
Final Report

on NASA Grant No. NAG-1-260

THE IMPLEMENTATION AND USE OF ADA ON DISTRIBUTED SYSTEMS"
WITH HIGH RELIABILITY REQUIREMENTS

Submitted to:

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665

Attention: Edmond H. Senn
ACD

Submitted by:

P. F. Reynolds
Assistant Professor

John C. Knight
Associate Professor

John I. A. Urquhart

Report No. UVA/528213/AMCS83/102

March 1983

D E P A R T M E N T O F A P P L I E D M A T H E M A T I C S

A N D C O M P U T E R S C I E N C E

Final Report

on NASA Grant No. NAG-1-260

THE IMPLEMENTATION AND USE OF ADA ON DISTRIBUTED SYSTEMS
WITH HIGH RELIABILITY REQUIREMENTS

Submitted to:

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665

Attention: Edmond H. Senn
ACD

Submitted by:

P. F. Reynolds
Assistant Professor

John C. Knight
Associate Professor

John I. A. Urquhart

Department of Applied Mathematics and Computer Science

RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, VIRGINIA

Report No. UVA/528213/AMCS83/102 Copy No.

March 1983

1. Report No.

4. Title and Subtitle

The Implementation and Use
with High Reliability Req

7. Author(s)

John C. Knight and John I.

2. Government Accession No.

of Ada on Distributed Systems
uirements

A. Urquhart

9. Performing Organization Name and Address
University of Virginia
Thornton Hall
Charlottesville, VA 22901

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665

3. Recipient's Catalog No.

5. Report Date
March 1983

6. Performing Organization Code
5-28213

8. Performing Organization Report No

UVA/528213/AMCS83/102
10. Work Unit No.

11. Contract or Grant No.

NAG-1-260
13. Type of Report and Period Covered

Final Report
03/05/82 - 12/04/82

14 Sponsoring Agency Code

15. Supplementary Notes

None

16. Abstract

This report discusses the issues involved in the use of the programming language
Ada* on distributed systems. In particular it is concerned with the effects of Ada
programs of hardware failures such as loss of a processor.

It is shown that many Ada language elements are not well suited to this environ-
ment. Processor failure can easily lead to difficulties on those processors which
remain. As an example, the calling task in a rendezvous may be suspended forever
if the processor executing the serving task fails.

A mechanism for detecting failure is proposed and changes to the Ada run-time
support system are suggested which avoid most of the difficulties. Ada program
structures are defined which allow programs to reconfigure and continue to provide
service following processor failure.

* Ada is a trademark of the U.S. Department of Defense.

17 Key Words (Suggested by Author(s))

distributed systems, Ada, fault tolerance

19 Security Oassif. (of this report)

Unclassified

18 Distribution Statement

Unclassified

20. Security Classif (of this page) 21. No. of Pages 22. Price

Unclassified 115

For sale by the National Technical Information Service, Springfield. Virginia 22161

1. INTRODUCTION

The purpose of this grant is to investigate the use and implementa-

tion of Ada (a trade mark of the US Dept. of Defense) in distributed

environments in which the hardware components are assumed to be unreli-

able. In particular, we are concerned with the possibility that a dis-

tributed system may be programmed entirely in Ada so that the individual

tasks of the system are unconcerned with which processor they are exe-

cuting on, and that failures may occur in the underlying hardware.

Over the next decade, it is expected that many aerospace systems

will use Ada as the primary implementation language. This is a logical

choice because the language has been designed for embedded systems.

Also, Ada has received such great care in its design and implementation

that it is unlikely that there will be any practical alternative in

selecting a programming language for embedded software.

The reduced cost of computer hardware and the expected advantages

of distributed processing (for example, increased reliability through

redundancy and greater flexibility) indicate that many aerospace com-

puter systems will be. distributed. The use of Ada and distributed sys-

tems seems like a good combination for advanced aerospace embedded sys-

tems.

We assume that communication between tasks on separate processors

will take place using the facilities of the Ada language, primarily the

rendezvous. It would be possible to build a separate set of facilities

for communication between processors and treat the software on each

machine as a separate program. This is pointless however since such

facilities would necessarily duplicate the existing facilities of the

rendezvous.

Our work under this grant indicates that the situation is not as

good as expected. There seem to be numerous aspects of the language

which make its use on a distributed system very difficult. The issues

are not raised directly from efforts to implement the language but from

the desire to be able to recover, reconfigure, and provide continued

service in the presence of hardware failure. It seems that very little

attention was paid to these issues in the design of Ada although the

language reference manual [1] specifically states that a system consist-

ing of communicating processors with private memories is suitable for

executing Ada programs.

Our work under this grant has consisted of:

(1) The preparation of a formal definition of the Ada tasking semantics

using the H-graph methodology.

(2) An examination of the language (July 1982, version 9) to thoroughly

understand the various facilities and comment on the tasking

features.

(3) The generation of a model of the assumed underlying hardware system

and the failures of that system which will be tolerated.

Preparation of an initial version of a model of distributed pro-

cessing. This model will provide the framework for formal discus-

sion of the issues in distributed processing and particularly the

issues raised by hardware failure.

(5) An examination of the Ada language with regard to its use and

implementation in the assumed environment.

(6) The design of a mechanism for detection of hardware failures and

associated signalling facilities to the Ada software.

(7) Development of techniques for writing Ada programs in the assumed

unreliable environment to allow for reconfiguration and continued

service.

Each of these topics are discussed in the sections below.

2.. THE NEED 2Q COPE .HUH HARDWARE FAILURE

The kind of architecture we expect to be in common use for embedded

systems in the future in shown in fig 2.1. It is based on the use of a

high-performance data bus which links several processors. Each proces-

sor is equipped with its own memory. Devices such as displays, sensors,

and actuators would be connected to the bus via dedicated microproces-

sors. Thus these devices would be accessible from each processor.

The bus system would probably be fiber-optic for the various elec-

tronic and physical advantages that fiber optics provide. However, the

very high data rates and very low error rates make them attractive from

a digital point of view also. Digital fiber-optic links are also very

inexpensive. For example, a digital transmitter/receiver pair which

will operate from DC to 10 Mhz costs less than $500 [2].

The processors in such a system could be very powerful, inexpen-

sive, and with very low power consumption. Processors such as the

Motorola M68000 have been shown to outperform a DEC VAX 11/780 on cer-

tain problems [3] but are physically small and cost only a few hundred

dollars.

A great deal of research has been undertaken in recent years to

produce computer architectures of great reliability such as the SIFT [^]

and FTMP [5] machines. Why then should there be any concern for

software structures which are able to cope with hardware failure? There

are several reasons:

Communications Network

Figure 2.1 - Distributed Architecture

(1) The architectures for highly-reliable systems are very complex and

are, in effect, highly-pa rail el multiprocessors. The reliability

is achieved by parallelism. These architectures are the subject of

current experimentation and are still unproven.

(2) Even though designed for reliability, these machines may still

fail.

(3) Physical damage could cause a processor to fail no matter how care-

fully the processor was built. Fire, structural failure, excess or

unexpected vibration, and so on, could cause enough damage that

even a highly-parallel machine would be unable to continue.

(4) Electrical damage from unexpected lightening effects could cause a

processor to fail.

(5) In a situation where a major power failure occurred, reserve power

might only be provided for some subset of the processors. The

switch from full power to limited reserve power might be orderly in

which case very sophisticated reconfiguration might be possible.

However, it might be preferable to use a single, consistent mechan-

ism for recovery to cope with all cases.

(6) Sophisticated unmanned spacecraft frequently make extensive use of

computers but are usually unable to pay the weight and power costs

of extensive redundancy (such as in quad redundancy or SIFT).

Reconfigurable distributed systems designed to cope with processor

or bus failure is an attractive alternative. If the design

includes higher processing power than is absolutely needed, and

tasks exist which are not essential to mission success, then some

loss of hardware followed by reconfiguration may allow the mission

to continue successfully. For spacecraft with extremely long mis-

sion times, power and weight limitations again restrict the use of

highly parallel architectures though failure is very likely because

of the long duration. In such cases carefully selected and har-

dened components could be used but failure would have to be antici-

pated. Continued progress and mission success after failure would

require reconfiguration after processor failure.

Thus, although great care may be taken with the construction of a

digital computer system, failure may still occur. At least with a dis-

tributed system there is the possibility that if part of the system was

lost, what remained could continue to provide service.

1. FORMAL SEMANTIC DEFINITION .Q_F ADA

In order to be able to implement a language, it is imperative that

a precise definition of the language semantics be available. Semantic

definitions of programming languages are relatively uncommon because

existing methods for semantic definition are difficult to use and, in

some ways, inadequate. A semantic definition of Ada was prepared for

the Ada Joint Program Office (AJPO) using denotational semantics [6].

This definition is quite difficult to read, but its biggest problem is

that the tasking and exception semantics of Ada are totally absent from

the definition. The reason is that denotational-semantic methods are

not sufficiently powerful to describe tasking.

Previous work at the College of William and Mary produced a seman-

tic definition using H-graph semantics. Since that report, the Ada

language has changed substantially and the H-graph definition methodol-

ogy has been revised considerably [7]. The new definition which we have

undertaken is a revision of the earlier work at William and Mary using

the latest versions of both Ada and the H-graph method. The current

version of the definition was submitted as an appendix to the semi-

annual report for this grant, and is included as appendix 1 of this

report for completeness.

1. GENERAL EXAMINATION .QF JflE LANGUAGE

As a part of the activities under this grant, we participated as a

volunteer review group for the July 1982 Ada definition. This effort

was coordinated by AdaTEC as an attempt to generate comments from the

United States about the revised language before the final version (which

would be used for the ANSI canvass) was printed. We found the revised

language definition document to be very different from the July 1980

version and chose to put all of our effort into reviewing the tasking

definition thoroughly rather than reviewing the entire language defini-

tion superficially.

The result of our review was a set of 35 questions which were dis-

cussed at the meeting of the volunteer reviewers at the AdaTEC confer-

ence in Boston (June 1982). Our comments were well received and many

were found to have substantial content. These were to be passed on to

the Ada design team for consideration. An examination of the July 1982

Ada reference manual (denoted version 16) indicates that our comments

were either not received in time or were not acted upon since most of

the language difficulties still exist. The problems also exist in ANSI

Ada. A copy of our questions was included in the semi-annual report for

this grant, and is included as appendix 2 of this report for complete-

ness.

In general our concerns about Ada are to do with time. Some exam-

ples are:

(1) The conditional entry call is defined in terms of the word "immedi-

ately" but does not define "immediately", and so we have no way of

knowing how the call is supposed to be implemented. There are

several ways which are entirely different based on the current

language reference manual definition (see section 7 for details).

(2) The timed entry call does not define when the time for the call is

to begin. There are again several different interpretations.

Worse however, is the fact that the timed entry call does not pro-

vide a useful facility for the programmer in its current form given

any definition. The problem which it should address is the need to

be able to time-out easily after a rendezvous has begun rather than

before.

These issues demonstrate why a formal definition of Ada is so

important. We cannot decide exactly what is supposed to be implemented

given the current language definition which is in English and therefore

ambiguous, imprecise, and incomplete.

Unfortunately, the issues with the conditional and timed entry

calls, and with other language elements, are actually much more serious

in a distributed system. They are precisely the tools which the pro-

grammer must use to communicate between tasks on different processors.

It is this kind of communication which concerns us most in the context

of hardware failure, and it is in this area where the language seems to

have major weaknesses.

10

5.. UNDERLYING HARDWARE MODEL

Initially, we assume that communication between processors on a

distributed system will be implemented using layers of software that

conform for the most part to the ISO standard seven-layer Reference

Model [8]. The hardware topology that is used for a distributed system

need have very little impact on the programming of the system at the

application-layer level. In principle, provided the implementation

knows how tasks are distributed to processors and how communication is

to be achieved, the various tasks can synchronize and communicate at

will with no knowledge of their location.

To discuss implementation and recovery in the context here, we

found it necessary to have an underlying hardware model. Our model

assumes that a set of processors are connected to some sort of communi-

cations bus system which we do not define. The bus system could be a

ring, multiple rings, a crossbar switch, etc. Peripheral equipment such

as sensors and actuators are also assumed connected to the bus system,

and the connection is assumed to be provided by a microprocessor dedi-

cated to the interface.

The kinds of hardware failure that we are concerned with are not

addressed by the ISO protocol. The ISO protocol is concerned with com-

munications failures such as dropped bits caused by noise, loss of mes-

sages or parts of messages, etc. Also, situations such as a processor

"slowing down" or incorrectly computing results are not of interest here

(though they are important nevertheless). We assume that such events

are taken care of by hardware checking within the processor. The only

11

class of faults not dealt with elsewhere is the total loss of a proces-

sor or bus with no warning. These are the difficulties we will attempt

to deal with.

We feel that this hardware model and associated failure model is

directly relevant to avionics and other embedded systems, and are also

relevant to spacecraft .systems. As noted above, spacecraft unable to

pay the weight and power costs of extensive parallelism to provide reli-

ability could use reconfigurable distributed systems designed to cope

with processor or bus failure as a possible alternative. Some loss of

hardware followed by reconfiguration may allow the mission to continue

successfully.

12

£.. 1 CONCEPTUAL BASIS FOR DISTRIBUTED PROGRAMMING

A distributed program will, in general, be non-deterministic.

Further, the execution path of the program can depend on processor

speeds and scheduling algorithms, which cannot be specified in the pro-

gram. Under these circumstances, it is not clear what a program means.

In this section a program is considered to define a set of possible exe-

cution sequences. An assignment of tasks to processors along with con-

straints on processor speeds and scheduling will be called a realiza-

tion. A proper realization of a program will define a subset of the set

of execution sequences defined by the program. This model is compared to

more conventional models; the differences are seen to lie in the treat-

ment of real-time issues and crashes. Some general conclusions are

drawn, the most important being that in order to be truly distributed a

program must be able to handle crashes, and finally areas needing

further research are listed.

£.1. JL PROGRAM DEFINES A SET .QF EXECUTION SEQUENCES

The idea of a program defining a set of execution sequences is due
«

to Pnueli, and has been used by Owicki and Lamport to apply temporal

logic to proofs of liveness. Their ideas are extended to deal with the

notion of time, and the semantics of Ada. Time dependent actions,

crashes, and priorities, are then discussed in more detail.

£.1.1. DEFINITION

Owicki and Lamport define a program state to consist of an assign-

ment to each program variable and a control component. The control com-

13

ponent is a set of atomic actions which are ready for execution; the

next state is reached by choosing some action in the control component

and executing it. An execution sequence is a sequence of program states

obtained in this way from the initial state.

While adequate for their purposes, Owicki and Lamport's model must

be extended in order to deal with the semantics of Ada. In Ada an action

can be executed or not depending on whether some other action has

occurred, or on time. An accept waiting for an entry call, for example,

is half ready. Half-ready actions lead to the idea of giving actions in

the ready list guards and executing them only when the guards are true.

Once you have guards there is no need for the ready list and the program

can be regarded as a set of guarded actions. An execution sequence for

the program would be a set of states obtained by executing the following

loop:

loop

evaluate guards;

execute some action with a true guard;

exit when terminate_program;

end loop;

This still does not deal with the problem of time-dependent

actions. A guard can refer to time but as yet there is no concept of

time in the execution. Putting it there raises difficulties since it

will then matter whether actions are performed serially or concurrently.

A guarded action will now be defined to consist of a guard, an

action, and an execution time. The program state will be extended to

include a variable CLOCK, and to model concurrent execution of actions,

the execution loop will execute any subset of the set of actions with

true guards, and then increment CLOCK by the largest execution time of

the set of actions executed. Thus, the execution loop becomes:

loop

evaluate guards;

execute some subset of the set of actions with true guards;

exit when terminate_program;

increment CLOCK by max{execution-time of action executed, 1};

end loop;

The subset of the set of actions that is executed may be the empty set;

in this case the clock in incremented by one tick. There is no guarantee

that an action will not have a true guard, be ignored, and then have the

guard become false. However if an action has a true guard, which

remains true, the action will eventually be executed.

The execution times of actions are intended to define allowable

execution sequences; an implementation may have quite different timings

so long as only allowable execution sequences will result.

&.J...2.. PRIORITIES

These only make sense if tasks are running on the same processor,

however most languages to not allow a program to specify the assignment

of tasks to processors. Without knowing which tasks will be running on a

particular processor, the use of priorities is rather a crude tool. A

bad situation gets worse when priorities are static and assignment of

15

tasks to processors is dynamic, as it must be to reconfigure after a

crash.

Priorities are thus better removed from the program to the realiza-

tion, to be treated along with other scheduling constraints.

5..J..3.. CRASHES

The effect of a crash is to remove some set of actions from the

program. This changes the program, and will usually lead to an illegal

execution sequence. On a distributed system, the system can be reconfig-

ured after a crash if, at a minimum, it is known crash has happened, and

it is known which tasks were on the crashed processor. In order to res-

tart tasks it will usually be necessary to have a consistent set of data

available to a non-crashed processor.

£.2.. REALIZATION OF A PROGRAM

A program defines a set of allowable execution sequences. The exe-

cution of a program can take place in many different ways; the only con-

straint is that the actual execution sequence be allowable. A realiza-

tion of a program specifies the number of processors to be used, how

tasks will be assigned to processors, constraints on processor speeds,

and scheduling algorithms.

A proper realization restricts execution sequences to a subset of

the set of execution sequences defined by the program.

A strict realization restricts execution to a single execution

sequence.

16

6_.̂ . TWO MODELS COMPARED

The model described above of a program as a set of allowable execu-

tion sequences along with a realization is compared with the conven-

tional model of a distributed program—a set of tasks running on virtual

processors. The models differ when programs depend on timing.

JL.1.-1.. VIRTUAL PROCESSOR MODEL

A distributed program can be viewed as a collection of tasks each

running on its own (virtual) processor. Tasks proceed independently

except at synchronization points; processor speeds can be arbitrary,

except that none can be infinitely slow. If the processors are virtual,

scheduling appears to vary processor speed.

Any execution sequence possible under this model is acceptable. In

particular any variation in processor speeds leads to an acceptable exe-

cution sequence. Real time programs are thus excluded from considera-

tion, since no real time program could run arbitrarily slowly and give

acceptable results.

Crashes and reconfiguration are also excluded from this model,

although in this case, the model can be extended. A crash can be con-

sidered as several processors stopping at the same time; reconfiguration

consists in starting new tasks on new virtual processors.

JL.JL. SOME IMPLICATIONS .QF THE MODEL

From the perspective of execution sequences and realizations some

general conclusions about distributed programs can be drawn.

17

£.1.1. CRASH RECOVERY IS NECESSARY

If tasks are running on several processors and one of the proces-

sors crashes, then if no reconfiguration takes place, the remaining

tasks will run until they terminate or reach a synchronization point

with a task which was running on the processor which crashed. This exe-

cution sequence could have been obtained from a uniprocessor, which

crashed at the same point as the crashing processor in the multiproces-

sor case. The point is, work that was done after the crash in the mul-

tiprocessor case could have been scheduled earlier and completed before

the crash in the uniprocessor case.

The situation is completely different if a multi-processor system

can reconfigure and provide service after a crash. Now the execution

sequence could not be provided by a crashing uniprocessor.

Thus a distributed system must be able to reconfigure, if it is to

do better than a uniprocessor, when a crash occurs. This has several

important consequences:

(1) There must be knowledge of the crash.

(2) There must be knowledge of which tasks have been lost.

(3) There must be a consistent set of data (it may be out-of-date), so

that tasks can be restarted.

In order to know where to restart tasks a processor/task map must

exist in each processor.

18

£..!.£. CLASSIFICATION £F PROGRAMS

In this section crashes will be assumed to be impossible. Realiza-

tion independent programs.

These are programs whose execution paths are not affected by the

realization under which they are being executed. That is,

(R) ({ execution sequences under realization R } = { execu-

tion sequences defined by the program })

Time independent programs

These are programs whose execution paths may be affected by the

realization under which they are being executed, but every realiza-

tion is a proper realization.

(R) ({ execution sequences under realization R } <= { execu-

tion sequences defined by the program })

Time dependent programs

These are programs for which not all realizations are proper.

&.JL.3.. PREFERRED EXECUTION SEQUENCES

Often a program is written so that it can take care of abnormal

conditions. If this is done by providing degraded service then a reali-

zation that ensured that the abnormal condition always occurred would

always provide degraded service. Thus such a realization while proper

would be less than ideal. An example:

19

Suppose a task makes an entry call to a server-task, whenever it

needs to know the current position. If the server is so busy that

is cannot provide the current position quickly enough the task can

cancel the entry call and use an estimate for the current position,

select

SERVER. GET_POSITION(POSITION : in coordinate_triple);

— do computation

or

delay MAX_WAIT;

— do computation using an estimate of the position

end_select;

Now, a realization in which the server never provided the current

position could still be a proper realization. On the other hand, if

the execution sequence excluded the calculation using the estimate

of the position, proper realizations would have to guarantee that

the server could always calculate the position in time.

So it seems that a proper realization must have a further condition

imposed on it, a condition giving probabilities that certain sets of

execution sequences will be followed when the program is executed under

the realization. This is not as unpleasant as it seems, since many of

the properties of a realization will also be given in term of probabili-

ties, and it does not seem unreasonable to consider a realization satis-

factory, if the program can deal with the worst case, and the worst case

only happens rarely.

20

1. ADA ISSUES AND DIFFICULTIES

In this section difficulties with the use of Ada on a distributed

system, and with the semantics of Ada, are described. Proposed solutions

to some of the problems raised here are given in section 9.

1.1. RENDEZVOUS

The rendezvous is the fundamental way for tasks to communicate.

Even in the simplest case difficulties arise when processor failures are

taken into account. Timed and conditional entry calls, intended to pro-

vide solutions for some of these difficulties, are seen to raise diffi-

culties of their own, both in the meaning of their semantics and in

their use.

1.J..J.. SIMPLE RENDEZVOUS

A simple rendezvous in Ada consists of a calling task C making an

entry call, S. E, to a serving task S, which contains an accept statement

for the entry E. The syntax is shown in figure 7.1. The semantics of

the language require that if the call is made by C before the accept is

Calling Task C Serving Task S

ACCEPT E DO
• •

S. E;

! END E;

Figure 7.1 - The Syntax Of A Simple Rendezvous.

21

reached by S, C is suspended until the accept is reached. If S reaches

the accept before the call is made by C, S is suspended until the call

is made. In either case, C remains suspended until the rendezvous

itself is complete.

In order to look at the issues arising from a rendezvous (in par-

ticular, the effect of processor failures) it is necessary to specify an

implementation of the rendezvous at the message passing level. After

the possibilities for processor failures during a rendezvous are dis-

cussed, some general conclusions are drawn about the rendezvous mechan-

ism.

1.1.1.1. IMPLEMENTATION jQF THE SIMPLE RENDEZVOUS

Only the simple case of a task C calling an entry E in a serving

task S will be considered. Further, it will be assumed that the call is

made before S has reached the corresponding accept; the case where the

server waits at its accept is similar. The messages that would be

needed are shown on figure 7.2. .

The calling task C asks to be put onto the queue for entry E. When

S reaches its accept for E, it sees that C is on the queue. At this

point S checks to see if C has been aborted. When the CHECK_CALLER mes-

sage arrives at C, C can be considered to be engaged in the rendezvous.

When the reply reaches S, S will start to execute the rendezvous code.

When it is completed the RENDEZVOUS_COMPLETED message would awaken C

which would continue.

22

Calling Task C Serving Task S

S.E; '
PUT_ONTO_QUEUE >

[1] [5]
ACCEPT E DO

< CHECK_CALLER
[2] [6]

CHECK_CALLER_REPLY >
[3] [7]

END E;
< RENDEZ VODS_COMPLETE

Figure 7.2 - The Messages Used To Implement The Rendezvous

Note that all messages are assumed to arrive safely.

l.l.JL.l. THE EFFECTS J2F PROCESSOR FAILURE OH SIMPLE RENDEZVOUS

Using the implementation of a simple entry call shown above, what

happens if either the server or the calling task crashes? There are

seven cases of interest and they are discussed below. The numbers refer

to figure 7.2.

CALLER CRASHES EFFECT ON SERVER
AT:

[1] The message CHECK_CALLER will not be able to arrive. The
effect on the sender should be equivalent to a negative
reply to the CHECK_CALLER message (e.g. if the caller had
been aborted, but not yet removed from the queue). That
is the server would remove the caller from the queue and
remain waiting at the accept.

[2] The message CHECK_CALLER arrives, then the caller crashes
and the reply is never sent. If the server cannot find
out that there has been a crash, the server will be
trapped waiting for the message CHECK_CALLER_reply.

[3] When the caller crashes during the rendezvous, the situa-
tion is similar to the case where the caller is aborted
during the rendezvous. In both cases the server can

continue. At the end of the rendezvous the
RENDEZVOUS_COMPLETE message cannot arrive; as before, if
the server can detect that there has been a crash, the
server can continue.

SERVER CRASHES EFFECT ON CALLER
AT:

[4] The message PUT_ONTO_QUEUE cannot arrive. The situation
is similar to the case where the server is abnormal.

[5] Here the caller is on an entry queue when the server
crashes. As before if the crash cannot be detected the
caller will be trapped.

[6] The message CHECK_CALLER has arrived at the caller who
now considers that the rendezvous has started; the reply
cannot arrive. Again without crash detection the caller
will be trapped. (Note that even if the caller were
using a timed entry call, the timer would have been
turned off by the message CHECK_CALLER.)

[7] The server crashes during the rendezvous. (Timed and con-
ditional entry calls give no protection as they time the
delay to the start of the rendezvous.) Again the caller
is trapped unless the crash can be detected.

The server task is is not seriously affected when the calling task

crashes. At worst, time is lost doing work for a task that is not there

to receive it. The calling task is in a much worse situation when the

server crashes. If the rendezvous has not already started the caller

will wait on the entry queue for ever. Timed entry calls (discussed

below) can handle this situation, if they are implemented by having the

caller task do the timing. If the server task crashes after the rendez-

vous has started, even a caller who has made a timed or conditional

entry call will be trapped for ever.

1.1.1.1. FURTHER ISSUES WITH THE SIMPLE RENDEZVOUS

What the caller would like to have, and what even timed and condi-

tional entry calls do not give, is a guarantee that after a certain time

24

it will be possible to proceed. The rules of the language imply that

once a rendezvous has started the caller cannot withdraw until it is

completed. Clearly withdrawal is necessary when the server crashes; even

when the server has not crashed the caller may wish to withdraw and take

some alternative action. As this facility must be provided to deal with

server crashes it might as well be provided in all cases.

Thus we suggest that the caller should be able to withdraw from a

rendezvous at any time. Clearly this violates the semantics of the ren-

dezvous as presently defined since the server may be depending on the

fact that the caller is suspended.

The situation is not this simple however. It is not possible to

dictate that this is a violation of the language semantics. Suppose

that a rendezvous is in progress and that the server calls a third task.

This third task may also be relying on the original caller's suspension.

If the original server crashes, the third task called by the original

server may still depend on the original caller's suspension. The origi-

nal caller may proceed however because its server no longer exists.

This raises another fundamental issue about the semantics of the

rendezvous. If the server task cannot depend on knowing that a particu-

lar task is suspended during a rendezvous, is there any reason why the

caller should be suspended?

1.J..1. RENDEZVOUS JY TIMED ENTRY CALL

Timed entry calls are intended to solve some of the problems

raised above. In fact, they raise further problems about their meaning

25

and their implementation.

The semantics of the timed entry call appears to be quite

str aigh t- f orw ard:

A timed entry call issues an entry call that is cancelled if a
rendezvous is not started within a given delay.

In a distributed system, however, messages will take time to get

from a task on one processor to a task on another. Even if the underly-

ing message passing system can guarantee that a message will eventually

arrive correctly, this will be implemented at a lower level by a proto-

col which may well involve acknowledgement of messages, and the resend-

ing of messages that have been lost. A message can certainly be delayed

for some arbitrary length of time. Even physical separation of the pro-

cessors may impose a significant delay.

One possible interpretation of the timed entry call would be to

count the total time until the rendezvous is started. Message passing

time and time on the entry queue would be included. This interpretation

has to be ruled out by the statement in the language definition that a

timed entry call with a delay of zero is the same as a conditional entry

call.

If a rendezvous can be started within the specified duration (or
immediately, as for a conditional entry call, for a negative or
zero delay), it is performed and the optional sequence of state-
ments after the call is then executed.

If the delay included both message passing time and time on the queue, a

delay of zero would be impossible and a timed entry call with a delay of

26

zero would never succeed.

The only other interpretation of the delay is that it is just the

delay on the entry queue. We have to assume that the delay intended by

the language definition is waiting time on the queue since this has a

meaning when the specified delay is zero.

1.1-2..1. IMPLEMENTATION AND ISSUES WITH TIMED ENTRY CALLS

Once it has been decided that the delay means waiting time on the

entry queue, the important implementation question becomes "who is to do

the timing". The calling task cannot do the timing. It is impossible

for it to measure waiting time on the entry queue accurately since the

message passing time can vary. Thus it is essential that the serving

task does the timing. However, if the serving task does the timing and

then crashes, what will happen to the calling task?

A timed entry call gives protection against having to wait too long

on the entry queue, however what the task issuing the call needs is some

guarantee that it will not be trapped in an attempt to communicate, and

forced to miss a deadline. It does not matter to the task, whether the

time is spent waiting on a queue, or attempting to send a message.

If the timed entry call is implemented by having the server do the

timing and the server crashes before a rendezvous is started the caller

will be trapped. Even if there is no crash the calling task must wait

for a message from the server. If the server is doing the timing, that

message may need to be re-sent several times, so the calling task may

have to wait an arbitrary time .

27

If the calling task were able to do the timing then an infinite

wait could be avoided when the server crashed. As we have noted however,

this method of timing is unrealistic.

We conclude that there are many issues with the timed entry call.

It does not provide the kind of prevention that is desirable, the seman-

tics are unclear, and it is very difficult to implement. An analysis of

the message traffic necessary for the timed entry call can be performed

that is similar to that shown in figure 7.2. The issues which arise

when considering failure are similar but more extensive than the simple

rendezvous.

1.1.1. RENDEZVOUS .BJ. CONDITIONAL ENTRY CALLS

The semantics of the conditional entry call appear to be quite

straigh t-forward:

A conditional entry call issues an entry call that is then can-
celled if a rendezvous is not immediately possible.

By a similar argument to that used with timed entry calls, we con-

clude from the rules, of the language that "immediately" must mean zero

waiting time on the entry queue. As message passing time can vary,

"immediately" may turn out to be an arbitrary delay. Unless there is an

upper bound on the time a message takes, conditional entry calls cannot

be used by a task to ensure that a rendezvous will be started within a

given time. The use °f a conditional entry call is thus restricted to

the case where a caller task wishs to make an entry call only when the

server is in a certain state (i.e. able to accept the entry). We feel

28

that this makes the conditional entry call virtually useless.

1.2.. SUBTASKS

In this section, we describe task definition and activation of

nested tasks in detail. Task creation by allocators will not be con-

sidered. The rules given in Ada for exceptions and aborts during these

processes are described, and we show the effects of processor failures

on these rules.

1.2.. 1. SUBTASK DEFINITION AND ACTIVATION

A task is started in two steps. First it is created, at this point

entry calls can be made to it, then it is activated, that is, the

declarative part of the body is elaborated. Creation occurs when the

task-object declaration is elaborated, this happens in the declarative

part of the parent unit; activation occurs after the declarative part of

the parent unit, between the BEGIN and the first statement of the body.

Figure 7.3 shows an example of the syntax of two nested tasks. The

parenthesized numbers in the figure show points where various problems

can occur and where the language defines the consequences of these prob-

lems. The problems are:

AT ACTION RESULT

[1] Exception in P A and B become terminated [RM. 9. 3.C1*)]

[1] P aborted A and B become abnormal and thus, because their
activations have not started, terminated.
[RM. 9. 10. (4)] [RM. 9. 10. (5)]

[2] Exception in P No exception can be raised in P at this point.
If A has completed its activation, an exception
raised in A is not propagated to P, if an

29

— These tasks are inside parent P.
task type T is
•

end T;

A : T; — task A is created on processor P1.
B : T; — task B is created on processor P2.

[1]

— End of the declarative part of parent.

begin
— A message is sent to P1 to 'activate A1

C2]
— a message is sent to P2 to 'activate B»
— the activations of A and B are done in
— parallel on processors P1 and P2.
— After notifying P that their activation
— is complete, A or B can continue.
— P waits until the activations of both A
— and B ape complete, and then continues
— with the first statement in its body.

[3]

task A goes through the following stages:
created

[U]
activation started

[5]
activation completed
start to execute body

[6]

Figure 7-3 - Nested Tasks.

exception is raised during the activation of A,
A becomes completed and the exception
TASKING_ERROR is raised in P when the activa-
tion of B is finished, (at 3) [RM. 9.3.(3)]

[2] P aborted A has started its activation and becomes abnor-
mal, B has not started its activation and
becomes terminated as above. [RM. 9.1 0.(4)]
[RM. 9.10. (5)]

30

[3] Exception in P

[3] P is aborted

A is aborted

This is not propagated to A or B. If P is a
subprogram or a block the exception will not be
propagated until A and B are both terminated.
[RM. 11.5.(8)] CRM.11 .5 . (9)]

A and B become abnormal since they are depen-
dent on P. [RM. 9. 10.

[5] Exception in A

[5] A is aborted

[6] Exception in A

[6] A is aborted

A becomes terminated. P cannot proceed since
the activation of A cannot be completed.
[RM. 9.3. (2)] [RM. 9.10.U)] [RM. 9. 10.(5)]

A becomes completed. TASKING_ERROR is raised in
P at [3]. [RM.9.3.(3)]

A becomes abnormal. P cannot proceed since the
activation of A cannot be completed.
[RM. 9.3. (2)] [RM. 9.10.(4)] [RM. 9. 10.(5)]

The exception is not propagated to
[RM.11.5.C8)]

P.

A becomes abnormal. No direct effect on B or P.
[RM.9.10. (4)]

Consider now the effects of processor failure on the definition and
activation of subtasks:

P crashes at [1]
A and 'B are created and can accept entry calls. The callers are then
trapped, since A and B will never be activated.

P crashes at [2]
A can continue with its activation. B is created and can accept
entry calls. The callers are then trapped since B will never be
activated.

P crashes at [3]
Similar to the previous case except that A and B can both continue.
Callers will not be trapped.

A crashes at [M] or at [5]
P will be trapped, waiting for the completion of A's activation.

A crashes at [6]
This will have no effect direct effect on either P or B unless they
try to communicate with A.

There are many difficulties here and they are quite substantial.

We conclude that nested tasks in an Ada program present very serious

31

problems on a distributed system where processor failure may occur.

1.3.. GLOBAL VARIABLES

Global variables certainly exist in the syntax of Ada. If a task

uses a non-local variable which happens to belong to a task running on a

separate processor, a naive implementation could generate a great deal

of message passing. It would appear therefore that the same kinds of

difficulties that exist with the simple rendezvous occur with global

variables. Access to a global variable on another processor requires

that a dialogue take place, and failure of the processor on which the

global variable resides could trap the task attempting to reference the

variable.

However the language allows an implementation to use a copy of the

non-local variable, updating it only at synchronization points. A global

variable becomes a local variable with implied update messages at syn-

chronization points. Where several tasks are constrained to always

remain together on a single processor, globals exist in the usual sense;

the part of the program consisting of those tasks is, of course, not

distributed.

The language definition in the area of updating shared variables

has changed several times as Ada has been revised. We have not had an

opportunity to review the definition contained in the Ada standard with

sufficient care that we can be certain that there are no problems with

the use of global variables in ANSI Ada.

32

1.1. PROGRAM STRUCTURE FOR J, DISTRIBUTED SYSTEM

An Ada program will have a tree structure, with the main program at

the root. A set of distributed processors will in general not have a

tree structure. How then should the structures be related? This is a

remarkable disparity. In general, program structure and the organiza-

tion of the hardware need not be related. However, the fact that a sys-

tem is distributed is so central to its operation that ignoring this in

program structure seems a mistake. Ada programs have the conventional

nested format that derives from Algol 60, and this forces a program

structure which cannot be elegantly mapped to the hardware structure.

Despite this disparity, Ada tasks have to be mapped onto proces-

sors. Which tasks should be assigned to which processors? Several

objectives seem reasonable, such as:

(1) Minimize inter-processor communication.

(2) Maximize computing power by distributing tasks so that processors

are evenly loaded.

(3) Make reconfiguration and continued service in the face of processor

failures feasible.

Combining these issues with those described in the section above on

subtasks leads us to various conclusions about program structure which

are discussed in section 9.

33

L.5.. REALIZATION CONTROL

In the model proposed in section 6, a program defines a set of

allowable execution sequences. A realization specifies assignment of

tasks to processors, processor speeds, and scheduling algorithms. How

should a realization be specified and where should it be specified?

In Ada, static priorities are part of the language. They are

intended to provide constraints on a scheduler. Clearly they are not

sufficient in a distributed system that is trying to reconfigure, since

a task with a high priority may be unimportant when a lower level of

service is being provided after a processor has failed. It seems to us

that some form of dynamic priorities is needed.

A distributed system must be able to reconfigure after a processor

failure. This implies that tasks must be able to be dynamically

assigned to processors. The program which specifies how this is to be

done will be in important part of any reliable real-time system. It is

not clear whether such a program could be written in Ada, an extended

Ada, or even what primitives the language should contain.

&. FAILURE DETECTION AND SIGNALING

Processor failure cannot be dealt with unless it can be detected.

Details of the failure must also be supplied to the software which is to

cope with the reconfiguration. How can Ada programs detect hardware

failure and what information is needed for reconfiguration? In this

section, we present an .approach to hardware failure detection and the

rational for its choice.

£.._!. .FAILURE DETECTION

Failure detection could be performed by hardware facilities over

and above those provided for normal system operation. Alternatively,

failure could be detected by system software. The hardware option is

less desirable because it requires additions to existing or planned sys-

tems and the detection hardware itself could fail. We suggest therefore

the use of software failure detection.

Software failure detection can be either passive or active. A pas-

sive system might rely on tasks assuming that failure had occurred if

actions did not take place within a "reasonable" period of time. We

will refer to this as timing out. Alternatively, a passive system could

require that all messages passed between tasks on separate processors be

routinely acknowledged. Thus the sender would be sure that the receiver

had the message and presumably would act on it. Note that this is a

particularly simple case of timing out since failure has to be assumed

if no acknowledgement is received.

35

The disadvantages of passive detection are:

(1) Timing out assumes an agreed-upon upper limit for response time.

(2) A failed processor will not be detected until communication is

attempted and this may be long after the failure has occurred.

Upper bounds on response time may be hard to determine. Very com-

plex situations can arise from an incorrect choice. The reason for a

lack of response from a task on another processor may not be failure of

that processor but merely a temporary rise in its workload. The conse-

quences could be an assumption by one processor that another had failed,

followed by reconfiguration to cope with the loss. Clearly, if this

assumption is wrong, two processors could begin trying to provide the

same service.

Being unaware that a processor had failed will lead to a loss of

the service it was providing until the failure is noticed. In a system

with many processors each providing relatively few services, the amount

of inter-processor communication might be quite low. A failed processor

may go unnoticed for a sufficient time that physical damage might result

from its lack of service.

It is for these reasons that we reject passive software failure

detection and suggest the use of active software failure detection. In

an active system, some kind of inter-processor activity is required

"periodically" and if it ceases, failure is assumed. The messages which

are passed are usually referred to as heartbeats. Heartbeats can take

two basic forms. In the first, each processor broadcasts a heartbeat

36
• ,

periodically and all other processors monitor its presence. In the

second, a message is passed sequentially from processor to processor and

its non-arrival at the appointed time is a signal that one processor in

the system has failed.

A final question of implementation is whether the generation and

monitoring of heartbeats should be the responsibility of the programmer

or the Ada run-time support system. We favor the run-time support sys-

tem for reasons discussed below.

J5..2.. FAILURE SIGNALLING

As soon as a heartbeat disappears, the remaining processors in the

system will be aware that a failure has occurred and they will know

which processor has failed. This information must be transmitted to the

software running on each remaining processor so that reconfiguration can

take place. The information is available to the run-time support

software in some internal format, but how should it be transmitted to

the Ada software?

One approach is to use the languages exception mechanism, and for

the run-time system to generate an exception on each processor. Another

approach is to view the required signal as being very like an interrupt,

and transmit the information to the Ada software in the way that inter-

rupts are transmitted; namely by an entry call. We prefer this latter

approach because it can take place in parallel with any activity that

might already be going on. A task designed to cope with reconfiguration

could be present on each processor and suspended at an accept statement

for the entry which will be called when a failure occurs. This allows

37

each processor to have a "focal point" for reconfiguration. If excep-

tions are used, the correct placement of the necessary handler is diffi-

cult to determine because it will be impossible to know what tasks will

be engaged in what activities when the exception is generated.

Thus we propose that a special task be defined on each processor

which will contain an entry with a single parameter. The parameter will

be of some scalar type which conveys for a given call which processor in

the system has failed. This task will be normally suspended on the

accept statement for the special entry so that when a failure occurs, an

entry call with the appropriate parameter will be generated. The task

will then be activated and will contain code following the accept state-

ment to handle reconfiguration.

JL..1. EXISTING RENDEZVOUS TERMINATION

It is not sufficient to detect failure and inform the software of

the failure using the methods described above. As discussed in section

7, the Ada rendezvous can lead to situations in which a calling task is

permanently suspended if the processor on which the server is executing

fails. These tasks which would be permanently suspended must somehow be

released.

The mechanism which we propose to cope with this situation is shown

in figure 8.1. Whenever a rendezvous takes place between tasks on dif-

ferent processors, the run-time support system on the processor execut-

ing the caller records the details of the rendezvous in a message log.

Whenever a failure is detected, each processor checks its message log to

see if any of its tasks would be permanently suspended by the failure.

38

Ada PROGRAM

1
F

1 1
ESS AGE

r

\

\
SN > MESSAGE

r
EXCEPTIONS
ENTRY CALLS

SOFTWARE.
SIGNALLING

SYSTEM

i

J

r- HEART

/

:
;

V

IE AR-
SE AT*

r
3

V

Figure 8.1 - Implementation Model

ISO
UPPER

PROTOCOL
LAYERS

ISO
LOWER

PROTOCOL
LAYERS

If any are found, they are sent "fake" messages. They are called fake

because they are constructed to appear to come from the failed processor

but clearly do not. The message content is usually equivalent to that

which would be received if the serving task had been aborted. In this

way, each processor is able to ensure that none of its tasks is per-

manently suspended. However, it is the responsibility of the tasks

themselves to ensure that their subsequent actions are appropriate.

There are circumstances in which it is not desirable to allow the

calling task to proceed. In these cases, the fake message will be sent

to the run-time support system rather than the task itself. The fake

message will indicate the kind of action that the run-time system should

take; such as abort the task or generate an exception.

39

Clearly it is possible for unsuspecting tasks to attempt to rendez-

vous with tasks on the failed processor after failure has been detected,

signaled, and other rendezvous aborted. This situation can be dealt

with easily if the run-time support system returns a fake message

immediately indicating that the serving task has been aborted and that

rendezvous is not possible.

Because of the fact that a fairly extensive set of facilities is

required in the run-time system for fake messages, we suggest that the

heartbeats be handled here also. There is a clear need for cooperation

between the heartbeat monitoring system and the fake message system.

Operating both at the same level is probably the only practical

approach. This has the additional advantage that the programmer is not

burdened with the need to include the heatbeat system in his program.

Finally, the heartbeat system is so central to the reliability of the

entire system that it should operate at the lowest practical level of

the software system. Thus it relies for its operation on the correct

operation of the minimum amount of other software.

40

i. FAILURE TREATMENT j[H Ada

When a processor fails in a distributed system, the system must

respond so that it can continue to provide service. This requires

several steps:

(1) The failure must be made known to the software which remains.

(2) Tasks which are suspended indefinitely in rendezvous as a result of

the failure must be freed or aborted.

(3) Tasks which are suspended indefinitely as a result of failure

occurring during the subtask activation process must be freed or

aborted.

(4) A reconfiguration strategy must be chosen.

(5) Substitute tasks must be started.

(6) The substitute tasks must be provided with data consistent across

the processors.

In this section we discuss these various issues.

.2.1. FAILURE DETECTION

We assume the existence of the the heartbeat mechanism described in
s

section 8. This will allow all operating processors to be aware of pro-

cessors that have failed, and there will be an upper bound on the delay

between failure and detection. Further, we assume that once detected,

failure can be signalled to the software using either entry calls,

exception generation, or other fake messages as necessary. Thus, failure

41

detection will be taken care of totally by the support system, and the

software will be informed using existing facilities of the language.

3..Z.. AVOIDING ENTRAPMENT DURING RENDEZVOUS

Recall from section 7 that if the processor running the calling

task in a rendezvous fails, the serving task can continue, complete the

rendezvous and continue. However, if the processor running the serving

task fails, the calling task is trapped. In fact, all tasks waiting on

the server's entry queues are trapped.

Recall from section 8 that each processor will have information in

its message log showing which of its tasks were either engaged in ren-

dezvous or waiting on entry queues of tasks on the failed processor.

Thus entrapment can be prevented by returning suitable fake messages to

these tasks. The only question is what fake message should be sent?

The situation is very similar to that which arises when the serving

task is aborted. One possibility therefore is to force a tasking error

in the calling task. We feel that this is probably adequate. However,

we suggest that an alternative worth considering is the definition of a

new exception (which we call PROCESSOR_FAILURE) which would be raised

under these circumstances.

The reason for not using the tasking error exception is the fact

that the cause of the exception would be clearer. If tasking error is

used, the task receiving the exception might not realise the cause of

the difficulty and might attempt to rendezvous again with a task on the

failed processor. This is always possible and would be dealt with but

42

it is preferable to avoid it if possible.

.2.1. AVOIDING ENTRAPMENT DURING TASK ACTIVATION

In section 7.2, problems arising from failures during the activa-

tion of tasks were described. In this section, solutions to these prob-

— These task definitions are inside parent P.
task type T is
•

end T;

A : T; — task A is created on processor P1.
B : T; — task B is created on processor P2.

[1]

— End of the declarative part of parent.

begin
—- A message is sent to P1 to 'activate A1

[2]
— a message is sent to P2 to 'activate Bf

-- the activations of A and B are done in
— parallel on processors P1 and P2.
— After notifying P that their activation
— is complete, A or B can continue.
— P waits until the activations of both A
— and B are complete, and then continues
— with the first statement in its body.

[3]

task A goes through the following stages:
created

U]
activation started

[5]
activation completed
start to execute body

[6]

Figure 9.1 - Nested Tasks.

lems are proposed. Figure 7-3 is reproduced here as figure 9.1 for

clarity. As before, task creation by allocators is not discussed. In

most cases, the solutions follow the 'spirit of the language by copying

closely the language semantics defined for situations where tasks are

aborted or exceptions raised during activation. Three exceptions to

this rule are:

(1) In Ada, aborts are propagated to descendents, exceptions to call-

ers. PROCESSOR_FAILURE exceptions will go in both directions. In

fact, the heartbeat mechanism will enable all other processes to

know of a processor failure. What messages are sent to each process

is determined by the fake message mechanism.

(2) It is suggested that, under certain circumstances, a task should be

allowed to continue even though its parent is on a processor which

has failed. This is the case when P fails at [2].

(3) P waits at its BEGIN until A and B have completed their activa-

tions. When A is aborted at [4] or [5J f P will wait for ever. This

is assumed to be an oversight in the language definition. When A

fails at [4] or. [5] a PROCESSOR_FAILURE exception will be sent to

P. P will thus have a chance to handle the exception, by starting

a similar task on another processor, for example.

What should be done when a processor fails during definition and

activation of subtasks? We discuss various cases below. The numbers

refer to the numbers in figure 9.1:

44

P fails at [1]

A and B are created and can accept entry calls. The callers are then

trapped, since A and B will never be activated. When knowledge of

P's failure reaches P1 and P2 (the processors A and B are running

on), A and B should be terminated. This will have the effect of

raising TASKING_ERROR in any callers. In fact, in this example

there cannot be any callers, since the body of a task initiated by

an allocator would have to be in an outer block. The point is that

P1 and P2 will have no way of knowing whether P failed at [1] or

[2]; at [2] A could call B.

P fails at [2]

A can continue with its activation; B should be terminated. There is

now a fundamental decision to be made. Should A be allowed to con-

tinue even though its parent is no longer there. On the one hand

this runs against the grain of the language, on the other A will get

into no trouble until it tries to communicate with P, then

TASKING_ERROR will be raised. The problem of global variables can be

dealt with by treating them as local variables with implicit updates

at synchronization points.

P fails at [3]

Similar to the previous case except that A and B can both continue.

A fails at [4] or at [5]

A PROCESSOR_FAILURE exception should be raised in P. If this is not

done P will be trapped, waiting for the completion of A's activa-

tion.

45

A fails at [6]

This will have no direct effect on either P or B unless they try to

communicate with A.

.9..2L. RECONFIGURATION

Reconfiguration is controlled by a task RECONFIGURATION which runs

on each processor. When informed of a failure this task starts up the

replacement tasks that will run on that particular processor.

Reconfiguration can depend on many factors, the state of the compu-

tation, number of processors remaining, which tasks were on the failed

processor. The task shown in figure 9.2 bases the reconfiguration solely

on which processor failed; it could easily be extended to include other

factors.

.̂5.. STARTING SUBSTITUTE TASKS

When a task needs to be started because of a processor failure it

will often be the case that speed of starting is important. Rather than

have a task begin its activation when the processor failure becomes

known, it is possible, to activate the task initially and have it remain

dormant until needed. While this requires space for the dormant tasks,

it does not require processor time once the activations have been com-

pleted, since the dormant tasks will remain suspended, waiting at an

accept statement until they are needed.

The task X shown in figure 9.3 would be started normally by a call

X. NORMAL_START. If X had to be started because of a processor failure it

would be started by a call X. START(D). In this case X would be supplied

task RECONFIGURATION is
entry FAILURE(P :in PROCESSOR_ID);

end RECONFIGURATION;

task body RECONFIGURATION is
— body for processor i

begin
loop

select
accept FAILURE(P :in PROCESSOR_ID) do

case P is
when P1 => — code to reconfigure processor Pi

— when processor P1 fails

when Pn => — code to reconfigure processor Pi
— when processor Pn fails

end case;
end FAILURE;

or
terminate;

end select;
end loop;

end RECONFIGURATION;

Figure 9.2 Definition of Task RECONFIGURATION

with a consistent set of data D.

S..&. GETTING CONSISTENT DATA

To ensure a consistent data base a task DATA_CONTROL runs on each

processor. DATA_CONTROL accepts data from its local tasks and sends it

to all other processors. DATA_CONTROL also accepts data from other pro-

cessors and uses a two-phase commit to keep a set of data consistent

with the other processors. When tasks are restarted it is this set of

data that is used.

task X is
entry START(D:in DATA);
entry NORMAL_START;
— any other entries

end X;

task body X ig
— declarations

begin
select

accept NORMAL_START;
or

accept START(D:in DATA) do
— use data to initialize variables
end START;

end select;
— 'normal* begin-end part of X follows

end X;

Figure 9.3 - Definition of Task X

task DATA_CONTROL is
entry LOCAL,_DATA_IN(TID : in TASK_ID;D : in DATA);
entry DATA_IN(TID : in TASK_ID;D:DATA;OK:out boolean);
entry COMMIT(P:PROCESSOR_ID;DID:DATA_ID);
entry FAILURE(P:PROCESSOR_ID);
entry GET__CONSISTENT_DATA(TID:in TASK_ID; D: out DATA);

end DATA_CONTROL;

task body DATA_CONTRCL is
— declarative part omitted

begin
loop

select
accept LOCAL_DATA_IN(TID: in TASK_ID; D : in DATA) do

— accept data from local task
— send it to DATA_CONTRCL in all other processors
— when OK = TRUE received from all processors
— send COMMIT to all other processors

end LOCAL_DATA_IN;
or

accept DATA_IN(TID : in TASK_ID;D:DATA;OKrout boolean) do
— accept data from DATA__CONTROL on another processor
— data is stored but not committed

end DATA_IN;
or

accept COMMIT(P:PROCESSOR_ID;DID:DATA_ID) do
— commit data with given ID to consistent data storage

end COMMIT;
or

accept FAILURE(P:PROCESSOR_ID) do
— no longer wait for commits from P
— no longer send data to P

end FAILURE;
or

accept GET_CONSISTENT_DATA(TID:in TASK_ID; D: out DATA) do
— supply consistent data so that a task can be restarted

end GET_CONSISTENT_DATA;
or

terminate;
end select;

end loop;
end DATA_CONTROL;

Figure 9.4 - Definition of Task DATA_CONTROL

.2.1.. OTHER RESTRICTIONS

49

For the scheme outlined above to work, some restrictions must be

placed on the user's programs. Firstly, there should be no global vari-

ables. It is extremely difficult (perhaps impossible) to keep them con-

sistent, for, while the latest value is being distributed to other pro-

cessors, a local task may update the variable. Secondly, nested tasks

should either not be allowed at all, or else restricted, by requiring

that if a unit contains nested tasks, that unit and all the tasks nested

within it should run on the same processor.

Given these restrictions, the heartbeat mechanism, the fake message

system, the new exception, and the various tasks discussed in this sec-

tion, we feel that Ada programs can be built to survive processor

failure in a distributed system.

50

10.. CONCLUSION

Our main conclusion is that Ada is not well suited to distributed

processing where reliability is a concern. It is our opinion that any

language which is to be used on a distributed system must face the fact

that processors may fail. A distributed system which cannot cope with

loss of a processor is no better than a uniprocessor system, and the

expense and overhead incurred in distribution is wasted. Any language
.jft

which does not provide tools to facilitate recovery is not really suit-

able for programming a distributed system.

The specific difficulties in the Ada language which we discussed in

Section 7 are very serious though not overwhelming. We note that these

difficulties are not unique to Ada. No language proposal has been made

which is entirely satisfactory for programming an unreliable distributed

system. This is a very difficult problem but the fact that Ada essen-

tially ignores it is surprising and depressing.

The fact that the Ada rendezvous semantics are so poorly defined

that we cannot decide what the language means is really unforgivable.

We have discussed these points with members of the Ada language design

team (R. K. B. Dewar and P. F. Hilfinger) and have not received an

explanation which we find acceptable. Many of our concerns were

presented to the Ada community in writing at the AdaTEC meeting in June

1982 to no avail. The very poor state of definition of the language is

underscored by the fact that substantial changes in the language

occurred even between the July 1982 Ada definition and the ANSI Ada

definition. For example, the mechanism for updating shared variables

51

has been completely redefined.

The proposals we have made for error detection (software heart-

beats) are adequate for most expected situation but we have no good

estimate of the overhead penalty they will introduce. It can be argued

that overhead is irrelevant since error detection is essential. Studies

of the most effective means of implementing heartbeats seem worthwhile.

It might be appropriate to consider using hardware assistance to gen-

erate and monitor heartbeats.

Our techniques for preventing hardware failure during rendezvous

from suspending unsuspecting tasks indefinitely seem satisfactory. Once

again we have no real estimates of the likely overhead involved in using

this system of "fake" messages.

The programming techniques we propose to allow for redundant tasks

to be available on separate processors are quite general though they do

impose a substantial structure on programs. The further limitations on

global variables and the rules for assignment of nested tasks to proces-

sors impose an even more rigid structure. We feel there is no alterna-

tive if reconfiguration following failure is to be possible. At this

point we feel confident that Ada programs can be written for unreliable

distributed systems, and that the results will provide satisfactory

reconfiguration. The proof of these ideas will be the construction of a

demonstration system which we are presently pursuing. No doubt many

important issues will be raised as we undertake this implementation.

An outcome of the work described in this report is the use of the

model of distributed processing discussed in Section 6 and the Ada

52

difficulties discussed in Section 7 to suggest better language struc-

tures and possible changes to Ada. We have already considered a range

of changes to Ada but so far none have proved to be very useful. We

will continue this work. Another possibility is experimentation with

new language structures in the framework of a new language for distri-

buted processing.

REFERENCES

(1) Programming Manual For The Ada Programming Language, 0. S. Depart-
ment of Defense, July 1982.

(2) Personal Communication, CODENOLL Corporation, New York, 1982.

(3) Hansen, P. M., et al, "A Performance Evaluation Of The iAPX 432"
Computer Science Division, Dept. of Electrical Engineering and Com-
puter Science, University of California, Berkeley, California, May,
1982.

(4) Wensley, J. H. et al, "SIFT, The Design and Analysis of a Fault-
Tolerant Computer for Aircraft Control", Proceedings of the IEEE,
Vol. 66, No. 10, October 1978.

(5) Hopkins, A. L., et al, "FTMP - A Highly Reliable Fault-Tolerant
Multiprocessor For Aircraft", Proceedings of the IEEE, Vol. 66, No.
10, October 1978.

(6) Formal Definition Of The Ada Programming Language, Cii Honeywell
Bull, November 1 980.

(7) Pratt, T. W., "H-graph Semantics", Technical Report Numbers 81-15,
81-16, University of Virginia, 1981.

(8) Tanenbaum, A. S., "Network Protocols", ACM Computing Surveys, Vol.
13, No. 4, December 1981.

Appendix 1

An operational model of Ada tasking has been developed using an

H_graph notation developed in. 'H_Graph Semantics'. T.W.Pratt. Technical

Report Department of Applied Mathematics and Computer Science. University

of Virginia,Sept 1981.

in the model each task is assummed to be running on a separate pro-'

cessor: communication between processes (and hence between processors)

Is by remote calls to kernel procedures. The run time state is described

by an H_graph grammar (A). Every instruction will ultimately be defined as

a transformation of the run time state.

The transform COMPILE (B) translates an Ada text Into an intermediate

form consisting of a list of declarations and a list of executable statements

(ie transformations of the run time state). Execution of the intermediate

form proceeds in two steps. First elaboration of the declaration list, and

second, execution of the statement list.

An example of Ada text (C) and the intermediate form obtained by the

application of COMPILE (D) is included.

A.

network ::=
*

[[NETWORK]

-<node_id>-> network_node

C-<node_ld>-> network_node)

' 1

v

network_node ::=

t [NETWORK_NODE]

-name-> [<node_ld>]

-processor-> processor

-communications_interface-> [[COMM]

-proc_export-> proc_info

-proc_import_queue-> *piq: QUEUE(proc_info

1

-kernel_proc_code-> [[KPCODE]

-<kproc_name>-> code

C-<kproc_name>-> code }

1

-process-> process

processor ::=

t [PROCESSOR]

-next_Jnstruction-> instruction_pointer

-timer-> [[TIMER_HARDWARE]

-set-> [<t!mer_status> I
»

-delay-> [<time>]

-transfer_address-> instruction_pointer

1

-flags-> [[FLAGS]

-user_pgm_suspended-> [<boolean>

-inhibit_timer-> [<boolean>]

-inhibit_abort-> [<boolean>]

-imiioit_exception-> t <boolean> I

-check_immediate_rendezvous-> [<boolean>

1

-network_node-> [network_node I

-kproc_info-> proc_info

instructlon_pointer ::= [[IP]

.-instruction-) [code_node]

-code_block-> [code 1

proc__lnfo ::=

[[PROCJNFO]

-to-> [<node_ld>]

-from-> [<node_id>]

-kproc_name-> [<name>

-parameters-) KEYED_L1ST< <integer>.arb_node)4

1

code ::= LISTC code_node)

code_node ::= instruction_node ! branch_node ! LISTC code_node)

lnstructlon_node ::= [tlNSTRUCTION_NODE]

-transform-) [<transform_id> 1

-arguments-) KEYED_LIST(<integer>,arb_node)

1

branch_node ::= [tBRANCH_NODE]

-condition-) function_node

-alternatives-) KEYED_LIST(<integer>.code)

1

function_node ::= [[FUNCTION_NODE1

-function-) [<function_id>]

-arguments-) KEYED_LIST(<lnteger>.[arb_atom 1

-result-) [arb_atom]

1

process ::= [[PROCESS]

-process_object-> process_object

-proc_import_queue-> "piq
t

1

process_object ::= [[PROCESS_OBJECT]

-next_instruction-> instruction_pointer

-activation_record_stack-> STACK(activation_record

-load_module-> [load_module 1

activation_record ::= task_activatlon_record ! subprogram_activation_record i package activation record

task_activation_record ::=

[UAR]

-user_data-> user_data

-system_data-> system_data

-elaboration_data-> e!aboration_data

1

user_data ::=

t [USER_DATA]

-locals-> —allocated by elaboration

-non_locals-> KEYED_LIST(<name>.[<nesting_level>]

1

system_data ::=

[[SYSTEM DATA]

-my_phone_#-> processing_unit
t

-state-> [<state> 1

-context-> [[CONTEXT]

-ref_stack-> t display]

-with_list-> []

-use_list-> []

]

-exception_list-> LIST(<exception_name>)

-governor-) processing_unit

-dependent_task_list-> LIST(dependent_task_info)

-#dependent_tasks_not_terminated-> [<integer>]

-#noisy_tasks_ln_dependent_task_tree-> I <integer>]

-entry_called-> [<entry_name> 1

-entry_list-> KEYED_LIST(<entry_name>.entry_list_node

-list_of_handlers-> handlers_iist_node

-ready_to_rendezvous_list-> LIST(entry_name)

-nesting_level-> [<integer>]

display ::= KEYED_LIST(<nesting_level>.processing_unlt)

dependent_task_info ::=

[[DEPENDENT_TASK_INFO1

-processor-) processing_unit

-terminated-) [<boolean>]

-tree_quiet-> [<boolean>]

entry_list_node ::=

[[ENTRY_LIST_NODEI

-state-> [<state>]

-transfer_address-> t lnstruction_pointer

-queue-> QUEUE(entry_queue_node)

1

entry_queue_node ::= [ENTRY_QUEUE_NODE]

-processors processing_unit

-parameters-) KEYED_LIST(<integer>.arb_node)

1

handlers_list_node ::=

t [HANDLERS_LIST_NODE]

-in_handler-> [boolean]

-list-> KEYED_LIST(<exception_name>.instruction_pointer

1

processing_unit ::=

[[PROCESSING_UISim

-network_node-> t <node_id> 1

-tar-> [task_activatlon_record 1

1

elaboration_data ::= [[ELABORATION_DATA]

-task_activation_data-> task_list_node

-allocator_execution_data-> task_list_node

1

ta§k_list_node ::= [ITASK_LIST_NODE1
•

-#_non_allocated_tasks-> [<integer>]

-#_non_active_tasks-> [<integer> I

-list-> KEYED_LIST(<task_name>.task_info)

1

taskjnfo ::= t [TASKJNFO]

-name-> full_id

-processor-> [processing_unit]

-allocation_completed-> [<boolean>]

-activation_completed-> [<boolean>]

-load_module-> t load_module 1

1

subprogram_activation_record ::=

[CSAR]

-ld-> full_id

-context-> display

-user_data-> user_data

-body-> subprogram_body

-return_address-> lnstructlon_polnter

-dependent_task_llst-> LIST(dependent_task_info

-#_dependent_tasks_not_terminated-> [<lnteger>

-task_activation_data-> task_list_node

-allocator_execution_data-> task_list_node

load_module ::=

[[LOAD_MODULE1

-module_id-> full_id

-entries-> LIST(entry_node)

-body-> task_body

-context_of_body-> display

-governor-) processing_unit

-actlvator-> processlng_unlt

1

entry_node ::= [[ENTRf_NODE] .

-name-> full_ident

-range->. range

-formal_params-> formal_part

range ::= [[RANGE]

-low-> [<lnteger>]

-high-> [<integer> 1

1

full_id ::= [FULL_IDENTI 1

-ld-> t <identifier>]

-level-> [<nesting_level>

1

body ::= subprogram_body

!task_body

subprogram_specification ::= [[SUBPROGRAM_SPECIFICATION]

-id-> [<identifier>]

-level-> [curr_level I

-params-> formal_part

1

formal_part ::= LIST({parameter_speclfication))

parameter_speclfication ::= [[PARAMETER_SPECIFICATION]

-id_list-> identifierjist

-level-> [<integer>

-mode-> mode

-type-> type_mark

-value-> code

I

mode ::= [IN] ! [IN OUTI ! [OUT!

subprogram_body ::= [[SUBPROGRAM_BODY]

-specifications-) subprogram_specification

-declarations-) declarative_part

-statements-) code

-exceptions-) LIST({exception_handlerl)

I

task_body ::= [UASK_BODY]

-name-) full_id

-declarations-) declarative_part

-statements-) code

-exceptions-) LIST(exception_handler)

exception_handler ::= [[EXCEPTION_HANDLER]

-name_list-> LIST(exception_choice

-handlers_code-> code

1

exception_ctioice ::= [exception_name I ! [OTHERS]

QUEUE(X) ::=

[[QUEUE!

-first-> [QUEUE_ELEMENT(X)]

-last-> [QUEUE_ELEMENT(X)]

I

QUEUE_ELEMENT< X) : : = [#] !

[[QUEUE_ELEMENT!

-head-> [X]

-rest-> [QUEUE_ELEMENT(X

1

KEYED_LIST< <KEY>. MEMBER) ::=

[# I ! [[KEYED_LISTJ

-<KEY>-> MEMBER

{ -<KEY>-> MEMBER }

I

LIST(MEMBER) ::= [#] ! [[LIST!

{ — > MEMBER }

— > t#]

STACK(KIND) ::= [#] ! [[STACK]

-head-> [KIND]

-tail-> [STACK(KIND)]

<node_id> ::= identifier*

<name> ::= <identifler>

<kproc_name> ::= <identlfier>

<entry_name> ::= <identlfier>

<transform_id> ::= <identifier>

<functlon_id> ::= <identifier>

<timer_status> ::= ON ! OFF

<time> ::= <integer>

<boolean> ::= TRUE ! FALSE

transform [COMPILE]
— > *MMV_TE3CT: in [<subprogram_Ixx3y>]
— > *MAJN_BODY: out subprogram_body

var

*COMPII£_TIME_INFO: compile_time_info := 0 [f]

corapile_time_info : := [[COMPrtE_TIME_IHFO]]

-level-> [<nesting_level>

-context- > context

context : := KETED_LIST({ 1 .. n) ,name_table)

name_table : :« LIST(name_tal)le_item)

name_tai)le_item : := [£raME_TABLE_ITEM]]

-id-> full^id

-type_name-> type_name

— declaxation-> [basic_declaration

1

full̂ id ::= [[FULL_ID]]

-id-> [< identifier)]

— level-> [<nesting_level>

<nesting_level> : := <integer>

type_mark — see productions
basic_declaration — in the pair grammar

KEYED_LIST((<KEY> },MEMBER) ::=
t

[#] | [[KEYED_I,IST]

-<KEY>-> MEMBER

{ -<KEY>-> MEMBER }

1

I.IST(MEMBER)::•=[#]! [[LIST]

{ —> MEMBER }

—> [#]

]

— curr_level represents an integer with value *COMPrLE_TIME_INFO/.level'

begin

parse

*M)AW_TEXT:[<subprogram_Jxx3y>]

generate

*MAIN_BODY: subprogram_body#l

*COMPHiE_TIME_INFO: subprogram_body# 2

pair grammar

basic_declaration ::=

object_declaration

| type_declaration

j subprogram_declaration

!task_declaration

!exception_declaration

basic_declaration : :-»

object_declaration

| type_declaration

| subprogram_declarat ion

|task_declaration

|exception_declaration

object_declaration :«-

identifier_list : [constant] subtype_indication [:= expression]

object_declaration ::= #1 *a:[[OBJECT_DECIARATION]

-id_list-> identifier_list

-type-> subtype_indication

-level-> [curr_level]

-value-> expression

-allocated-> [<boolean>]

#2 add_name_to_name_table(curr_level,identifier_list,subtype_indicati

identifier_list ::- identifier {, identifier }

identifier_list ::- LIST(s:{[<identifier>

s = { identifiers in KBS of ISS production }

type_declaration ::=

type identifier [discriminant_part] is type_definition

type_declaration ::- #2 *a: type_definition

add_name_to_name_table(curr_level,identifier,type_definition,[*a])

type_definition : :«= access_type_definition

type_definition ::= access_type_definition

svibtype_indication : := type_mark [constraint]

subtype_indication ::= [[SUBTYPE_INDICATION]

-type_info-> type_mark

-constraints constraint

type_mark : := type_name | subtype_name

type_mark : := type_name | subtype_name

if type_name = pdtype then

type_mark : := [[PREDEFINED]

-pdtype-> [<pdtype>]

]

else

*tn := IiOCATE(type_name)

type_mark : := *tn/type_info

endif

access_type_definition ::= access subtype_indication

access_type_definition ::« [fACCESS_TTPE_DEFINITION]

-type_info—> type_mark

-constraint-) constraint

—defining_unit-> curr_unit

declarative_part : :- {basic_decl-arative_item}{later_declarative_item}

declarative_part ::= [[DECIARATTVE_PRRT]

-basic_items-> I*IST({ basic_declarative_item

-later_items-> IiIST({ later_declarative_item

I C C *]]

c-s L<<_declarative_item : := basic_&eclaration

—declarative_item ::= basic_declaration

later_declarative_item ::=»

body

|subprogram_declaration

|task̂ declaration

later_declarative_item ::=

body

j subprogram_declaration

|task_declaration

body ::- subprogram_body

body su£>program_body

|tasK_body

name

name

simple_name

j indexed_component

j selected_component

full_id

!indexed—Component

|selected_component

tasK_simple_name_l : := simple_name

tasK_siraple_name_l ::= fulX_id

task^simple_name_2 : := simp'le_name

task_simple_name_2 ::= #1 full̂ id

#2 curr_level := curr_level + 1

add_entry_info_to_name_table(curr_level,full^id)

naime_table

add entry names and parameter specifications
from the task specification to the

::= identifier

full_id : := [[FULl4_ID]

-id-> [<identifier>]

-level-> [n 1 — n is the level found by searching
— the surrounding contexts for the

— identifier.

indexed_component ::= name(expression {, expression })

indexed_component ::= [[IWDEXED_COMPONENT]

—name—> name

-indices-> KETEn3_LIST((<integer> }, expression)

selected_component ::= name.selector

selected_component ::= [[SELECTED_COMPONENT]

-name—> name
t

-selector-> selector

selector ::= simple_name

| all

selector ::= full_id

! [ALL]

allocator ::= new type_mark

allocator ::= [[ALLOCATOR] —>

[REF(type_mark)] &t

[ALLOC(fit)] &ptr' —>

sequence_of_statements ::= statement { statemant }

sequence_of_statements ::= LIST({ statement })

statement ::= simple_statement

|compound_statement

statement ::« simple_statement

|compound_statement

simple_staternent null̂ statement

|assignment_statement

!delay_statement

|raise_statement

j procedure_call_statement

|return_statement

j entry_call_statement

|abort_stateroent

simple_statement : nulX-Statement

J assignment_statement

!delay_statement

!raise_statement

|procedure_calX_statement

| returrv_statement

| entry_cal3^statement

! abort_statement

compound_statement accept_statement

|select_statement

compound_statement accept_statement

|select_statement

null_statement ::= null;

nulX_statement ::= [[NULIc-STATEMENT] —>

[NOOP] —>

[#]

assigrunent_statement : :*= variable_name := expression;

assignment_statement ::= [[ASSIGNMENT_STATEMENT] —>

[REF(variable_name)] &z —>

expression &e —>

[ASSIGN(&z,&e)] —>

[*]

return_statement ::= return [expression];

return_statement ::= [[KETDRN_STATEMENT]

expression Se —>

&e)] —>

subprogranudeclaration ::= subprogram_specification;

sxibprograa^declaration : := subprogram_specification;

subprogram-specification.,! : :*• procedure identifier [formaImpart]
t

subprogranuspecification_l : := #1 *a: [[SUBPROGRAH-SPECIFICATION]

-id-> [<identifier>]

-level-> [curr__level]

-params-> formal_part

]

#2 add_name_to_name_list(curr_level,identifier,subprogram,[*a])

subprograJO_specification_2 : := f 1 [[STJBPROGRMLSPECIFI CATION]

-id-> [< identifier)]

-level-> [curr_level]

-params-> formal^part

#2 curr_level := curr_level + 1

formal_part ::= (parameter_specification {; parameter_specification}

formal^part ::= LIST({parameter_specification})

parameter_specification ::- identifier_list : mode type_mark [:= expression]

parameter_specification ::= #1 *a:[[PARAMETEK.SPECIFICA.TION]

-id_list-> identifier_list

-level-> [curr_level + 1]

-mode-> mode

-type-> type_mark

-value— > expression

2 add_name_t o_name_list (curr_leve 1+1 , ident if ier_list , [*a])

mode ::= [in] j in out | out

mode ::= [IN] | [IN OUT] | [OUT]

subprogram_body ::=

subprogram_specification_2 is

[declarative_part]

begin

sequence_of_statements

[exception

exception_handler
{exception_handler}]

end [designator];

subprogramjx>dy : := #1 [[SUBPRDGRML.BODY]

-specifications-> subprogram_specif"ications

-declarations-> declarative_part

-statements-> [prelude —>

overture —>

sequence_of_statements —>

epilog —>

C#]

-exceptions-> LIST({exceptioix_handler})

#2 curr_level := curr_level - 1

procedure_call^statement ::= procedure_name [actual_j>arameter_part]

procedure_call_statement : := [[PROCEDURE_CMiI<_STATEMENT]

actual_parameter_part ¶ms —>

[KEF(procedure_name)] £p —>

[CALL(&p,¶ms)] —>

[#]

actual_parameter_j?art ::= (parameter_association {, parameter_association)

actual_parameter_j>art : := LIST(parameter_association)

parameter_association ::= [formalj>arameter =>] actual^parameter

parameter_association ::= [[PARAMETER_ASSOCIATION] —>

actuaX_parameter —>

[add_to_parameter_list(param_info,param_id,mode,type)] —r> — param_i<
filled in from

— corresponding formal parameter

[#]

1

formal_parameter ::= parameter_simple_name

formal_parameter ::= parameter_simple_name

actual_parameter ::= expression

\variable_name

|type_mark (variable_nsune)

actual_parameter : := [[VAL] — >

expression se — >

[fill_iru>aranuinfo(&e, 'VM,UEf

m

[[KEF] — > : ^ r _ . . . _ . . . - .

[KEr(variable_naue)] fin — >

[f iH_in__param_inf o(&n , ' ADDR1 , null)] — >

[#]

i [[KEPT] — >

[KEF(variable_name)] &n — >

[KEF(type_mark)] fit — >

[f ill_in_param_inf o(&n , ' TADDR* , £t)] — >

[#]

task_declaration ::= task̂ specification;

task_declaration ::= task_specification;

task_specification ::=

task [type] identifier [is

{entry_declaration}

{representation_clause}

end [task_simple_name]]

load_module_template ::= t2 *a:[[LOAD_JMODDLE_TEMPLATE]

-module_id-> [[FDLI^ID]

-id-> [<identifier>

— level-> [curr_level

]

-entries- > LIST({ent redeclaration})

-body-> [#]

-context_of_JtX3dy->

-governor-> [#]

-activator-> [#]

add_name_to_name_list(curr_ level, identifier, task, [*a])

task_body ::=

task body task_simple_name_2 is

[declarative_part]

begin

sequence_of_statements

[exception

exception_handler

{exception—handler}

e nd [task_simple_name];

task_body ::= #2 "body: [[TASK_BODY]

-name-> task_simple_name_2

-declarations-> declarative_j?art

—statements-) [prologue — >

overture — >

sequence_of_statements — >

epilog — >

'[#] 1

-exceptions-) LIST(except ion_handler)

find_in_name_list(task_simple_name_2, *n

*n/body' := task_bodyf

curr_level :— curr_level - 1

entry_declaration : :'

entry identifier [(discrete_range)] [f ormal̂ part] ;
• .

entry_declaration : := #1 [[ENTKX_DECLARATION]

-id-> identifier

-level- > [curr_level]

-range— > range

— formal^part— > formaiLjpart

if2 udd_name_to_name_list(curr_le\ el, identifier, entry)
\

entry_calX_statement_l ::= entry_name[actual_parameter_j>art];

entry_callw.statement_l : := [[ENTR5f_CAIiIi] —>

[REF(entry_name)]&E,&pssr —>

actual_param_jpart sparams —>

[entry_call^proc(spssr,SE,Sparams >] —>

[#]

entry_call_statement_2 ::- entry_name[actuaXj)arameter_part];

entry_call_statement_2 : := [[ENTRY_CALI,] —>

[KEF(entry_name)]£E,&pssr

actuaX_paran»_jpart spar am.? -

[#]

accept_statement_l :: =

accept entry_simple_name [(expression)] [formaX_part] [do

sequence_of_statements

end [entry_simple_name]];

accept_statement_l::= [[ACCEPT_STATEMENT] —>

[REF(entry_simple_name)] &n —>

expression &e —>

[REF(formal̂ part)] &f —>

[accept_proc(&e,&f,&n)] —>

sequence_of_statements —>

[end_of_rendezvous] —>

accept_statement_2 ::= accept_part_l accept_part_2
t

accept_part_l ::= entry_simple_name [(expression)] [formal_j?art]

accept_part_2 ::= [do sequence_o£_statements end [entry_simple_name]];

accept_statement_2 ::= accept_part_l accept_part_2

accept_part_l::= [[ACCEPT_PAKT_1] —>

[KEF(entry_simple_name)] &n —>

expression &e —>

fbrmal_part fir" —>

[#]

accept_part_2::= [[ACCEPT_PRRT_2] —>

[accept_proc(&e,&f,&n)] —>

sequence_o restatements —>

' - .-:"• ^ end_of_rendezvous]—>

[f]

delay_statement_l ::= delay simple_expression;

delay_statement_l ::= [[DELAY_STATEMENT_1] —>

«

simple_expression £d —>

[set_timer (&d,*a)] —>

[state_becomes(' suspended:at delay ')] —>

*a:[#]

]

delay_statement_2 ::= delay simple_expression;

delay_statement_2 ::= [[DELAY_STATEMENT_2] —

simple_expression &d —>

select_statement ::= selective_wait

j conditional_entry_call

j timed_entry_call

select_statement ::= selective_wait

!conditional_entry_call

!timed_entry_call

selective_wait ::•

select

select_alternative

{or

select_alternative}

else

sequence_o£_statements
V

end select;

selective_wait ::= [[SELECTIVE_WAIT_STATEMENT] —>

[set_up_temp_data_str] —>

IiIST({ select_alternative>) —>

[[BRANCH]

-condition-> [checJt_if_any_open_guard]

-alternatives-> [[KETED_JjIST]

-true-> [perform_select]

-false-> sequence_of_statements

1

] —>

[release_temp_data_str] —>

**end_of_select:[#]

1

selective_wait ::-

select

select_alternat ive

(or

select_alternat ive }

end select;

selective_wait : :<= [[SELEC7nVE_WaiT_STATEMENT] — >

[set_up_temp_data_str] — >

I.IST({ select_alternative}) — >

[[BRANCH]

-condition-> [check^if_any_open_guard]

-altematives-> [[KZYEDJLIST]

-true-> [perfbrm_select]

-false-> [RAISE_EXCEPTION(' SELECT ERROR')]

[release_temp_data_str] — >

**end_of_select

select_alternative : := [when condition =*>]

selective_wait_alternative

select_alternative ::= [[SELECT_ALTERNATIVE] —>

[[BRANCH]

-condition-> condition

-alternatives-) [[KEYED_LIST]

—true-> selective_wait_aTtemative

-false-> [#]

[*]

selective_wait_alternative ::= accept_alternative

| delay_alternative

i tenoinate_alternative

selective_wait_alternative accept_alternative

j delay_alternative

|tenoinate_alternative

accept_alternative ::= accept_statement_2 [sequence_of_statements]

accept_statement_2 ::= accept_part_l accept_part_2

accept_alternative ::= [[ACCEPT̂ ALTERNATIVE] —>

accept_ part_l &n &e &f —>

*a

*b: accept_part_2 —>

sequence_of_statements —>

**end_of_select
•

*a: [put_orx_operuguards_list(&n,£e,&f,*b

[*]

1

delay_alternative_l ::= delay_statement_2 [sequence_ofLstatements]

delay_alternative_l ::= [[DELAY_ALTEKN ATIVE] —>

delay_statement_2 £d —>

*a

*c:sequence_o£_statements —>

**end_of_select

*a:[update_smallest_open_delay(£d,*c)] —>

terminate_alternative ::= terminate

terminate_alternative ::- [[TERMINATE_ALTERNATIVE] —

timed_entry_call : :=*

select

entry_call_statement

[sequence_of_statements_l]

or

delay_stateraent_2

[sequence_of_statements_2]

end select;

timed_entry_call : := [[TIMED_ZNTRY_CAIiIj] —>

delay_statement_2 &d —>

*b

*a:sequence_of_statements_2

•end

*b:[set_timer(&d,&a)] —>

entry_call_statement_l —>

sequence_of_stateraents_l —>

*end:[#]

abort_staternent ::= abort task̂ name {,tasX_name};

[set_open_tenninate_flag J —>

[#]

conditionaX_entry_call ::=

select

ent ry_CeLll_st at ement_2

[sequence_of_statements_l]

else

sequence_of_statements_2

end select;

conditional_entry_call : := [

entry_call_statement_2 £E,&pssr,¶ms — >

[request_rendezvous (&E,&pssr, Sparams)] — >

[[BRANCH]

-condition-> [rendezvous_possil>le()] — >

-alternatives-> [[KEYED_LIST]

-true-> sequence_of_statements_l

-false-> sequence_of_statements_2

[#]

abort_statement ::= LIST((ABORT_TASK(task̂ name) })

ABORT_TASK(X) : := [[ABORT] —>

[KEF(X)] fin —>

[abort_exec(&n)] —>

[#]

exception_declaration ::= identifier_list : exception;

exception_declaration ::= [[EXCEPTION_DECLARATION]

-id_list-> identifier_list

- '• --type-> [EXCEPTION] " "~ " .

exceptioi_handler :: =

when exception_choice {jexception_choice } =>

sequence_of_statements

exception_handler : := [[EXCEPTION_HANDIiER]

-name_list-> LIST(exception_choice)

-handlers_code-> sequence_of_statements

except iorv_choice : := except ion_name

j others

exreption_choice : :»j [exception_name] [[OTH2KS]

raise_statement : := raise [except ion_name];

raise_statement : := [[KAISE_STATEMENT] — >

[KEF(except ion_name) &n — >

[raise_exception (fin)] — >

[#]

end COMPUTE

c.
procedure FIRST is

task type SIMPLE is

entry X(I: in integer);

end SIMPLE;

task type COMPUTE is

entry Y (I: out integer);

end COMPOTE;

StSIMPLE;

C:COMPUTE;

I:integer :=6;

task body SIMPLE is

A: integer :=10;

B:integer;

begin
*

accept X (I:in integer);

B :«= A + I;
-i

end X;

print(B);

end SIMPLE;

task body COMPUTE is

C:integer :=3;

begin

S.X(C);

accept Y(I:out integer);

I :- C + 2;

end Y;

end COMPUTE;

begin — FIRST

C.Y(I);

I := I + 5;

PRINT(I);

end FIRST;

[SUBPROGRAM_BODY]

-specifications-> [[SUBPROGRAM-SPECIFICATION]

-id-> [FIRST]

-level-> [0]

-params-> [#]

-declarations-) [[LIST] —>

[OBJECT_DECLARATION]

-id_list-> [[LIST] —> [S] —> [#]]

-type-> [[SDBTYPE_INDICATION]

-type_info-> *lnrtSIHPLE

-const raint-> [#]

-level-> [1]

-value-> [#]

[OBOECT_r>ECLARATION]

-id_list-> [[LIST] —> [C] —> [#]]

-type-> [[SUBTYPE_INDICATION]

-type_info-> *ltmCOMPDTE

-constraint-> [#]

]

-level-> [1]

-value-> [#]

[[OBJECTJDECLARATION]

id_list-> [[LIST] —> [I] —> [#]]

type-> [[PREDEFINED]

-pdtype-> [INTEGER]

]

level-> [1]

value-> [#]

-statements-) [[LIST] — >

prologue — >

overture — >

[[ENTRY_CALL] — >

[REF(C,1),(Y,1>] &pssr,&E — >

[KEF(1,1)] Sparams — >

[entry_call_proc(Spssr,£E,¶ms

[ASSIGNMENT_STATEMENT] - >

[REF((1,1))] fiaddr — >

[[EXPRESSION] — >

(1,1))] &a — >

[KEF(5)] fib — >

[M»D(&a, sb)] &c — >

[#]
] — >
[ASSIGN(&addr,&c)] —

[#]
] — >
[KEF(1,1)] fiout — >

[PKINT(fiout)] — >

epilog — >

-except ions- > [#]

*lmtSIMPLE: [[LOAD_MODUIiE_TEMPLATE]

-rnodule_id-> [[FOLI^ID]

-id-> [SIMPLE]

-level-> [1]

]

-entries- > [[LIST] — >

[[ENTRY_DECLARATION]

-id-> [X]

- level- > [2]

range-> [#]

formal>_part-> [[LIST] —>

[[PARftMETER_SPECIFICATION]

-id_list-> [[LIST] —> [I] —> [#]]

-level-> [2]

-mode-> [IN]

—type—> [[PREDEFINED]

-value->[#]

[#]

[#]

-body-> *tasJOx>dy_simple

-cont ext_of_JxxJy- > [#]

-governor-> [#]

-activator-> [#]

-pdtype-> [INTEGER]

*lmtCOMPUTE: [LOAD_MODULE_TEMPIATE]

-module_id-> [[FULL_ID]

-id-> [COMPtTTE]

-level-> [1]

-entries-> [[LIST] —>

[[ENTRY-DECLARATION]

-id-> [Y]

-level-> [2]

-range-> [#]

-formaL_part-> [[LIST] —>

[[PARAMETER_SPECIFICATION]

-id_list-> [[LIST] —> [I] —> [#]]

-level-> [2]

-mode-> [OUT]

-type-> [[PREDEFINED]

-pdtype-> [INTEGER]

-value->[#]

[#]

[*]

-body-> *taskjxx3y_coinpute

-context_of_body-> [#]

-governor-> [#]

-activator-> [#]

*task_body_simple:[[TASK_BODY]

-name-> [[FULL_ID]

id-> [S]

level-> [2]

]

-dec larat ions- > [["LIST] — >

[[OBJECT_DECLARATION]

-id_list-> [[LIST] — > [A] — > [#]]

-type-> [integer]

-level-> [2]

-value— > [10]

[[OBJECT_DECLARATION]

id_list-> [[LIST] — > [B] — > [#]]

type— > [[PREDEFINED]

-pdtype-> [INTEGER]

level-> [2]

value- > [#]

-statements-> [[LIST] — >

prologue — >

overture — >

[[ACCEPT_STrA.TEMENT] —>

[REF(X,l)] fin —>

[REF(1,2)] &f —>

[accept_j?roc(&f, fin)] —>

[[ASSIGNMt:NT_STATKMh'NT] —>

[REF(B,2)] &addr —>

[[EXPRESSION] —>

[REF(A, 2)] fiopl —>

[REF(1,2)] &0p2 —>

[ADD(opl,op2)] &e —>

[#]

] —>

[ASSIGN(&addr,&e)] —>

[*]

3 —>

[end_of_rendezvous] —>

[#]

1 —>

[KEF (B,2)] &out —>

[PRINT(tout)] —>

[#]

-except ions->[#]

*tasK_body_compute : [[TASK_BODY]

-name-> [[FDLL_ID]

-id-> [C]

-level-> [2]

-declarations-> [[LIST] — >

[[OBJECT_DECLftKATION]

-id_list-> [[LIST] — > [C] — > [#]]

-type-> [[PREDEFINED]

-pdtype— > [INTEGER]

-level- > [2]

-value— > [3]

statements-> [[LIST] — >

prologue — >

overture — >

[[ENTRY_CALL] — >

[REF(S.1),(X,1)] &pssr,£E — >

[REF(C,2)]¶ms — >

[entry_call_proc(£pssr,£E,¶ms)]

[*]

[[ACCEPT_STATEMENT] — >

[REF(Y,l)] &n — >

[KEF(1,2)] &f — >

[accept_proc(fif, &n)] — >

[[ASSIGNMENT_STATEMENT]

[KEF(1,2)] fiaddr — >

[[EXPRESSION] — >

[KEF(C,2)] fiopl — >

[KEF(2)] &0p2 — >

[ADD(opl,op2)] &e —

[#]

] — >

[ASSIGN(&addr,&e)] — >

[#]

] — >

[end_o£_rendezvous] — >

epilog — >

-except ions- > [#]

Appendix 2

Questions on the Ada '82 Language Reference Manual.

Questions and comments about wrong, confusing, unclear, and Incomplete
parts in the tasking sections (mainly chapter 9 but some of chapter 11) of
intra-canvass Ada Reference Manual.

(1) General
The examples appearing in the 1982 reference manual are no more
than those in the 1980 version. Most are examples of proper statement
syntax only. There are places in the manual where even a simple
example would clarify more than the volume of text. The reference
manual needs more examples; at least one for each language feature.
Where an example refers to or uses a previous example, an explicit
reference should be given.

(2) Chapter 9. page 1. paragraph 1. line 1
It is stated that the execution of a program which contains no task
precedes according to the rules described by the manual less chapter
9. In a multiprogrammed system, main programs look remarkably like
tasks executing independently. Is the main program a task (with no
entries) or not?

(3) ' Chapter 9. page 1. paragraph 1. line 4
"The effect of ... a program is defined in terms of a sequential execu-
tion of its actions In some order..." What does "some order" mean?
We realize that the intended order Is that traditionally found in imple-
mentations of Algol-descended languages with rearrangements and
optimizations restricted as in chapter 11. However, the manual does
not specify that, it says "some order."

(4) Chapter 9. page 1. paragraph 2. line 4
We know that two tasks are synchronized at the beginning and end of
a rendezvous, and that tasks are synchronized with their declaring
parent at their activation, but are there other places? For instance,
are tasks "synchronized" during execution of an ABORT statement since
In that case they are not operating independently. This is the first
occurrence of the term "synchronize." It is a technical term in the
definition of Ada semantics. It must be precisely defined.

(5) Chapter 9. page 1, paragraph 4. line 3
There are three kinds of program units of which programs can be
composed according to chapter 9 but four according to chapter 7.

(6) Chapter 9. page 1, paragraph 4. line 3
What. Is the Intent of a program unit (the term is not defined)? If I
write a program unit which consists solely of a task unit or generic
unit, what can I do with it? (Dare we ask "What is a main program?")

(7) Chapter 9. page 2 section 9.1 paragraph 3
"task [type] identifier [is ... end [simple_name]]" What is the distinction
that is being made between an identifier and a simple_name? Is the
reference manual alluding to the symbol table operation and to the
relationship between the lexical analyzer and parser of a particular
compiler?

(8) Chapter 9. page 2 section 9.1 paragraph 5
'...the body can ... be used for the execution of tasks designated by
objects of the ... task type." From reading descriptions elsewhere in
the manual it seems to us that the term "values of objects" would be
more appropriate here. The continuation of the fiction that a task object
and its value are somehow different when we are told that tasks behave
as constants, seems silly. It does provide consistency with the descrip-
tions of other kinds of objects and their values but can add confusing
verbiage to an already confusing chapter (besides. It contributed to this
mistake in the manual itself).

(9) Chapter 9, page 3 section 9.1 paragraph 1
We had an argument about when or whether it would be legal for a
task to refer to itself, especially by its type identifier. We eventually
came up with several valid cases, but the point here is that the
manual slips the capability in and certainly does not expand on it. The
material explaining now a task type name serves as a task name is
very cryptic and could do with some elaboration. A separate notation
for self reference would be nice.

(10) Chapter 9. page 4 section 9.2 paragraph 1
We were under the impression (and the first note in the designated
section seems to support this) that task types could be passed as gen-
eric actual parameters at instantiations of generic units, yet this sec-
tion, besides the note, ignores such usage. Was it ever decided
whether omission in the reference manual constituted a prohibition?

(11) Chapter 9. page 5 section 9.2 note 1
The business of modes allowed and disallowed for generic parameters
whose types are task types Is very confusing. This note needs elabora-
tion or It needs to be moved to an appropriate place in the chapter
on generics. Why are tasks not allowed as actual parameters
corresponding to generic formal parameters with mode IN since tasks
by definition are "constant"?

(12) Chapter 9. section 9.3
The manual is very explicit about when task objects declared in a
declarative part get activated (not before and not after the following
BEGIN), and about - when task objects created via an allocator get
activated. When do task objects created via an allocator in the initiali-
zation of an object of an access type In a declarative part get
activated? This is important in terms of understanding what is com-
pleted and what is terminated should an exception occur during the
activation of one of these tasks. We do not understand when these
tasks get activated! We are also concerned about the apparent incon-
sistency in the fates of declared and allocated tasks which experience
exceptions during their activations.

(13) Chapter 9 section 9.3
In 9.3 activation is defined to be the elaboration of the declarative part
of a task body. When does a task proceed after Its activation has been
completed? NOTE: In July 1980 Ada. section 9.3 states. ' Each task
can continue its execution as a parallel entity once its activation is

completed.' Why was this omitted?

(14) Chapter 9. page 21 section 9.11
Why is task synchronization between activator and activatee only men-
tioned in shared variables? We need a definition of synchronization.

(15) Chapter 9, page 7 section 9.3
References at the end of section 9.3 (and probably elsewhere) still have
"?" in them. Will they be replaced?

(16) Chapter 9, page 6 section 9.3 paragraphs 1 & 4
When tasks are being activated after a begin, if the activation raises an
exception the task becomes completed. On the other hand paragraph 4
states that if a task has been created by the execution of an allocator
and an exception is raised during its activation then the task becomes
terminated. Are the cases really different and if so why? NOTE: Ch 11
p8 sll.4.2(d) says that the task would be completed in both cases.

(17) Chapter 9. page 6 section 9.3 paragraphs 1 & 4
"other tasks are unaffected" Does this include dependents or does it
refer back to 'these tasks' - the tasks being activated? This is not
clear.

(18) Chapter 9. page 8 section 9.4 [paragraph 2 ... Example]
Use of "unit" vs. "task" is extremely confusing. Text should replace
'certain unit' by 'parent unit'. The meaning here can be completely
missed very easily (some of us did on first reading).

(19) Chapter 9. page 7 section 9.4 paragraph following (c)
The new definition of dependency needs further explanation. We suggest
adding a note explaining that because of the definition of termination
and the rules about leaving subprograms and blocks, only tasks defined
in a unit or contained In an inner package need be checked for termi-
nation.

(20) Chapter 9. page 8 section 9.4 Example
Example is not clear because we don't know where Q.ALL was activated.,
We suggest that comments should be ammended to read "await termi-
nation o< G.ALL if it was ever activated no matter where."

(21) Chapter 9. page 10 section 9.5 (last paragraph before the
example)
This needs to be rewritten more clearly. Chapter 11 section 11.5 con-
tains a clear explanation of the situation which could be copied or
referenced.

(22) Chapter 9, page 11 section 9.5 note 2
What if an entry has OUT parameters but the accept has no statements
— what happens if you use the parameters?

(23) Chapter 9, page 12 section 9.6
Typo In PACKAGE CALENDAR: 2009 should be 2099

(24) Chapter 9. page 13 section 9.6 note 1
Heed your note and make the correction (we would have liked to have
seen this explanation).

(25) Chapter 9. page 14 section 9.7.1 paragraph 2. line 1
The line: "A selective wait must contain at least one alternative ... "
should read: "A selective wait must contain at least one select alterna-
tive ... " since that Is the non-terminal used in the syntactic definition.

(26) Chapter 9. page 14 section 9.7.1 paragraph 2
Parenthesized comments In this paragraph specifying the combinations of
terminate, delay and else parts allowed in a select statement should not
be parenthesized — they are too Important. They should be separately
stated and elaborated.

(27) Chapter 9. page 15 section 9.7.1 dashed paragraph 1
When does the delay start? Is It safe for the programmer to assume
that the total amount of time required for the select statement if no
rendezvous is posssible. is no greater than that given in the delay
statement or is the time needed to evaluate any guards not included i.i
the execution time of a select statement?

(28) Chapter 9, page 16 section 9.7.2 paragraph 1. line 1
Use of the word immediately is confusing. A conditional entry call may
take an arbitrary amount of (communication) time to execute even if no
rendezvous occurs. , _. , vi . „ , ,_ ..

(29) Chapter 9. page 17 section 9.7.3
What does the delay include in a timed entry call? Is it the time on
the entry queue only, or does it include "message transmission" time
to/from caller from/to callee? If the latter, how do we implement this
when one task is on Earth and the other on Mars (this is not a flip-
pant question)? Also. If no scheduling algorithm is assumed by the
language definition, how can the "correct" execution be guaranteed?
We assume a timed entry call with delay 0 really means the program-
mer Is prepared to wait 0 seconds on the entry queue. It is clearly
impossible to have any other meaning because an entry call always
takes some time. Thus we assume delay i means wait for a duration of
I on the queue. Is "this correct?

(30) Chapter 9. page 18 section 9.8 rule
The word "sensibly" is not appropriate in this context. It, is far too
ambiguous for a document puporting to be a language definition.

(31) Chapter 9, page 18 section 9.8 last paragraph
If two tasks rendezvous, one with priority 5 and the other without
defined priority, is it a valid implementation for the rendezvous to
always occur with priority PRIORITY'LAST+1?

(32) Chapter 9. page 20 section 9.10
It is Impossible to guarantee that a task named in an ABORT statement
will not proceed beyond an accept (etc.) after the aborting task thinks

the aborted task has been marked abnormal. If the tasks were running
on different physical processors the communication time for the abort
message could be arbitrarily long. Is it legitimate for a task that has
been marked abnormal to execute an ABORT statement? The manual
implies 'yes'.

(33) Chapter 9. page 20 section 9.10
What happens to the caller/callee in a rendezvous when the
callee/caller is aborted? (This is explained in Chapter 11 but should be
In section 9.10 also)

(34) Chapter 9. page 21 section 9.11
This section as a whole and the usage of the
SHARED_VARIABLE_UPDATE procedure in particular is not at all clear
— we need an example. Also you should point out that use of shared
variables makes programs non-portable because this facility may not
cover all types in an implementation.

(35) Chapter 9. page 20 section 9.10 (general)
Can tho task below be terminated by an ABORT statement once the
rendezvous has begun?

TASK TRAP IS
ENTRY X;

END;
TASK BODY TRAP IS

BEGIN
ACCEPT X DO

LOOP
NULL-

END LOOP;
END;

END;

