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Abstract	 OF POOR QUALM

A method is presented for performing efficient and stable finite element

calculations of heat conduction with quadrilaterals using one-point

quadrature. The stability in space is obtained by using a stabilization

matrix which is orthogonal to all linear fields and its magnitude is

determined by a stabilization parameter.	 It is shown that the accuracy is

almost independent of the value of the stabilization parameter over a wide

range of values; in fact, the values 3, 2 and 1 for Vie normalized

stabilization parameter lead to the 5-point, 9-point finite d'lfference and

fully integrated finite element operators, respectively, for rectangular

meshes and have identical rates of convergence in the L2 norm. Eigenvalues

of the element matrices, which are needed for stability limits, are also

given. Numerical applications are used to show that the method yields

accurate solutions with large increases in efficiency, particularly in

nonlinear problems.
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1. INTRODUCTION

4,
Because of the versatility of finite element methods.for treating complex

geometries and boundary conditions considerable attention has been focused 00

a
these methods in heat conduction. One drawback of the finite element method

compared to the finite difference method is that presently available

r	 formulations tend to be more time consuming. For example, in comparing
f

standard five point or nine point finite difference formulas in two-dimensions

with the isoparametric, bilinear quadrilateral with 2x2 quadrature, one finds

that in nonlinear heat conduction, a substantial amount of time is used to

perform the 2x2 quadrature within each element so that the latter can be

markedly slower.

The purpose of this paper is ti p present techniques throu4c. which the bi-

linear * isoparametric element for two dimensional heat conduction can be used

with one point quadrature. Special techniques are needed because when single

point quadrature is used, the element matrix contains a spurious singular mode

in addition to the singular mode associated with the constant temperature

field. For certain boundary conditions, this singular mode leads to.singu-

larity of the assembled system matrix, which prevents it from being inverted.

While the singularity is absent in the transient system matrix, the presence

of the singular modes in the steady-state matrix will lead to oscillatory

solutions in which nodal temperatures alternate in sign spatially, and the

growth of this mode can lead to uninterpretable results. This is true for

both explicit and implicit time integration procedures.

This singular erode is analogous to the hourglass modes found in many fi-

nite difference codes for transient analysis of continua E13 and considerable

efforts have been devoted to the elimination of these modes in both the finit*

difference and finite element literature [2-4).
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In this paper a stabilization procedure is developed for the quadri-

lateral element for heat conduction based on the techniques developed in [43

so that one point quadrature can be used effectively, in effect, the spurious

singulao moue will be eliminated. The procedure is described for both the

conductance vector and the element conductance matricss, ' so that It can be

used In both steady-state and transient algorithms with explicit and implicit

time integration. As part of this development, the eigenvalums are obtained

exactly for both isotropic and anisotropic heat conduction; this should

facilitate the choice of a maximum Ftable time step for explicit time

Integration and optimal r0 axation factor; for implicit time integration by

t	 iterative equation salvers.

In Section 2, we review the governing equations for linear and nonlinear

heat conduction along with the finite element approximations as obtained by a

variational principle, which are similar to [53 except that they are written

directly for the nonlinear case. Other nonlinear formulations have been given

In [63 and [73. The equations for the one-point quadrature, bilinear,

Isoparametric quadrilateral are given in Section 3 with the stabilization

procedure. Section 4 compares the finite element equations given here to

finite difference spatial semidiscretizations based on the standard 5-point

and 9-point molecules. An Interesting result Is that when the mesh Is

regular, these different molecules can be developed by simply varying the

stabilization parameter. The eigenvalues of the element matrices are given in

Section 5, whereas the computer implementation of this one point-quadrature

for the heat conduction element is given In Section 6.

In Section 7 $ we present several example problems. The first two

examples compare the rate of convergence of this element with 1 point

quadrature and with 2 x 2 quadrature of the quadrilateral to show the minor

E

-3-
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effect of reduced integration on convergence. The remaining problems are

transient and are intended to show the improvements in speed which are

possible with this element and the difficulties which result when hourglass

control is not used; both linear and nonlinear results are presented.

-4-
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2.	 GOVERNING EQUATIONS AND VARIATIONAL (WEAK) FORMS

We consider a body a enclosed by a surface	 r with unit normal n which is

subdivided Into a prescribed 0-surface r, and a presc-„Ibed flux surface	 rq.

We use the .following nomenclature

0	 n 	 temperature

s	 n 	 source per unit volume

IT
q,	 heat flux

0	 density

c	 specific heat

h(s)	 convective heat transfer coefficient law

kIj	
linear conductivity matrix (k ij n k,, j for Isotropic heat

conduction)

The governing equations are:

q,	 S • pC 6	 In	 1291 4-

on	 r 0 (2)

-q, n, + h(s) n q	 an	 rq
(3)

a a s
o	

In	 a	 when t n 0 (4)

Standard indicial notation Is used with repeated subscriPts Implying a
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summation. Here a comma designates a partial derivative with respect to xi

and a superposed dot designates the time (t) derivative.

The completion of Eqs. (1) to (4) also requires a heat -;aw

q i ' f i (e, e, j )	 ()

which for linear heat conduction can be written as

qi ` -k11 e91	 (6)

The variational or weak form of Eqs. (1) to (4) as given in [8] is

m(a, v) + r(e. Y) a f (q . s, v)
	

(7)

where v is the test function and

I'	
m(9, v) • j pc e v do	 (8)

a

I
r.(e., vl ..,-J v , i q i dn	 (9)

a

f(q, s, v) ' J C 4 - h(9)3vdr + J s v do	 (10)
rq	 a

a:
^r

1 The finite element equations are obtained by approximating the test func-

tions and the approximate solution for e(x, t) (trial functions) by Shape

functions N i . These shape functions are defined in each element, and the

approximation in each element is given by usf.`ng a local separation of

r
i
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(11)

h

where e I are the nodal values of the temperature and NO®ELE is the number of

nodes in the element. An Identical expansion Is used for the test function

v(x) and the space discretization is performed separately.

The finite element semidiscretization yields the following system of

ordinary differential equations for heat conduction

M e + r n #	 (12a)
N All	 nV	 w0

e(0) • 10	 (12b)

where M Is cbtained from the element matrices M E by thr standard matrix

assembly of finite elements and d "r and f are obtained from the element matrices

by vector assembly. The element matrices are given by

ME • EM .J 3E ' j pc NI N^ do	 i 13)
CE

ZE • [r 1 ]E n - j N 191 qi do	 (14)
OE

fE • Ef 1 3E j NT s da + f	 N IV*dr - j	 N 1 h(e) gtr	 (15)
aE	 rE	 rE

q	 Q

wr

'/-
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The above equations are applicable to both linear and nonlinear heat

J	
conduction, for r and f may be nonlinear in 9. When the conductance k id is

$	 constant, Eq. (12a) can be replaced by

MA+Ka - f	 (16)
M H /r M IY

i

where K is here called the global conductance matrix, which is ass6mbled from

i
element conductance matrices KE given byow

r
t

KE . CKIJ JE
	

f E NI.i kij NJ.j 
do	 (17)

A

4
	

4
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1?^i shape functions for a quadrilateral element are written in a

reference plane E,n in the form

N I 	(1 + E I E)(1 + h I n)	 (18)

i
where E I , n I are the E, n coordinates of node I. If one point quadrature is

used, the integrals in Eqs. (13-15) and (17) can be computed by simply

evaluating the Integrands at C n 0, n n O and multiplying by the area, i.e.
e

for any function, one-point quadrature gives

fE f(C, n) do • A f(0, 0)	 (19)
.12

where A is the area of elemeiit E,

The following equations then hold on the element level

gA
I

aeE 	(20a)

j

{	 r

E
rE(1)	 ST (0.9)	 (20b)ow

ii

and the associated element conductance matrix for linear heat conduction is

r

KE(1) A BT D B	 (21)

where the superscript 1 designates one-point quadrature. Here

I	 o

-g-
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(22a)
bT
V2

D	
kil	 k12	

(22b)
^

	

k12	 k22

q 	 x

	

x	 (22r,)

	

ly	0 V

The area of the element, A. is given by

A ' 7 (x31 Y42 + 424 Y31)	
(23a)

and the vectors b 1 are given by

bi ' I EY24 Y31 y42 Y133	
(23b)

O
T2 ' T [x42 x13 x24 x313	

(2 )

x ii *xI' xi	 YIJ`YI Yj
(23d)

For the purpose of identifying the spurious singular mode of K E and its

control, we will define two additional column vectors

sT . [1, it 1, 13	 (24A)



ORIGlOAL PAGE 
IS

i•

	

OF POOR QUALM

and note that

bT s n 0	 bj h n 0	 sTh n 0	 (24c)

Those vectors, bi, s and h, span the 4 dimensional space of element nodal

tunperatures and are shown for a typical quadrilateral in Fig. 1.

The linear relationship between nodal sources r and nodal temperatures e
for an element can be written as

rE	KE(1) OE	 (25a) .

nR (b̂ i k i , b^ ) AE	 (25b)

If we let eE n s or	 sE n h, 	 , the orthogonality properties, Eq. (24c )ow

Immediately lead to the result that ,rrcn 0 . Therefore, these two sets ofow

nodal temperatures correspond to singular modes of the element matrix

KIM . The first, eE n s , 1s expected and necessary since it corresponds to

a constant temperature field; if a stiffness does not give r E n 0 for this

mode it will not be convergent. We will call this the rp o= null-space

of K E(1) . The second, G E•	 h, Is undesirable and often is called a spurious

singular mode, since It can lead to singularity of the assembled finite

element equations. The presence of an additional singular mode is often

called a "rank deficiency" of the element matrix. Note that the two vectors

-11-
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h ands span the null.space of the element matrix.
To eliminate this singular modeo we augment the element conductance

matrix by a stabilization matrix [9],

KE 	KE ( 1 ) + KE 	26-stab	 ( )

where the stabilization matrix is given by

stab ' " x xT	 (27)

The choice of tha constant i will be described later.

This stabilization matrix is obtained by defining an additional

generalized thermal gradient 9 and flux q by	 l

E'

g •T 
dE	 (28)

q	 9	 (29)

This generalized gradient and flux are added to compensate for the

contribution to r (e. v) which is lost due to one point quadrature, so in

effect we now have instead of Eq. (9) that on an element level

r E (e
0 v)	 j v. i qi do -, 9 ( v ) q	 (30)

aE

a.
6.

.
VT 

rE(1) +
 VT X q	 (31)

. N	 ti

•12.



Thus the element nodal sources are giver, by

rE*rE(j)+X9

wx IS
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OF

(32)

and Eq. (27) • follows Immediately from (32) and (28).

The form of x will be &tasen so that the fallowing conditions are met:

1. for any vector of nodal displacements which Is defined by a linear

(or constant) temperature field,g n 0 In Eq. (28);

ii. for any other set of nodal temperatures, g 0 0 .

To put this Into more precise terms, we designate the vector space of

nodal temperatures of an element by R4 ar,d the null-space of I by Ro . Since

the 4 vectors b l , b 2 , s and h are linearly Independent, they span R4.OW 	 i

As x is In R4 , we can expand it in terms of these base vectors as follows

x n a l b l •^a 2 - 2 +a 3 s+a 4 h	 (33)

An arbitrary linear temperature field Is given by

S (x, y ) n C 1 x + c 2 y + C 3 	(34)

k

and substituting in the nodal values we obtain the following expression for

nodal temperatures

eE . C 1 + c2 x + c 3 s	 (35a)

-13-	 ^.
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XT 
n (xl^ x2 . x3 . x4) (35b)

x 	 • (Y l . Y2 0 YV Y4 ) ( 35c)
r
C
5

We note the following identity from [4]

X1 bi n A a id (a, a x,ow M2 
a ,^) (36)	 Y

which is easily verified by simply substituting in the values or b j and A.

The first condition then requires that g (given by Eq. (28)) must vanish

for all O
E
 i.e.

(a l bl + a2 b2 + a 3 s + a 4 h) (c 1 1 + c 2 x + c3 s) 0 0	 (37) j

for all	 ci s

9

Using the^t thogonallty of s and h and, their orthogonality with big and Eq.ow

(36) then yields
1

x • 1 [A h - (hT ,x) bl - (hT x) b 23	 (38)

We will call the vector ^s l the proper null-space of R 4 ; its complement is of

dimension 3.

Since x is linearly independent of b i , the 3 together must span the entire

complement of the proper null-space of R4 , so the second condition is

-14-
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satisfied.

It is of interest to note that the complements of the null-spaces

of KE(1) and of 
Kstab 

(the 1,ptter coincides with that of x ) are not

exclusive; i.e. the intersections of those spaces is-not empty. This means

that 
Kstab 

will affect the solution if it is not linear and the elements are

not rectangular. Neverthelet'.;, the stabilization matrix does not affect

linear or constant fields, so it should not deleteriously affect convergence;

though this remains to be proven, thk^ numerical results in Section 7 confirm

this fact.
i

The stiffness matrix with the stabilization can be written as

KE	 b 1 
kij 

bT + 1 h hT 	(39)
where

sib . kid + cA( hT,xxi ) Qh x, )	 (40)

and

kii (lx + t9)

24^►
(41a)

or

k (A + tZ	
(41b)C ..	 MA

where A
x
 and ;ty are the lengths of the sides of the element.

-is-
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4. COMPARISON WITH FINITE DIFFERENCE FORMULAS AND OTHER FINITE ELEMENTS

For rectangular and square arrangements of meshes, it is possible to

compare this finite element with standard finite difference formulas and fully

integrated quadrilateral finite elements. These comparison help in assessinO

the role of the stabilization parameter c and the lack of sensitivity of

soluClons to Its value.

For a square finite difference mesh, the 5 point and a h point molecule

[10] are given In Table 1. The complete stiffness (1-point quadrature plus

stabilization) is also given for c n 3 and c s 2. It can be shown by the

simple assembly of the finite element equations that

I. c n 3 corresponds to the 5-point molecule

ii. c a 2 corresponds to the 9-point molecule

It can also be shown that as defined In Eq. (41), the value of c - 1

.gives the fully integrated finite element stiffness; while c n 0 of course

corresponds to the 1 point quadrature stiffness. Thus commonly used finite

difference and element formulas are associated with a large range of c values.

4^

f
4=

0

H.

i

d
S	

-16-
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S. EIGENVALRE ANALYSIS OF ELEMENT	
laNn ^A.rT'(

We consider the following form of the eigenvalue problem 	 Of 00

KE GE 
n 	

^E 
ME 

eE	
(42)

where ME is the lumped element capacitance matrix, whith is given by

i

ME ' n pC I	 (43)

where I is the identity matrix.,. The system is associated with the eigenvalue0"

prohlem

K 9  I M e	 (44)

and according to [12], the largest eigenvalue of any individual element will

bound the maximum frequency from above, so

INs	 max	 ;k	 (45)
max	

for all E max

Since the stability of Euler integration requires that

At <-2---	 (46)
max

a time step chosen by

f

at	 min	 _..	 (47)
for all .a max
	 3

E

-17-
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In ordW to obtain the eigenvalues for Eq. (42), we note that the element

stiffness as given by Eq. (39) is the sum of 2 terms and the eigenvectors of

the two terms can be constructed as follows:

1. The two nonzero eigenvectors of the first term on the right hand side

of Eq. (39) are linear combinations of bl and b2 and since b land b 2 are in

the null-space of the second term, this will also be an eigenvector of KE.

2. The nonzero eigenvector of the second term is h and, since h is in
tR

the null-space of the first term, it is an eigenvector of KE.
j ow

The maximum eigenvalue of Eq. (42) can be then be shown to be given by

XE^ax { X + Y t V{ (X- Y) 2 + 4Z21 , 16 c A2 / k} (48)
max

where

a n k /pc

X ' 
	

11 811 811
Y n kij 62i 

821	
(49)

Z n I..k1i B11 B21

The following special cases are of interest:

1. If the material is isotropic and the element rectangular

4n (50)1 %.
 
max ^ "'^

Imi In

where 
tmin 

is the minimum element length, provided that

-18-
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C <	
3r

2

	

=

	 (51)
l+r

where r is the ratio of the lengths of long side to the short side. This,

with Eq.(47), yields the following condition for stability

2

At 14=^	 ( 52)

11. For square meshes with a distance x between nodes and with c > 3 , the
2

maximum eigenvalue is given by the second term in Eq. (48), 1. e.

Amax ^ &^"
	 (53)

Remark 1. The eigenvalue in Eq. (53) governs the time step for the 5-point

and 9-point difference fotfiulas (c 	 3 and 2 respectively), so the stable

time step for these difference formulas is smaller than for the finite element.

method. This contrasts with the findings In [113 and [123, where the opposite

was found because (1) less accurate bounds were used for the eigenvaules and

(2) the consistent capacitance matrix was used.

—Remark 2. The stability limit for the time step resulting from Eq. (53) for

the 5-point difference formula (c n 3), agrees exactly with the result of a

Neumann analysis given in (13)

At < 922 (54)

4a

-19-
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6. ,Explicit Integration Using One Point	 adrature and Hourglass Control9	 9	 Qu	 9

For Quadrilaterals

For simolicity, we have dropped the superscript E in this section. We

first define explicitly the one point quadrature element; vector r (1) and the

stabilization element vector r h employing hourglass control. Then the one

point quadrature with hourglass control element vector r is equal to the sum

of r (1) and rh.

I

f
f

One Poitht Integrati_

•	 As give in eq. (14), the element vector r is:

3	 ,

r I .. fa (NI,x 
qx+ N I.Y qy) 

dri	 (55)

whore q. and qy are (see Eq. (220);

qx .	 (k llg x + k 12gy )	 (566)

qy
 s . (k129x + 

k 22
9
y )	 (56D)

x
r

and
r

g  `'1A C Y24 (e 1 - e 3 ) + Y31 (e 2 ' 6 4)3	 (56c)

gy	 x42 (a 1 - e3) + x13 (0 2 	9 4 )3	 (56d)

Employing one point integration

r i 1) ' b 1l gx + b2l gy ' bi Iq 4 	 (57)

2,4-
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where b 11 4ind b21 are defined in eas. (23b) and (23c) respectively.

Hourglass Control

The stabilization vector as defined in eq. (32) is:

1C h r9	 (58)

J

where

q s i 9
	 (59)

and

9 .	 [ (e l . 
b2 + 

9 3 - 8 4 ) - ( gx ax * gYaY)]	 (604)

a x . x l . x2 + x 3 - x4	
(60b)

ay a y l Y 2 + Y 3 - Y4	 (60c)

The nodal components of this hourglass vector are:

r 1 . h1q	 A bilxiJhJq

Therefore the element vector using one point quadrature and Hourglass

-21-
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(64b)

a	 ^^
F

s

t^

g73

N

X
Ay

M

control for a quadrilateral is;

<<	 r  ' 11Iq	
A 

b  IxiJh jq + bi 
Iqi

After some algebra one can show that

tY	 ^

	

rI	 b1 1 gx + b2lgy + hiq
w<

h^

where

F

s	 +^	 1
qx qx • —- axq

and

qy  qy • ^- ayq

^ *<
k r

}

(62)

(64)

-22-



7. Numerical Results

A two dimensional finite element pilot computer code incorporating the

methodologies described in the previous sections has been written to evallAte

the performance of this one point quadrature element and our critical time

step estimates. Four numerical examples are presented to demonstrate the

accuracy, stability criterion and efficiency of these proposed methods.

Results are compared with exact solutions or approximate solve— ans using two

by two quadrature. All computations are perfm med on a CDC Cyber 170/730

computer In single precision (60 bits per floating point word). For the

transient analysis, a Iumped capacitance matrix is used and the predictor-

correctov, explicit algorithms with a n 0.5 used in [8] are employed to carry

out the time integration.

Example 1: Convergence Study of a Unit Square Plate with Proscribed 

Temperatures

Due to symmetry of the geometry and prescribed temperatures, only half of

the unit square plate is modelled with 32 (4 x 8), 128 (8 x 16) and 200 (10 x

20) elements respectively. These three finite element meshes are depicted icy

Fig 2. Side SC is a line of symmetry (insulated). Sides AD and DC are

prescribed a constant uniform temperaure of 0.0, while sides AS is prescribed

with a constant temperature distribution of sin Ax where the x-axis is defined

by ,joining node A to node B. Hence the temperatures at nodes A and B are 0.0^

and 1.0 respectively. The exact steady-state solution is given by:

aexact (x,y) • sinh A (1.0-y) sin Ax/sinh A

Two values of the stabilization parameter c were tested. For c n 1.0, this

-23-
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element is identical to the two by two quadrature element (since the elements

are rectangular); whereas for c . 0.0 9 it is identical to the one point

quadrature element. The temperature profiles along BC obtained from these

`	 three finite element meshes (with c n 1.0) and from the analytical solution

are also despicted in Fig.2. The finite element solutions of the case

c . 0.0 differ from those of the case c n 1.0 in the third or fourth

digit. Therefore they are not plotted. As can be seen, the finite element
4

solutions are virtually identical to the exact solution.

We also computed the L2 error norm for these solutions as follows

E { f A e 200

where a aexact . 8FEM and 
A is the area. The total L2 error, E. is computed

using a 5 x 5 quadrature in each element. We uotained convergence rates of

1.899 0 1.908 and 1.930 for the cases of c e 2.0 0 1.0 and 0.0, respectively,

which agree reasonably with the theoretical convergence rate of 2.

Rm k 1. The reduction of the quadrature rule from 2 x 2 to 1 has no

significant effect on the convergence rate.

Remark 2. , It is possible to solve this problem with the stabilization

parameter e n 0 because the boundary conditions eliminate the rank deficiency

of the assembled mesh. This is not always possible, as will be seen

subsequently.

Rem 	 3.,. The convergence rate of the 9 point Laplacian (c n 2.0), which has

a much smaller truncation error,"shows no improvement over the finite element

method.

Example 2: Convergence Study of _a Circular Plate with a Heat Source

Due to double symmetry, unly a quarter of the circular plate (which is
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heated with a uniform constant heat sourcei, s 1.0) is modelled with 12, 48

and 192 elements respectively. The finite elements meshes are shown in Fig.

3. It should be observed that some of the quadrilateral elements are quite

skewed. The exact solution for this circular plate with radius r • 5.09

thermal conductivity k a 0.04 and a constant temperature of 0.0 at r n 5.0 is

given as

$Exact (r) n 6.25 (25 - r2)	
.

As in the preceding example, two values of the stabilization parameter of 1.0

and 0.0 respectively are tested. However, due to the skewness of the

elements, the c • 1.0 elements are not the same as the two by two quadrature

elements. The c n 0.0 elements are still identical to the one point

quadrature elements. The temperature profiles along nodes 1 to 45 obtained

from these three finite element meshes (with c n 1.0) and the exact solution

are also despicted in fig. 3. Again, we found that the finite element

solutions of the case c n 0.0 differ from those obtained using c n 10 in the

third or fourth digit. Therefore they are not plotted. The pointwise

convergence of this stabilized element is cleared shown in the plot.

We obtained convergence rates of 1.955 and 1,924 for the cases

of c a 1.0 and 0.0 respectively which agree well with the expected convergence

rate of 2.0.

Example 3: Linear Transient Thermalalysis of a Wedge

The probinm statement is depicted on the top of Fig.4. The finite

element mesh consists of 100 elementts and 121 nodes. The thermal diffusivity

of the wedge is 0.001. The initial temperature for all the nodes 1s 0.1. All

four sides are insulated. The heat load which is also shown in Fig. 4 is

y
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applied at node 1. A constant time step of 1.0 is used for this problem.

this time step is computed according to Eq. (48) 	 The temperature time

histories at four different locations are presented also in Fig; 4. These

results are obtained using c » 1.0 stabilized element. These results are

virtually identical to those obtained using two by two quadrature elements.,,

For values of c n 0.8 and 1.2, the peaks at node 1 are about % below and 4%

above the solution with 2 x 2 quadrature, therefore c n 1.0 is recommended.

Example 	 Linear and Nonlinear Transient Thermal Analysis of a

Circular Plate

The "medium" finite element mesh (48 elements with no heat source) shown

in Fig.kis employed for this problem. The heat load which is shown in fig. 4

is applied at node 1. The initial temperature for all the nodes is 0.1. All

boundaries cre insulated. The thermal diffusivity of the plate is 0.004.

According to Eq. 48 9 it corresponds to a critical time step of 1.0. Two

hundred time steps are run (at the critical time step) to obtain the

temperature-time histories shown in fig. 5a. These results , are obtained

using c n 1.0 and the solutions are virtually identical to those obtained

using twrr by two quadrature elements. However, we obtc`ned severe spatial

oscillatory solutions using c s 0.0 (or this. problem (see Fig. 5b).

In order to demonstrate the effectiveness of this one point quadrature

element with stabilization, the thermal diffusivity, a, is changed to:

a . 0.004 (1.0 + 0.010)

to make the problem nonlinear. A constant time step of 0.2 is used for this

nonlinear problem. The computed solution using c a 1.0 are also presented in

Fig. 5a. These results are almost the same as those using two-by-two-
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quadrature elements except there is a 3% difference in the peak temperature of

node 1. NowOer, we gain a factor of 4.38 in solution time by employing the

stabilized one-point element as compared to 2 x 2 quadrature. Although a

factor of 4.0 would be expected, the savings are actually greater because the

shape functions need not be evaluated at quadrature points in this procedure.

z
8. CONCLUSIONS

In this paper, an efficient computational method has been developed for

the linear and nonlinear heat conduction with a quadrilateral element. A

computationally-useful method of estimating the critical Cime step for this

element in explicit time integration is given. The computer implementation

aspects as well as the evaluation of the performance of this new element as

applied to two-dimensional steady and transient thermal analysis are also

presented.

Numerical results show:

(1) this method yields accurate solutions_,

(2) the great increase in computational efficiency especially in nonlinear

analysis, and
r

(3) the importance of this method as applied to three dimensional and/or

nonlinear thermal analysis.
Ix
I!

Comparison with finite difference formulas has shown that various values

of the stabilization parameter ) the 5-point and 9-point molecules can be

obtained. The convergence rate, however, appears to be independent of c which

means it is independent of the order of quadrature in the finite element

method.
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FIGURE CAPTIONS

Fig. 1 Base Vectors for a typical quadrilateral.

Fig. 2 Convergence study of a Unit Square plate with Prescribed Temperatures.

Fig. 3 Convergence study of a circular plate with a heat source.

Fig. 4 Linear transient thermal analysis of a wedge.

Fig. 5 Linear and Nonlinear Transient Thermal Analysis of a Circular

Plate (a) results obtained with the stabilization matrix

(b) oscillatory solutions obtained without the stabilization matrix.
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