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The development of reliable, lightweight, high-power traction drives for aerospace and 
terrestrial applications is rapidly expanding. Adjustable-speed drives have been used in a variety of 
commercial applications for over 50 years. Recent improvements, in terms of fluids with higher 
traction, materials with greater fatigue resistance, and design techniques with greater accuracy, have 
helped to increase their performance and reliability. 

When designing or selecting a traction drive, one must be concerned with the service life of the 
unit. Presently, very little fatigue life data are available from well-controlled traction contact fatigue 
tests. However, many investigations have been conducted on rolling-element fatigue for rolling- 
element bearings (ref. 1). Because of the similarity in the expected failure mode, namely, rolling- 
element fatigue, the life analysis methods used to establish rolling-element bearing capacity ratings 
should be applicable to determining the service life and capacity of traction drive contacts (ref. 2). 

The purpose of this paper is to present a simplified traction drive fatigue analysis (ref. 3), which 
was derived from the Lundberg-Palmgren theory (ref. 4). A second objective is to use this analysis to 
investigate the effects of rotational speed, multiplicity of contacts, and variation in the available 
traction coefficient on tractiondrive system life, size, and power capacity. Some of these effects were 
studied in reference 3. Simplified equations are provided for determining the 90 percent survival life 
rating of steel tractiondrive contacts of arbitrary geometry. References to life-modifying factors for 
material, lubrication, and traction will be made. 
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contact ellipse semimajor axis, m (in.) 
dimensionless contact ellipse semimajor axis 
contact ellipse semiminor axis, m (in.) 
dimensionless contact ellipse semiminor axis 
orthogonal shear stress exponent 
modulus of elasticity parameter, Pa (psi) 
material elasticity parameter, Pa (psi) 
Weibull exponent 
relative curvature difference 
auxiliary elliptical contact size parameter, m (in.) 
drive system life, hr 
depth to critical stress exponent 
material constant 
geometric life variable 
life, millions of stress cycles 
number of planet rollers 
speed of rotation, rpm 
rolling body normal load, N (lbf) 
rolling radius, m (in.) 
radius, m (in.) 
number of stress cycles per revolution 
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V stress volume, m3 (in.3) 
W roller width, m (in.) 
zo 
p traction coefficient 
p* applied traction coefficient 
E Poisson’s ratio 
p 

a0 

70 
Subscripts: 
A,B elastic bodies 
i system element 
s system 
x,y reference planes 

depth to critical stress, m (in.) 

inverse curvature sum, m - 1 (in. - 1) 

maximum surface contact pressure, Pa (psi) 
maximum reversing orthogonal shear stress, Pa (psi) 

Analysis 
Fatigue Life Model 

In 1947 Lundberg and Palmgren (ref. 4) published a statistical theory for the failure distribution 
of ball and roller bearings. The mode of failure was assumed to be subsurface-originated (SSO) 
fatigue pitting. Lundberg and Palmgren theorized that SSO fatigue pitting was due to high stresses in 
the neighborhood of a stress raising incongruity in the bearing material. Their theory is used by 
bearing manufacturers to establish rolling-element-bearing fatigue-life ratings. In references 5 and 6 
the theory was applied to predicting the fatigue lives of spur and helical gears. The predicted life of a 
steel gearset was confirmed with life data from full-scale spur-gear tests (ref. 6). The theory has also 
been adapted to analyzing the fatigue lives of traction drives (refs. 2 and 7). The theory that follows is 
an extension of that presented in reference 3. 

For a steel rolling-element the number of stress cycles endured before failure occurs is given by 
the following equation (ref. 2): 

This modified form of the Lundberg-Palmgren theory for contact-fatigue-life prediction is applicable 
to gears, bearings, and other rolling-contact elements. The critical shear stress 70 is considered to be 
the maximum orthogonal reversing shear stress, which occurs below the surface of the contacting 
elements. This stress is not the largest of the subsurface stresses, but it has the largest fluctuating 
component, which is critical to the fatigue process. The stress volume term V is important since 
Lundberg-Palmgren theory is based on the probability of encountering a fatigue-initiating flaw in the 
volume of the material that is being stressed. The depth to the critical stress zo is a relative measure of 
the distance the fatigue crack must travel in order to emerge at the surface and thus cause a failure. 
For rolling-element bearings (and bodies in rolling contact in general) made of AIS1 52100 steel 
(Rockwell-C 62 hardness), with a fatigue life at a 90-percent probability of survival, the following 
values are appropriate for use in equation (1) to determine life (in millions of stress cycles): 

K1 = 1.430 x 1095 (N and m units) = 3.583 x 1056 (lbf and in. units) 

Based on life tests of ball and roller bearings, the accepted exponent values are h =7/3, c=31/3, and 
e =  10/9 for an elliptical point contact or e=3/2 for a line contact (ref. 4). 

Contact Stress Analysis 

The stress analysis of elastic bodies in contact was developed by Hertz (ref. 8). Hertz assumed 
homogeneous, solid, elastic bodies made of isotropic material, which are characterized by Young’s 
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modulus E and Poisson’s ratio 4. Bodies A and B in contact are assumed to have quadratic surfaces 
in the neighborhood of the contact point. The theory of Hertz is summarized by Harris (ref. 9). 

Figure 1 shows two bodies in contact. Planes x and y are the respective planes of maximum and 
minimum relative curvature for the bodies. These planes are mutually perpendicular. They are also 
perpendicular to the plane that is tangent to the contacting bodies’ surfaces at the point of contact. 
Planes x and y must be chosen so that the relative curvature in plane x is greater than in plane y, thus: 

1 1 1 1  - +->-+- 
f A x  ~ B x  TAy ‘By 

The radii of curvature may be positive or negative depending on whether the surfaces are convex or 
concave, respectively. 

When the bodies are pressed together, the point of contact is assumed to flatten into a small area 
of contact which is bounded by an ellipse with major axis 2a and minor axis 2b as shown in figure 1. 
Plane y contains the major axis of the contact ellipse, and plane x contains the minor axis. The ratio 
a/b is called the ellipticity ratio of the contact. The values of a/b  range from 1 to 00 for various 
curvature combinations of contacting surfaces. For cylinders in contact the ellipticity ratio 
approaches 00, and the flattened area of contact is a rectangular strip. For spheres in contact the 
ellipticity ratio is 1. The first type is called line contact and all other types are called point contacts. 

When performing contact analysis, one must be aware of the geometrical orientation of the 
rolling radii and of principal planes. The principal radii f A x  and fB,  are not, in general, equal to the 
rolling radii. A typical pair of traction rollers in contact is shown in figure 2. Bodies A and B are 
generalized traction rollers which rotate, in this case, about coplanar axes. The distance from the axis 
of rotation of a body to the point of contact is the rolling radius of the body. This is the radius which 
determines rotational speed and drive ratios. The plane of contact is the plane which is tangent to 
both bodies at the point of contact. The principal radii f A x  and fBxlie in the principal plane, which is 
perpendicular to the plane of contact. Thus, the value of ‘Ax or fBx is defined by a line segment that is 
normal to the contact plane between the point of the contact and some point on the axis of rotation 
(fig. 2). A trigonometric relationship exists between the principal radii, f A x  and fBx and the rolling 
radii, RA and RB as a function of the angles between the rotational axes and the contact plane. As 
shown in the figure, the principal transverse radii fA , ,  and fB,, lie in the plane of the cross section 
which is also perpendicular to the contact plane. 

T 
CS-80-2484 Y 

Figure 1. - Geometry of contacting solid elastic bodies. 
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It is instructive to note that when performing elastohydrodynamic (EHD) film thickness 
calculations or those having to do with traction, the orientation of the contact ellipse relative to the 
direction of rolling becomes important. While in most applications the semimajor ellipse axis a is 
oriented perpendicular to the rolling direction, this is not always the case. In many EHD film 
thickness equations, dimension a is taken to be perpendicular to the rolling direction, irrespective of 
whether it is the semimajor or semiminor ellipse axis. Since, in this analysis, dimension a is always 
taken to be the semimajor axis, it may not always correspond to dimension a for purposes of 
calculating EHD film thickness. 

In figure 2 the axes of rotation are in the same plane. This is the case for nearly all traction 
drives. If the rollers rotate about axes that are significantly skewed in relation to one another or if 
extreme misalinement exists, then the principal radii must be redetermined on the basis of three 
mutually perpendicular planes which satisfy equation (2).  For slight misalinements the difference in 
the radii will be very small. 

The maximum surface contact pressure at the center of the elliptical pressure distribution is 

3Q a()= - 27rab (3) 

where the semimajor and semiminor contact ellipse axes are 

a = a+g (4) 

b=b*g ( 5 )  

and the auxiliary contact size parameter is 

and where the inverse curvature sum is 
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Figure 2 .  - Geometry o f  typical traction rollers.  
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1 1 1 1  
p = - + - + - + -  

rAx rBx rAy rBy 
(7 )  

For steel contacting bodies, with EA = EB= 207 GPa (3.0 x 107 psi) and [ A  = [e = 0.3,  the auxiliary 
contact size parameter can be expressed as 

g = 2 . 3 6 x  10-4 @ (N and m units) 

or 

g = 4 . 5 0 x  10-3 Q (lbf and in. units) Ll 
The dimensionless contact ellipse semimajor and semiminor axes, a* and b*, can be determined from 
the elliptical integrals used in Hertzian theory (ref. 9). The values of a* and b* are plotted in reference 
9. Curve-fitted equations for the elliptical integrals can be found in references 7 and 10. The 
magnitude of the critical stress, that is, the subsurface maximum orthogonal reversing stress 70 and 
its depth zo in equation (l), are also given in references 7 ,  9, and 10. The stressed volume V for a 
rolling-element contact is given by 

V =  az&r(R I (8) 

where R is the element’s rolling radius. This assumes that the semimajor axis a is perpendicular to the 
rolling direction. Thus, the term 27rR is equal to the length of the rolling track which is traversed 
during one revolution. 

Fatigue Life Equation 

EZZipticaZ contacts. - Estimation of the theoretical fatigue life of a rolling-element contact based 
on the aforementioned equation is fairly straightforward. By substituting the previously discussed 
terms into equation (l), a simpler formula can be developed, which expresses the life in terms of 
material constants, applied load, and contacting body geometry. 

Assuming both contacting bodies are made of steel (Le., EA = E ~ = 2 0 8  GPa ( 3 . 0 ~  lo7 psi) and 
E A  = [B = 0.3) and using the exponents and material factor already presented, equations (1) to (8) can 
be combined to obtain 

where L = 90 percent survival life of a single contacting element in millions of stress cycles, and 

K4 = 2.32 x 1019 (N and m units) 

= 6.43 x 108 (lbf and in. units) 

where R is the rolling radius of the body whose life is L .  The geometry variable K2 contains four 
factors, each of which depend only on the relative curvature difference, F, where 

P 
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From the values of a and b given in reference 9, it can be determined that the contact ellipticity ratio 
a/b is also a function of F. Thus, given either For a/b,  the variable K2 can be determined as shown in 
figure 3. 

For convenience an approximation for K2 can be developed from an expression appearing in 
Lundberg and Palmgren’s (ref. 4 )  rolling-element bearing capacity equation. After suitable 
rearrangement of terms, K2 can be directly calculated from F, by the approximation 

As can be seen from the plot of this equation (fig. 4) ,  it is accurate to within 10 percent for F>0.8 or 
a/b>about 4 .  For more accurate Kz values or when a /b<4 ,  figure 4 can be used directly, or 
equation (10) can be used together with the curve-fitted parameters appearing in references 7 and 10. 

In many traction drives the contact ellipse is oriented such that semimajor axis is perpendicular 
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to the direction of rolling. If this is the case and if the rolling radii are also equal to the principal radii, 
that is, RA = rAx and RB = rgx, then 

and from equation (9) 

where 

K5 = 2.95 x 1017 (N and m units) 

= 8.16 x 106 (lbf and in. units) 

and where RA is the rolling radius of the body whose life in millions of stress cycles is L and RB is the 
rolling radius of the mating body. 

In the calculation of the stressed volume term V in equation (q, the contact ellipse semimajor 
axis has been assumed to be oriented perpendicular to the direction of rolling. However, if the 
semiminor axis is perpendicular to the rolling direction, the stressed volume expression (eq. (8)) must 
contain the semiminor axis, b, instead of semimajor axis, a. Equations (9) and (10) are still valid with 
the exception that in equation (10) the exponent of a* becomes 3113 and the exponent on 6' becomes 
3213. Also figure 4 and the approximation (eq. 12) are no longer valid. Then K2 can be found from 
the modified equation (10) together with the curve-fitted parameters of references 7 and 10. 

An expression for the maximum surface contact pressure can also be developed for steel bodies 
from equations (6) to (8) where 

or 

a0 = 2'36 '04 Q1/3p2/3 (lbf and in. units) a*b* 

Line contacts. -The analysis presented thus far has been confined to point contact. In the case 
of the line contact, it can be shown that 

where 

305 



and where RA is the rolling radius of the body whose life, in millions of stress cycles, is L ,  and RB is 
the rolling radius of the mating body. 

The expression for maximum surface contact pressure in line contact is 

and, therefore, from equation (17) 

However, the sixth power relationship between fatigue life and contact pressure is unlike that of any 
rolling-contact fatigue data known to the authors. Most data show at least a ninth-power relationship 
(ref. 11). In reference 6 fatigue tests on spur gears whose contact geometry approximate that of a line 
contact, life was inversely related to the 8.6 power of stress. Additionally, the Lundberg-Palmgren 
data, which were used to establish the line-contact exponents, were generated for a roller bearing that 
assumed a “modified” line contact. This contact was analytically developed from an elliptical 
contact stress distribution that had been mathematically corrected (ref. 4). Furthermore, it is not 
desirable to design traction contacts without some transverse curvature. Transverse curvature is 
required to avoid the adverse effects of excessive edge loading as a result of possible axis skew, 
misalinement, or overhang. In view of the above the life equation for line contact should be used with 
discretion. 

System rife. - Heretofore, the equations express rolling-element fatigue life for a single rolling 
element in terms of millions of stress cycles. However, in the case of a traction drive, it is system life 
that is important. All bodies in a system accumulate stress cycles at different rates because their 
speeds of rotation and number of stress cycles per revolution may not all be the same. To compare 
lives of the various bodies, clock time should be used. Assume that the speed in revolutions per 
minute of the ith body is ni and that there are ui stress cycles per revolution, then the life of body, i, in 
hours is given by 

The life of the system is then found by applying Weibull’s rule (ref. 9). If the system consists of i roll 
bodies and the life of each is designated Hi ( i=  1 to j), then the system life in hours is given by 

- i / e  

+ . . .  + -  
W j ) e  ‘ I  1 1 

Thus, for the simplest arrangement, a single pair of rollers, the contact life in hours for an elliptical 
contact would be 

-9/10 
1 1 

Hs= [v + p j p ]  
where H I  and H2 are equal to the individual lives of each roller. 

Reliability. -The material constant K1 required in equation (1) was deduced from fatigue-test 
data at a 90-percent probability of survival. Such a fatigue life is the life which 90 percent of a large 
number of identical traction drive systems will equal or exceed under a given operative condition. 
Rolling-element bearing capacities, given in manufacturer’s catalogs, are generally defined at this 
90-percent life. However, the service life of many gearboxes and other mechanical components is 
based on some mean or average time before failure. The effect of different reliability levels on 
rolling-element and traction contact fatigue life is shown in figure 5 .  Note that at the median life level 
(50-percent survival) the life is over five times the life at 90-percent survival. Because of the statistical 
distribution of rolling-element fatigue life, the median fatigue life is not equal to the mean or average 
life. For the accepted values of the exponent e in equation (1) of 10/9 and 3/2 for ball and roller 
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Figure 5. - Relative probability o f  survival. 

bearings, the mean life corresponds to 61.7-percent and 57.6-percent failed, respectively (ref. 12). 
One should thus be aware of the difference between designing for 90-percent reliability and designing 
on the basis of mean life, as is the case for many machine elements. 

Life Adjustment Factors 

Advancements in rolling-element bearing technology since the publication of the Lundberg- 
Palmgren theory have generally increased bearing fatigue lives. These improvements resulted from 
the use of improved materials and manufacturing techniques along with a better understanding of the 
variables affecting fatigue life. In recognition of these advancements, life adjustment factors have 
been developed (ref. 1) for adjusting Lundberg-Palmgren fatigue-life ratings for ball and roller 
bearings. Several of these factors are considered to be equally applicable to traction-drive elements in 
view of the similarities in contact geometry, operating conditions, failure modes, materials, and 
lubrication (ref. 2). The factors that are appropriate are material, processing, and lubrication. 

An additional factor, not considered for rolling-element bearings in reference 1, but important 
to traction-drive contacts is the potentially deleterious effect that traction may have on fatigue life. 
The addition of a tangential force component to the contact can alter the subsurface stress field 
which may, in turn, change the fatigue life. Some investigators (ref. 13) have found a decrease in life 
from rollingelement fatigue tests when relative sliding and traction are introduced. Rolling-element 
fatigue tests (ref. 14) with increased spin (Le., rotational sliding within the contact area) also showed 
a reduction in fatigue life. However, insufficient data currently exist to properly quantify the effects 
of traction on rolling-element fatigue life. It is prudent to include in life calculations the possibility of 
a reduction in fatigue life due to traction. A life factor arbitrarily set to 1/2 would not be 
unreasonable until better test data are.available. In this paper the effects of the operating variables on 
fatigue life have not been adjusted by the life modifying factors cited. Such factors are much more 
important on an absolute basis than on a relative basis as used here. 
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Results and Discussion 
Effects of Size, Speed, and Traction Coefficient 

The relative effects of roller size and speed on drive system life and torque capacity are of 
immense interest to the designer of traction drive systems. Generally, for a given power level and life, 
the size of a power transmitting element, such as a gear or a traction drive roller, can be reduced as 
speed is increased, since torque decreases. This effect and several others can easily be studied for 
general and specific cases through the use of equation (9). 

Size effects. - It is evident from equation (9) that for a given rolling contact, increasing the load 
will decrease life by a power of 3. In other words, for a constant available traction coefficient and 
body size, 

L a T - 3  (22) 

In addition, a direct relationship exists between life and element size (radius and contact width). For 
constant torque and traction coefficient, Qa l /R .  For constant relative radii difference F, the 
transverse radius or contact width is proportional to the rolling radius. Therefore, size a R. Also, 
K2 = constant and p a  1 /R. Substituting these proportionalities into equation (9) and noting that size 
and rolling radius can be interchanged yield 

L a (  __ 1 )-3(  __ 1 ) 4 3  (size) - 0.9 
size size 

or 

for constant torque and traction coefficient. Similarly, since load Q is directly related to torque and 
inversely related to radius, we may write: Qoc(torque/size). Substituting this into equation (9) and 
holding life constant produces 

Torque a(size)2.8 (24) 

The above two relationships are shown graphically in figure 6. It should be emphasized that, while 
they are very useful for preliminary sizing, they hold only for a constant available traction 
coefficient. In detailed drive design, the effect of changes in operating conditions on the traction 
performance of the lubricant must also be considered. 

Size, speed, and traction coefficient effects. -Traction data (refs. 15 and 16) for various 
lubricants show that the maximum available traction coefficient p decreases with an increase in 
surface speed and with a decrease in contact pressure. Typical traction data from a twin-disk machine 
(described in ref. 16) are given in figure 7 where the maximum available traction coefficient p is 
plotted versus surface speed for various maximum contact pressures and a contact ellipse ratio of 5 .  
To provide a safe margin against gross slippage, 75 percent of this maximum coefficient is often used 
as the operating coefficient in a traction drive. 

An arbitrary roller pair of constant ratio and a/b=5,  operating at a given power level, was 
analyzed for fatigue life. The contacting rollers were assumed to operate, first, under a fixed applied 
traction coefficient p* and, second, with the highest possible traction coefficient based on the data of 
figure 7. The appropriate value of p for this comparison was found from an iterative process, since p 
is dependent on the contact pressure and speed and vice versa. 

Figure 8 shows the effect of size on contact fatigue life. Figure 9 includes the effect of both size 
and speed. In figure 8 an increase in size increases life as would be expected. Increasing the operating 
speed in figure 9 accumulates more stress cycles per hour, but since the speed and torque are inversely 
related for constant power, the decrease in torque and thus normal load is more significant. This 
results in longer life at higher speeds. Additionally, figure 9 shows that for a constant-life condition, 
the rolling-traction element size can be reduced with increased rotational speed. 
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The reason for higher life in either the constant p or variable p case is that increasing a traction 
roller’s size or rotational speed for constant power reduces the tangential force and thus the normal 
load and contact pressure. However, reducing the contact pressure or increasing the surface speed 
produces a loss of available traction coefficient and thus a need for a higher normal load to transmit 
the torque. This loss in p causes a flattening of the life trend with increased size as shown in figure 8. 
In fact, for the range shown, the life curve reaches a maximum and then diminishes, indicating an 
optimum size for best life. Similarly, the life trends in figure 9(b) also flatten due to a loss in p. The 
curves of the 1.5 x and 2 x size rollers show an optimum speed. 

The importance of the available traction coefficient to the performance of a traction drive can be 
related to various design parameters. The drive’s overall size (Le., element diameters), system life, 
torque capacity, weight, and power-to-weight ratio are quite sensitive to the lubricant’s traction 
coefficient. By substituting Q = T/p (where Tis the tractive force) into equation (9), the direct effect 
of traction coefficient on the above parameters can be determined in figure 10, where a /b  is held 
constant. The curves are arbitrarily normalized relative to p = 0.05. The trend and proportionality 
between p and each of the three parameters is valid where the other two parameters are held constant. 
Life shows the highest sensitivity to p, but all three performance factors exhibit improvements with 
higher values of the traction coefficient. 

By multiplying the diameter squared by the width of the Hertzian contact, a measure of the drive 
volume and thus weight can be obtained. The influence of the traction coefficient on relative weight 
is shown in figure 11. Also shown in figure 11 is the relative power-to-weight ratio, determined by 
dividing torque capacity at constant speed by weight. These relationships again demonstrate the 
benefits of using high-traction-coefficient lubricants. 

Effect of multiple contacts on capacity and life. -Weight and size efficient traction drives (refs. 
17 to 21) generally require multiple, load-sharing contacts. The extent that multiple, parallel contacts 
reduce unit loading, improve life, and increase power capacity can easily be explored with the 
analysis presented here. The configurations used to demonstrate this are a set of multiple, identical 
planetary rollers in external contact with a central sun roller and a set of multiple, identical planetary 
rollers in internal contact with a ring roller. These arrangements typify the multiple contacts that can 
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be found in many types of traction drives. 
By beginning with a simple two-roller contact, carrying a certain torque, a multiple roller cluster 

is formed by adding additional rollers without changing speed, roller size, and sun or ring torque. 
The life increase and contact pressure decrease for multiple roller contacts are shown in figure 12. 
Because of the parallel paths, each element is loaded in proportion to the inverse of the number of 
planets in the cluster. However, life is not proportional to the cube of the number of planets, as 
equation (9) alone would indicate, because the system life decreases with an increase in the number of 
components according to equation (18) and because the sun or ring roller experiences more stress 
cycles per revolution with more planets. Figure 12 is valid for both external and internal contact 
configurations of any size, ratio, and allowable number of rollers for constant torque, traction 
coefficient, ellipticity ratio, and element size. An expression for the life as a function of the number 
of planets can be derived from equation (9) and is given in figure 12. A sample calculation for a three- 
planet external contact configuration using equation (9) is shown in table 1. 

Another advantage of the multiple-contact geometry is the relative compactness of such a 
traction-drive assembly. Figure 13 shows the relative cluster diameter and contact pressure versus the 
number of multiple-planet rollers for both external and internal configurations of any ratio operating 
under constant sun or ring torque conditions at equal system fatigue life. The relative cluster 
diameter is defined as the ring roller bore diameter or as the pitch diameter of the planet rollers in the 
case of the sun arrangement. The effect of planet number on the relative sun or ring torque capacity 
of a certain cluster package size is illustrated in figure 14 for constant size, ratio, traction coefficient, 
and fatigue life in both external and internal contact arrangements. Figures 12 to 14 show that, for a 
given application, the maximum number of multiple, load-sharing rollers possible within geometrical 
ratio limits is advantageous to fatigue life, drive size, and torque capacity. 

Application to Multiroller Drive 

One high-performance traction drive that has benefitted from multiple, load-sharing elements is 
the Nasvytis multiroller traction drive (refs. 19 and 21). The drive configuration (fig. 15) consists of 

la, 

I / 

NUMBER OF PLANETS 

Figure 12. - Relative l i f e  and maximum contact 
pressure versus number of planets for external 
or internal contact. Torque, element radii, 
a/b, and traction coefficient are constant. 

111111111111 
1 2  3 4 5 6 7 8  9 1 0 1 1 ! 2  . 4  

NUMBER OF PLANETS 

Figure 13. - Relative cluster and relative 
maximum contact pressure versus number of 
planets for external or internal contact. 
System l i f e ,  a/b, and torque are constant. 
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TABLE I. - SAMPLE CALCULATIONS 

Sundiameter, mm: 25 
Planet diameter, mm: 50 
Load, eachcontact, N: 1000 
Sun speed, rpm: 10  000 
Transverse radii, sun, mm: 500 
Transverse radii, planets, mm: 100 

r Arrangement: External, three load sharing rollers 

I Parameter 

Normal load, each contact, N 

Orthogonal principal radii, m 

Inverse curvature sum, m-l 

Relative curvature difference 

Geometric life variable 

Sun rolling radius, m 

Sun life, millions of cycles 

sun stress ,  cycles/rev 

Sun speed, rpm 

Sun life, h r  

Planet rolling radius, m 

Planet life, millions of cycles 

Planet s t ress ,  cycles/rev 

Planet speed, rpm 

Planet life, h r  

System life, hr 
(without adjustment factors) 

Formula 

Must satisfy: 

1+1+1+1 
'Ax 'Ay 'Bx rBy 

' A x  rBx (rAy .By) 
P 

1+1- 1+1 

Fig. 4 

(L)O.  9 8 - 3  p-6. 3 R-O. 9 
4 L  sun 

(i) sun (%) 

e l  (g) 
10/9 -911 [(2)10/9 + 3(,) 3 

Result 

1000 

0.0125 

0.5 

0.025 

0.1 

132 

0.818 

1.55uLC6 

0.0125 

2.O7xlO4 

3 

10 000 

11 500 

0.025 

1 . 1 1 ~ 2 0 ~  

1 

5000 

37 000 

6700 

concentric sun and ring elements with two rows of planet rollers. The planets do not orbit, but are 
located on bearings which take reaction torque to the case. Either the sun or ring can act as the input, 
depending on whether a speed reducer or increaser is desired. A complete life analysis was performed 
in reference 7, a portion of which is repeated here. The specific drive analyzed was approximately 21 
cm in overall diameter and 6 cm wide with a nominal 14.7-to-I ratio. Table 2 from reference 7 
summarizes the calculation results and life-adjustment factors for three typical points, which cover a 
range of operating conditions up to the maximum rated condition of 194 kW (200 hp) at 75 0o0 rpm 
input speed. It is apparent from table 2 that these factors vary relatively little over the entire 
operating condition spectrum. Also listed is the Lundberg-Palmgren life at each contact, the contact 
life adjusted for life factors, and the adjusted drive system life. Figure 16 from reference 7 shows the 
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N U W E R  OF PLANETS 
Figure 14. - R e l a t i v e  torque or power capacity 

versus number o f  planets f o r  ex terna l  or 
i n t e r n a l  contact. System l i f e ,  a/b, and 
r o l l i n g  r a d i i  are constant. 

Figure 15. - Basic geometry o f  a Nasvytis 
m u l t i r o l l  e r  t r a c t i o n  dr ive .  

SUN SPEED, 
rPm 

io+- 

ADJUSTED 
DRIVE 

LIFE, hr 

103 

t 
I 1 

40 80 120 160 200 
id 

POWER, kW cs-Rl-257b 

Figure 16. - Adjusted d r i v e  system l i f e  versus 
power and speed. 

life over a range of input speeds and power levels based on the contact fatigue life theory and life 
adjustment factors. 
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TABLE IL - SUMMARY OF CONTACT CONDITIONS, LIFE ADJUSTMENT FACTORS AND 

D R N E  LIFE FOR THREE DRIVE OPERATING CONDITIONS 

Sun- 
fust 

planet 

First- Second 
second plana- 
planet ring 

2; I First- 1 Second 
second plana- 

plana planet ring 

Material and processing factor 
Surface speed, m/sec 
Normal load, N 
Maximum contact pressure, GPa 
Film thickness, pm 
h / o  
Lubrication factor 
Traction factor 
Total life adjustment factor 
Lundberg-Palmgren life, hr 
Adjusted life, hr 

Adjusted drive life, hr 

I 

16.6 kW (22.2 hp) 
25 000-rpm sun speed 

6 6 6 
36.6 14.3 14.5 
978 1361 22% 
1 . 1 1  1.18 0.950 
1.14 0.489 0.972 
4.0 1.70 3.39 
2.65 1.85 2.55 
0.5 0.5 0.5 
7.95 5.55 7.65 

1 I 400 4040 1.41 x 106 
90600 22400 1.08~107 

18 800 

6 
110 
1470 
1.27 
1.14 
4.0 
2.65 
0.5 
7.95 
1130 
5980 

149 kW (2ol 
75 000-rpm su 

49.9 

305 

6 6 
43.0 43.5 
2040 3440 
1.35 1.09 
1.07 1.14 
3.12 4.0 
2.6 2.65 
0.5 0.5 
7.80 7.95 
399 139000 
3110 1 . 1 1 ~ 1 0 6  

Second 
planet- 

ring 

hP) 
Speed  

6 
43.5 
6890 
1.37 
1.14 
4.0 1 2.65 

Summary 
A simplified calculation method for predicting the rolling-element fatigue life of traction drive 

systems with elliptical contacts was presented. It is a useful design tool for properly establishing 
traction drive size and torque capacity based on fatigue life. A modified form of the Lundberg- 
Palmgren theory is used as the basis of this fatigue-life model. This life model considers stress, 
stressed volume, and depth to the critical shear stress a: well as the effect of multiple contacting 
elements. The method was applied to a simple pair of rolling-element traction bodies transmitting a 
constant power level over a range of element sizes and rotational speeds. The effects of available 
traction coefficient as a function of contact pressure and surface speed were also investigated. The 
relationship between available traction coefficient and the design parameters of life, diameter, torque 
capacity, weight, and power-to-weight ratio were determined. 

The method was also applied to systems of multiple, load-sharing rollers in external (sun) and 
internal (ring) contact arrangements. The system fatigue life for the Nasvytis multiroller traction 
drive, including life adjustment factors, was reviewed. The following results were obtained. 

1. Traction drive size, life, and torque capacity per unit size improve with an increase in number 
of multiple load-sharing rollers. 

2. For a given power and size, the fatigue life of a traction contact increases with an increase in 
speed. Similarly, for a given power and speed, the fatigue life increases with an increase in size. 
However, an optimum size or speed exists, beyond which the loss in traction coefficient causes a loss 
in life. 

3. High-traction-coefficient lubricants are beneficial to traction drive life, diameter, torque 
capacity, weight, and power-to-weight ratio. 
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