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I, INTRODUCTION

It is expected that large space structures will be placed into orbit in
the not-too-distant future. Such structures will lack the damping forces due
to ground reactions or to hydraulic or aerodynamic forces available to earth-
bound structures, thus, if they are excited dynamically by docking maneuvers
or by control reactions, they could be expected to continue vibrating for
hours or even for days.

It is this problem which is addressed in this report. The work to be
discussed divides roughly into two areas. In the first, the questions such
as how much damping is required, how are the dampers to be located, and how
their required performance can be specified are examined. In the second, the
design of the dampers is investigated, and is supported by the demonstration
of a prototype damper.

Work on damping requirements resulted in five computer programs and
proofs of two criteria for the optimum location of dampers. Also, a method
of minimizing "control spill over" by locating actuators was demonstrated,
and the characteristic equation of an undamped system using reanalysis theory
was derived.

Work on damper design included a review of possible systems. Since
hydraulic and pneumatic systems were eliminated for poor reliability, only
electromagnetic or piezo-electric systems were considered. Passive dampers
were eliminated because they need very fine tuning. Thus, only linear or
rotational dampers using active electromagnetic or piezoelectric drives were
left. A prototype linear damper using a moving magnet and a fixed coil was
built and demonstrated using a current feedback proportional to local
structure velocity.



II. TECHNICAL DEVELOPMENTS

1. Computer Programs

Several FORTRAN subroutines and programs were developed under
this grant. These are documented in Appendix A. The capabilities of
the programs are enumerated below.

Subroutines ASHD1 and ASMD2 compute the complex eigenvalues of a
damped system using the undamped modes of the structure as the
assumed modes (assumed mode method). In subroutine ASMD1, a diagonal
damping matrix must be used, whereas in ASMD2, a general damping
matrix may be used.

Subroutine SPSTGN solves the damped eigenvalue problem using a
reanalysis approach. It assumes a diagonal damping matrix.

Program COFZ computes the optimal (i.e., minimum) gains of a
diagonal damping matrix for specified damping ratios.

Program NORMAL is designed to rescale the mode shapes to unit
generalized mass and to make the rigid bodies orthogonal to each other
with respect to the mass matrix.

These programs are stored in the Langley computer.

2. Proof of Optimal Damper Location

In previous papers [Ref. 1 and 2] we have proposed two criteria
for the optimal location of a damper. They are the Minimum Constrained
Frequency Criterion (MCFC) for a single damper [Ref. 1] and the
Maximum Frequency Separation Criterion (MFSC) for multiple dampers
[Ref. 2]:

MCFC: The optimal damper location is where the constrained
frequency a is a minimum.

MFSC: The optimal locations of dampers are where the con-
strained frequency associated with the damper location
has the largest separation from the corresponding
undamped natural frequency of the system.
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In Ref. 1 and 2, these criteria are demonstrated using the
Langley beam and grillage models. These demonstrations show that in
choosing between sets of positions of dampers, the one that gives the
best results is the one that gives the greatest separation between
the undamped natural frequency and the corresponding constrained
frequency. In this section, an analytical proof of MCFC for a single
damper will be presented. The proof of the more general MFSC is
still under investigation.

Proof of MCFC

The oroof of MCFC is based on the existence of fixed
points in the frequency response curve when a single damper is
introduced into an n-dof undamped system. This is an extension of
the classical damped vibration absorber theory [Ref. 3], in which
Den Hartog showed that when a damped vibration absorber is attached
to a undamped SDOP main system, there are points on the frequency
response curve which are independent of damping. These points are
the fixed points [Ref. 3]. In this section, we will first show
the existence of fixed points when a single damper is introduced
into an undamped system. The responses at the fixed points can then
be evaluated from the undamped equation of motion. The MCFC can
then be proved using the characteristics of the resonance curve of
the undamped system near resonance.

Consider the case of an n-dof undamped system under sinusoidal
excitation

[M] {x} + [K]{x} - {Fie (1)

where [M], [K] are mass and stiffness matrices and {x} is the
displacement vector and (F) is the magnitude vector of the forcing
function. When a single damper at dof J is introduced into this
system, the equation of motion becomes

(2)

where

[C] = c{eJ}{eJ}
T (3)

{eT}T = [0 ... 0 1 0 ... 0]J
component

Let the steady state solution of (2) be

{x} = (X}e^°)t (4)



Then, use (3) and (4) the steady state response {X> can be computed
from

[Z(w)]{X> = {F} - C(jj{eJ}{eJ}
T{X} (5)

where

-<J2[M] + [K]

Define

[R(w)] •» [Z(fe))] (6)

and note that

{e }T{x) = x (7)
•J vJ

where (R } is the Jth column of [RJ. Premultiply (5) by [R] and use<J'
( 7 > to obtain

(X) = {X } -jo)c R X (8)
o <j o

Note that

= steady state solution of the undamped system

The Jth equation of ( 8 ) is

or

X = X -jwc R X
J oJ JJ J

X

R

Equation (8) together with (9) are the general frequency response
reanalysis equations when a damper c is introduced at dof J. It is
interesting to note that at the frequency a at which

R ( a ) - 0 (9a)



the response X is independent of damper gain c.
o

Thus, we have
shown the existence of fixed points for the response curve X fu>.
Furthermore, those frequencies are the antiresonant frequencies for
dof J. A typical frequency response curve for X (or to X . the
acceleration response) is shown in Fig. 2.1. In Fig. 2.1, point A is
the fixed point corresponding to the smallest root of Eq. (9aK By
definition of fixed point, all response curves pass through A

c=0

or
2

Fig. 2.1 Frequency Response Curve forIx I Showing fixed point A.
a is the frequency corresponding to point A.



regardless of the damper gain c. Thus, it is obvious the optimal c
( in terms of the smallest response > should produce a response curve
that peaks at point A. In other words, the optimal response curve
has a slope zero at the fixed point A.

From the above discussion, we know that once a damper location
is selected, the minimum response X is determined by the undamped

J
response at the fixed point frequency. Since near resonance, the
undamped response is monotonically increasing as the frequency is
approaching the undamped natural frequency from below, (see Fig. 2.2),
we conclude that the optimal location for lowest amplification for a
particular mode with undamped natural frequency o> is where (w -a )
is a maximum. n i

This proves MCFC for minimum frequency response. Our original
MCFC pertains to the modal damping ratio. Since modal damping is
closely related to the amplification factor we conclude that MCFC will
produce a design with maximum damping ratio.

Discussion

(1) In general, there are (n-1) fixed points for response X . where
n is the number of elastic modes of the system.

(2) The responses X (Î J) exhibits fixed points at frequencies
where

IXI _ - IX_ ! (10)
I c=0 I c=«

or from ( 8 ) and ( 9 ) , condition ( 10 > becomes

lxoi' ' lxoi - RIJ(W)XOJ'

which corresponds to the following two equations

xoi - xoi - RIJ(W)XOJ (12a)

and

xoi = -xoi + Rufwuoa (12b)

(3) Our proof only pertains to X . however, experience showed that
once X (w) is minimized, the other X (o»'s are almost optimal.

(4) The proof cannot be extended to multiple dampers since no fixed
points exist for the multiple damper case.
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3. Locating Actuators for Minimum Spill-Over

A frequently discussed problem in the control of LSS is that of
"control gpill-over". A method of minimizing the effect of control
spill-over is proposed in this section. It is shown that to control
n modes using n actuators, the spill over effect can be minimized
c a
by insuring that n secondary modes are not excited. This requires

3
n > n . The method described allows only nf = n - n of the n
a s a s a
actuators to be controlled independently. Conditions of actuator
placement is also indicated.

Consider a proportionally damped system whose finite element
model can be written as

M x Cx + Kx B u (13)

where M, C, and K are mass, damping, and stiffness matrices of the
system respectively, and x is the system displacement vector,
11 is the control vector and B is the actuator influence matrix.

In modal coordinates, (13) becomes

q + 2E u> cj B u (14)

where * is the modal matrix and is the solution of the undamped
eigenvalue problem

M (15)

C *

n

n

In general, only a few of the important modes are controlled.
Designate these modes as <| and the remaining modes as
q , the residue modes. Then Eq. (14) can be written as

8 '



2 T
q + 2E u> q + w q = * Bu

(16)
c c c c c c c

and

2 Tq + 2 E w q +<j q = * Bu
(17)

r r r r r r r

Now the physical response is given by

Hence, if q ^ 0, the physical response is influenced by the
uncontrolled mode. This effect is called control spill-over.

T
Examination of (17) shows that q / 0 if <$ B u ?* O.

It would appear then if we choose B such that

* B - 0 (19)

the control spill over problem is solved. Unfortunately, condition
(19) can not be met in general.

In the following, a simple technique of reducing the control
spill-over effect is described. Partition the residue modes into
a set of secondary modes -p and higher modes, with the higher modes
having negligible effects on the system. In this way, we have

x = * q + <t> q (20)
-c-c -3-3

Now, to minimize control soill-over, minimize q . or ultimately
—s

make q =0. The response q can be solved from

q + 2 E w ' q + u 2 q = * T B u (21)
3 S S 3 3 3 3

NOW if

* TB u = 0 (22)
s

then

Rewrite (22) as



A u =0 where A = * B- - s (23)

Assume n < n , then partition A and u intos a ~ -~

A = [A. • A ], with A nonsingular

u =
u .
i

u
(24)

Using (24), (23 ) becomes

Prom (25) , solve for

(25)

Hd - - (26)

Thus, if

u =
Hi

Hi (27)

Then the condition (22) will be met. Check

* Bu = A u = [ A . A,]S - — — — i (j

.d i

(A. - A.)u. = 0

Equation (25) implies that out of the n actuators, only n' = n -
n of them can be controlled independently. Define
s

D =•
,̂ .
d i

(28)

then

u - D u. (29)

10



Substitute (29) into (16) to get

2 Tq + 2 E w q + < i > q - * Bc c c^c c c -c
n xn nxn n xn1 n'xlc a a

The design problem is then to choose u. to control q
in

(30)

q + 2E w q
^c c c ̂ <

2 T
i) q - * B' u1
c c -c (31)

where

I

-1
B1 - B D = B

u = u .

A => [* B]
— — S

Note that the placement on actuator should be such that one can
find a non-sinqular n xn matrix A^ from the matrix A.s s —d —

4. Characteristic Equations for Undamped System with

Generalized Control Law

• The characteristic equation of an undamped system with a
generalized control law is derived using reanalysis theory in this
section. This equation can be implemented in the computer programs
for efficient eigenvalue analysis or control gain synthesis.

Consider an undamped n-dof system with n —actuators, the
equation of motion can be written as

M x + K x (32)

where M. K are the nxn mass and stiffness matrices
respectively, u is a n xl vector, i.e.,

U.

u
U
n

II1



B is the nxn Boolean distribution matrix with n nonzero
rows. We will designate X and X as the dof locations
for actuator and sensors respectively. Now define

X = B *x - n xl vector-a -a - a

X = B *x - n xl vector
3 ~S "~ 8

then we conclude that

(33)

B » B
- -a (34)

Furthermore. assume X is contained in X , and partition
X_ as ~s

x
-s

X
-a

x
-r

(35)

Now, the system dof can be partitioned either as

x »

r -I

X
-a

x
-r J

or x =

x
-a

-bu
X
-c .

Note that

x =
-r

x
-c

Also note that

n = n + n = n + n. + n
a r a b c

Now, express

x - B x + B. x
-s -a- -b-

(36)

Assume the control law is

12



u - -(c x + c, x, -«• k x + k, x. )-a-a -b-b -a-a -b-b (37)

Substitute (6) into (1), so that for the closed loop system

M x + K x = -B (c x + c, x. + k x + k. x. ) (38)- - - - -a -a -a -b -b -a - -b -b
nxn n xn, n xn. n xn. n xn,a a b a b a b a b

or, assuming

x = Xest (39)

2 —1
and letting R = (sM + K) equation (38) becomes:

x = -R B (sc x + sc. x. + k x + k, x, )- - -a -a -a -b -b -a -a -b -b

or
x - -R B [(sc + k )x + (sc. + k. )x. ]- -a -a -a -a -b -b -b (40)

and finally

x = -R B [(sc + k ) (sc. + k, )]- - -a -a -a -b -b

x-a

Now, premultiply (40) by B to produce (41) and premultiply
T -a

(4O) by R to produce (42).

n T

B x-a -

_ T
5b 5

T
= -B R B

-a - -a

T
" ~Bw R B-b - -a

[?a

«.

Bb'

Hb1

X-a

X-a

(41)

(42)

Use the definition

x = B x
-a -a -

- 5b

13



H = [H H ] - [sc + k sc + k. ]-a -c u -a -a -B -b

A
X

X-a

Equations (41) and (42) become

x = -R-a -ac H
A
X

n xl n xn n xn1 n'xla a a a

x,_ - -R. H-b -be
A
x

where

n ' n + n.
a b

n.xl n. xn. n. xn1 n 'xlb b o b

R = portions of R associated with x only
"~3ta ~" """i

R = portion of R associated with the coupling
between x and x^

-a b̂

Rewrite (43) as

(43)

or b J

-R H
aa

-R. H
ba

A
x

A
X

-R H
aa
.ba

n

A
x

det[I +
R H
aa -

H

thus

det

I + R H
aa -a

,
aa -b

R,_ H [I + R. H. ]
ba -a ba -b .

- 0 (44)

14'



is the characteristic equation of the closed loop system where

H - sc + k
-a -a -a H. = sc_ + k.-b -B -b

For the 2-dof system shown in Figure (4.1)

Ul = - CbX2)

H - sc
a a

H. = sc. x = x,b b -a 1 X • X
-b 2

R = R,_aa 11 R = RKbb 22 Rba = R21

Thus, Eq. (14) becomes

det 1 + sc R, ,
a 11

. 8CaR21

SCbRll
SCbR21 .

= 0

u. m.

Fig. 4.1
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5. Damper Design

Possible methods of controlling vibrations on large space
structures have been reviewed. Two basic approaches are identified:

1. Modification of the control system so that the poles are well
damped. This approach is based on the assumption that the
major, if not only, cause of vibrations is the control
system itself.

2. Addition of a separate damping system, which might be:
2.1 Passive damping
2.2 Active damping

The working medium of a ground based damper of either kind
might be electromagnetic, but it would more probably be hydraulic
or pneumatic, or, in the case of passive systems, magnetic or
frictional. For space applications, hydraulic, pneumatic, and
frictional systems must be ruled out as too unreliable in the space
environment when little or no maintenance is possible. This
leaves electromagnetic, magnetic, and possibly new systems based
on the piezoelectric or other effects.

A list of possible systems is given in Table 5.1. The active
damping systems using electromagnetics are assumed to incorporate
coils moving in the fields of permanent magnets. The current in a
coil would be provided by an electrical circuit in response to the
output from one or more sensors. For the purpose of this study, such
a circuit is assumed to introduce a negligible weight penalty, whereas
the permanent magnet is considered to be a significant weight item.
Similarly, the permanent magnet in the eddy current damper of a
passive system is also considered to be a significant weight item.
For systems which require a moving mass, such as the seismic mass of a
passive system, or the mass in an active inertial system, it would
therefore seem to be advantageous to combine the roles of moving mass
and magnet in order to save weight. On this basis, the gyro concept
might have a considerable weight disadvantage, because it would be
impossible to combine the magnet and the flywheel.

Table 5.1. Possible Damping Systems

1.0 Modification of Control System
2.0 Damping System

2.1 Passive Damping: Magnet and conductive strip
2.1.1 Seismic mass with stationary magnet
2.1.2 Magnet as seismic mass
2.1.3 Gyro
2.1.4 Two-force member

2.2 Active Damping: Electromagnetic
2.2.1 Separate mass and magnet

2.2.1.1 Linear
2.2.1.2 Rotating ( inertia wheel)

2.2.2 Moving magnet
2.2.2.1 Linkage system
2.2.2.2 Rack and pinion

2.2.3 Gyro
2.2.4 Two-force member

2.3 Active Damping: Piezoelectric

16



In comparing active against passive damping, the relative
disadvantage of requiring an electrical system for the former must
be weighed against the need to tune the seismic mass to a given
frequency, so that the latter is essentially a narrow band device,
whereas the active damper is relatively broadband.

The systems mentioned in Table 5.l are discussed in more detail
below.

Modification of Control System (l.O)

Modern control theory prescribes methods for designing
control circuits having poles in any desired location, thus active
damping can be achieved directly at the major source of disturbances.
A very simple example is illustrated in Figure (5.1) which shows a
one-dimensional system consisting of two masses connected by a
spring, having one rigid-body translational mode, and one vibrational
mode. Suppose that the impulse from a thruster is applied at one of
the two masses. The vibrational mode will be excited and the system
will move off with one mass coming to rest every half cycle. Now
suppose that there are two thruster impulses applied one half-period
apart, then the system will move without any internal vibration after
the first half-period. Applied on a very much larger and more
complex scale, such an approach could be used to maneuver a large
space structure without any residual vibrations of serious amplitude.

passive Damping (2.1)

The only reliable method of passive damping appears to be
through the use of a magnet and a conductive strip. When the strip
is passed between the poles of a magnet, eddy currents are induced in
a direction normal to the velocity and to the magnetic field, and the
effectiveness of such a damper is directly proportional to the
product of electrical conductivity, magnetic field strength, and pole
area. Unfortunately, the damping forces so produced are relatively
small at frequencies of interest.

Four possible systems are shown in Figures (5.2) to (5.5). The
first, system 2.1.1 in Figure (5.2), is a seismic damper, while for
system 2.1.2 in Figure (5.3) the magnet doubles as the seismic mass.
For system 2.1.3 in Figure (5.4), the magnetic damper is used in
conjunction with a gyro to provide damping against angular motion of
the structure. Finally, for system 2.1.4 in Figure (5.5), the
magnetic damper is used in a two-force member spanning part of the
large structure.

Active Damping: Electromagnetic (2.2)

In the active damping system, energy is removed from the
structure by the action of an electromagnetic actuator or an electric
motor. For the purpose of illustration, a voice-coil shaker of the
type used for vibration testing has been assumed for the analyses of
the active systems in the appendices. Such shakers are relatively
heavy, because they contain powerful permanent magnets, although
careful redesign for space applications might result in considerable

17!



time

SINGLE IMPULSE
displacement

DOUBLE IMPULSE, 2nd IMPULSE APPLIED
ONE HALF PERIOD AFTER 1st IMPULSE

Fig. (5.1) 1.0 Modification of Control System
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Figs,. (5.2)-(5.5) Passive Damping Systems

magn

Fig. (5.2) Seismic'Mass, Stationary-Mass (2.1.1)

conductor

spring

\ \V\ \ N \ \ \ \ \ \ \ \ N \ \ \ \ \ \ \ N \ \ ^ \ \ > \

Fig. (5.3) (2.1.2) Magnet as Seismic Mass

gimbal axis

inertia wheel

magne
conductor

Fig. (5.4) Gyro System

conductor

axis of
structural
rotation

Structural vibration

Fig. (5.5) (2.1.4) Two-Force Member
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weight reductions. However, the weight penalty is directly
proportional to the maximum energy which can be removed per cycle, as
is shown in Appendix B. The design problem with a damper of this
kind is that of ensuring that this maximum energy reduction per cycle
is in fact available.

The system would be driven through a current amplifier from
the difference between two integrated accelerometer signals, one
from the structure, and one from the moving mass. Thus a force
would be applied to the structure which would be directly
proportional to the local velocity of the structure.

The major problem to be faced is how to provide an appropriate
reaction on the structure so that as much energy is removed per cycle
as is possible. One approach, shown as system 2.2.1.1 in Figure
(5.6), employs a moving mass. As is shown in Appendix B, this system
can be designed for peak performance at a given frequency. Above this
frequency, performance is limited by the maximum available shaker
force, while below this frequency, performance is limited by the
maximum displacement available. An analogous rotarysysten,
2.2.1.2, shown in Figure (5.7) uses an electric motor driving an
inertia wheel.

System 2.2.2.1 in Figure (5.8 ) is an improvement on the previous
system, in which the shaker magnet doubles as the moving mass. A
second version is shown in Figure (5.9). In Figure (5.8), the
actuator motion is amplified by a "lazy tong" linkage. Such a linkage
would not be practical, but could be used in a laboratory
demonstration. In the second system, 2.2.2.2., Figure (5.9). the
shaker is replaced by an electric motor which drives itself up and
down a shaft with a rack-and-pinion gear.

System 2.2.3 shown in Figure (5.10) is similar to system 2.1.3
shown in Figure (5.4) except that the passive damper has been replaced
by an active electromagnetic damper, while system 2.2.4 shown in
Figure (5.11) is a two force member corresponding in a similar way
with system 2.1.4 in Figure (5.5).

Active Damping: Piezoelectric (2.3)

Acoustical transducers have been made from polyvinylidene fluoride
(PVF ) sheet, aluminized on both sides. The sheet is polarized, so

that when a voltage differential is applied between the aluminized
coatings, the material strains in one direction. Conversely, when it
is strained, a voltage differential is induced. If the material is
bonded to the surface of a structural element, a surface shearing
force can be induced which will load the structure, and, if properly
controlled, is capable of introducing damping. Proper use of such a
material evidently depends on new approaches to structural dynamic
analysis, but is certainly worthy of consideration.

Electronics

The active systems would be driven by feedback circuits. Such
a circuit is shown in Figure (5.12), which repeats system 2.2*1.2 of
Figure (5.8) with the addition of a circuit which compares md y/dt and
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cdx/dt as derived from two accelerometers, the difference being used
to drive the voice-coil current through a amplifier.

Comparative Performance

For a preliminary comparison of performance capability, two
figures of merit can be considered.

1. Energy removed per cycle per unit mass at design
frequency, Vn/mm

2. Bandwidth

In Appendix B, the value for WD/™», achieved with system 2.2.2.1 in
Figure (5.8) under design conditions is shown to be .0619 J/kg. which
is 79% of the maximum possible capability of a voice coil shaker.
This was twice as good as the best system 2.2.1 arrangement of Figure
(5.6). Therefore, it is tentatively concluded that other active
damping systems, such as the inertia wheel, in Fig. (5.7), or the two
force member, in Fig. (5.11), cannot be much better if they are based
on electromagnetic action. Passive systems, being based on magnets,
are probably no better, although this has not been investigated.

Performance of the active system, based on rate of energy
removal, is constant above the design frequency, but rolls off below
it. In contrast, the passive system is narrow-band and has to be
tuned to a given frequency.

It is shown in Appendix C that the PVF piezo-electric
material has the potential for work per cycle of as much as 4 J/kg,
which is more than 30 times that of the voice-coil shaker. On the
other hand, using the minimum property values available, the work
per cycle could be as low as .005 J/kg, which is less than one
tenth as good as a voice-coil shaker. One of the most critical
properties is the dielectric field strength. E . since a dielectric

N
breakdown causes an explosive failure, it might be necessary to
allow quite a large safety margin, so that PVF might prove no
better than voice-coil shakers.

Conclusion of Review

It is concluded from this series that an electromagnetic
actuator, suspended in such a way that the magnet forms part of the
moving mass, is the most promising approach for immediate
application.

Design of Experimental Damper

It was decided, as a result of the review, that an electro-
magnetic damper should be investigated experimentally, and that
one should be developed for use on the scale model grillage at
the NASA Langley Laboratory. The following design criteria were
used initially

Maximum Force = 1 Ibf = 4.45 N
Design Amplitude =0.5 in. = O.O127 m.
Design Frequency = 0.36 Hz
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Instrumentation

Accelerometer on moving mass - NASA supplied
Accelerometer on grillage - NASA supplied
Electronics - off grillage - NASA supplied

A design which meets these requirements is shown in Fig. (5.13).

Description of Damper

The magnetic flux is supplied by the two toroidal samarium-
cobalt magnets. The remainder of the magnetic circuit is temporarily
completed with mild steel, which has a high saturation flux, and can
therefore be designed for minimum weight. However, pure iron will
be substituted when it becomes available. The annular gap is large
to accomodate the windings of the fixed coil, this dictates a design
which minimizes flux leakage at the gap. For example, two magnets
are used where one would suffice if the gap were small, also, the
internal diameter is larger than is required merely for clearance.

The entire magnet assembly moves along a hardened steel shaft
on linear bearings, with one inch of useful travel. An
accelerometer is attached to the moving magnet to feed back the
acceleration of its mass, which is directly proportional to the
damping force. The fixed coil has a Delrin core, and is designed to
take ten layers of 26 gage magnet wire.

An outer case of polycarbonate tubing is used to keep the
linear bearings clean. It also holds a track in which a small ball
race moves to prevent the magnet from turning and thereby twisting
the leads to the accelerometer. The end cap of the cover is
removable so that the accelerometer leads can be connected to
terminals.

Magnet Analysis

The samarium cobalt magnets have the following specifications:

Outside Diameter = 0.75 in.
Inside Diameter = O.43 in.
Magnetic Induction = 800O Gauss

=0.8 Tesla

The following is calculated:

Magnetic Flux = 153 micromaxwells

The remaining circuit is designed so that the magnetic flux
density in the mild steel does not exceed 66% of the 2.1 Tesla
saturation flux density.

For the purpose of the subsequent analyses, the total 153 uM
flux is assumed to cut the coil windinas.
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Analysis of Coil

It is assumed that each of the ten layers of 26 gage wire
contains 67 turns, based on the following analysis

Spool length •» 1.25 in.
Diameter of bare wire = O.O15945 ins
Diamater of enamelled wire (measured) = O.O1772 ins
Winding efficiency - 67 x 0.01772/1.25 = 0.95 » 95%
Turns per meter = 10 x 67 x 39.37/1.25 = 21100 m"1

The relationship between the force acting, P, the flux <J>, the
turns per meter, n, and the coil current A is developed as follows.
Assume an effective coil diameter D, and a gap width w , then the
flux in the gap is

B - */TT D w
(5.1) gap g

The length of wire immersed in the gap is

L - IT D n w
(5.2) gap g

and the force acting between the coil and the magnet is

F = I B L - *nl
(5.3)

gap gap

For a force of one Ibf, or 4.45 N

I - F/n * = (4.45)/(21100) (153 x 10~6) - 1.38 A

In operation, this would be a peak value, the actual DC current
monended for 26 gage wire is 0.51 A, based on
") at 5OO per A. Thus a damper operating cont

amplitude would be limited to a maximum force of

recommended for 26 gage wire is 0.51 A, based on 254 circular mils
(in ) at 5OO per A. Thus a damper operating continuously at maximum

F = V? (0.51/1.38) = 0.52 Ib
max

However, during tests, peak amplitude will vary, so that the
damping constant can be set to correspond to a much higher maximum
force without causing excessive heating in the coil. The resistance
of the coil, based on 0.0410 ohms/ft., and a mean diameter of 1.2
ins, is

R - (0.0410)(10)(67)(1.2)w/(12) - 8.63 Ohms

Other estimates, based on different values for resistivity,
have been as high as 23 Ohms. Based on 8.63 Ohms, the peak voltage is
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Vmax - (1.38)(8.63) - 11.9 V

Vmin = -11.9 V

Analysis of Damping Constanta

If we redefine K so that it is the ratio of structural
amplitude Ix I to damper amplitude, D,., i.e.,

K - IX I/D (5.4)
o m

then, from Eq. (B .2 ) of Appendix B

1/K2 - 1 + c2/u2m 2 (5 .5)

also, with the linkage ratio R set to unity, Eq. (B.I) can be
written as

F/F = we D K/F (5.6)
m in in

For the present design, the following values are anticipated

m = 0.428 kg

D - 1/2 inch = 0.0127 ro
m
F - 1 Ibf = 4.45 N
m

From Eq. (5.5), we can construct the following table for the damping
constants, c.

Table 5.2 Values of Damping Constants

K

.8

.5

.3

.1

'V
(m)
.0102
.0064
.0038
.OO13

c/w
(kg)
.321
.7413

1.361
4.259

f = .35HZ

.7059
1.630
2.993
9.37

C (Ns/m)
f = 1 Hz

2.017
4.658
8.551
26.76

f = 3.5HZ

7.059
16.3
29.93
93.7

and from Eq. (5.6) we can construct the following table for the
corresponding force ratios, F/F .

n
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Table 5.3 Force Ratios

.35Hz f = 1 Hz 3.5HZ
,(m)

.8

.5

.3

.1

.0102

.0064

.0038

.0013

.00354

.OO511

.00563

.00588

.0289

.0418

.046

.0480

.354

.511

.563

.588

Note that the full force capability of the actuator is not
required until the frequency exceeds 3.5 Hz.

In the proposed design, the damping constant c will be set by
the electronic circuit. Suppose we pick a value of 2 Ns/m and
examine the corresponding values for K and F/FM as given by Eqs. (5.5)
and (5.6). Note that a value for K of unity could correspond to a
peak-to-peak structural amplitude of one inch while a value for F/F
of unity would correspond to a maximum force of one Ibf, the design
value. The results are given in Table 5.4.

Table 5.4 Values for K and F/F when C
H

2 Ns/m, (Eqns. 2 and 3)

f(Hz)
.1
.2
.3
.35
.4
.5
.8
1.0
1.5
2.0
2.5
3.0
5.0

K
.133
.261
.374
.426
.474
.558
.732
.802
.899
.937
.958
.971
.989

F/FM
.00048
.00185
.00403
.00535
.00678
.010O6
.0210
.0288
0.0484
.0672
.0859
.1045
.1773

Note that the maximum force is not approached even at 5 Hz.
Had a larger damping constant been used, these forces would have
been larger, but the value for K would have been smaller. For
example. Table 5.5 shows how K varies with c at frequencies of 0.35,
1.0 and 3.5 Hz.
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Table 5.5 K vs. c (Eqn. 2)

c
Ns/m

0.1
0.2
0.3
0.4
0.6
0.8
1.0
1.5
2.0
2.5
3.0
5.0
10.0

0.35 HZ

.994

.978

.953

.920

.843

.762

.685

.532

.426

.352

.299

.185

.094

K
1.0 Hz

.999

.997

.994

.989

.976

.958

.937

.873

.802

.732

.607

.474

.260

3.5 Hz

1.000
1.000
1.000
.999
.998
.996
.994
.988
.978
.966
.953
.883
.685

None of the examples shown in Table 5.5 correspond to a value
for F/F exceeding unity. Thus, the present design, if achieved,

CO
should be adequate for all of the cases shown, provided that c
is set at 2 Ns/m or less.

Preliminary Tests

A prototype unit was built from the design shown in Figure 5.13.
a photograph of this unit is shown in Figure 5.14, while the analog
circuit used in an initial test of the unit attached to the NASA
grillage is shown in Figure 5.15.

Because of the possibility of hitting the stops when the moving
mass is not centralized, a spring was added to the system which gave
it a natural frequency of about 2 Hz. Using switch no. 2, the system
was-excited at a natural frequency close to 4 Hz., then it was
switched to feedback control, and the resulting damping was observed.
Through switch no. 1, the inner feedback loop incorporating the
accelerometer mounted on the moving mass could be included at will.
When it was excluded, rapid damping of the 4 Hz. mode was observed,
but when the inner loop was included, the system at first damped,
and then went unstable at a frequency lower than 2 Hz.

It was concluded that the accelerometer on the inner loop could
be discarded, but that an inner loop should be incorporated which
included an LVDT to measure position. Thisvway, a very low natural
frequency could be simulated for the system, while a bias voltage
could be applied to offset gravitational effects. At the same time,
studies should continue on a system which incorporates an inner loop
accelerometer.

Conclusions

An experimental damper has been designed in which a mass of
.428 kg ( .95 Ibm) moves over a peak-to-peak amplitude of one inch
under a programmed force which can be as much as one Ibf. The
desicrn includes an accelerometer attached to the mass.
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The programmed force is to be produced from the generation of a
current in an amplifier driven by the difference between a signal
proportional to the structural velocity and one proportional to the
acceleration of the mass. Thus a damping force c will be generated
.on the structure.

Tentatively, the following design values are suggested

Damping constant = 2 Newton sec/meter

Design frequency = 0.35 Hz

Structural Amplitude = .43 inches peak-to-peak

From early experience with the prototype, it is concluded that
the inner-loop accelerometer should be replaced by an LVDT if an early
working system is required. However, research should continue into
the use of the inner accelerometer. and an alternative to the LVDT
should be found if dampers with longer strokes are found to be
desirable.
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III. CONCLUSIONS

In conclusion, this work has covered two aspects of the problems involved
in damping large space structures. On the one hand, the analytical problem of
locating dampers has been investigated, while on the other, the problems of
damper design have been reviewed. These considerations are summarized below

(1) Five computer programs have been developed. They are

(i) ASMD1 - Assumed mode method with diagonal damping matrix
(ii) ASMD2 - Assumed mode method with full damping matrix
(iii) SPSTGN - Damped eigenvalues using reanalysis
(iv) COPZ - Optimization of damper gain
(v) NORMAL - Orthonormatization of mode shapes

(2) Proof has been presented for two criteria for the optimal location of
dampers. They are:

(i) MCFC - That the optimal single damper location is where the
constrained frequency is a minimum

(ii) MFSC - That the optimal locations of several dampers are where
the constrained frequency associated with the damper
location has the largest separation from the corresponding
undamped natural frequency of the system.

(3) A method of minimizing the effect of control "spill-over" has been
proppsed and demonstrated.

(4) The characteristic equation of an undamped system with a generalized
control law has been derived using reanalysis theory.

(5) A review of possible damper designs has been conducted. It was
concluded that the most promising designs are active systems, using
electromagnetic or piezoelectric actuators with linear or rotational motion.

(6) A prototype linear electromagnetic damper was built and demonstrated
using a moving permanent magnet. The damper is driven by feedback from an
accelerometer, mounted in the structure, and integrated to provide a feedback
force proportional to structural velocity, it was found necessary to
incorporate a centering spring which will be replaced in future designs by a
position feedback from an LVDT or other device.
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Appendix A-l

Subroutine ASMD1

Assumed Mode Method - Diagonal Damping Matrix

I. INTRODUCTION

ASMD1 is a FORTRAN subroutine, based on the assumed mode method,
that can be used to compute the eigenvalues of a damped system. The
eigenvectors of the undamped system are used as the assumed modes.
When all modes of the undamped system are used, the method is
equivalent to a direct solution. Experience shows that retaining 1/3
to 1/2 of the modes of the original system in the assumed mode method
usually leads to accurate eigenvalues while providing considerable
savings in computer time.

II. ASSUMED MODE FORMULATION

Let the free vibration of a damped system be described by

[m]{x} + [c]{x) + [k]{x) = {0} (Al.l)

where [c] is a diagonal damping matrix. Let {-P.}, w. be the solution
of the corresponding undamped problem 1 x

Furthermore, assume the mode shapes are normalized to unit
generalized mass, i.e.,

Pi} = 1.0 (A1.3)

Define

L
(x) = E (f }q - [*] {q} (A1.4)

« = 1 I 9.

nxl nxL Lxl

where L is the number of modes used. Substitute (A1.4) into (Al.l)
T

and premultiply [$] to get

* •

[ I ]{q) + Cc]{q} + [ A ]{q) = {0} (A1.5)

where

A3'1



Set

[ I ] = LxL identity matrix
7

[ A ] = [ 0). ] = LxL diagonal matrix

[c] = [*] [c]t«] = LxL full matrix

q
••> ' qI 2 i L

2Lxl

(A1.6)

Then, (A1.5) becomes

By definition (A1.6)

Place (A1.7a), (A1.7b) together

A ]{Z 2} (Al.Ta)

(A1.7b)

{z} = [A]{z) (A1.8)

where

[A]

-[c]

[I]

-[ A ]

[0]

-t*]T[c][*]

[I]

-[

[0]

A standard eigenvalue problem can be formulated from (8) and solved
using the routine RESV in the NASA Langley library.

I l l INPUT PAEAMETERS

III.l Formal Parameters

Description of the 6 formal parameters

Nz number of DOF's of the original system
NC: number of dampers
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IPRT: Dynamical matrix ([A] in (8)) printing flag,
= 0 no printing
= 1 print

III.2 Common Blocks

In addition to the formal parameters, the following variables
enter the subroutine ASMD through the common block set contained in
file COMASMD. This file must be placed in the main program.

NTITLE(I): a holerith array of up to 8O columns which is used to
define the title of the job

JC(I): damper location (DOF) of the Ith damper
C( I): initial damper values
WN(I): -undamped natural frequency of the ith mode
PHI(J,I): mode shape coefficient at dof J of the Ith mode
MM: number of modes used in the assumed mode method

IV. OTHER SUBROUTINES USED

ASMD calls NASA Library routine RESV to compute the eigenvalues
of the dynamical matrix [A]. The computed complex eigenvalues are
stored in array ER( I) and EI(I), which are the real and imaginary
part of the Ith eigenvalue of matrix [A].
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V. USING SUBROUTINE ASMD

The following is a sample program that calls routine ASMD1.

PROGRAM TLSTACHINPUTpOUTPUTflAPElZ)
C
C

DIMENSION GOO)
COMMON / DATA1 /C<50)
COMMON / DATA2 / PHI (77»?9> »UN<77>
COMMON / DATA3 / EICDATA (10 r 20 , 4 ) , DAMP C *,0 >
COMMON / DATA4 / NT1TLE(80> » JC(SO)
COMMON / DATA5 / NM
COMMON / DATA6 / NDP
COMMON /DATA7/ER<77)rEIC77>

C
C

DO 1 I=l>50
1 C<I>=0.0
C
C INPUT SECTION
C

READ 10, (NTITLL(I), 1-1,00)
PRINT 10»<NTITLE<I)»I=1»80>

10 FORMAT(OOAl)
READ *,N,NM,NC

PRINT *,N,NM,NC
DO 20 1=1, NC
READ «,JC(I),C(I)

PRINT *,JC(I),C(I)
20 CONTINUE

READ *»IPRT
PRINT *»IPRT

C
DO 5010 I =1,NM
READ*, UN(I)»G(I>

PRINT*, UN(I) ,C(I)
READ*, (PHK J,I) ,J=1,N)

PRINT** (PHI <J»I)»J*1,N>
5011 TORMAT(5E16.7)
5010 CONTINUE

PRINT** «N UN 0'
DO 9? l=lfN

99 PRINT*,I,UN(I) ,G(I)
PRINT*»'PHI'
DO 5'99 J=»1»N

999 PRINTtt <PHKJ»I)rI-l»N)
C
C
C
C

CALL ASMD1(N»NC»IPRT>
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VI. PROGRAM LISTING

u
SUBROUTINE ASHD1(N»KC>IPRT)

C
C
C THIS PROGRAM USED THE AGDUNELi MODE METHOD 1 fJ COMPUTE
C COMPLEX EIGENVALUES OF A DAHPl.D SYSTEM.
C DIAGONAL DAMPING MATRIX.
C THE PROGRAM IS A MODIFICATION OF PROGRAM CHIC 1/13/C2
C
C

COMPLEX CMCOF.IG
COMMON / DATA1 /C(50)
COMMON / DATA2 / PHI(99»99)rUN(79)
COMMON / DATA3 / EIGDAIA(40r20r4)yDAMPC40)
COMMON / HATA4 / NTITLE<80)»JC(50)
COMMON / DATA5 / NM
COMMON / DATA6 / NDP
COMMON /DATA7/ERC79)»EI(99)

C
DIMENSION DYEXAU(99»99>>V(79f&)»UK(270)

C
C

MAX^-99
NMD=2*NM
N = NMD

C
C FORM DYNAMICAL MATRIX
C

NN=2»NM
DO 100 1*1»NN
DO 100 J=1»NN

100 DYEXAC(I» J) ̂ =0.0
DO 200 I^lrNM
IN=I+NM
DYEXAC(I»1N)=-UN<I)*UN(I )
DYEXAC(IN»I) :1,0
DO 200 J=1»NM
DO 200 L-lfNC
K=JC<L)

DYEXAC(I,J) -DYEXAC(ItJ)-C(L)*PHJ(K»I)*PH3 (Kr J)
200 CONTINUE
C

PRINT*» •**##******«*:{:«:#**>}• OUTPUT «*$«*$«*>::
PRINT 11

PRINT 10» (NTITLEd )»I" 1»80)
10 FORMAT(SOAl)
11 FORMAT<//>

IF(IPRT.EQ.O) GO TO 210
C

PRIMT 201
201 FORMAT(lHl»///»* DYNAMICAL MATRIX IB *///)

DO 202 I-1»NN
202 PRINT 205» (DYEXAC(1»J)»J=1»NN)
205 FORMAT(/f5Xt5E1S.6)
210 CALL RESV(MAX»N»DYEXAC»ERtEl»0»OrV»UK»lF.RR>
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c
PRINT 1020iNM

C
PRINT*t'***** DAMPERS *****'
PRINT*.• PLACEMENT(DOF) VALUE-
DO 666 I=1»NC

666 PRINT**' '»JC(I)»' ',CU>

1020 FORHAT(/f 10X>* ASSUMED MODE MtTHU).i» USE *»I3>»* MOCKS.*./>
PRINT 11
PRINT**'THE DAMPED EIGENVALUES:'

C
DO 333 II«1»NMD

333 PRINT»flitER<II)f'+'»E1(II)t'J'
PRINT 11
PRINT 11

9979 CONTINUE
END
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VII NUMERICAL EXAMPLE

To illustrate the use of ASMD1, the 2 dof system of Fig.
(Al.l> is used. A damper of c = 2.3 is attached toiflof 2. The
input data and control cards for this sample problem are shown in
Table 1. The output is given in Table 2.
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Table 1 Control Cards and Input Data for Sample Problem

The test program TESTAS1 can be run through the use of the
following job files

/JOB
BPU,CM300000»T1000.
UCER,&77121E.
CHARGE i 102423 »LRC.
DELIVER. 1293B D UVA
ATTACH, FTNMLIB/UN*LIBRARY.
GET»TESTAS1.
M A P ( O F F ) .
FTN » I=TEST AS1 » L=0 » OPT=1 » B«
LDSET.LIB-FTNMLIB.
F.
REUINDrOUTPUT. .
COPYEI. OUTPUT i OTTAS1.
RCPLACE»OTTAS1.
DAYFILE»L=DATAS1.
REPLACE»DATAS1.
EXIT.
RCUIND, OUTPUT.
COPYEI » OUTPUT »XOTTAS1.
REPLACEiXOTTASl.
DAYFILEtL=XDATASl.
PACK»XDATAS1.
REPLACE, XDATAG1.
/EOR

12?3U UVA

2 2 . 3 - 4
0 a

OfiHfft; QOf 1

0.577t 0,577
1.2 ,1
0.316»-0.400 ̂
EOI ENCOUNTERED.
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Table 2 Output of Sample Problem

TEST: 2-noF FREE SYSTEM?TEST ASMDI

ASSUMED MODE METHOD* USE

***** DAMPERS *****
PLACEMENT(DOF) VALUE

2 2,3

2 MODES

THE DAMPED EIGENVALUES:
1 O.+O.J
2 -.8999940753023+0.J
3 -.1243049123488+1.122804973927J
4 -, 12430491234 88 + -1 . 1?280497391!/J
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Appendix A-2

Subroutine ASMD2

Assumed Mode Method - Full Damping Matrix

I. INTRODUCTION

ASMD2 is a FORTRAN subroutine, based on the assumed mode method,
that can be used to compute the eigenvalues of a damped system. The
eigenvectors of the undamped system are used as the assumed modes.
When all modes of the undamped system are used, the method is
equivalent to a direct solution. Experience shows that retaining 1/3
to 1/2 of the modes of the original system in the assumed mode method
usually leads to accurate eigenvalues while providing considerable
savings in computer time. ASMD2 allows a full damping matrix to be
used.

II. ASSUMED MODE FORMULATION

Let the free vibration of a damped system be described by

« •
[m]{x} + [c ]{x) + [ k ] { x > = {0}

where [c] is a diagonal damping matrix. Let (f>.}, u». be the solution
of the corresponding undamped problem l x

(A2 .2 )

Furthermore, assume the mode shapes are normalized to unit
generalized mass, i.e.,

(•P • ) O] (-P • } = 1-0 (A2.3)

Define

L
{X} = £ {? }q = [*] {q} (A2.4)

£ = 1 ft *

nxl nxL Lxl

where L is the number of modes used. Substitute (A2.4) into (A2.1)
and premultaply by [4>] to get

t I Hq) + [c](q) + [ A ]{q} = {0} (A2.5)

where
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Set

[ I ] = LxL identity matrix
2

[ A ] = [ u> ] = LxL diagonal matrix

[c] = [<D] [c][*] = LxL full matrix

(z )

r . 1
q

2Lxl

Then , ( A2 . 5 ) becomes

(A2.6)

(Z1) = -

By definition (A2.6)

- [ A ] { z ) (A2.7a)

Place <7a), (7b) together

{z} = [A]{z} (A2.8)

where

[A] =

-[c]

[ I ]

-[ A ]

[0] [ I ]

,2 ] '

[0]

A standard eigenvalue problem can be formulated from ( A2 . 8 ) and solved
using the routine RESV in the NASA Langley library.

I I I . FORMAL PARAMETERS AND CALLING ASMD2

The subroutine ASMD2 is called with the statement:

i
CALL A S H D 2 ( N > N M f N R O U C » C f P H I » U N » K F < f F . I . N l l T L E i IF 'RT)

The formal parameters are defined as follows:

N= N . D t O . F . IN THE SYSTtM
NM= NO. MODES USED IN THE ASSUMED MODE CALC.
N R O U C = NO. OF ROWS IN THU P IH . S T A U H F N T FOR C|PHi , U K t K R i El

IN THE C A L L I N G P R O G R A M
C= THE D A M P I N G M A T R I X
P H I = T H E M O D A L M A T R I X - f . I G E N v E C T O K S N O R M A L I Z E D T O U N I T KASS.
UN^ VECTOR OF U N D A M P E D E I G E N V A L U E S . I
E R » E I = VECTORS C O N T A I N I N G THE REAL AMD II ' .Afi. PARIS UF THE. E ? G F N «

OF THE D A M P E D SYSTEM. /^/wcj*
N T I T L E = A V E C T O R ( l H M - a O ) C O N T A I N I N G THfe' T I T L E OF THE R U N . |
IPRT= A FLAG TO ALLOU P R I N T I N G THE D Y N A M I C A L M A T * ( 1 - P R I N T * 0 'NO
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IV. OTHER SUBROUTINES USED

ASMD2 calls NASA Library routine RESV to compute the eigenvalues
of the dynamical matrix [A]. The computed complex eigenvalues are
stored in array ER(I) and EI(I), which are the real and imaginary
part of the Ith eigenvalue of matrix [A].
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V. LISTING THE SUBROUTINE ASMD2

SUBROUTINE ASMlV.MN»NM»NROUC»C»PH:f »UN »ER» El » NT! TLEr IPRT)
C
C
C THIS PROGRAM USES THE ASSUMED MOPE Mt 1 HOD T(J COMPUTE
C COMPLEX EIGENVALUES OF A DAMPED SYS UN.
C A FULL DAMP INI. MATRIX MAY KE USED,
C ~
C THE. PROGRAM IS A MODIFICATION OF PROGRAM CEIG 4/13/82.
C
C
c FORMAL PARAMETERS:
c
I, N- N.D.O.f-. IN I HE SYSTEM
f MH - NO. HODfS USkD IN THE ASSUMED MODE CALC .
r UROUC- NO. OF RUUS IN fHE DIM. STA1FMLNT FOk C » PHI f WMt k R » E I
C. IN THE CALLING PROGRAM
(, (.- IhC UArtPIHd MATFx'IX
C PHI- THE MODAL HATK'IX-FIGENVEC F ORS NOKhALIZf.n TO UNIT HASb .
C UH= VKCTOR OF UNDAMPED EIGENVALUES.
I. E R » L l - VECTORS CONTAINING THE REAL AND IMA(>. Pf-.KTS Oh I'HL EldEHVALUE
C OF VHh bAi1Pl:'D SYSTEM.
C HTI fLF- A VCCTUR(D i i 1= 80) CONFAtNIN l j I UK TITLE OF THf RUN,
C ] ! • • : » ' { - Pi Fl.r.G 10 A L L O W PRINTING I'HE U Y M A M I C A L MrVl . <1 "PRlN'l , 0 -NO PRINT
C
C

ti 1111:̂ ,1 ON IKMRUWCf 1) » P H J ( N R O U C » 1 ) i W N ( N R O U L ) r E R ( N R O U C ) »
LI (NRUUL) f HI HLE(aO)

C
Li lr t t .NS ION H Y L X A C ( 9 9 » 9 9 ) > V ( 9 9 » 5 ) i UKC270) » A < 9 9 » 9 9 )

C
C

MAX. -OV

NMl'i -1?>NNM
C
C FORM DYNAMICAL MATRIX
C

NN-'JINM
DO 100 I=lfNN
DO 100 J= 1 » N N

A(I»J>^0.0
100 DYEXAC(ItJ)=0.0

DO 200 1=1 »NM

DYEXAC<I»IN)=-UN(I)*UN(I)
DYEXAC(IN»I)=1.0

200 CONTINUE
C
C

DO 12 J=1»NDOF
DO 12 L==1»NM
DO 13 K=1»NDOF

13 A(J»L)=A(JfL)tC(J»K)*PHI(K»L)
12 CONTINUE
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DO 14 K-1,NM
DO 14 L=lfNM
DO 15 J^l

15 DYEXAC(K,L) = DYEXAC<K,L>-PHKJ,K)*A<J,L>
14 CONTINUE
C

PRINT*,'******************** OUTPUT *******»**»***«**«•
PRINT 11

PRINT 10»<N1ITLE(I>, 1=1*80)
10 FORMAT(aOAl)
? PRINT 11
11 FURrtA ]'(//)

IFv IPRT.CQ.O) BO 10 210
i.

PRINT 201
201 FORMAT(lHlr///»* DYNAMICfcL MATRIX IS */,/">

DO 202 1=1 »NN
^02 PRINT ^05» (DYEXAC(l»J)»J^l»Ni!>
205 FORMAH/f5X»5E15,6)
210 CALL KESV(HAXfNHDfUYIE.XAC,F.R.KI»0»0,VfUK»ieRR)
C

PRINT 1020, NM
PRlNUr'THE DAMPING MATRIX IS:1

. DO 666 I=1,NDOF
666 ^ PRINI*» (C(I,J)t Js-
C
' . O i O f O R M A n / f l O X f * ASSUMED MOlif M f ! M O H » U S E 4 > , i ' ; , » » *

P K i r J l 11
P R i r ! ' f 4 . , ' l H E D A M P E D E I G L N V r . L L t b S t '

i;
DO 4J5 I I" 1, NMD

513 P R l H I * » I I f £ R < l I ) f ' f f E K I D . ' J '
PR IN I 11
PRINT 11
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VI. CONTROL CARDS AND TEST PROGRAM

The test program TESTAS4 can be run through the use of the job
file of Table l. Table 2 is a listing of the test program TESTAS4.
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Table 1 Control Cards and Input Data for Sample Problem

/JOB 1293K UVA
BPU,CM300000rT1000.
USERf697121E.
CHARGE»102428»LRC.
DELIVER. 1293B D UVA
ATTACHfFTNMLIB/UN=LIBRARY.
GET»TESTAS4.
HAP(OFF).
FTN,I=TESTAS4,L=0»OPT=1,B=F.
LDSETfLIB=FTNMLIB.
F.
REW]N1»»OUTPUT.
COPYEIfOUTPUT,OTTAS4.
REPLACEtOTTAS4.
DAYFILE»L=DATAS4.
REPLACEiDATAS4.
EXIT.
REWINDiOUTPUT.
COPYEI»OUTPUTt XOTTAS4.
REPLACE»X011AS4* •
DAYFILEfL=XDATAS4.
PACK»XDATAB4.
REPLACE»XDArAS4.
/EOR

0 »1
0.577>- 0.577
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Table 2 Listing of program TESTAS4

P*
PROGRAM TESTAS4<INPUTfOUTPUT)

C
c

DIMENSION G<88)»C<99»99)»PHI(99»99)»UN<99>,ERC99)rEI<99>
DIMENSION NTITLE(BO)

C
C

DO 1 1=1*50
DO 1 J:=l*50

1 C<I»J)-0.0
C
C INPUT SECTION
C

READ 10*(NTIlLE(I)fI-lf80)
PRINT 10,<NTITLE<I)»I=1»80>

10 FORMAT<80A1)
599 READ **N»Nh

PRINT *rN*NM
C

DO 20 I~1,N
READ*»(C(I»J)»J=lfN)

20 PRINr*»(C(I»J)»J=l»N)
READ *»IPRT

PRINT *»IPRT
C
C

DO 5010 I =1»NM
READ** UN(I)fDd)

PRINT*»WN(I)fO(I)
READ*f (PHI(Jfl)vJ-lrN)

PRINT**(PHKJ,I)»J=1»N)
5010 CONTINUE

PRINT** 'N UN B1

DO 99 I~1»N
99 PRINT*,I*UN(I)*G(I)

PRINT*,"PHI'
HO 999 JM,N

999 PRINT*,(PHI(J,I),I=1,N)
C
C

CALL ASMD2(N»NM»99»C*PHI*WN»ER,El,NTnLE»IPRT)
PRINT*,•l=REPEAT,0=STOPt

REAU*,ITEST
IF (1TEST.EQ.1) GO TO 599

C
C
C

END
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k=l

m2=2

Fig. A2.1 Actively Controlled 2-dof system
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VII SAMPLE PROBLEM

Figure (A2.1) shows an actively controlled 2-dof free-free
system. The contorl law is

u. - -1.3 x. + 0.5 x

The input data to test program TESTAS4 is shown in Table 1. Table
3 shows the output.
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Table 3 Output of Sample Problem

ft******************* OUTPU'1

TEST: Z-DOF FREE SYSTEM

ASSUMED MODE ME1HOH* USE 2 MODES

THE DAMPING MATRIX IS:
1.3 -.5
0. 0.

THE LiAMPED EIGENVALUES:
1 O.+O.J
2 -,3402281689367 + 0.J
3 -.4790459155316-K971771301425J
4 -.4790459155316+-.971
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Appendix A-3

Subroutine SPSTGN Documentation

Damped Eigenvalues Using Reanalysia

I. Introduction

SPSTGN is a FORTRAN subroutine that can be used to compute the
damped eigenvalues when damping is introduced into an originally
undamped system through the introduction of a diagonal viscous
damping matrix. Based on the modal data of the undamped structure,
the damped eigenvalues are computed using an efficient reanalysis
formulation. It is the purpose of this document to summarize the
formulation and usage of the subroutine SPSTGN.

II. Summary of the Reanalysis Formulation of the Damped
Eigenvalue Problem

Given an undamped system described by the following
normalized modal data

wi' {*!>' i - 1 to L < Number DOF = NELEM

where

(t>. = natural frequency of the ith mode, rad/sec
= OMEGA(I)

(•p.} = ith mode shape
p. . = mode shape coefficient, jth component of the ith mode

= PHI(J,I)

The normalization requirements are

T r 0 if i ^ -i 1Ci^tMH^) -1; n it] i
where [M] is the system mass matrix.

With the introduction of n damper at dof J ,J ,...J , thec 1 2 n
c

damped eigenvalue problem can be formulated as the solution of the
characteristic equation:

detfl + 6(s)6) = 0 (A3.1)

where

[K] =* n x n condensed receptance matrix
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with elements

for i

for j

n

n,

The element R.. are computing using

L il 31

£=1 2 2
s + w

i

(A3.2)

The following nomenclature is helpful in understanding the program

L

n

no. of modes used in the receptance calculation
( < number of DOF's)

= NSTAT = no. of dampers introduced
J. = ISTATNO(i) = ith damper location (DOF in the model)

for i = 1 to NSTAT

n

condensed diagonal damping matrix

c. = CARRAYfI) = ith damper value, for i
1 [located at J. (or ISTATNCX i)]

1 to n

Two types of variation of damping constants are allowed. For no
variation, set NCD = l, IDOPT = 0, and CDINC = 0.
A. IDOPT = 0, all dampers vary at the same time. For this case

the initial damper values are c. = CARRAY(I). Then all the
c.fs are increased by CDINC after each pass through the code.
There are a total of NCD increments as specified by the user.

B. IDOPT = 1, only one damper value changes, all other values
remain constant. The initial damper values are input through
the array CARRAY( I), and the initial damper values are

c. = CARRAY(i) for i = 1 to n .
i c

C will increase by CDINC each time the damper constants
n
are updated.

C = CARRAY(nJ) + CDINCn. d
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nd NODEPL = the number of the particular damper in
ISTATNO( I) being varied.

Ill Input Parameters

lll.l Formal Parameters

Description of the 11 formal parameters:

NELEM
NMOD
RUNNO
IDOPT

EPS

NDAM
NUMITER
CDINITs

CDINC :
NCD :
NODEPL:

Note:

number of DOF's in the original system
the number of modes requested for the printout < L
your run number identifier
0 = all C values vary
1 = only one value varies ( see NODEPL )
convergence parameter ( used in the test for convergence in
the Muller's Method root finding routine)
number of modified system modes desired ( < L )
maximum number of iterations per eigenvalue
initial damper value (units should be consistent with
mass and stiffness, e.g. Ib sec/in)
increment in damper vlaue
total number of damper increments
the number of the varied damper in ISTATNO(I). NODEPL is an
element of 1,2, ... ,NSTAT.

if IDOPT = 0,

10 + Ac for L = 1,2, ,NSTAT

III. 2

if IDOPT = 1
C. = C. i 7* NODEPL
C* = C*° + Ac, i = NODEPL

Common Blocks

. In addition to these variables, the following variables enter
the subroutine through the common blocks and must be evaluated
prior to calling SPSTGN. Also, the common block set contained in
the file COMSPST must be placed in the main program.

NTITLE( I): a holerith array with a title of the job
L: the number of modes used in the receptance calculation
OMEGA( I): a vector containing the L values of the original w
PHI(J,I): a matrix whose L columns are the modeshapes of the

original system (DIM: NELEM x L)
Note: These modeshapes must be normalized to unit

generalized mass.
NSTAT: number of stations where dampers are placed
ISTATNO(I): an array giving the location (DOF) of the attached

dampers I = 1 to NSTAT
CARRAY( I): an array containing the damper value for position

ISTATNO(I), I = 1 to NSTAT
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IV. Using Subroutine SFTGN

The data required are input through formal parameters ( Section
IIZ.l) and through the common block set COMSPST, into SPSTGN (Section
III. 2). It should be noted that mode shapes have to be normalized
to unit generalized mass. That is,

/>} = 1.0

V. SAMPLE PROBLEM

The Model is the NASA 88 D.C.F. grid.
The model data is read from TAPE 12 is NASSAGG2. which contains data

for all 88 modes, including 3 rigid body modes.
Four dampers are placed at D.O.F. 1, 11, 77, 88.
The initial damper values are 0.2.
The approximate receptance elements are to be calculated on the

basis of using L( = 3O**) modes of the 88 modes.

The first 2 modes are to be printed out ( NMOD = 2 ).

All the damper values are to vary ( IDOPT = O > with increments of
CDINC =O.l for NCD 5 trials.

The convergence criterion for eigenvalues is ldet(A}l < € = 10

The test program TESTSP is designed to interactively accept the
above data and then call subroutine SPSTGN to do the
calculations and print out the results .

The following input values were given (the remark number
corresponds to the number in the following TESTSP printout ) .

Remark 3 TEST SPST (title )
2 88, 2, 30, 1 ( 88 DOF, 2 modes to be printed, use

3O modes , Run No . = 1 )
3 0 ( all damper values change )
4 The modal data was read from TAPE 12 NASAGG2
5 4, l.E-S, 2, 50 (4 dampers € (EPS) = 10 .

computes 2 damped eigenvalues, max 50 iterations)
6 1, 11, 77, 88 (damper locations)
7 0.2, 0.2, 0.2, 0.2 (initial damper values)
8 0.2, 0.1, 5, 1 (initial damper values, increment,

5 increments, all dampers vary)

**An arithmatic underflow condition will appear if a larger L is
used, we have had such an experience by using L = 88. This is
due to the formulation used in teh receptance calculation. It
can be improved if so desired. Our experience indicates that
using L = 3O provides very good results.
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VI. Program Listing and Sample Run

The subroutine SPSTGN is listed in Table 1. Table 2 lists a
sample main program TESTSP which calls SPSTGN. The output of the
sample problem is given in Table 3. The control cards necessary to
run this sample problem is shown in Table 4.
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Table 1 Listing of Subroutine SPSTGN

SUBROUTINE SPSTGN ( NELEM t NMOD. RUNNO 7 IDOPT , EPS » NDAM 7 NUMITER >
X CDINIT ? CD INC , NCD i NODEPL >

C
rv_
r

C 3P5TG WRITTEN BY DR, A, PALAZ20LO AND DR. B. P. WANG MAY 7 19B1
C COMPUTER CODE TO GENERATE THE COMPLEX EIGENVALUES USING
C REANALYSI3 FORMULATION.
C
C
(.;
f; INPUT CARD DESCRIPTION
n
C
o NELEM: NO, OF ELEMENTS
C r'MQD: HO, OF MODES REQUESTED FOR PRINTOUT AND DAMPER SENSITIVITY
C ANALYSIS AND PLOTTING 2 10 AND H' L
C RUNNO: RUN NUMBER IDENTIFIER
c IDOPT: O=ALL c VALUES VARY
•I, !-•- ONLY ONE VALUE VARIES
r F P 3 - C 0 N V F R B \- 1 1 P E P A K A M E T F R
c HDAM: NUMBER OF MODIFIED SYSTEM MOPES DE-SIREL' e L-Z AND 020
<: ^ ! L! M I T E * t M A ;< I H I1 fl M U M B F R OF IT F R A T I C N 3 PER E I G E N V A L 'J E
T LDIf'ITt INITIAL LAMP£> VALUE hUR ROOT LOCUS PLOT LP. SEC, /IN
C THIS VAi UE UILL OVEPII'E !HF. VALUE IN POSITIO!1 N9DEFL ? ENTERED INTO
C C ARRAY
C CDINC: DAMPER INCREMENT FOR ROGT LOCUS PLOT LP.SEC./IN
C NCD: TOTAL NUMBER OF DAMPER INCREMENTS FOR ROOT LOCUS PLOT
c NODEPL: THE NUMBER OF THE VARIED DAMPER IN ISTATNQ<I>
C I.E. NODEPi. JS AN ELEMENT OF 1 r 'J r . , , NST AT .
H THIS TELLS UHLTHfP. fM'OEPL ES FIRST ? SECOND ETC, IH ISTATNO

[HE F O L L O W I N G " A r1 1 A £ L E S EM f ER THE SUFROU1 I i'!E THROUGH THE

O C J ' t IHF M'-TAi" LiAhPER L OCA T J UN'- (NODE NUMBERS)
• J ; : !HF.. I'.AMPi- R VALUES CORRESPONDING T'J IS i ATNU •'. I ">

: x11! M T-' !-I R 0 F S T A T ] U f! S U H E R :£ P A M F' E P. S A R F. A T T A C H E D
FHJ •! I > J, : AN A R I - A Y CONTAINING THt UNDAMPLD SYSTEMS EIGENVECTORS

C NORMAL TIED 10 UNIT GENERALIZED MASS
f, OML!" A d - : A VHCTOH CUNTATHnifi THE F RTGUFNCIES Oh THE UNDAMPED SYSTEM
(: NTITLZ: A,' ALPHA ARPAY CONTAINING THE TITLE OF THE PROJECT

INUGE'R r<:TATN(i
i; f M p M •: r (> f i 1 R C U ( i C' C' i " T E V: F' ' 1 0 0 )
CDMPLE< C I G E N » 5 L A M I N f V L A M » R L A h » C O E I G » S L A M N X T » C M C O E I B f F I I
POMPLEX FHAT
i fJf3ir.:U TEST
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Table 1 Continued
r
\_-

CmhDiJ /ELK 1. / AE J ( 50 > » ARL J ', 50 ) ? AT J (50 > ? ARHJ < 50) » A R O < 50 •
CGMfi'JN / BLh-2 / S K d v l -
C Q M M C N / B L K 3 / £ S T R < 8 3 > j S S R O T ( S S )
C O M H O N / B L K 6 / U R C 8 3 ) » Z ( 1 > 1 ) « P H I ( 3 8 r 8 8 > r O M E G A ( S 3 ) ? D Y N d f 1 ) ?

6 E M < 1 » 1 )
C O r f M O N / B L K 7 / V L A M ( 3 ) i R L A M ( 3 > » C O E I G ( 2 0 )
HOMflGN/BLKS/L
COMMON/BLK10 /SMINV(1 r1 )
COMf10N/BLKl2/UREXd05) » W I E X ( 1 0 5 )
COMMOH/BLK13 /CMCOEIG(105 )
COMr1UN/bLK14/SEi4SD( 1 ? 1)
COMMIJN/BLK15/A( 1 ?1 )
C 0 M M 0 N / B L K16 /1-1 fl R i
nf)MHOM/BLK20/ I AUTO » REMAX ? AI MAX
C O M M O N / B L K 2 1 / 3 T O M ( 8 3 )
CLlf1H[}M/t:L!,22/FACT
Crjf1rtON/BLK23 - I S T A T N U ( 1 6 ) ? NSTAT ? C A R R A Y < 16)

K2'*! / R 1 V E C ( 1 6 )

COiVMOf! 'BLKZo/FHAT (10:10)
COflHON / BL!-\::7 / N T I 7 L E C 3 0 )

f f K 1 1 ̂ . ̂  *'

PE.TA-1 .0
IDIAG=-0

C READ t , N E L E M f N M O D » N R I B » L » I F L A Q » R » B E T A j R U » M O
C PRINT I r N E L E t t r N M Q D r N R I G f L r l F L A G r R y 3 E T A ? R U M N O
C 1 F O R M A T S 5110 ? 3 F 1 0 t 3)

N = N E L F : M

RF.AD K ? J f ! O P T - I D O P " !
P R T : ! T - 1 , 7 [MO! T - j DOPT

FFdlJOrT . E G « f - ; &0 TO J
GO [Q 2 ^0

1 M f i T J ̂ 'Ui.

-• i ;o : o ; - i -L.
I'M-AIK ! 2? A01 1. ; O M E G A ' I

F ' F _ A I ' ( 12;r"01i ) ''PHI; J? [) ' . ] - I ? ! ! )
COf iT [ r iU !£

^•11 F C K M A T ( 5V;;:E 16, 9 '
", n ! n 2 1 0

% i . O I HIM Ff iUL
I'D T [ l » : J - i f J

C FfcV.r- ^ 7 S S T R ( I } r S S R O T ' I i
r\ \ '•' I H T - ? -, S T R ( I ) ? £ S R 0 T •' I )
C 6 F O R M A T (2F 10. 3)
C 5 CONTINUE
r Ii 0 10 I 1 r N E L E M
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Table 1 Continued

C READ *»AE J(I>?ARLJ(I)«ATJ(I)?ARHJ <1> ?ARO(I)
C PRINT 15 ? AE J ( I) i ARI. J (I / » AT J ( I ) i ARHJ (I) , ARQ ( I )
C 15 FORMAT' T.F 10*3)
C 10 CONTINUE
240 CONTINUE
C READ *iNSTATjEPSfNPAM.NUMITER*IDIAG

PRINT 20 , NSTAT - EPS , NDAH r NUMITER ? IDI AC
20 FQRfiAT'I10»E10.3f 3110)

READ 11-5; TMDFL1
115 FORMAT' 110;

C READ * . ( I3TAFMO( I) > !=•! »NSTAT)
C PRINT 737<ISTATMO(I)?I-1?NSTAT)
C >0 FORMA T(161rj)
r, READ J ? C OAR RAY (I ) ? I '1 ? ilSTAT )
C PRINT 77; (CARRAY(I> r I--1 r f'STAT >
C 77 FORMAT', 3F1 0,3)
c RE;,-LI n » c D i N i T 7 c n i n c / N C D 7 N O D E P L
C PRINT 1 = : 5rCDI f ! IT rCDI f 1 C'HCD ! .NODEFL
C j5 FOF- :« f iT(?F10,7 ?2I10)
0 6 ',j i-" 0 R H A f ', 2 [ 1 0 ? 2 F 3 0 . Z )

r ' l ' I M Y 101, T
11 r. n r . \ f, ~r ; i u _ , •

C RE A N A L Y S I S SECTION
C K-f'.t*t*t*****'***
C C A R P A Y ( NODEPL ) =CD I N I T -CD I NC
C CALL I N P R 2 ( L » E P = » N I i A M )

D 0 .30 I - 1 ? N C D
'•: O A F - ' K A Y - i iODEHL) ' C A P R A Y ( i lDDTF L • -} CD 3. i'

CAL! J r i r P 2 ( L ? i £ P c " ( ! U A M >
L'lj CO 1 . ! D E r L - i , -MDAf i
r r .oT- i .0
C A L L I f iTT IA I . / ( - : LAMIN? [f 'L'F. ; ' j ; r 'ETA ' I ;

CAL! i1' !LL.EP' ! - .LAHMXT>
'\'.! L t ' F T ' A T T ' ' - .LAMNXr - Ii 'PL I Q

1 p ,; ; j_. c T , r} Q -[ p ~ A

/,() f :Ot 'TI?!UE
70 CALL EIGSTOF; ' [ N D E T G )

PALL "t'XHOE1!-1 ('I,!. Ahli lr l i 'DEIG)
' / • n O f ! T T N ! j L

'Yi! • A K r T I P O T ' i ' P A M )
CALL APEIPPF' i.'BAM;

L F ( I D O P T . E Q . O ) GO TO 1100
C A R R A Y ( NODEPL ) =C A R R A Y ( NODEPL ) +CDINC

CO TO 30
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Table 1 Continued

110- DO 1000 IB=lr NSTAT
1000 C A R R A Y (ID ) =C A R R A Y < ID) -f CD INC

103 F O R M A T C 1 K ,2X.p*TIME 3 - * ,F10 .3>
30 CONTINUE

RETURN
END

C
r
C

SUBROUTINE INFR2<L;EPS»NDAH)
INTEGER ISTATNO
COMMON/BLK23/ISTATNCU6) 7 NSTAT ? C ARRAY ( 16)
PRINT 1

I FORMAT-1H ?40X7*BEGIN REANALYSIS PORTION OF CODE*)
PR I N'T 20

20 FORMAT(1HO» 5X? *NODE*?1 OX 7 *DAMPER VALUE *)
T:Q 30 I-lcNSTA1
PRINT 357lSTATHO(I>rCARPAY(I)

3'- FORMAT ( 1 HO r 6X >L2, 1 5X •• E10 . 3 '•
50 CONTINUE"

!"'R1 NT "*> * L r Eh'S
3 F O R M A T ' 1H » 1 0 X - t M O . OF MODES FOR RECEP, CALC.;L - K ,

\ r >--. „ >- v „ i cr P c - i , j." 1 A ~ *
vj l . v . ' w f l l ~ . I _ / 'I ? 1^. J. V * W ^

! :, •-' r- :; _;.-, y .' •; 1.1 „ j .'.',;. i!: .v p £ p- n p ;. n p i r T sr TI ~v c T r M -,,', r T- p <r 7, p c T c £ -i

i •' c. r 'j P !•'
END
SUBROUTINE INITI AL • SLAMIN - Ir'DE IG r PET A ? I ̂

C CALCULATE THREE STARTING VALUES FOR MULLER ITERATION
INTEGER ISTATNO
COMPLEX CIGENjSLAMINj'JLAM^PLAMpCOEIGrSl AM ; RL • CMPLX ? EE

"OMMQf'/'L'L! "/!
COMMON 'EM i > 2 1 'BTriM(2S •

;,'' :1 M fJ r1 ' •:' L! >."' 3 /1 o T A1; i 0 ' i I, > ••; i £ T,': T ;'" A R R A Y ( 1 ~- )

JpTT, .".

il'JAH 0
i r i." i }':i>{ [ ij
i I .';•)!;[• t | (. , j • i C f i N D i- I G v 1
!!' ' [ f ! i AO.EG.O • T-f3 1C J '•
I'i- . - L N l l^ICL

! F O R M A T - 1 H 7 < » O X j mtRATION FOR EIGENVALUE S ? I j >
!0 CONTI"U!".

r- • i ,;in* i) CLAMIN-E:-:
! ! •' r , i! E . ! ,' G L A M I N - C 0 EI G t I! J D EI G : / B E T A
VL AM (1) --SLAMIN ̂  ( 1 . 0 ? " , 001 /
VLAM';2) -1»001*SLAHIH
VLAM(1 )--SLAMIN
?LAM=VLAM<3)
CALL FGFLACSLAMjRL»INDEIG)
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Table 1 Continued

R L A M ( 3 > - R L

CALL ROFLA(SLAM » RL »INDEIG)
RLAM(2)-RL
SLAM=VLAM<1>
CALL R O F l . A ( S L A M » R L j I N D E I G )
RLAM'1)-RL

FP-L
TP-1. 0/TP
CB=AB**TP
FACT-1,0/CB
RLAMX3)=RLAM(3)/AB
RLAM'2) -kl..AMC2)/AB
RLAM(1)=-RLAM(1)/AB
RETURN
END
SUBROUTINE MULLERCSLAMHXT)

CALCULATE NEXT EIGENVALUE GUEF3 BY MULLER METHOD
COMPLEX SLi'iMNXT»VLi'.MjRLMM»COEIG»CSQRT7FZJ3J2»FZJU27FZJiJ3»

6 FJUZJ3»U»SQf AC1 r AC2»DEM
COMMON/BLK7/VLAM(3)-KLAM(3)?COEIG(20)
K7. J3 .12= ' RLAM ( 2 ) -RL AM ( 3 ) ) / ' VLAM ( 2 > -VLAM ( 3 > ̂
FZJlJ2-=':PLAM<2i-PLAM< i ': > / ( VLAM < 2 ) -VL AM ( 1 > )
i-" 2 J U 3 - (!-' L. A rl'. 3 ) - P L A M (3 ) > / ( V L A M ( 3 > - V L. A M ' 1 ) ;
F JlJ:J3•'FZJ3J2-F ZJ1J2)/(VLAM(3)-VLAM(1>>
W=FZJ1J2+FZJ1J3-FZJ3J2

1)#FJ1J2J3

'-. i r> f i f I '<' 7 V i A M ( 1 ) - "' - 0 f F L A M ( 1 ) -'r! E" 1 \
TETURrc
E r! H
«; i j o r,- n! i f T 11 r i j v- p -•, T L- / c i_,',;-: i) ,< T - T f! I' IT TO )

"PDATF. THE !.,'>. MB HA CVLAri) AUD V OF LAMBDA 'KLAM; ARPAY'3

V L A M - 2 ) =VLA(-i( 1 )

C A!. L K 01" L A '"3 L A M M X f r RI. > HI D !£ IG )
i-'L.'r-';-' 7 ; Kl AM'?."-

'oUEROUTINE C O N y C H K ( I T E R i E P S » T E S T )
LOGICAL TEST
COMPLEX V L A M T FLAM ? CQEIG ? SLAM. T E 3 T 1 ,1 FST? ; TEST3 > F 1 1
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Table 1 Continued

COMMQN/BLK7 ", 'LAMC3> ? R L A M C 3 ) ? C O E I G ( 2 0 >
COMMON-BLK25 / IME

T E S T FOR CONVERGENCE IN MULLER METHOD
IDIAG=0

EPS2-=0,01*EFS

TESI2 -RLAMU •
! L S 1 3 - = V L f i M < 3 ^ - y L A r t ( l )
CHErKl-r.AESdESTt )
CHECK2---CA&SC TEST2)
CHECKS- CABS (TESTS)
TE3T-=. FALSE.
IF ( HHECK1 . LT . EPS . AND , CHECK2 , LT , EPS } TEST^-- .TRUE .
IF • CHECK 1 . LT . EPS2 ) TEST= . TRUE .
[F(CHECI\3.EQ*Q,0) TEST^, TRUE,
[F(IIHAG.EQ*0) GO 10 5
PRINT 1, L T E R ? ' . ' L A h ( l > 7 KL.Ar1 ( 1 ) i CHECK1 - CHECK2 i CHECK!

I F O R M A T ' , 1H , IX? I2r L X ? i i l 2 < 5 r IX r E12 , 5 ? 3X * E12 , 5 ? IX ? E12 , 5 ? 3 ( 5X r E12 . 5 > )
5 CONTi f l ' JE

HLTUKH
EHt'
3U3ROL1 PINE EIG3TOR < INDEIG )
C 0 M P L E X V L A M ? P ! . n « t C 0 E 1 1.5

innr-:E M'jr ir iED S Y S T E M E IQE- IVALUE
CPilHUi'/BLK?/1.1!.^^ ( 3 ) ? RLuri < 3 > r COEIG ( 20 )
COEIG(INDEIG) = V L A M < 1 )
RET'JKN
EN H
SUPRC'UTINE N E X M O H E ( S L A M I N » INDEIG)
COMPLEX SL Ar f lN > V L A M t PLAM t COEIG

C O M M n N / P L K ' 7 / 1 . l L M M ( 3 ) j R L A r H Z ) ? C O E I G (

TMI1 3UF:POUT:i)F. IS C U P R E f J T L f i !OT rEIilG USED,
^ U r R O U T I i ' E l U r T F A L IS ; ! O W MAKIHG THL INITIAL 6 ' I£S

: ' ! • ' ! 11 =0

' -AL1JJLATL INITIAL C E N T R A L E IGLNVALUL C-L'EZS !"Ci; MX; MODE
3LAM F i ' - 1 ,001 fCQI I JG ' . 1,'lDEiO)
p R f ? i r n , t c E ? LI^E

; FCr'riA r <1H ? "iOX 71 El HEN1.' ALUE f > I 3 7 GX - t NO , OF I T E R A T I O N S -= t r I5
KL P'R!'
END
:-- '! ' :F:' l lJI LNE K O T L A ' : L A H - F ! • J - ' l ' t T ' : /

C". :'PL E , 1LAiv -r L ,- ','L Ar: -PLArV LOEIL : ? F II -:- ? :ON J'f ? r HAT - r DC '. 1 v ; i 0 :
SUIFOUI I r iE "0 E V A L L 1 ATi l IMF." I T E R A T E D FUNCTION

COi-lrlQfi/^i^ fj 'ljR,'3y ;, ,::(i y l ) , p H I ( S 8 ' 3 3 ) ? OMEGA ( 3 3 ) rDYNd . 1) 7
C O H M O N / B L K 6 / U R ( 3 3 ) » Z < 1 » 1 > » P H I ( 3 8 > 8 3 ) > O M E G A ( S B ) » D Y M ( 1 » 1 > f

6 SM( 1 »1)
C O M M O N / B L K 7 / V L A M ( 3 ) j R L A M ( 3 ) T C O E I G ( 2 0 )
COf lMOI ' /PLUa/L

i
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Table 1 Continued

CUMH.ON/BLK22/FACT
COMMQN/BLK23/ISTATNO(16>?NSTAT 7CARRAY(1 £)
COrthGN/BLK26/FHAT(10*10)

C PRINT 3207 FACT
320 FORMATS10X»*FACT=**2E16.5>
C PRINT 100*SLAM
100 FCRMATdOXf* SLAM + *r2E16.5/)

NRIB-0
BETA-1,0

CALL RECEP'. SLAM)
C PRINT 100-SLAM

DO 20 I=1»NSTAT
DO 30 J=1?NSTAT

"20 BUC ( I 7 J ) -FHrtT ( I 7 J ) %CARRAY ( I) *SLAM*8ET A
BDC C I f I > =BDC(I 7 I) + (1,0 ? 0 * 0 >

20 CONTINUE
1STAT-NSTAT
IF(NSTAT,EU, i) G = BDC(1?1 •
iF(f!STAT,ER,l) (30 TO SO
CALL CDETER •'. I5TAT ? BDC , G )

'JO C'JNT LNU1-
C PRINT 100?SLAM
H PRINT 310.P

RL C
IF •: r!R I G , EQ , 1 ) RL~ G/3LAM

C PRINT 310»G
C PRINT 330?BETA
330 FORMAT(10X,*BETA=*72E16.G)

DO 1 I-1,L
C P R I N T 3 4 0 7 1
710 - F O F H A T ( 1 0 X 7 <c I - - { f r I 5 )

J RL-P! . * C rLAMt t2 t<BErA t t : ? ) iOMEGr i ' 1^*2; t F A C '
i I-' ' ';' D t 1G , E C1 , L "> 00 TO 10
i N T - I i J D F . I G - 1
T| r j ^ r ~ 1 - L '! f

r !:• p r M T 2 0 0 ? I ' f' 0 F r G ( i '

":';0 F - O K i i A T • i o / ? t [ r' j 'JLi"'; i) K' I372L1C, ; : )
;:L i'L ' • CLAM-Mjr i i" . ( [ :• >

iG- r,0£. FG> [ • •
:n,o,o • '30 TO r

' !•'!-'ID": 110'CQNJ(3'C'"IEIG(I;)
i t 0 r rJ R M A T ( 10 X 7 k C 0 \ I j G v K 7 2 !£ 1 L , 3 )

RL -PL/( SLA«-CON.JG(CCEIG(I) ))
I CONTINUE
•0 ;:(3[OTT;M]1{

j..- r r : i p > i
1 "• '. T l

\ U}: F 'J U I [ N E r E C E P ( B L A M )
L coi-iFUTL" PECEPTANCE::
L il'D'Jir" NORMAL IZEI1 TO UNIT

[NTEGER ISTATNO
COMPLEX SLAM7FII
'^IMPLEX DEKrFHAT
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Table 1 Continued

' C O M M O N , ' t ' L K d / U R C SB) ? Z ( 1 » 1 > > PHI C 88 7 28 )• - O M E G A C 88 • > D Y N C 1 ? 1 > 7
C O M M O N / B L K 6 / W R ( 8 8 ) i Z ( 1 7 1 ) * PHK 88 ? 83 ) - Q M E G A C S S ' * ? I ' Y N ' 1 ?1> •

6 S h v l p l )
C O M M O N / B L K 8 / L
C O M r t O N / B L K l A / P M R l
l O t f h O H / £ ' L r 2 3 ' ' l S T A T > ! Q > . 16 ; - N B 1 AT ? C A K R r t r ' > 16 >
C n M M Q t V B L K 2 6 / F H A T ( l Q f l O )

H E T f t - 1 - 0

FP- I S T A T N O i l )
DO 10 J ~ 1 ? N 3 T A T
f - H A T ( I . J ) - ( 0 * 0 > 0 . 0 >
J P - = I ^ T A T N O ( J 1 *
O U 2 0 K = - - 1 » L

20 F K A T ( I 7 J ) - F H A T ( I ; J ) r P H l ( IP ,< i; ) 1'F'HI < JP - '., ) '
£ ' S L A M * * 2* ( B E T A ^ * 2 ) + Q M E 3 f i ( K ̂  i '*2)

1 0 C O N T I N U E
': C O N T I N U L

K F . T U R f !
F N I '
n U B R Q U T I l l E r i P L I T O K r l D A H )
C C M P L E X V L A H f P L A M r C Q E I C i j D E U
! J ( ! M H O f J 'F.'Ll/.V'.'Lr-irH J ) 7 R L n H ' 3 ; - C O E I G \ 20 ^

A P R r. ; ' (5 !? ,"1 0 D ! F I ED 3 Y S T E H E I R E V ',' r, L U E S ( fi P P F 0 /,
i i C L O K L U M f i " !0 [ N C R E i ' v 5 I : J G I H A G , P A P T C , DE-

P E T i i = l » 0
DO 10 I - l i N D A M

^ 0 C O E I G ( I ) - C O E I G ( I ) * B E T A
N P C = N D A M - i
DO I I -li MFC
. ' S T D R - 0
1(1"!''! "10 0 0 0 0 0 , A

,M •*, [ ; l A G ( C Q E i b ( J; '
AT AGf :,(.'»' '

i •-• CM .1 !•:, nil (P j ^ r c j i - ' :

i / . ! F I G ' i ) L O E I C . C J S T O R •

j ,• (.' T I I p / 1

i - H I i
' , U f P n ! ' : ! f I E n P E I ? R T C \ ' D ,'i M )
• J D h S ' L ' i •; V L A M * RLT. i - l - ",OEI!7
' . " i l M ' J f ' / M ' . J ' / Y L A M C Z ) - R L A I 1 C 3 - C G E I 3 C 2 C

r - ' R [ M r T H E M O D I F I E D S Y T E I ; A P P P O X , E I G E l i V A L U E l '
• - • P L M T L

•__ r r n p h A"! •' i !•) ' 22X ? t M O D I F IEI' S Y S T E M A F P P 2 X I M A T E El G E M ' v A L U E S T' 1 1 2X i
6 * Z E T A * i - 1 3 X r * O M E G A N SEC-1*;

N K I G - = 0
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Table 1 Continued

TF(NRlG.EG.l) ICE=I+1
OMEGAN'--CABS(COEIG( I ) >
Z.£TrV---RLAL ( COEI3 < I > ) /OMEGAN

• PRINT 20«ICE'COEIG<I> fZETAfOMEGAM
20 FORM AT ( 1 H , 1 OX » 1 5 » 1 OX , E 1 2 * 5 r 3X i E 1 2 , 5 7 1 3X i F 1 3 . 4 , 1 IX ? E 1 2 . 3 )
10 CONTINUE

RETURN
l-INLi
SUBROUTINE CDETER < NST » A ? D )

DETERMINANT OF AN NST BY NST COMPLEX MATRIX WHERE NSTM
COMPLEX A< 10? 10) ?D
COMPLEX PMULT ? BI G ? DET » BG ' TEMP
NSIZ=NST
I COUNT 0
NUMSYS-NSTZ-1
DO 14 I - l » f J U M S Y S

SCi'iN FIFvST COLUMN Or CUr'>RE!!T SYSTEM FOR LAKGEET EL EMHT
CALL THE ROW CONTAINING THIS ELEMENT , ROW NBiiRW

^IG--n' F - I>
> I r.; R r.' ii r

£'0 'J j HNfNSIZ
IF (CABS ( BIG ) -CABS ( A ( J ? I ) ) ) i ? 5 ? G

6 BIG-A(Jfl)
NBGF.W-J

5 CONTINUE
BQ-t ,0/BIB

• z . i J A P K O I ' J ' I W I T H P O W f J E G P U U N L E S S I -- 'NBGRUJ

LF- f f B G K y » i i F , ; ; [ C O U N f - I C O U i l T - r 1

; DO ^ j-i 7[!CJ. ' i
F r M P - f 'MBGPU; J •
fi'.rJf'.nfyjJ'. A< r 7 J.-

3 A( J , J) -TEMP

CLIMINATE UNi;NOUi!S Fr'Ofi FIRST COLUMN OF CURRENT SYSTEM

10 DO 13 i- NN7NSI7

COriF'UTE PIVOTAL MULTIF'LIE?:

APPLY PMULT TO ALL COLUMNS OF THE CURRENT A MARRIX ROW
DO 11 J-NNrNSIZ

11 A' !- ? J) -Pi-i'JLTt A(I j JH A (1. 7 J)
13 CONTINUE
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Table 1 Continued

14 COH1 [M'JE
D = < 1 . 0 ' 0 » 0 >
DO 100 I = i » N S I Z

1 0 0 D - D * A < I » I )
J C O H N T - < I C O U N T / 2 > * 2
I F < J C Q U N T . N E . I C Q U N T ) P = -D
R E T U R N
E N 0
SUBROUTINE HEADNG
INTEGER ISTATNQ
COMMON/BLK23/ISTATNOU6) ? NSTAT » CARRAY (1 i )
PRINT 1

I. FORMATSlHl*40Xi+EISPACK<EXACT' SOLUTION OF THF. MODIFIED SYSTEM*'-
PRINT 20

20 FGRHATUHO'SX-* MODE*? lOX? *DAMPER V A L U E * -
DO 30 1=1>NSTAT
PRINT 35 » I 3 T A T N G < I ) 7 C A R R A Y < I >

55 FORMA T(1 HO ? 6X»12 - 16X »E i 0.2 >
r'O CONTINUE

RETURN
EMU
PUBPOUTINE LA5RTC 13'JjLHQL- IN/.)
TiIfiE.ISIQN LHOLC:.)
LUGEC. - i L P S ' T S
IF ( ( ISU . EQ . 0 ) . OR . < ISW , GT . G ) -• RETURN
GO TO ( 1 » 2 > 3 » 4 » 5 > I3W

DAT.-. NP/ 107 , PS/ . TRUE . / » TS/ . FALSE , /
IFCPS.ftND.fNP.GT,0» PRINT 27-LHOLrlNX
FORMAT (1 HO tT-' j GA10 i 3X » Qd )
MP-fir-'~i
i r ,' r '7 ; r ,', j_ J_ £ v T i

I !£ !'!':•!'•

T'(. - .'r ,,! C E,
; / r; r i i p ) |
i '_; ; p 11 r
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Table 2 Listing of Program TESTSP

PROGRAM TESTSP(INPUT> OUTPUT 7 TAPE 12 >
C SPSTG WRITTEN BY DR, A. PALAZZQLQ AND DR. B. Pv WAN-ft MAY » 1981
C COMPUTER CODE TO GENERA IE ROOT LOCUS PLOTS KOR A EULER BERNOULLI BEAM
C MODEL WITH MULTIPLE DAMPERS-
C THE BEAM IS SUPPORTED BY TRANSLATIONS AND ROTATIONAL SPRINGS,
C THIS CODE WAS DEVELOPED UNI'EP THE NASA LANbLEY SPACE STRUCTURE CONTRACT

INTEGER ISTATNO
DIMENSION IROtJ(lOO) ;TEMP(100)
COMPLEX C I GEN • SLAM IN , VLAM - RLAM .- COEIG > SLAMNXT > CMCOEI C- ? F 11
'" U M r' L E X ~ H 1*1 T
LOGICAL TE3T
C'UMMON/£LK1/AEJ(5C%' ?ARLJ<50) ?AT J(50,> >ARHJ(50) »ARO(50>

C COMMON/BLK2/SK(33 ? 33)
COMMON / BLK2 / SN<1» 1 )
C Q M M O N , ' B L K 3 / < 3 S T R C 8 8 ) ? S S R O T ( S S )

C COMMON 'BLKA/HR (£S ) » 2 ( 1 ? 1 ) , PHI ( SB .- 33 ) •> QrtLGA '. S3 ) ? DYN ( 1 ? 1 ) r
COMMON/BI .K6 /UK ' 88) . ,-( L , 1:. ,pu,T , -33,88) ? O M b ' G A < 8 3 ; ? D Y N ( L ?1 ) '

CDMMON/BLK7 /VLAM(3 , ' ? R L A M ( 3 ) ? C U E I G ( 2 0 )
COMMON/PLK8 /L
rOMrtOM/5L! ,10/SMIf iV 1;1 '
r Q M M O M ' ' B L K 1 2 / y R E X ' 1 05 > ' UIEX < 105 )
COMr.QN /BLK 13 - 'CMCOEIG ( 1 05 )

r r ,OMMO|-i /pLN1 ^ /SEnSD' . 1 ^ L •
COMfini ' /F.LM 4/SEHSEK 1 - 1 )
'"inW!1 "'iLM'-l/A' 1? 1)

iUN/ BLK20/1 AUTO ? PEHAX • AIMAX
COMMON/FLK21/STOM(33 )

(:OMMON/BLK23/ISTATNQ(16) » NST AT r CARRAY C 16 )
COMMON/BLK24/R1'.'EC( 16)

r n H M P; '• / i- L!, 2 o / F H A T < 10 - 10 v'

V Y \' i-' }• )f ;' ,'j'

K1 H:!PUT DAI A SECT M."1

1- M -H ̂  -M Jf i' M' f * K i i' "
F ' ! " A (i 1 0 • '' i" T I '! L ( 1 '• •• I ' 1 ••

•'.• ;;• [ [ IT A A , f ft i y f | u i1 [ j - I - 1 »

F ' f ' r . l A I' ' - v A I ,-

i • L,' i ,- j ( ' , ' i | [ " i i M n : ] I v i r i i n | , c ; i i ! f i > ; n • " ,

' 1- 1h I ' i A T v '., LI 0 ' 3F 10 . -. '
! ' r )EL £:1

i - ' r ' } ! - • : • ! ! " ' . !-:M~ I

• : T J ! T ^ I rTDfJ l -T

^ r ' Z A ' - "ODAL L ' A T A FPOM T A P E 1 2

J IT ' j C I O I - i ?L
/J) 7 RF AH < 1L » 6011) OMEGA ( I ) , 0:1
(3/ j S T O M ( I ) = O M E 6 A ( I)

I READ(12 .5011 ' < P H I ( J r l ) » J - 1 . N >
';• 0 1 0 { C 3." T I N U E
':'"i:- F H R M A T ' ^ E l c . ' 3 )



Table 2 Continued

(5 ) - - L A 1 1 " , - M S T A r : E F £ j ? > D A M 7 H l J J ; I T < l R
V~ / Pp PIT f • ' N S T A T ; EPS • N D A M F H ' J M I T E R t ' F N S T A T • EPS F N D A M - K ' J M I T E R
"0 , - O R H A T (110 • E1 0 , 3 7 3 110 :>

H V v F O P i l f t T d t O )
(£) I- r: A I' * ? f IS r u T H G < I ) - I - i - MET AT )
^ « P J f ' T ~"v- ( Ib TAT 1 - ? - ' I ' • I- 1 ; H S T A T S

^ :-•;• [NT "•;- -' C n P P A r < i ^ -1 -1 - f ' S T AT ^
7 ' L (} F;; < A T '''-: F i 0 »".' ••
/f") i I ^ A D f - CD I ' l l T ' C I ' I N C - NCI ' ? W O D E P L

F F v T H T r - 5 ' C I i I H I T ; C L ' I > ; : ; ? : ! C D > N C ? L E F L
? .F10 .3f 21.10 ;
:.I'.0: JF1-' ,3)

", ,LL '^Pc:7 "-H •'; i E L E H 7 M M C - I i : R U N M O .• I I 'OF T 7 E= S r HI1 AM ? r ) U M I T E R 7
rpi H [ T - C I - r i ' T - f - T D - n O I ' E r ! . -
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Table 4 Control Cards for Using SPSTGN
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5 r- = T c- N • i1 A rA! >,
PF'JENL ' . 'O 'JTPI 1 : -
C:;?VE: OUTPUT 7 <-:FI!J:JT
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Appendix A-4

Program COPZ Documentation

Damper Gain Optimization with Fixed Modal Damping Ratios

I . INTRODUCTION

COPZ is a damping optimization program to compute minimum
damping gains for specified modal damping ratios using a diagonal
damping matrix. Subroutine COMMIN is used in the optimization
process .

II. PROBLEM FORMULATIONS

When a diagonal damping matrix [C] is introduced into an
originally undamped system, the damped eigenvalue can be found by
solving

f(s) = det[I + (A4.1)

where

3 = compelx eigenvalue of the damped system

[C] = submatrix of [AC] that contains only the non-zero

terms of [AC]

[R] = corresponding sub-matrix of the receptance matrix R

A
R
il J J

n i
£
«=1 2

S +

J I J Ii _

Let

0
I

The optimization problem is:

find c., i - 1 to N

c j
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N
such that J.. = . E, is minimized subject to the constraint

f ( S £ ) =0, i = 1 to NE

where

S = -C w ± jVl - C2 w
t i n i n

i i

To convert the above constrained optimization problem into one
without constraints, a penalty function approach is used. The
problem solved by COFZ can then be rephrased as

such that

find C., i = 1 to Ni c

N N
c E
E c + E W(f (S ))
i=l i 4=1 i

is minimized, where W is weighting function. Experience shows W =
1OOO yields good results.

There are N + N unknowns in the optimized problems. The
first N of the unknowns are the unknown n in S§ (with 6
specified >. The last N unknowns are the damper gains.

II. INPUT TO COPZ

A. Input from terminal (or input from TAPE 5). All are free format.

1. Title. One line description of the problem.
2. NDOF,NMODE,NE,NC

NDOF = no. of system dof
NMODE = no. of modes to be used
NE = no. of specificied £
NC = no. of dampers.

3 . JD( I ), I = 1, NC)
JD(I) = Ith damper location

4. X(I), I = 1,NC
initial damper constant

5. NM(I), ETA(I), (I = 1 to NE)
NM(I> = mode no.
ETA(I) = C- ~ specified damping ratio

6. WEIGHT X

WEIGHT = W is objective function J - 10OO usually
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B. Modal Data Needed: ( same as routine SPSTGN)

Read from TAPE 12:
For I = 1 to NMODE
WN(I),GM (Format 5X,2E16.9)
(PHI(JJ,I),I=1,NDOF) (Format 5E16.9)

Note: WN(I> = o>., GM(noticed), PHI(J,I) - p. .
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IV. SAMPLE RUN OP COPZ

Table 1 shows the job file to run COPZ, include data for a
sample problem. For this sample problem, we place 6 dampers at dof
1, 11, 39, 50, 78, and 88 of the 88-dof grillage model. We specify
the model dampings to be 0.7 and 0.6 respectively for mode 4 and 5
(the first vibration modes'). The results are:

C1 = 0.214, CI;L = 0.268, C39 = 0.146

C5Q = 0.146, C?8 = 0.207, C88 = 0.267

These results can be found in the end of Table 2.
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Table 1 CONTROL Cards for use of Program COPZ

\{ C' 1.1 . ' :-. 7 r> •"•• ^ ~l •'• , • 1 n ."I A
\ '< ' -v _ ! ! % • % ^ \ . \ . w 7 ^ \ . v , -w t

' t ;-\ l~ I" ' f. —« 4 -% -1 I—
'j b r.L- - -• ° ' u. j 1 r. ,
i M! A: "- lr • 1 0 ° v 2'- L ';' '"* ,

•' ]" *" i. ^ UJ r J- -T"! ti -< i r r.' ' i! i i -1 T p p; i*, f

•̂  r; t.'

f i p.' r. t > j r y Q /1 j >.; — •) \u "* £. 2 if!
O F T - ' . OP/. .
i7 T N ,• [ =!"' Q P7 •• F' L ~ 1 0 000^ E = F
1." T E ̂  -!. IP - c T)'. ,'';L IB *
: ;j A'• { r ,- f'B L MCC r1 ? r i ;Ew'" )

X E ' . ' l ' T T
'.';" U! ' ; ! r! - r ' I *' -' \} T
i i r- • ~ T „ •-, ij T p' M r . " r r ^, p T

! A ' ' -

'-, — •- ~, |..

I:;-! !'r : L f : ' L = XD
':-.' E r' i. f i C E r X B i"-.

I'1 ."i M P 1 ;-; G OF T I M I Z ,'iTI 2N - ',' ART
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Table 2 COPZ Sample Run Output

; ' i O O

I H P ;J 1 P R D P L E M 11T L El
N A S A C- R I L L A G E ri D U E L Tj M M p I N G •? P TI h IZ A T I Q ?i ? V A R Y f,! M'.' D E

' -

j N P U T I ' A M F E R L C C ^ T L O r i i ?
>~ C' ~" 'rj '- Q

INPUT INITIAL DAMPER CONST. if!7:l

T . H P U T P A I R S OF; M O D E HO. •> D ESI RET' It .TA

rJF".!T W E I G H T

:- n M i-' |_ '£ T 7 n ',;• r ;, p •< n p ^;_ n -_ T /,

M C 0 N

'~ r 'i. " p .* NJ *-.' :, f i r; S' '> .-.'. '- n

' 'J rl '•' L F. j F D £ c T G •' '-'.-': R T "i £<'
"J^&EP O F C C i N S T R f I K ' T ' B ?
i A XI • \'! M I T F R A T 1 '2 * ; S -
' F T i ' T " H f l P M ! -

M I ' V - 3
N C O f - 0
j 7 M ;^ .' = 3 o

IP P I N ~ - 7,'

fir s r. s ir • . ' ..% .•,
" . .'. '-• T ! ' M ' .". ." ."1 i
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Table 2 Continued

I' E £ I 3 r! V A RI A ? L E S
L LJ '4 E R i;! IT1A L U P F' E R
BOUND VALUE FOUND

I '-,"_-:( I) X(I) VUP'. I)

-> 1 r,.' r, 0 F •- •'' '̂  J ' "̂  A '- c H- 0 ?
i » i ̂  " •""" E" —" 2 , 1 " "•'v' "' F -} 0 0 r 1 '"'"' '^' D E T 0 U'
» - i A 0 0 0 E - } 2 .1 Cj •"• 0 0 E v 0 0 , i 0 0 0 0 E -r C ni

i ,10 0 0 0 E - 0 2 , J 0 C 0 0 E T 0 0 ,10 0 0 0!-10 !:•
7 t l O O O O E - 3 2 , i 0 0 0 0 E r 0 0 . l O C O O E - r O f
p . ICOOOE- 1 ' ' 1 ' ? 1 "! f* 0 0 E T 0 r~ i 0 T' 0 •" - ; 0 '"•

'J "~. 0 " " ~>n

200 4c

0

S C 0 N M I M *
7 *
* FORTRAN PROGRAM FOR t
*
^ CQMrTr' AI ;'EI' runCTT ;;N r11 NIMTI.iT IG"!

i 0 0 , i v G 0 ' •! 0 rt

i-'. ri
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Table 2 Continued

r 0 r J S 7 c '-. 111' E P F i! N C T 10 K MINIMIZ (-, F 10!'

',> C- I A A
I .t. V/ W

CONTROL, PARArETF;-- ;S

iRRi."7 NPV :TMAX ?;::•?•! NSIPE ICNDI-- MSCAL NFPG
5 3 SO 0 i ? 9 0

I
LINOEJ ITRM Nl N2 N3 M4 N5 i

0 3 10 16 17 17 31 ;

'JT CTMIN C7L CTLi l IN
--. 2 0 0 C 0 E T 0 0 , 4 0 0 0 0 E - 0 2 -.10 0 0 0 E - 0 1 « 10 0 0 0 E - 0 2

•T,i P|JT DFLFUN PA? "!Ji!

, S O O O C E - r 0 1 ,1000DE-03 . 10000E-04

FICH Fl'CUrt A L P H A X A B Q P J !
, 1 0 C C 0 E - C 2 t 1 0 0 j 0 E - -J 2 .10 r> 0 0 F T 0 2 » 10 A 0 n F" -: 0 0

: ~! 11 r: o s -111 »j r. c -MI "i ~ r T r T n «'. ;: f r. T t*. r>: ^ o ,• 111 .- .

UPPER SOUNDS ON DECISION VARIABLES
i: ,27r:3E-r02 ,327"'1EF02 , ICOOOEiOO - 10000F-iO? > 1 OOOOE-rOT
7) , lOOjOEi-05 .10000EJ-05

n T ; i ~r 2 ̂  ' "-' 2. £ •- 0 3

/ , T . „ _ _ _ _ _ „ . 1 i . , l _ ! ' . I
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Table 2 Continued

iZ"~!:-E*02 ,153"'=:T02 ,1000E+00 . lOCOE-i-00
IC-OOE-f 00 * IGOCErCO ^

FOR II- 1 »DE F - . 16£3E + OC -»4041E-<-
X ( I ; ~

.IZ^TEr :-2 ,163"?E-JC2 .lOOOE-fOO .1000E-00
- i 0 v 0 F T r' 0 f 1 0 0 0 E T •" 0 , 1 0 0 0 E f 0 0

C I

• -? , 82113I 357-V I 7 13 > 09C40ri££32 ,•
FDR II- 2 ?£'£T^ . 1524E + 00 -.393^E-0:

. 1374E-rD2 . i£3DE-r02 *1000E + 00 „ 1. OGOF-f-OQ , IGOOE-rDO

. 1GOOE !-00 .ICOGEfOD , iOOOE-fOO
c; T _r

( — 9 * 5 i 2 i 3 2 £ 9 ? 3 2 ? ? » 212 -17 c 5 '4 c' 3 2 5 )
FL 'F i I I - i r D E T - . i £ £ S E - r O O - . 4 0 < 4 E - O i

V ' J \ -

i 3 ̂  1 E -f ] 2 , 16 3 ° F -1 0 2 , J v 0 A F T '"'• 0 •, i 0 0 ̂ ' E T A •" , " 0 C '' F - 0 ">
, 1 0 C' 0 E f 0 0 * 10 0 G E r 0 0 - 1 0 0 C' E r 0 0

— 4-

/ _ c> ̂  £' 31 3 7 '3 4 2 2 £ i 5 » 13 . i G c' !3 "• 0 D 714 Q ;
K 0 i' 1 3 - 2 ? * i E T 1 C- 2 i E •!- 0 0

/ / r -, .

, i :• D :• E r o o . i o o o E J- o o .100 o E ••- o o
31-

FDR II- 1 jI'ET- , 16o7E-fOO -,1G<13E-01
X ( I ) -

r 137 IF v 02 J c Z ̂  F r ̂  2 -t ^. /*. •* '™ ̂  ,- ,^. J r» •'.
L-0 0 0 F T C1 '"f + 10 0 " F r 0 0 -• 10" C' £ *f 0 0

)0
r

. s \

"' r'

""'('. •

' ' , , L - ,' i ft

FOR 11=- 1 -DEI- ,l££5EiOv - , -»0 ' 4E-j;
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Table 2 Continued
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Table 2 Continued
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Table 2 Continued
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Table 2 Continued
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V. Listing of Program COPZ
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Program Listing Continued
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Program Listing Continued
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Program Listing Continued
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Program Listing Continued
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Program Listing Continued
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Appendix A-5

Program NORMAL Documentation

Mode Shape Ortho Normalization

I. INTRODUCTION

NORMAL is a FORTRAN program that can be used to orthonormalize
the mode shapes computed by EISPACK routines (such as RESV). For
zero-frequency rigid body modes, Gram-Schmidt orthogonalization
procedure (see the Appendix AS.1) is used to make the rigid body
modes orthogonal -to each other with respect to the mass matrix. All
modes are then normalized to unit generalized mass. Currently up to
3 rigid body modes can be accepted.

II. INPUT TO NORMAL

The following data is needed to use NORMAL:

1. Input N,NR,L where N = no. of dof of the system

NR = no. of rigid body
(<3) mode
L = number of elastic modes to be normalized

2. Read from TAPE 20

For I - 1 to L

where

WN( i) = w. = natural frequency of the ith mode, rad/sec
V(J,I) = p.. = mode shape coefficient at dof j of ith mode

3. Read from TAPE 10

NJ,(AM(I), I = 1,NJ)
NJ = no. of system dof

where

AM( I) = m. = lumped mass of ith dof

Note: Both TAPE 10 and TAPE 20 are created by unformatted WRITE in
a prior analysis

103



III. PROGRAM LISTING

j}c M
F F . O G F . A M : - ! G R M \ I fir L'T * D'JTP'JT* TAF E10 > TAPE 12 • 7AF £20 )

C
r
w

r

r
r
r
r

C
r

N-ND. OF THE SYSTEMS D . 0 . F . ( UNNORMALIZED) »
NR = NQ. GF RIGID EDDY MODES'. ;-=3)
L^NO. OF ELASTIC MODES 70 BE NORMALIZED TO UNIT GEN, M'.rS
f^-.TJRAL FFEO. < = A:-..'3EC.> AND MODE SHAPES ARE ETCRED CN Ti'.r

(USE rr.EE FC'F.MAT)
E l f i G O N A L E L E f i E s H S O F T H L M f t S s M A T R I X A R E S T O R E D O N T A r L i O ,
THE N O R f . f t L I Z E P M O D A L M A T R I X IS W R I T T E N ON TAPE12. - '

BF.) >TT•: = =

ro 200 1=1 »L
PEAL" 20) v'N'
READ • 10 ; :<J»

)"( '.!( J r l ) > J - l r N )
V K h < l ) r I - l f N J )

i.
r

L.

C

c
C
c

s300

?:ORf.A!_IZE M3DAL MATRIX

L' C 1 0 •"' 0 1 - 1 r M
D2 = 0.0
I-D 2"00 J-l.N
$2'- G2 i V< J? I : *V( J'I) i A M - J )
£M = 33RT''32>
Ii 0 3000 J = 1 r N
V( J. 1 ) -- V. J» I ;/3M
CC!-'TINUE

3RTHONCRMALIZE RIGID BODY MODES

IF 'NK.LE.l) 30 TO 9999 •
DO 4100 I=1»N
Z « I r 1 ) - V ( I f 1 )
f: = 0
EO 4200 I - l r N
A= A - V. Ir IMf.MC I>n'(Ii2>
32 = 0
D 0 4300 I - l r N
: '. i»2 > = A * v •: 111: -r v c i r 2 >
G2 = 02 i Z ( I r 2 ; j » Z C f 2 > * A M ( I )
GM = S Q R 7 ( G 2 )
D O 4 4 0 0 I = l r N
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•KOO 'v:(If2> = 2(I»2)/GM
IF (MR.LT.3) CO TO 9999

C2 = 0
Cl -- 0
no 5100 1=1fN
Ci = Cl - Z( I. 1 • fAMCI)-*Y<!»3>

jlOO C2 = C2 - Z(Ir2)*AM(I)*V<!f3)
C32 = 0

I'G £200 1 = 1 rN
J Z - : i » 3 > = C 1 » Z ( I « 1 > 4 - C 2 i Z < I » 2 > T V C ' 3 )

-•Z:0 G2 = G2 T Z'. I r 2 ) 1 Z ( I f 3 ) » f : M < I )
Gh = S3RKG2)
DC 5300 I = l f N
V < I » 3 ) = Z ( I f 3 ) / G M

P R I N T * » U ' N ( l ) i ( V ( J r l ) i J = 1 » N )
GM =• 1.0
1:0 t O O O I = l > f ^
W R I T E ( 1 2 ) W N < I ) r G M
W R I T E C 1 2 ) ( V ( J t I ) » J - l f N )
F O = : H A T ( 5 E 1 6 . 9 )
F O R M f i T < 5 X r 2 E 1 6 . 9 >

C C N T I N ' J E
S T O P
E N D
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APPENDIX A5.1

Gram-Schmidt. Orthogonalization Prodecure

n independent vectors {v. } can be transformed into vectors
(p.) orthogonal with respect £o a matrix [m] using the following
recursion equations:

L-l

where
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APPENDIX B

Active Damper Analysis - Linear

Figure (B.I) shows system 2.2.2.1, it is essentially the same as
Figure (5.6) except that definitions of displacement coordinates have
been added. Note that the concept is essentially different to that
used in the prototype design, which uses a long-stroke actuator
without a linkage .

Definitions

C - Damping constant
D - Voice coil, i.e., shaker, displacement
f - Frequency
F - shaker force
K - Ratio of maximum structural amplitude to maximum voice-coil

amplitude at design conditions
m - shaker mass
m - Moving mass
P - Rate of energy absorption
R - Linkage ratio
W - Energy absorbed from structure
x - Displacement of structure
y - Displacement of m
z - Relative displacement
(jj - Radial frequency

Subscripts

AL - Amplitude limited
CH - Characteristic
C - Per cycle
D - Design
FI» - Frequency limited
M - Maximum
0 - complex amplitude
T - Total

Referring to Figure (B . I ) , the basic damping equation is

F/R = cdx/dt = m2d2y/dt2 = m 2 (d 2x/dt 2 + d 2z/dt 2) (B . I )

and, assuming SHM with complex amplitudes of x , z , respectively

i •) ?
lzQl = lxQl{l + (C /u> m2

z)}-L/" (B.2)

If motion is amplitude- limited, so that

1 2 I-T = RDM (B.3)
o AL M

then
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Fig. (B.I) System 2.2.1 Active Damper
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| XO'AL = RDM/{1 + (C2/w2m2
2)}1/2 (B .4 )

whereas, if the motion is force-limited, we get, from Bl

| XO'FL = VWCR ( B-5 )

Defining design conditions as those for which amplitude
limits and force limits coincide, so that

|XO'AL - |XO'FL ' |XO'D < B- 6>

and introducing the ratio

K = |XO'D /DM < B - 7 )

one can eliminate c from (B.4) and (B.5) to get the biquadratic equation

(R/K) 4 - (R/K) 2 - ( fC H /KfD) 4 - 0 (B.8)

where f is the characteristic frequency given by
CH

fCH ' L <Vm2DM}1/2 ( B '9 )

and f is the desiqn frequency. Solving A8a

(R/K)2 - 1/2 + 1/2{1 -I- 4(fC H/KfD)4}1 / 2 (B.10)

thus-, assuming that K, f , and f are given, the linkage ratio R
can be found, and the linkage canbe designed. The damping
constant c can be found by substituting back into (B .4) and assuming
design conditions

m2 {(R2 /K2) - 1} (B.ll)

Note that the electronic system is designed so that the damping
constant c is a constant regardless of frequency. Thus, on
rearranging (B.4) , and substituting from (B.ll)

/2 ? f
X

Equation (B.12) defines the ratio of structural amplitude at
frequency f to the design amplitude. It is less then unity. For
frequencies above the design frequency, the structural amplitude is
force limited, so that, according to (B.I)
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fn_L» . f s * rn
|XO'D f ' D (B.

The above two equations define structural amplitudes for
which the damping system would remain linear under conditions of
SHM. If the structure were to vibrate at a single frequency, they
would constitute an envelope of permissible amplitudes. The
situation with complicated structural responses would be much more
difficult to analyze.

The energy removed from the structure per cycle is

ex dx = 27T2fclxol
2 (B.14)

thus, at design conditions

WD = 2"2fDClV2D (B'

and, on substitution from (B.5) and CB.7)

where

(B.17)

is the maximum energy which can be removed by the shaker. Since
R/K is always greater than unity, w is always less than W , the
discrepancy being due to phase differences between the structural
and damper motions.

From (B.14) and (B.15)

W 1 x 1 2

"D = ?D "V2

thus, for the amplitude limited case of (B.12)

(£/£_)(R2/K2)

' f

while for the force-limited case of (B.13)

- ° , f > f (8.20)
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The rate of removal of energy is given by

f W

thus, above the design frequency

(B.21)

P = PD = W f > fD

while, below the design frequency, we have from (B.19)

(B.22)

D (R2/K2-l)(f2/f2)
(B.23)

Taking the Goodman V102 shaker as representative of current
practice, we use the following values as typical:

mass, m, = 2 Ib = O.9072 kg1 m *
maximum force, F = 2 Ib

M X.
8.890 N

i
P-P deflection, 2D = O.2" = O.O0508 m

W

Max work per cycle. w (from (B.17)) = 0.0709 Joules

Max work per cycle per unit mass, W/m = 0.0782 J/kg

As an example, consider a design condition of one inch
structural amplitude, lx_! , at a frequency f of one Hertz. Then
from (B.7) D

-K = |XO'D/DM = 10

The following three sets of calculations are for three values of
the movinq mass in

Case

f (from A9)
R/K (from A10)
c (from All)
W (from A16)

Dimensions

"r " m "i 2
(from A22)

0.09072
31.26
3.2O7
1.737
0.0221
O.9979
0.0221
0.0221

0.9O72
9.886
1.264
4.407
0.0561
1.8144
0.0309
0.0309

9.072
3.126
1.005
5.707
0.0705
9.9792
0.0071
0.0071

kg
HZ

Ns/m
J
kg
J/kg
W/kg

It will be noted that case 2, for which the magnet and moving
mass are equal, gives the best performance in terms of watts of
energy removed per kg for frequencies above one Hz. The damping
constant c achieved is also close to the maximum. If system 2.2.2.1
in Figure (5.7) were used instead , the total mass m would be O . 0972
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kg, and the performance of the system would otherwise be identical
to case 2 above. Thus, values for M /m and P/m would be 0.0619
J/kg and 0.619 w/kg respectively. This value for W /m is close to
the maximum value of W /m obtainable with this voice-coil shaker.

M
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APPENDIX C

Use of Piezoelectric Materials

Polyvinylidene f louride ( PVF > exhibits the following
relationship between strain e , normal electric field, E , and
stress a (see Figure (C.I))

el = ~d31E3 + d/Cii)0! (C.I)

where d = transverse piezoeletric charge coefficient

E
C = modulus of elasticity

Assuming SHM with maximum values of e , E and a • such that
e and a are 90° out of phase with each other, and 4s ° out of
phase with E .

°M = d31C?l E

6M = d31 EM/V2 (C'3)

and the maximum energy absorbed per unit volume is

WM = "Vn = * dsi cn EM2/2 < c - 4 )

while

WM/m = wM/p = n d^ C^ EM
2/2p ( C . 5 )

Typical values are

d31 = 5 to 37 x 10~12 m/V

C^ = 1.6 to 3.8 x 109 N/m2

Eu - 12 to 30 x 106 V/m
M

p = 1.8 x 103 kg/m3

which gives the following range of values

W^/m = .005 to 4.1 J/Kg
M

113



electric field E

3

A

stress

strain

Fig. (C.I) Unit Cube of Polyvinylidene Flouride (PVF2) Piezoelectric
Material
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The most critical property is that of E . Unless a
considerable safety margin is allowed, there is a severe danger of
dielectric breakdown in a space application, particular after a
micrometeorite has damaged the material.
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APPENDIX D

Simulation of NASA Tests

To help the actuator hardware design, a model of the prototype
actuators will be put on the finite element model to simulater a
vibration control test, initially, a linear simulation will be
performed. The purpose is to determine the magnitude of the
displacement and the actuator force under designed conditions. The
assumptions of this simulation are

(1) the system is linear
(2) the FEM of the NASA grillage (or beam) will be

used as the undamped structure
(3) the actuator dynamics will be ignored. That is,

the actuator will be assumed to be a perfect device
capable of producing force f = ex under all conditions,

(4) the weight of each damper will be included as a
discrete mass added to the system

(5) the excitation will be an initial displacement and/or
initial velocity of the FEM.

Formulations

Let [M], [K] be the mass and stiffness of the undamped
structure.
matrix is

Introducinq n dampers at dof J ,...J , the damping
c 1 nc

[c] = [B][c][B]T (D.I)

where

[B] = [{e } I {e > ... I {e }]
J, J_ J nxn1 2 n c c

[8]

0
n

and

{e } = null vector except the jth element has a value of 1J

In expanded form,
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[c] (D.2)

n

The contribution to the mass matrix due to the mass of the damper is

[AM] = [B][£M][B]T

or

[AM]

* Am

' Am
(D.3)

where we assume all dampers are identical and have a mass of Am.

The equation of motion of the system is

where

(D.4)

[M] = [M] + [AM]

The initial conditions are

{ X Q }

{X Q }

(D.5)

Equation (D.4) can be solved numerically using any of the numerical
solution techniques, e.g. Wilson's 0 method or Newmark ft method.
Alternatively, a modal solution of (4) can be obtained by using the
complex mode of the system (see Hurty and Rubinstein (Ref. 1).
Once the modes are known an analytical expression can be written
for each mode in this approach.

REFERENCE

I

1. W.C. Hurty and M.F. Rubenstein, Dynamics of Structures, Prentice-Kail,
Inc. Englewood Cliffs, N.J. 1964 (ch. 9).
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APPENDIX E

1. Bounds on Transient Responses

2. Time Domain Optimal Design

1. Bounds on Transient Responses

The disturbances acting on an Large Space Structure is mission
dependent. However, one can say that these disturbances are usually
of a transient type, e.g. firing of control thrusters for attitude
control etc. The vibration control system must be designed to
suppress these transient vibrations. One way of measuring the
performance of a vibration control system is to evaluate how fast the
control system can bring the response from some initial
disturbed state to within an "acceptable" level. The response could
be the displacement, velocity, or acceleration at certain
"critical" locations of the LSS. For a large structure, it may not be
easy to define which specific response is critical and the designer
usually resorts to some aggregation of responses as the performance
measure. One commonly used criterion is the minimization of

V({z}) = {z}T[P]{z}; z =

r i
X

(E.I)

where [P] is the weighting matrix. The estimation of transient
behavior for the performance index can be derived according to
Lyapunov's 2nd method, given a linear system governed by
{z} = [A]{z) with initial state fz ) at t = t and where V({z),t >

o o o
is given, the system attains a value of v given by

V({z),t) = V( {z },t )e ̂  in t-t seconds using Lyapunov's

second method (Ref. 1,2). The following is a description of the
use of Lyapunov's second method in estimating transient responses
(Kef. 6) and then indicate how it is applied to the control of LSS.
Finally, some research issues will be raised.

Given initial states fz } and the initial value V( {z },t ),
the system reaches the region

V({z}ft) - V(x ,t )e~
7?(t~to) (E.2)

o o

in t-t seconds.
o

For a linear time invariant system governed by the following
state equations
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{z} = [A]{z> (E.3)

the parameter 7) in Eq. (E.2) is the minimum eigenvalue of the matrix
[Q][P] where [P] and [Q] are related by

[A]T[P1 [P][A] = - (E.4)

and [P] is the weighting matrix in the performance index, Eq. (E.I).
Note that if [Q] is symmetric, so will be [P].

The above results can be applied to the control of LSS by
letting

[A] =

M^c

where [A] is the dynamical matrix of the closed loop system.
That is, in Eq. (E.5) the mass matrix [M] include the mass of the
control devices; [k] is the stiffness matrix of the system plus the
control law that is proportion to the displacement ((x> > and [cl is
the damping matrix which corresponds to the portion of control law
that is proportional to rate ({x}), see Appendix F for detailed
formulation.

It should be noted that the use of Lyapunov's second method
requires that all the eigenvalues of the matrix [A] have negative
real parts. For a free-free structure with no position feedback,
the system matrix [A] has some zero eigenvalues. Thus, to use the
above results directly we need to include positive feedback terms
in the control law.

The Lyapunov's second method provides a sound basis for
transient performance estimates. To apply it to the design of
vibration control of LSS, the following research needs to be
carried out.

(1) matrix [Q] must be positive definite, otherwise its
eigenvalue could be zero or negative which renders the
estimate (Eq. (E.2)> useless. This implies the performance
index V({z},t) is restricted to quadratic form with
weight matrix [P] that leads to a positive definite
[Q]. Thus, [P] may not be specified arbitrarily. The
question of how to pick matrix [P] needs further research.

(E.5)
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(2) Alternatively, we can specify a positive definite [Q] and
solve for [P] by Eq. (E.4). This requires the solution of
a set of n(n+l)/2 equation, where n is the order of matrix
[A]. An efficient solution scheme of Eq. (E.4) needs to be
develoepd (or found in the literature).

( 3) modify the formulation to allow it to accept LSS whose
control law consists of rate feedback only. This may be
achieved by formulating equations of motion for elastic
modes only by filtering out the rigid body motion.

( 4) application of the formulation in a truncated modal space.
This will reduce the computational burden drastically.

(5) Formulate a synthesis procedure using the basic results.
This may be achieved by iteractive methods or by a direct
formulation. The results of the above researches can
also be used in the next section.

2. Time Domain Optimal Design

Traditionally, time optimal design using optimal control
theory with quadratic performance results in the solution of a higher
order Riccatti equation, (Ref. 3). This will result in a control
law with full state feedback which may be difficult to implement.
For a vibration control system, it may be advisable to take another
approach. That is one could fix the form of the control law then
find the pairs that optimize some performance index. In general,
nonlinear programming approaches can be used to find the optimal
gains. This will be extremely costly since many transient
responses are to be evaluated. If we limit ourself to a quadratic
performance index, then the Lyapunov's second method can be used to
evaluate the performance index when the system is driven by initial
conditions. The general results (Ref. 6) will be stated first and
then their application to LSS will be indicated.

Consider the system

{z} = [A]{z) (E.6)

where all eigenvalue sof [A] have negative real parts, or the
original (O) is asympototically stable. The design problem is to
adjust the elements in matrix [A] such that the performance index

fz}T[Q]fz}dt

is minimized. It has been shown that

J = J~ {z}T[Q]{z}dt = {zo}
T[P]{zo} (E.7)

where [Pi is the solution of the equation
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[A]T[P] + [P][A] = -[Q] (E.8)

Note that [P] is symmetrical. The significance of Eq. (E.7) is that
to evaluate the performance index, no transient analysis has to be
performed at all. Rather, we just .solve a set of n(n+l)/2 linear
Eqs. (E.8) and then perform matrix multiplication. Since the
elements of [P] is an implicit function of matrix [A] through Eq.
(3), the following optimal procedure can be proposed:

(1) from trial value of design parameters, form matrix [A]
(2) solve [P] using Eq. (E.8)
( 3) evaluate J using Eq. (E. 7 )
(4) repeat the above process until J is minimized.

When applied to LSS, we simply use the dynamic [A] as defined in
Appendix F. The results of the research is used in the previous
section is applicable here also.

REFERENCES

1. R.E. Kalman and J.E. Bertram, "Control System Analysis and
Design Via the Second Method of Lyaponov", Trans. ASME J. of
Basic Engineering, 80, June 1960, pp. 371-400.

2. K. Ogata, Modern Control Engineering, Prentice-Hall, Inc.
Englewood Cliffs, New Jersey.

3. Brian D. Anderson and John B. Moore, Linear Optimal Control,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
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APPENDIX F

Formulation of Dynamical Matrix for LSS with General Control Law

Consider the actively controlled LSS

[ M ] [ x ] + [k 1{Z} = [ B ] { u > ( F . I )o

where

[k 1 is the stiffnes matrix of the uncontrolled structure (nxn)
[Mj is the mass matrix of the controlled system including the

mass and inertia of the control devices (sensors and
actuators, etc) (nxn)

[B] is the control distribution matrix (NxN )
(u) is the control input (N xl)

Let the control law be

(u) = -[Ak]{y) - [Ac]{y> (F.2)
\

where

{y} = [B,]{x} = displacement measurement (N,xl)

(F.3)

{y} = [B ]fx} = velocity measurement (N xl)

= displacement qain matrix (N xN,)u d

[AC] = velocity gain matrix (N xN )

[B,] = displacement measurement matrix (N,d u

[B ] = velocity measurement matrix (N xN)

Substitute ( F . 3 ) into ( F . 2 )

{u} = -[£k][Bd]{x} - [£c][Bu]{x) ( F . 4 )

Substitute ( F . 4 ) into (F. I )

xN)
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[Ko]{x> - -[BAkBd]{x> - [BAG (F.5)

Equation (F.5) can be simplified to

{0} (F.6)

where

[c] =

[K] =

[AK]

[B][Ac][Bv]

[KQ] [AK]

[B][Ak][Bd]

(F.7)

Note that in general, matrix [K] and [C] are arbitrary matrices,
they may not be symmetric.

Finally, we can put (F.6) in state space form as

(Z) = [A]{z) (F.8)

where

- [A]

(F.9)

{2}
X

i j
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Appendix G

Proposed Approaches for Actuator Failure

Detection

The actuator failure modes can be classified as:
(a) total failure: actuator does not produce a force in response

to a command signal
(b) random failure: actuator produces random force for a given

input signal.
The total failure mode may be considered in the design of
electronics for the actuator.

The random failure mode is more complex and may not be
detected using hardware alone. In this case, a monitoring system
to keep track of the performance of each actuator may be needed.
Through the performance monitoring an adaptive control approach may
be derived to detect andisolate failed actuators. Such an approach
has been used in the detection of rate gyro failure in flight
control systems [Ref. 1]. The feasibility of this approach to our
problem is being investigated. Literature search will be made to
look for other approaches.
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