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U NG FAGE 13 B2Fres
1.0 INTRODUCTION OF POOR QUALITY

The gravitational geopotential is usually represented by the spherical harmonic
expansion solutior te Laplace'a equation. The harsonic ccefficients ray be de-
termined by reduction of satellite trajectory data, mean ccean surface altime-
ter weasurements, or local accelerometer readings (1, 2). The zoral harmonics
give rise to secular variations in the angular orbital elements but only to peri-
odic changes in the momenta elements. The secular «nd aectorial harmonics

cause no true seculsr variations, but the non-zerc rean of the periodic varia-
tions in the wear rotion irduces a linear perturbation in the mean ancraly (3).

The normalized harmonic coefficients do not decresse in magnitude as the degree
of the expansion incresses. Also, each harmo..ic 1is premultiplied by a power of
the ratio of the Farth radius and the position radius. Since fer low Farth sat-
ellites this ratic ia rear unity, succeasive terms i{n the exparsicn do not terc
to diminish. This necessarily requires the incluaion of a very large number of
terms to accurately model the gravitational perturbaticns. Recursion elgorithms
give an efficient means for ocaloulating the higher dexree perturbations, but

the computation times grow geometrically with the degree (4, S). The compu-
tational environment may preclude the use of such expensive models, and the
common trade-off is to aimply truncate tc only a i'ew important terms,

The coefficients of the large legree models are determined from observations as
a complete set, and it ia rot clear that =imply truncating the mcdel is the
most appropriate action., Certainly, fitting the observations with only the
truncated model would yield different numerical values for the barmonics. The
intent of this study is to develop a fitted truncated model and analyze any dif-
fererces between tiria "fitted" model and one derived by simply truncatirg.

Rased on the study, recommendations are made for an appropriate model for use

in a miss=ion plarning envirorment.

ORGINAL PAGE 18
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2.0 FRROR NORMS

Fitting models implies a norm by which to measure the quality of the fit. The
harmonics are genersted by minimizing the residuals between the observations
and the model predictions. Observations may be very indirect measurements

of the model and may include errors and hiases so that minimizing the resi-
duals becomes no easy chore. To simplify matters a bit, assume that a
reference geopotential model represents the real world exactly., This truth
model then can be used to evaluate the accuracy of any other model and eliminate
many difficulties resulting from real world observations. The most appropriate
norm should measure the differences in the state vectors defined by the equa-
tions of motion derived from the different gravity models. Suppose also

that an_ exact solution of the equations of motion is available. If one de-
fires x(x,,Vo,t) as the position vector at all times t for the truth

model such that

>
~~
i
o
g

o,t=0) s zo (2.1)

and a similar solution to the truncated model, then the norm

T
J = [// [ x(x0,¥0,t) - x(;o,go,mf dtdxodxe (2.2)
(o)

Q @

gives a measure of the differences between potential models. Here, the ||-]|
is the dot product norm and the domains ! and 9] represent all possible
values of the initial state vectors x, and v,. Such a norm is a good
indicator of the propagation errors resulting from different models, but

it is not an easily computable norm, More direct norms on the geopotential
model itself may be a worthy substitute. For instancg, the L norm of

the difference between the potential models V and V is:

F

Je [w-Dta (2 )

Q

For this norm_to be a minimum, the first variation must vanish so that the
error e = V-V must satisfy

0 VwelL? (2.4)

| ouax
1]
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The test function « may be thought of as the first variation of the potential
V, and L? represents the space of all functions which are square integrable.
Only a finite number of the basis functions are available in the truncated
model so that the error can be tested to only a finite number of functions

Since it is the gradients of the potential'and not simply the potential
which define the accelerations, a more appropriate norm may be the semi-
norm

J = '[ Ve - Ve dx (2.5)
Q

In this norm, the error must be orthogonal to every test function in the
space of functions whose derivatives are square integrabhle.

/" Ve - v dx=0 VuweH! (2.6)
2

In spherical coordinates r, y, ) the above equation reads

2
dedw, oW, 1 __%d |lyya-.o (2.7)
or or r u du  ri(1 = p*) 3 A

Q

This formulation is singular at the poles, but this may be easily averted
by multiplying through by r?(1-u?) to give

de 3w 2 3e dw + de W
ri(1 - p?) = = 1«1?) = =" = = |drdudr = 0 (2.8)
[ M Eat ") Nn e ¥

Q
which corresponds to the minimizing of the weighted norm

J = ;[#(1 - y?)Ve . Ve dx (2.9)

Q
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3.0 THE GEOPOTENTIAL EXPANSION AND TFST FUNCTIONS

A

The function V anc¢ V are represented by the usual spherical harmonic
expansion

PS ﬁ nn A -~
i1 ®e)y I Pp.m(w){Cpmeosm\ + Sppsinm)} (3.1)
r n=0 m=0 !
and
1 N n R
V==-X (R/r) I Py m(n){Cppcosmh + Sppsinmi} (3.2)
r n=0 m=0 !
where
Cnm = anm + Em/?m (3-3)
and
Snm = gnm + Em/;nm (3-”)

Eere an is the average of the Legendre functi 3 over the entire latitude

domain. Enm and gnm are given by the truth model, and the unknowns

in the truncated model are the normalized harmonic deviations. Solving

for the normalized deviations, instead of simply the harmonic coefficients
themselves, conditions the matrices of the linear algebraic problem resulting
from either equation (2.4) or (2.6).

The test functions are then

k
m:’ 1<5) ELR‘ ell) k= 0N (3.5)
"'” Pie 2 = 0.k
and its associated derivatives are
dw = -(k+1) /R\K P
_9 (k+1) R :5£ (10 (3.6)
dr r? \r Pig



82FM65

aw 1 /R\K 4P _
— == -.EQ/PM eif) (2.7)
u r \r dy
and
3 12 [R\k P
)Y r Pro

r
In spherical coordinates, the minimum of the L? norm must satisfy

n R+h

[e -[ .4 ewdr di du=0 (3.9)
-€ n

where h defines the radius domain and € the latitude domain.
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4,0 THE LINEAR DISCRETE EQUATIONS

Replacing the error and test funotions into equation (2.U4), one arrives at

IS T e e

- =M n=0 m=z0

+ BSppsinm) eilxl drdud\

g,

€ Reh ‘ N n 1 R\nek p__p "
= ( ( f 2 2 - (-) _—-—m_k!' Cnmcosm
;) l rt \r PrmPit.
R

+ Sppsinm eile drdyud\ (4.1)

but, due to the orthogonality of the transcendental functions, these equations
may be consicerably reduced. Defining

n Reh ¢ / R\n+k
Dk = ’ - (-— dr (4.2)
. r’\r
R
n,m -€
SN je Prm Pikm 9 (4.3)
and
nm _ D n,m = =
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the linear equations read

~

N N .
n=m n=N+1

N N )
I oA Bpp =L AT P S (4.6)
nzm nzN+1
for mz0,...N
k=m N

This is a system of linear algebraic equations in the unknowns zfnm snd
I§nm. Only the harmonics of the same order are couplad.n Eor the case where
the fit is applied over the whole domain € = 1, then A ' = 0 except

when k = n, In such a case, the problem is completely incoupled and the
harmoni¢ deviations must vanish., It indicates that, in this particular
norm, the simply truncated model is indeed the optimal fit, This is not

the case for restricted domains or for other norms, as will be shown.

The weighted H1 semi-norm also results in a linear sysiem of equations,
With the definitions

€ 3 Py dP

A (1 -y " e (4.7)
{3 du du

6" = [(1 - u¥)Pyp Ppm du (4.8)

and

A:’m D: {(k + 1(n « 1)02'ln + F:'m + m'E:'m}/ﬂikﬁinm) (4.9)

the equations still retain the rame form as those in equations (4.5) and
(b.6). Since the derivatives o. the Legendre functions are not orthogonal,
these equations remain coupled even when fitting over the entire domain,
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The linear aystim of equations may he solved using a Cholesky decomposition
since they are positive-definite ani symmetric.




5.0 THE QUADRATURES

The quadratures involving the radius may be computed analytiocally. Defining
the ratio r = 1/(1 + h/R), then the parameter is given by

1
n
DK S

(1 - Dekel) (5.1)
R(1 « n+ k)

The quadratures inveolving the Legendre functions may not be found analytically
for e 4 1. A numerical Gausr point rule is a convenient and arbitrarily accu-
rate method to evaluate the quadrature. An sth order rule is given by

b
b-a s s s
f(u)dy = I w,r(u,) +R (5.2)
b A | s
P i=1
a
where
b -a b+ a
U, 7 e § 4 (5.3)
R
52 = Gaus: points
m: = Gauss weights

The residual is given by

R = t (u) ; ue(a,b) (5.4)
(28 + 1)(2a1)3

Even though only s funclion evsluations are needed, the rule is accurate
to order 2s + 1. The domsin defined by ¢ may be partitioned into smaller
subdomains to take advantage of the factor
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b - ..)234—1

2

Recursion formulas may be used to evaluate the Legendre polynomials and their
derivatives at the Gauss points., These include

(n-m+ NPpyq,p = (2n+ Dy Ppp - (n+w)Pyq (5.5)
and
dPpm
(W2 = 1)—— = nu Ppp - (n + mPpy (5.6)
du

with starting values

™20y 3.5 ... (2m-1}) (5.7)

Pgm = (1 - 2)
and
Ppet,m = (2m+ 1y Ppy (5.8)

Lastly, the mean values of the Legendre polynomials are

1

Pno = — (509)
ven + 1
and
- (n + m)! L
Fam = m£O0 (5.10)

2(n = m)i(2n + 1)

10
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6.0 NUMERICAI EVALUATION OF THE FITTED TRUNCATED MODELS

A program has been developed to fit the truncated model to a reference lodol'
in this case the GFM10 (1 . Fit is according to the L? or the weighted H
semji-norm or a combination of the two. A ninth order Gauss integration rule

on two subdomains is employed. To evaluate the quality of the fit, another pro-
gram has been developed to propagate satellite orbits in a gravitational field.
The recursion formulation described in Mueller (4) is employed to compute the
accelerations; and an embedded Runge-Kutta method (6) is used to numerically
integrate the cartesian equations of motion.

The state vector. resulting from the fitted truncated model is compared to the
state resulting from thrs truth model, As a control, the simply truncated model

is also evaluated in this manner. The L2(T) error norm has been chosen to in-
dicate the performance

1

T
- 2
J = / “5(?50: !Ov t) s X(Em !(‘n t)ll dt (6-1)
0

A variety of initial conditions can be used to test the models thorougnly. The
time interval has been selected as one day for all test cases.

6.1 TEST CASE 1

In the first case, a lUxl model is fit to & reference 8x8 model. The fit is
over the entire latitude domain and is up to 500 km in height. The norm used
is the linear combination of the L2 and weighted H! semi-norm. The numeri-
cal values of the fitted and simple normalized harmonics are shown in table 6-I.

The initisl conditions are such that the satellite remains in the 5C0 km height
band. The height of the semi-major axis is initially 300 km. The eccentriocity
and argument of perigee have the nominal values of e = 0.01 and W = 0, The
inclination and ascending nodes have been varied to scan a number of initial
conditions. The inclinations range from 0 to 30 degrees in increments of 6
degrees, while the node ranges from 0 to 360 degrees in U5 degree increments.
The error norms for both the fitted and simply truncated models are shown in
table 6-II. The results indiicate that the fitted model shows little, if any,
improvaement over simple truncation.

T
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TABLF 6-I.- FITTED AND SIMPLY TRUNCATED NORMALIZED HARMONICS (x10-6)

82FMES

1 1 1 1
! pp ! 2 3 U Y 2 3 4
! ! ! !
1 1 ] 1
! 0 1 -bRYW,0791 0.012€ 0.6604 !
! | -u8Y4. 1650 0.9584 0.5411 1 !
[ 1 ! !
t 1 1 -0.0312 2.0581 -0.5011 1 1 1 =0.0542 0.3061 -0.4957
! 1 0.0010 2.028€ -0.5352 | ! -0.0024 0.2520 -0. €02
1 1 ! !
1 2 1 2.4Usf 0.5008 0.3313 1 2 1 =1,3¢6F0 ~0.5279 0.82327
1 ! 2.4340 0.8027 0.3521 1 1 -1.3091 ~0.6235 0.6640
! ! ! 1
1 3 1 0.7950 1.0852 1 3 1 1.4546 -0.1476
! ! 0.7003 0.9HRF | ! 1.412% -0.2018
! 1 1 !
I | -0.1701 1 4 0.3730
! ! -0.1953 | ! 0.2988
! 1 | !
GM = 3.98600657x101Y (m? s-2)

3.986006k0x10 1

TABLE 6-II.- POSITION ERROR NORMS (FITTED/SIMPLE)

1 1 i
{ 1 1 inclination (deg)
' ! !
! ! et ! i T 1 T |
! ! ! 0 ! 6 ! 12 ! 18 1 z4 ! 30
! 1 1 1 ! ! ! !
! 1 T T T T T |
! !t 01 3.674.01 3.2/4,6 1 2.8/4.0 1 2.3/3.3 1 2.0/2.8 1 1.9/2.6
1 1 1 1 ! ! ! !
! n | 48y 2,8/26 1 2,0/2.31 7,471,611 1.8/1.01 1.5/0.8 1 1.5/1.0
1 o 1 ! ! ! ' 1 !
t d4 1 Q0 ! 4. 7/4.R ) 5,3/55 1 6.2/6.6 1 6.9/7.6 1 7.2/8.1 1 6.9/8.1
1 e | 1 ! ! 1 ! !
! 1135 1 .U/ 01 5.0/7.4 1 &,0/6.3 1 L4,0/5.01 3.5/4.2 1 3.6/4.0
1 4 ! 1 ! ! ! ! 1
! e 11801 1,0/1.6 1 2.0/1.7 1 2.3/2.1 1 2,072,811 3,3/3.41 3.6/3.9
1 g f ! ! ! 1 ! !
1 1225 1 5.1/5.8 1 5,1/5.6 1 W, R/5.3 | N4,5/4.8 1 2,7/4.1 1 13.2/3.4
! 1 ! ! ! 1 1 !
! 1 270 1 6.2/7.3 1 6,0/7.1 1 &,3/6.3 1 u,2/5.1 1 3.5/4.21 3,3/3.8
! ! ! ! 1 1 P !
! 1 315 1 6.2/5.7 ! 6,4/6.0 1 T7.3/7.1 1 B.6/8,6 1 0,6/9.0 1 0,0/10,0
! ! ! ! ! ! ! !

1?2
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6.2 TEST CASE 2

The second test case again .ses a Uxll model fit to an 8x8 reference. This time
the latitude domain is restricted to 30 degrees for evaluating the tesseral and
sectorial harmonic fit. The zonal harmonics, however, use the full 90-degree do-
main. The results of the fit are shown in table 6-III and the position error
norms resulting from the fit are given in table 6-IV. Again, the fitted model
shows no improvement over simple truncation.

TABLE 6-III.- FITTED AND SIMPLY TRUNCATED NORMALIZED HARMONICS (x10-6)

1 ! ! 1 !
! Com ! 2 3 4 1Spy! 2 3 y o
! ! ! ! !
! ! ! ! !
! 0 1 -484,0791 0.9136 0.6604 1 ! !
! ! -484.1654 0.9584 0.5411 1 ! !
! ! 1 1 !
1t 1t -C.027€ 2.5849 -0.2356 1 1 1 =0.1072 0.6420 -0.4325 1
! ! 0.0010 2.0286 -0.5352 1| 1 -0.0024 0.2520 ~0.4693 !
! ! ! 1 !
! 2 2.5043 0.3371 0.3866 t 2 ! -1.0655 -0,2916 1.2699 !
! ! ! ! !
1 3 1 0.9593 1.0819 1 3 1 1.5002 -0.2611 !
! ! 0.7003 0.9885 1 ! 1.4125 -0,2018 1
! ! 1 1 !
(I -0.1588 | 4 | 0.4852 1
! ! <0.1953 1 1 0.2988 !
! ! ! 1 !

CM = 3.98600657x10 (m3 s-2)
3.98600640x10

13
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82FM65

[ T > e I

o

inclination (deg)

1
!
!
3! 1 1 1 1 1
ms¥ 0 ! 6 ! 12 ! 18 ! 24 ! 30
! ! ! ! 1 !
1 1 ] 1 ! 1
01 3.774.9 1 3.5/4.6 1| 3.0/4,0 1 2.4/3.3 1! 2.0/2.8 1 1.8/2.6
! ! ! ! ! !
45 1 4,.9/2.6 1 4.7/2.3 1 U4,0/1.6 1 3.3/1.0 1 2.7/0.8 ' 2.4/1.0
! ! ! ! ! !
90 1 4.7/4.8 1 5.1/5.5 1 5.8/6.6 1 6.5/7.6 1 6.7/8.1 1 6.6/8,°
! ! 1 ! ! !
135 1 5,0/8.0 ! 4.7/7.4 1 4,0/6.3 1 3.2/5.0 1 2.8/48.2 1 3.0/4.0
! ! ! ! ! !
180 1 2.0/1.6 1 2.1/1.7 | 2.6/2.1 1 3.3/2.8 1 3.9/3.4 1 U4.3/3.9
! ! ! ! ! 1
225 1 5.7/5.8 1 5.5/5.6 1 4.9/5.3 1 U4.,2/4.8 1 3.4/4,1 1 2.8/3.4
! ! 1 ! ! !
270 1 5.5/7.3 1 5.2/7.1 1 W.4/6.3 1 3.5/5.1 1 2.9/4.2 1 3.2/3.8
! ! ! ! ! !
315 1 6.5/5.7 1 6.7/6.0 1 7.5/7.1 1 8.5/8.6 1 9.2/9.9 1! 9.2/10.0
! ! ! ' ! !

14
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7.0 RFCOMMENDATIONS AND CONCLUSIONS

From the numerical results, it appears that there is no advantage to fitting

truncated models (at least in the norms investigated). If truncation is a ne-
cessity in the computational environment, the question left open 1s at what de-
gree truncition should occur. The megnitudes of each term in the expansion can

be approximated by the normalized harmonics multiplied by the distance ration
power or

2 2}
8am = (R/P)0{Cpp + Sppl (1.1

At a height of 300 km, only 4 terms have magnitudes greater than 10-6, They are
n=2, r=0; n=22,m=2; n=3, m=1; and n= 3, # = 3, If the toler-
ance 1s increased by one digit to 10=7, then the number of additional terms in-
creases cdramatically to 33, or most of the terms of a 10x10 model.

The analyst also should consider other factors in selecting a model. Since in
low Earth orbits the downtrack quadratic drag errors overwhelm the linear down-
track errors due to truncation, it is not important to include the tesseral and
secterial barmonics., These terms contribute secular variations only in the
downtrack. The zonal harmonics, on the other hand, contribute radial and cross-
track secular perturbations which are much larger thar the corresponding linear
errors due to drag. A low degree model appears to be a very suitable model in
the presence of strorg drag (h < 300 km). In these strong drag cases, reso-
nance is not an important factor since drag inhibits the period from resonating
with any particular harmonic over any significant length of time. For the weak
drag cases, the analyst should include only that particular resonating term.
Fut recursion algorithms for computing the accelerations must build up a table

starting from a low degree, so selecting a particular term is not always possi-
ble. .

Arother consideration in selecting a model is consistency and uaiformity. The
analyst should select rodels wh’ch are consistent with the realtime environ-
ment. For instance, if a high degree of accuracy is required, one should cer-
tainly select the same model which was used to generate the initial state from
the observations. The analyst also may wish to select a simple model which is
consistert with those used by other analysts ir related work. In this way, a
source of discrepancies can be eliminated.

15
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