average gqust root mean square was
1.22 m/sec at an altitude of 535 m. The mean value of the gusts was zero. These
gust and wind conditions represent moderate disturbances.

Instrument Signals

The task performed in the simulator by the subjects was making an instrument
landing system (ILS) approach, Although every effort was employed to make the
appearance and response of the simulator realistic, the task was artificial in that
the sensitivities of the glide-slope and localizer signals provided by the ILS system
were Kept constant during any one test run, rather than having them increase as range
to the station decreased. This procedure eliminated the confounding effect of chang-
ing sensitivity on data analysis. The ILS signals were derived in the following
manner,

The glide-slope signal was computed as

Glide-slope signal = tan-1<§%%6> (For the 5 n.mi. case)
or
Glide-slope signal = tan-1(2320> (For the 1.25 n.mi. case)

When this signal was applied to the raw data glide-slope needle in either the
flight director instrument or the HSI, a gain was applied so that a 0.7° deviation
would move the needle to full deflection. Full deflection therefore occurred at
errors of 114 and 28.4 m.

The localizer signal was computed as

_ . WAy
Localizer signal = tan (9300 + 2140>

or

: . Ay
Localizer signal tan (2320 + 2140)



where the extra 2140 m is the additional distance from the glide-slope station. That
is, when the distance from the ILS station is referred to as either 5 n.mi. or

1.25 n.mi., this value represents the distance from the aircraft to the glide-slope
ground intercept point., The localizer station is an additional 2140 m past the
glide-slope intercept point. When this localizer signal was applied to one of the
raw-data indicators, a gain was applied so that a 2.5° deviation would move the
needle to full deflection. Full deflection therefore occurred at errors of 500 and
195 m,

The flight director needles were driven by autopilot command laws (presented in
the appendix) that combined pitch angle, pitch angle rate, rate of climb, and glide-
slope error signals to drive the vertical command needle; and bank angle, bank angle
rate, heading rate, heading error, and localizer error signals to drive the horizon-
tal command needle, This autopilot was designed to provide a fairly high-performance
system response. In particular, the displacement gains were set high to provide a
high-frequency (approximately 0.2 rad/sec) displacement mode of motion, and forward
loop integrators were used to reduce any steady-state errors to low values, These
features tended to reduce system damping, and several inner loop signals, such as
rate of climb and yaw rate, were added to improve system damping., A small amount of
gain adjustment with velocity was also added to the system to improve damping.

The flight director information was presented to the pilot by means of a conven-
tional flight director instrument. Cross-pointer needles mounted on an attitude
indicator were used to present the information.

The sensitivity of the command signals can be described in the following manner.
For the horizontal command needle, a static lateral error (with no heading or bank
angle error) that would move the raw data localizer needle to full deflection would
move the flight director needle to one-half of the full deflection. Because of the
ratio of the bank angle and heading error signals to the localizer signal, this
sensitivity was rated by the pilots to be too high when there was no filter on this
signal. It is for this reason that the filter was added to the horizontal command
signal. Even with the filter, the sensitivity of the indicator was rated high by the
pilots.

The sensitivity of the vertical command signal cannot be described in the same
manner because of a forward loop integrator that was used in the vertical command
law. That is, the glide-slope error was used to command a pitch angle rate., There-
fore, it was not possible to generate a steady vertical command needle deflection
with a static glide-slope error. However, in the judgment of the pilots, the verti-
cal command needle was equal in sensitivity to the horizontal command needle; that
is, the sensitivity was high.

Test Procedure

The complete series of tests consisted of a run with initial errors in both
the lateral and vertical directions at 5 n.mi. from the station; the same test at
1.25 nemi. from the station; followed by two runs with no initial error but with
crosswinds and qusts, one at 5 n.mi. and one at 1.25 n.mi. from the station. Each
run lasted 3 min. Before the data-taking runs, every subject did each run at least
once as practice. This allowed the subjects to become familiar with the simulator
and the experiment. Time histories of the glide-slope and localizer errors and atti-
tudes were taken for each run, and glide-slope and localizer standard deviations and
means were also taken for the runs with winds and gusts. Following the tests with



the flight director, each subject performed the same series of tasks with the flight
director command needles inoperative. 1In these tests the subjects used the raw data
glide-slope and localizer needles and the attitude indicators for quidance. A com-
parison of the results with and without the command needles illustrates the effect of
the command needles.

One of the methods used to evaluate the system response is to note the pilot-
aircraft linear reSponse characteristics. This method of analysis, used in refer-
ences 1 and 2, involves using a linear pilot model in combination with the nonlinear
aircraft model to reproduce the time histories of the response of the subject pilot
in combination with the aircraft model in tasks involving initial errors, and also
analytically determines linear system characteristics of the pilot-aircraft system
using the linear pilot model in combination with a linear version of the aircraft
model., The linear analysis shows that the pilot-aircraft system is a sixth-order
system for vertical control and an eighth-order system for lateral control. These
systems involve the usual short-period aircraft modes (short-period longitudinal
mode and Dutch roll lateral mode) plus new modes of motion that involve variables
for which the aircraft has little or no stability (pitch and altitude for vertical
control and bank, heading, and lateral displacement for lateral control). When the
pilot is asked to control altitude and lateral displacement using glide-slope and
localizer instruments, new modes of motion are created. These new modes of motion
may be either oscillatory with damping that can range from unstable to well damped
or overdamped modes represented by first-order type responses. In the present study,
visual inspection of the time histories generated by the subjects is used to estimate
the period and damping of the oscillatory characteristics or the time constants of
the first-order responses of these pilot-generated modes of motion.

RESULTS
Autopilot-Aircraft System Response

With a flight director display system, the command laws used to drive the flight
director command needles have a great influence on the system response, The system
being examined in the present study used autopilot command laws discussed in a pre-
vious section of the paper. To illustrate the nature of these command laws, the
response of the system with the autopilot controlling the aircraft is shown in fig-
ure 2, This figure shows that the dominant mode of the lateral response is moder-—
ately well damped and has a period of 43 sec at the 5-n.mi. range. At the 1.25-n.mi.
range, the dominant mode has very low damping and a period of 30 sec. The dominant
mode of the vertical response is a first-order type response with a time constant of
approximately 35 sec.

Pilot-Aircraft-Display System Response

Typical system responses obtained from four subjects are shown in figure 3. A
complete set of variables are presented for subject 2, and a selected set are shown
for subjects 1, 4, and 7. These four subjects cover the entire range of flight
experience of all seven subjects. The data for subjects 3, 5, and 6 did not differ
in any significant way from those obtained from subjects 1, 2, 4, and 7. The time
histories show that by using the flight director needles, subject 2 generated a
response very similar to that obtained with the autopilot. By referring to the
raw data localizer indicator, he was able to reduce the initial overshoot. But
aside from this variation, the system period and damping were very similar to those
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obtained with the autopilot., This same duplication can be seen with all the sub-
jects. The greatest departure from this type response came with subject 4. Probably
because of his lack of experience with fixed-base simulation, he paid less attention
to the flight director and greater attention to the attitude variations, restricted
the excursions in attitudes, and thereby stretched out the system periods. The
pilots injected a noisy signal into the system that consisted of time variations,
dead-band type operations, dithers, and tremors. The injection of this noisy sig-
nal resulted in a steady-state oscillation that was larger in amplitude than that
obtained with the noise-free computer implementation of the autopilot system.

The pilot-generated time histories of runs with winds and gusts added are as
shown in figure 4. The movement of the command needles that occurred in these tests
was objectionable to the pilots and required that they pay a large amount of atten-
tion to reading these indicators. It is because of this high~-frequency movement of
these needles that higher gains could not be used in the command laws in any attempt
to improve the pilot-aircraft-display system tracking performance. The standard
deviations and means of the glide-slope and localizer errors for all subjects are
given in table I. In instances where repeated data runs were conducted, these values
are included. The mean values of the errors are low because of the forward loop
integration incorporated in the command laws. If the forward loop integrators were
removed from the system, an increase in the mean values of the errors would be
expected.

The pilot-aircraft-display system periods that can be observed in the time his-
tories of figure 3 are as follows., At the 5-n.mi. range, the lateral periods vary
from 40 sec (subject 2) to 60 sec (subject 4). The vertical mode of motion time
constants vary from 30 sec (subject 1) to 50 sec (subjects 2 and 4). Subject 7 shows
an oscillatory dominant mode with a period of 25 sec. At the 1.25-n.mi. range, the
lateral periods vary from 30 sec (subjects 2 and 7) to 70 sec (subject 4). The domi-
nant vertical mode of motion is either a first-order response with a time constant of
from 35 sec (subject 4) to 45 sec (subjects 1 and 2), or an oscillatory mode with a
period of 25 sec (subject 7). While these system response characteristics are not
exactly the same as those obtained with the autopilot, they are close and reflect a
strong influence of the control law. It is not expected that the pilot-controlled
responses will be as consistent as those of the autopilot. The occasional increases
in error that sometimes occur near the end of the run are examples of the lack of
consistency exhibited by the pilots.

Tests With No Flight Director

For comparison purposes, tests were conducted with the flight director command
needles inoperative, with the pilot using just the raw data to control the aircraft.
Runs with initial errors and no winds are shown in fiqure 5, and runs with winds are
shown in figure 6. The standard deviations and means of the glide~-slope and local-
izer errors are shown in table II,

The time histories show that while in some cases the dominant mode of motion is
quicker with no flight director, in other cases it is slower. On the whole, however,
the system periods are similar with and without the flight director. With regard to
system damping, in all cases, the system damping is judged to be less without the
flight director than with the flight director. For subject 2, the lateral response
at the 5-n.mi. range (fig. 5) has a period of 60 sec (longer than with the flight
director) with a peak-to-peak amplitude that is greater than with the flight director
(fig. 3). Also, at the 1.25-n.mi. range, the lateral response shows a larger



peak-to-peak amplitude than with the flight director and therefore indicates a reduc-
tion in damping. The vertical responses show more overshoot without the flight
director than with the flight director. This situation indicates in some sense
(maybe more in a nonlinear sense than in a linear sense) a reduction in damping.

With subject 4 at the 1.,25-n.mi. range, the lateral mode shows a 20-sec period
{shorter than the 70-sec period obtained with the flight director), but with a nearly
constant amplitude,! whereas the response with the flight director is damping out,
Again, the conclusion is that the system damping is less without the flight director.
The vertical response for subject 4 without the flight director still has a slow
first-order type response as the dominant characteristic, indicating good damping for
this mode of motion., However, the oscillatory mode with the 25-sec period shows a
much greater peak-to-peak amplitude (fig. 5 compared with fig. 3), and indicates low
damping for this mode of motion. In this particular run, the final excursion in
glide-slope error is ignored as being the result of a nonlinear loss of attention on
the part of the pilot,

Subject 7 shows much less change in response between the flight director and the
no flight director cases. However, an examination of the responses for subject 7
with wind inputs (figs. 4 and 6) shows larger peak-to-peak variations in both verti-
cal and lateral responses with no flight director and indicates less system damping
without the flight director.,

The gstudies in references 1, 2, and 3 indicate that in a linearized pilot-
aircraft system, the performance will depend on the system frequencies and damping
ratios. If the damping ratios of two systems are above 0.1 and remotely equal, the
system with the lower frequency will have the poorer performance., If the damping
ratio is below 0.1, then it can have a great influence on system performance. Mainly
because of the reduction in damping, the standard deviations measured in the present
study in the cases with winds and gusts are larger without the flight director than
with the flight director. The standard deviations with and without the flight direc-
tor for both the lateral and vertical responses at each range were compared using
a paired "t" test. The results are shown in table III and indicate that the differ-
ences are significant for each test condition at the 0.05 level or better. The means
were also compared, and the results show that the differences were not significant at
the 0.05 level except for glide-slope error at the 5-n.mi. range.

The results obtained in the present study with no flight director agree well
with the results of reference 1 both in system characteristics evident in the time
histories and in the standard deviations and means., Reference 1 documents a similar
study on the use of conventional course deviation indicators and horizontal situa-
tion indicators, in which the same test format of constant localizer and glide-slope
signal sensitivities was used.

CONCLUSIONS

A fixed-base simulation study of the use of a flight director in an instrument
landing system (ILS) landing approach has been conducted, Seven subjects with vary-
ing amounts of flight experience controlled a typical single-engine general aviation
aircraft in the study. An important feature of the study was that the ILS signal was
kept at constant sensitivity corresponding to either 5 n.,mi, or 1.25 n.mi. from the
glide-slope ground intercept point during any one test run. An autopilot command law
was used to drive the flight director needles.
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The pilot-aircraft-display system response characteristics of period and damping
were very similar to those of the autopilot-aircraft system. The sensitivity of the
flight director command needles was rated high by all of the test subjects, and this
factor would preclude any further improvement in the pilot-aircraft-display system
performance by increasing the gains of the command law.

Without the flight director command needles, using only raw data for guidance,
the pilot-aircraft-display system response characteristics showed periods similar to
those obtained with the flight director command needles, but with a reduction in
system damping. As a result, the system performance was degraded. The standard
deviations of the glide-slope and localizer errors showed a corresponding degradation
without the flight director. The contribution of the flight director command needles
was to add damping to the system.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

February 8, 1983
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APPENDIX

AUTOPILOT COMMAND LAWS

The autopilot lateral command laws used in the study are

d

5 = -0.525¢ + 1.5(6, - ¢) - 0.175¢ (Limited to 0.2 rad)
¢c = 0.5(¢c - ¢) (Limited to 0.6 rad)

when localizer error is greater than 2°

¢ = 4.5(Localizer error) (Limited to 45°)
when localizer error is less than or equal to 2°

qb = (4.5 + 2g'§->(Localizer error)

The autopilot vertical command laws used in the study are

5, = -(1.53 - 0.007v)§ + (1.37 - 0.0048V) (6_ - ©)

9 = 0.0066(ﬁ _ ﬁ)

(o] S (o]

Hc = 4V tan(Glide-slope error) - V tan(Glide-slope angle)

When the flight director was in operation, the control deflection signals from
the autopilot command laws were used to drive the flight director needles in the
following manner:

. 1
Horizontal command = (6a)0.3s g

Vertical command = § - § .
e e,trim

The filter was added to the horizontal command to reduce the high-frequency movement
of the needle, and the elevator trim term was added to the vertical command so as to
properly zero the needle. The block diagram of the system is shown in figure A1l.
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TABLE I.- STANDARD DEVIATIONS AND MEANS OF GLIDE-SLOPE AND LOCALIZER ERRORS WITH
FLIGHT DIRECTOR

Error at 5-n.mi, range, m Error at 1.25-n.mi. range, m
Subject Glide slope Localizer Glide slope Localizer
Std. dev. | Mean Std. dev. | Mean Std. dev. | Mean Std. dev. | Mean
1 8.1 1.4 32.9 41,3 9.2 2.2 50.4 41,7
7.7 .4 27,7 7.3
2 10.1 1.2 .8 12.3 4,2 1.9 19.7 16.7
5.1 2.6 3.2 -2.5 5.5 o1 71 1.0
6.8 1.0 11. 3.8
3 6.5 2.1 19.4 6.0 ‘9.6 =2.1 14,0 -4.,3
4 9.5 -14.2 51.6 125,2 6.2 -14.5 21.9 22.8
5 8.3 1.8 33.5 1.7 8.4 2.0 30.1 17.4
6 5.0 =-13.7 31.5 12,9 5.6 -13.1 26.1 13.2
7 5.4 1.0 10.1 9.0 10.8 -12.2 34.3 25.4
7.0 1.0 16.9 12.9
Mean 7.3 -2.2 26,7 27 .1 7.4 -3.0 23.6 14.3
Std. dev. 2.0 7.3 15.2 41.6 2.0 6.7 12.2 .8




TABLE II.- STANDARD DEVIATIONS AND MEANS OF GLIDE-SLOPE AND LOCALIZER ERRORS WITH
NO FLIGHT DIRECTOR

Error at 5-n.mi. range, m Error at 1.25-n.mi. range, m

Subject Glide slope Localizer Glide slope Localizer
std. dev. { Mean Std. dev. | Mean | Std. dev. | Mean Std., dev. | Mean
1 14.7 -8.0 41.6 8.0 14.5 ~-14.9 29.0 8.4
13.1 -27.3 25.6 23.7
8. -10.0 43,7 28,2
2 9.5 ~3.5 17.5 25.1 23.9 23.4 59.9 18.9
17.7 15.3 39.3 25.9

3 43,2 10.6

4 36.0 -31.1 88.6 63.8 22.2 -14.7 55.9 13.5
5 22.5 -2.2
6 13.4 -22,3 35.7 27.8 19.3 ~17.2 32.0 18.6
7 10.7 -1303 47.1 502 27.2 -1890 21 07 26.9
Mean 16.8 -15.6 45.6 23.4 18.3 =7.9 36.7 18.0
std. dev. 10.9 11.1 23.5 21.8 6.1 17.7 14.1 10.0

TABLE IIT.- RESULTS OF t-TESTS COMPARING DATA OBTAINED WITH AND WITHOUT
FLIGHT DIRECTOR

P-value
Test condition
Standard deviation Mean
5 nemi., glide slope 0.025 0.025
5 n.mi., localizer .05 >.40
1.25 n.mi., glide slope .0005 >.40
1.25 nemi., localizer .025 >.40
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Figure 1.- Instrument panel of simulator.
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