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The primary objective of this research project was to provide NASA with

a quantitative evaluation of the Thornton-Whitmore treadmill so that informed

management decisions regarding the role of this treadmill in operational flight

crew exercise programs could be made. Specific tasks to be completed were:

(1) Evaluate the Thornton-Whitmore passive treadmill as an exercise
device at one-g.

(2) Establish hardware, harness and restraint systems for use with

the Thornton-Whitmore treadmill in the laboratory and in Shuttle
flights.

(3) Determine the quantitative performance of subjects in the laboratory

on the Thornton-Whitmore treadmill with forces in excess of one-g.

(4) Determine the qualitative performance of human subjects on the

Thornton-Whitmore treadmill during brief zero-g exposure (via KC-135

aircraft parabolic flight).

(5) Determine the performance of human subjects on the Thornton-Whitmore
treadmill in weightlessness (onboard Shuttle flights).

The principle product of these investigations was to be a substantial

analysis supporting the usefulness of the Thornton-Whitmore treadmill as a zero-g

exerciser. In addition, restraint systems were to be recommended together with

protocols designed to maintain cardiopulmonary fitness and antigravity leg

muscle strength. Approximately 2 months prior to the first Shuttle flight,

a decision was made by NASA to fly the treadmill on STS-I or II. The treadmill,

which had been refurbished during the first 6 months of the grant period,

was subsequently returned to NASA where it was prepared for flight. Since

the treadmill was a one of a kind item, it became impossible to complete the

project as outlined. Steps one and two were initiated. In step one, the

Thornton-Whitmore was compared with a motorized Quinton treadmill using a

Bruce protocol and was observed to elicit similar physiological responses.
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In step two, questions-concerning the design and effectiveness of the proposed

harness-restraint system were addressed. The proposed mechanical cinematographic

and zero-g analyses were cancelled when the treadmill was returned.

Since the purpose of the project was to evaluate exercise devices and/or

programs that might be used to support the U.S. manned spaceflight program,

a third study was conducted in which an Omnikinetic exercise device designed

to increase/maintain muscular strength and endurance was evaluated. The

device, Hydrafitness Total Power, uses light-weight hydraulic cylinders to

provide resistance, is compact, requires no external power and could be modified

for use at zero-g.

This report covers 3 experiments conducted during a 16-month period

beginning September 1, 1980. The initial 6 months of the study were devoted

to obtaining, repairing and refuburshing the Thornton-Whitmore treadmill (TW)

so that it could be used for experimental purposes. In Experiment I, 4

male astronauts were examined for physiological responses as they performed the

Bruce protocol on the TW treadmill and a motor driven (Quinton) treadmill.

The metabolic data indicated that the two devices elicited similar physiological

responses for the speeds and elevations examined.

In Experiment II, the physiological responses of 4 college males were

recorded as they walked and ran on a Quinton treadmill with varying g-loads.

The g-loads were provided by a bungee harness restraint system used on Skylab IV

and by a similarly weighted backpack. The data indicated that the physiological

responses resulting for the bungee imposed workloads were significantly less

than those observed with the backpack. Recordings of force in the bungee cords

suggested that the force decreased as the center of gravity was lowered during the

gait cycler Additional analysis indicated that, for walking at 90 m/min, the

bungee loads examined (1.4-1.7g) did not produce a sufficient physiological

See Appendix A
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stress to meet the minimal criteria for aerobic training. Running (175 m/min)

with the bungee loads did meet the minimal criteria for aerobic training, but

elicited ankle, knee, shoulder and back pain.

In Experiment III, 7 college males trained 3 times per week for 8 weeks

on an Omnikinetic exercise device (Hydrafitness Total Power) designed to enhance

muscular strength. Test results indicated that the device produced significant

increases in muscular strength and lean body mass. Aerobic capacity and tread-

mill performance were not enhanced. The data suggest that the device, when used

in conjunction with an in-flight treadmill or ergometer, could enable crew members

to improve and/or maintain total fitness during exposure to zero-g.
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Prior to the first manned flight in 1961, it was uncertain whether man
could survive launch vehicle thrust associated with lift-off and landing, even
though early rocket powered airplane flights indicated that man could safely
tolerate comparable stresses (Beischer and Frogly, 1961; Beyer and Sells, 1957).
The successful Soviet flight of Yuri Gagarin was followed by the U.S. suborbital
Mercury-Redstone Mission of Alan Shepard on May 5, 1961. Subsequent orbital
flight by John Glen added confidence to the fledgling U.S. Space Program.

Operational constraints in the Mercury program precluded inflight
measurements of cardiopulmonary response to exercise. Analysis of pre- and
postflight physiological responses during Project Mercury indicated that man
could safely exist for short durations in the space environment (Link, 1965).
Decreased blood pressure and concomitant tachycardia were observed postflight.
Changes following the 34-hour flight were of greater magnitude than those seen
following the 9-hour flight; all returned to normal within 19 hours.

The principal objective of Project Gemini was to develop operational
proficiency necessary to plan the Apollo Program. Gemini astronauts logged
approximately 2000 man-hours of weightless experience; principal biomedical
observations included:

(1) Man could tolerate limited exposure to the space environment without
significant decrement in work performance.

(2) Orthostatic hypotension was present postflight and persisted for
approximately 50 hours.

(3) Red cell mass decreased by 5 to 20 percent.
(4) Minor bone demineralization occurred.
(5) Psychological responses to confined spaceflight were normal.
(6) Vestibular disturbances were not present.
The Mercury and Gemini Projects led to the Apollo Program. Eleven

successful manned flights were flown between 1968 and 1972, 29 astronauts spent

a total of more than 7500 hours in flight, and 12 astronauts spent 4 man-weeks
safely on the surface of the Moon.

Physical work performance tests utilizing a cycle ergometer were admini-
stered to the crews of Apollo missions 7 to 11 -and 14 through 17 before flight,
within 2-5 hours after splashdown and 24 to 48 hours postflight (Hoffler et al.,
1974). Cycle ergometer testing was used to assess the effects of spaceflight
upon parameters such as work heart rate, mechanical efficiency, and blood

pressure. Prior to exercise, heart rate was increased approximately 20 beats
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per minute immediately postflight (2 to 5 hours after splashdown) and remained
elevated for 1 to 2 days after splashdown. In addition, crew members exhibited
significant reductions in oxygen consumption, oxygen pulse, systolic blood
pressure and diastolic blood pressure in response to a standard workload.

Scientists concluded that changes in exercise response following periods
of weightlessness were due to readjustments in cardiovascular mechanisms
associated with maintenance of cardiac output. Postflight observations of
tachycardia and reduced oxygen pulse were consistent with those reported during
bedrest and were assumed to be compensatory responses to reductions in stroke
volume (Birkhead et_ jil_., 1963; Cardus, 1966; Chase e_t ̂ 1_., 1966; Miller et al.,
1965; Saltin e_t al_., 1968).

Skylab Experience
Skylab, originally called the Apollo Applications Program, followed the

Gemini and Apollo programs and utilized the spacecraft and launch vehicles
^

developed during the Apollo missions.. Three manned Skylab missions were flown
during approximately 9 months with the flight crews spending progressively
longer periods of time in a weightless environment (28, 59, and finally, 84 days
flight duration). Skylab offered the first opportunity for acquiring quantitative
exercise data in flight.

During the first manned Skylab mission (SL II, 28 days) each crew member
was tested on a cycle ergometer before, at regular intervals during, and
following recovery from the mission. These tests utilized 5-minute work inter-
vals at levels approximating 25, 50 and 75 percent of each astronaut's maximum
oxygen uptake as determined preflight. In addition to the preflight testing,
each crewman was tested six times during the 28-day spaceflight. Monitored
physiological parameters included oxygen consumption, carbon dioxide production,
ventilation rate, vectorcardiograph/heart rate and blood pressure. Isokinetic
strength (peak force) was determined preflight (F-18 days) and postflight
(R+5 days) using a Cybex Isokinetic Dynamometer. Preflight to postflight changes
reflected the combined influence of zero-g exposure and inflight exercise on
muscular strength. Significant reductions in arm and leg strength occurred
during flight (Thornton and Rummel, 1974).

Skylab II data (Michel e_t al_., 1975) indicated no significant exercise
response decrement during exposure to zero-g. Resting and recovery heart rates
were slightly lower during flight in all crewmen. Postflight degradation in
response to exercise was observed in all crewmen as evidenced by an increased
heart rate for the same workload and oxygen consumption, a decreased cardiac
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output, and a decreased stroke volume at the same oxygen consumption level.
These changes were similar in magnitude to those observed after Apollo flights,

but did not return to normal as rapidly. Preflight fitness levels were regained
approximately 3 weeks following recovery (Rummel et_ al_., 1973; Rummel et a!.,
1975). The postflight tachycardia observed in Skylab II crewmen did not fully
compensate for the reduced stroke volume as did the postflight tachycardia in
Apollo crewmen.

Records of the three Skylab II crewmen suggested the existence of an in-
verse relationship between the quantity of inflight personal exercise and the
observed postflight decrement in exercise response (Sawin et_ al_., 1975). These
observations were consistent with bedrest studies which suggested that heavy
exercise during spaceflight might lessen the degradations in postflight response
to exercise (Cardus, 1966; Sal tin e_t a]_., 1968). Inflight exercise was increased
during Skylab III (59 days). Crewmen trained 1 hour per day using a cycle
ergometer, an isokinetic exercise device (Mini-Gym) and a commercially avail-
able spring set (Sears, Roebuck and Co.) designed to maintain muscular strength.
Personal exercise logs indicated that Skylab III crewmen performed twice as

much exercise as did previous Skylab crewmen (Sawin and Rummel, 1975). Each
crewman was tested 24 times on a cycle ergometer for physiological response to
exercise: 8 preflight tests, 8 inflight tests and 8 postflight tests. In
addition, muscular strength of each crewman was evaluated pre- and postflight.
No reduction in physical work capacity was observed inflight. Mean heart rate
and oxygen consumption were slightly decreased for a given workload inflight;
this is consistent with training and assumed to be the result of frequent,
rigorous cycle ergometer exercise. Postflight cardiac responses were similar
to those observed in Skylab II (i.e. - an elevated heart rate, significant
increases in total systemic peripheral vascular resistance and reductions in
stroke volume and cardiac output). These changes were transient and preflight
values returned within 4 to 8 days postflight (Rummel et_ al_., 1976). Skylab III
data suggested inflight aerobic exercise could prevent physiological deterioration
during flight (Johnston and Dietlein, 1977; Rummel et_ a\_., 1975; Buderer et al.,
1976; Sawin et_ _al_., 1975). Analysis of pre- and postflight muscular strength
data indicated that the inflight exercise performed by Skylab crewmen was
effective in maintaining arm strength. Leg strength decreased during flight to
a level approximately equal to that observed after only 28 days in Skylab II
(Thornton and Rummel, 1974).



ORIGINAL PAGE IS 9
OF POOR QUAUTY

Similar medical evaluations were employed for Skylab IV (84 days). Crewmen

were tested 28 times on the cycle ergometer (8 times postflight), plus pre-

and postflight Cybex evaluations. A "treadmill" device was added for inflight

exercise. Elastic bungee cords were attached to a shoulder and waist harness

assembly which held the crewman against a small teflon pad. This configuration

permitted the crewman to walk or run by slipping his stocking-covered feet across

the teflon. While this exercise was only moderately aerobic (1.5 liters per

minute oxygen consumption) it did provide a significant one-g type stress to the

leg muscles.

Data are available to document the amount of exercise necessary to develop

and maintain an optimal level of cardiopulmonary endurance at one-g. These findings

can be used as guidelines for determining optimal programs for zero-g. Pertinent

findings at one-g include the influence of mode of exercise^and duration of exercise

on cardiopulmonary fitness. These findings are summarized in Appendix A.

U.S. astronauts prefer treadmill rather than cycle ergometer exercise because

treadmill exercise closely approximates jogging and running. Previously discussed

Skylab data documented the role of extensive cycle ergometer exercise in the

maintenance of cardiopulmonary fitness. Quantitative data for flight treadmill

exercise are limited to the minimal observations made on Skylab IV crewmen.

In 1978, Astronaut William Thornton, M.D. designed a mechanical treadmill

for use during space flight. A prototype, machined and assembled by Whitmore

Enterprises of San Antonio, Texas, was delivered in 1978 but never validated

(Whitmore and Thornton, 1980). Since the treadmill had been proposed as an

operational exercise device for use by Shuttle crewmen to maintain musculoskeletal

and cardiorespiratory fitness, it was imperative that a quantitative evaluation of

the treadmill be performed.
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The primary objective of this research project was to provide NASA with a

quantitative evaluation of the Thornton-Whitmore treadmill so that informed

management decisions regarding the role of this treadmill in operational flight

crew exercise programs could be made.

Data from the second Skylab mission (Thornton and Rummel, 1974) indicated

that cycle ergometry was effective for maintenance of aerobic capacity, but

relatively ineffective for the maintenance of leg strength. Results from the

fourth Skylab mission (Thornton and Rummel, 1974) indicated that a treadmill

designed to permit crewmen to walk and run under forces similar to gravity

was an effective exercise device for the maintenance1of leg strength. Observations

in space and at 1-g (Pollock, ert aj_., 1977) suggest that treadmill exercise

performed in accordance with established ground-based training principles is

effective for the development and maintenance of aerobic capacity and leg strength.

Laboratory treadmills employ motor driven belts and electromechanical

increases in belt grade to elicit physiologic work. The Thornton-Whitmore

treadmill is a passive mechanical device which is described in detail later in

the text of this report. Loads or "mass" must be imposed during spaceflight

via a bungee cord restraint system. Belt speed is controlled by a centrifugal

brake. In order to conduct a thorough evaluation of the Thornton-Whitmore tread-

mill, the following research protocal was proposed:

(1) Evaluate the Thornton-Whitmore passive treadmill as an exercise

device at one-g.

(2) Establish hardware, harness and restraint systems for use with
the Thornton-Whitmore treadmill in the laboratory and in Shuttle flights.

(3) Determine the quantitative performance of subjects in the laboratory

on the Thornton-Whitmore treadmill with forces in excess of one-g.

(4) Determine the qualitative performance of human subjects on the
Thornton-Whitmore treadmill during br.ief zero-g exposure (via KC-135

aircraft parabolic flight).



(5) Determine the performance of human subjects on the Thornton-Whitmore

treadmill in weightlessness (onboard Shuttle flights).

The principle products of these investigations was to be substantial

analysis supporting the usefulness of the Thornton-Whitmore treadmill as a zero-g

exerciser. Restraint systems were to be developed together with protocols de-

signed to maintain cardiopulmonary fitness and antigravity leg muscle strength.

Approximately 2 months prior to the first Shuttle flight, a decision was

made by NASA to fly the treadmill on 'STS-I or II. The treadmill, which had

been refurbished by Whitmore^, was subsequently returned to NASA where it

was prepared for flight. Since the treadmill was a one of a kind item, it

became impossible to complete the project as outlined. Steps one and two were

initiated. In Experiment 1, the Thornton-Whitmore was compared with a

motor driven Quinton treadmill using a Bruce protocol and was observed to

elicit similar physiological responses. In Experiment II, questions concerning

the design and effectiveness of the proposed harness-restraint system were

addressed. The proposed mechanical, cinematographic and zero-g analyses were

cancelled when the treadmill was returned.

Since the purpose of the project was to evaluate exercise devices and/or

programs that might be used to support the U.S. manned spaceflight program, a

third study (Experiment III) was conducted in which an Omnikinetic exercise

device designed to increase/maintain muscular strength and endurance was eval-

uated. The device, Hydrafitness Total Power, uses light-weight hydraulic

cylinders to provide resistance. This device which is compact and requires no

external power could be modified for use at zero-g.

A large portion of the grant time was devoted to repairing the TW treadmill and
preparing it for operation. The device was returned to the manufacturer where
the rollers and belt were adjusted, a cranking device for elevation was designed
and a governor was built to permit a wider range of belt speed and a more accurate
assessment of velocity. Within 2 weeks after repairs were completed, the tread-
mill was returned to NASA for preparation for flight.



12

PURPOSE AND PROCEDURES

The purpose of this study was to compare the physiological responses to work

on the passive Thornton-Whitmore (TW) treadmill with those during work on an active

(Quinton) treadmill. Participants were 4 male members of the current Astronaut

Corps, NASA-JSC. Mean age of the subjects was 37.5 ± 9.8 years. Mean weight

was 77.0 ± 10.4. All subjects were tested in the Cardiopulmonary Lab at the

Johnson Space Center between June 17 and June 19, 1981. Three subjects were

tested twice per day. The fourth subject was tested over 2 days. One-half of the

subjects walked on the TW first. Average rest between trials administered on

the same day was 32.0 ± 15.0 minutes.

The test procedures required that subjects perform the first 3 stages of a

modified Bruce treadmill test protocol on both the TW and active treadmill. The

test protocol was modified to allow 4 minutes per stage to ensure the achievement

of steady state. Cardiovascular and metabolic responses were monitored contin-

uously throughout each test via EKG tracings and open circuit spirometry.

In order to achieve the required levels of elevation during work on the TW

treadmill, the device was secured to the belt of the active treadmill. Final

elevation was the sum of the elevation of the TW treadmill and the Quinton

treadmill. Average elevation at each stage on the TW treadmill was approximately

1% less than that used during tests with the active treadmill. This slight dis-

crepancy was attributable to compression of the wood structure designed to

secure the TW treadmill to the active treadmill

RESULTS

A descriptive summary of the variables is presented in Tables 1-3. Average

values for last 3 minutes of each 4 minute stage were calculated and are presented

in Figures 1-4. No inferential statistics were calculated because of the small
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non-random nature of the group involved and the limited number of trails per

subject.

Inspection of data indicate that every physiological variable monitored was

slightly higher during work on the TW treadmill. Mean differences, in general,

were slightly less for higher work loads, but inter-subject variability was high.

This may be attributable in part to problems in walking at slower speeds. The

belt of the TW is significantly shorter than that of the AT and subjects are

accustomed to taking longer steps at slower speeds. Some amount of difference

at all speeds would be expected because the subjects had to provide the force to

propel the TW treadmill belt and maintain a constant belt speed. The correlation

between treadmill time and oxygen uptake (ml/kg/min) for the TW was .94. The

correlation for the AT was .95. These observations are comparable to those (r-.88)

observed by Pollock, et al (1978) for the Bruce protocol.

CONCLUSIONS

The data suggest that the two devices elicit similar physiological results.

Additional study with a larger sample size, completely random trials and ex-

panded range of speeds and elevations are needed, before statistical conclusions

can be drawn. Also needed are data on mechanical responses (force data and

cinematagraphic analysis) to work on the treadmills. Additional study is required

to determine the mechanical and physiological responses to (1) varying amounts of

bungee load; and (2) differenet types of bungee restraint systems. Pilot data

on the AT at 1.0-g suggest that proper weight load distribution is critical for

optimal performance at higher work levels. Although the TW treadmill has been

used on shuttle flights, no controlled studies have been conducted to examine

the responses of walking on the TW treadmill under varying types and amounts of

g-forces. Likewise, no research data are available concerning the performance

characteristics of the TW treadmill at speeds in excess of 3.4 mph. Controlled

studies at one and zero-g are needed.
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The device is the only one in existence and will experience some form of

mechanical failure requiring replacement in the future. Efforts should be made

at this time to determine the effectiveness of this device. It would be foolish to

wait for the system to fail and then be forced to replace it with an identical,

untested model. Controlled, systematic evaluations will enable NASA to design an

improved model that will overcome some of the limitations associated with the

current model.

OF POOR QUALITY
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Table 1. Physiological responses to the Thornton-Whitmore (TW)
active (AT) treadmill at Stage 1.

Variables

TW

I SD

AT

J SD

15

and

Mean

Difference

HR (bpm)

V02 (L /min )

ml/ kg/mi n

VC02 (L /min)

VE (L/min)

RER

fb

MV/V02

MV/C02

VO-/HR (ml/beat)

93.58

1.16

15.36

1.06

30.71

.911

24.67

26.29

28.92

12.54

7.37

.21

1.52

.22

7.64

.057

10.81

2.79

2.93

2.94

88.0

1.04

13.43

,895

P6.00

.858

19,08

24.72

28.68

12.10

11.02

.14

.75

.18

7.25

.086

7.63

3»98

2.42

2.96 -

5.58

.12

1.93

.165

4.71

.053

5.59

1.57

.24

-.44
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Table 2. Physiological responses to the Thornton-Whitmore (TW) and
active (AT) treadmill at Stage 2.

TW

Variables I SD

AT

I SD

Mean

Difference

HR (bpm)

V02 (L/min)

ml /kg/mi n

VC02 (L /min)

VE (L /min)

RER

fb

MV/V02

MV/C02

V02/HR (ml/beat)

110.83

1.68

21.87

1.64

43.26

.970

28.00

25.44

26.19

15.34

8.54

.24

1.84

026

11.10

.034

10.53

3.55 -

3.16

3,04

105.25

1.55

20.22

1.45

36.88

.928

21.67

2,3.39

25.12

14,73

10.34

.18

.89

.24

9.95

.050

8.52

3.56

2.79

3.41 -

5.58

.13

1.65

.19

6.38

»042

6.33

2.05

1.07

-.61
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Table 3. Physiological responses to the Thornton-Whitmore
active (AT) treadmill at Stage 3.

Variables

TW

T

AT

SD J SD

„ ^
(TW) and

Mean

Difference

HR (bpm)

V02 (L/nrin)

ml /kg/mi n

VC02 (L /min )

VE (L/min)

RER

fb

MV/V02

MV/C02

V02/HR (ml /beat)

136.42

2.36

30.59

2.53

65.45

1.07

33.42

27.14

25o33

17.64

11.17 132.0

.41 2.33

2.60 30.29

.49 2.43

22.61 59.38

.037 1.04

11.45 28.17

5.02 ?5.25

3.81 24.22

4.36 17.95

13.52

.31

2.58

.35

14.91

.026

9.03

3.56

2.95

3.89

4.42

.03

.30

.10

6007

.03

5.25

1089

1.11

-.31



FIGURE 1. Oxygen Uptake on the Thornton-Whitmore (TW) and Active (AT) Treadmill
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FIGURE 2. Heart Rate on TW and AT Treadmill
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F5GURE 3. VE on the TW and AT Treadmill
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FIGURE 4. Respiration Rate on the TW and AT Treadmill OF POOR QUALITY
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DESCRIPTION OF THE TW TREADMILL

The TW treadmill (Figure 4) is a passive treadmill, 109 cm long, 34 cm wide,

30 cm high and 20.5 kg in weight (Whitmore, 1980). The walking area is 31 cm

wide and 71 cm long. The belt is mounted around two, low friction axles. This

device is non-motorized and permits the user to generate low-friction belt speeds

of 50 to 263 meters per minute. Average belt speed is determined by adjusting a

variable threshold centrifugal governor. Belt speeds at or below the governor

settings are essentially friction-free. Speeds in excess of maximal settings

are met by internal roller resistance.

The various combinations of belt speed and belt grade permit workloads of

35 to 3754 kpm for a 70 kg subject working in an erect posture at one-g. The

treadmill "grade" is determined by elevating the anterior framework of the

device. The incline of the belt can be adjusted between 0 (horizontal) and 20

degrees.

The treadmill was designed to produce low to heavy workloads for individuals

exercising in an erect posture at 1 or 0-g. At 1-g, workload is determined by

varying belt speed and/or grade. At 0-g, the subject is held against the belt

by elastic bungee cords. The force represented by these cords is a percentage

of the subject's weight. External mechanical work is a function of varying belt

speed, grade and/or bungee tension. Observations by the Soviets indicate that

bungee tensions in excess of 55 kg might induce moderate to severe harness abrasion

and skin chafing. These findings suggest the need to examine the range of bungee

tension used to set workloads. Although the TW treadmill was designed to be effec-

tive at both 1 and 0-g, only limited pilot data have been collected and coefficients

of validity and reliability have not been established for this device.
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Fig. 4 THORNTON-'dHITMORE TREADMILL
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Experiment II: Physiological Effects of Bungee Load During Work on a Treadmill

PURPOSE AND PROCEDURES

The purpose of this study was to examine the effects of various bungee loads

on the energy cost of treadmill walking and running. The subjects were four (N=4)

young adult males who regularly engaged in strength training and distance running.

Trained rather than untrained individuals were selected as subjects because it was

assumed that they would have less probability of a training effect due to the testing

or attrition due to injury or illness.

The experiment was conducted over an 8-week period. Anthropometric and body

composition measures were made during week one. Body weight was made on an Accu-

weigh bench beam scale. Percent fat (% fat) was estimated from body density (1)

determined by underwater weighing using a Chatillon autopsy scale. Residual volume

was measured using an oxygen-rebreathing, helium-dilution method (Wilmore, 1969).

A series of sub-maximal, single-stage treadmill bouts was administered on

a Quinton 60-18 motorized treadmill. Treadmill bouts were administered in random

order. During week one, in addition to becoming accustomed to walking/running on the

treadmill and the testing equipment, the subjects performed a maximal Bruce tread-

mill stress test (Bruce 1971). During weeks 2 and 3, each subject was tested as

he wore a bungee-harness restraint system similar to that worn on skylab IV

(Thornton et al; 1976). Bungee loads evaluated were: (1) normal body weight (l.Og);

(2) 40% added weight (1.4g); (3) 50% added weight (1.5g) and (4) 70% added weight

(1.7g). Treadmill speed during this phase of testing was maintained at 90 ± .Z m/min,

level grade.

During the second phase of the study, (weeks 4 and 5) the subjects wore a

back pack weighted to 1.4g. Treadmill speed was maintained at 90 ± .6 m/min. The

purpose of this phase of the study was to compare the effects of bungee and back

pack loads.



During phase 3 (week 6), the subjects walked at 90± .7 m/min using a

bungee-load of 1.4g. A Revere 1000-pound capacity load cell was systematically

attached to each bungee cord during this phase in an attempt to measure the bungee

load throughout the gait cycle. The superior end of the load cell was attached

to a D-ring on the canvas belt. The inferior end was attached to the superior

end of the bungee by means of a snap hook. Load cell capacity was set at 40-pounds.

During phase 4 (weeks 7 and 8) the subjects wore the bungee-harness

restraint system and ran on the treadmill at a speed of 175± .4 m/min. Weight

loads of 1.0, 1.4, 1.5 and 1.7g were utilized. During each phase, subjects

worked for 8 minutes. Metabolic data were collected continuously. The criterion

score for each phase was the mean for the last 6 minutes of effort. Oxygen uptake

was measured each minute using a semi -automated gas collection system described

by Wilmore and Costil r(1974). Concentrations of oxygen and carbon dioxide, in- the

expired air were measured with Applied ETectro Chemistry S-3A and Beckman LB-2

gas analyzers, respectfully. Heart rate was obtained from electrocardigraph

recordings. Ventilation rate was determined using a Hewlett Packard flow trans-
\

ducer and respiratory integrator.

A minimum of 24 hours of rest was allowed between trails. The bungee harness

restraint system consisted of a padded canvas waist belt with D-rings and 2

padded shoulder straps. Four bungee cords were used, 2 anterior-lateral and 2

posterior-lateral. The cords were attached to the belt and treadmill bed by

snap hooks. Bungee loads were determined by having the subject stand on a calibrated

Accu-weigh scale as bungees were attached to the belt and treadmill. S-hooks, the

width of the scale, were used as spacers during the determination of bungee loads.

The spacers and scale were removed during the treadmill work bouts. Calibration

procedures were consistent with those recommended by Whitmore'(1981) .
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RESULTS

Physical characteristics of the subjects are presented in Table 1. Values

for VC>2 max (ml/Kg/min) and body composition indicate that the subjects were

homogenous. Means and standard deviations for oxygen uptake and related variables

are presented in Figures 1-6. Inspection of Figures 1-3 indicates that the

physiological measures of stress were positively related to increasing levels

of bungee load. The levels attained at the.highest load ;(1.7g),.however, .were

moderate (6.5 - 7.0 mets and 95 - 105 bpm) and, under normal (sea level) conditions,

would not produce an aerobic training effect. The minimal threshold for aerobic

training/maintenance is an oxygen uptake of 60-80% aerobic capacity and/or a

heart rate of 70-85% of maximal (Pollock, 1973, 1978). For the population

examined, the work loads did not exceed these minimal threshold values.

The results of phase two (back pack load = 1.4g) are also presented in

Figures 1-3. The data indicate that the" stress of a 1.4g back pack load is similar

to that produced by a 1.7g bungee load. Subjective evaluations of participants

in this study were consistent with the physiological observations, i.e., walking

with a 1.4g backpack was more stressful than walking with bungee loads. Since

the subjects had trouble balancing the 1.4g backpack load (70 to 80 pounds), the

investigator felt in unsafe to impose additional loads (1.5 or 1.7g) or faster

treadmill speeds.

During phase 3, subjects wore the bungee-harness restraint system loaded to

1.4g. Force in each bungee cord was determined using a 40-pound capacity load

cell and Brush recorder. Sample tracings of the force patterns in the right

anterior bungee cord are presented in Figure 7. Similar patterns were observed in

the other 3 cords. The data indicate that each cord (cords were not measured

simultaneously) had approximately 22 pounds of force when the subject was standing

erect, at rest. Total force of the 4 cords was estimated to be approximately

88 pounds. Total bungee force, according to calibration procedures, was
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approximately 80 pounds. Maximal force while walking during toe-off, i.e.,

as the center of gravity passed over the base of support, was approximately 25

pounds per cord. At heel contact, this force decreased to 20 pounds. This

"unloading" of the bungee was expected since the center of gravity during walking

will rise and fall approximately 2.5 inches (Slocum, 1962). Since the center

of gravity rises and falls with each step and is maximal only during toe-off,

the average bungee cord load during the walking cycle was less than that observed

during calibration. If the 4 cords unloaded equally during the walking cycle,

the total force lost due to unloading would be approximately 20 pounds or .2 - .3g.

The similarity between physiological indicies of stress resulting from the 1.4g

backpack load and 1.7g bungee load may be attributable, in part, to the unloading

of the bungee cords. Additional research is recommended using 4 load cells

simultaneously and cinematographic analysis. Filming the testing process would

permit a more accurate assessment of bungee loading during the walking/running

process.

During phase 4, subjects were required to run at 175 m/min while using bungee

loads of 1.0, 1.4, 1.5 and 1.7g. Data (Figures 4-6) indicate that all work

loads were of sufficient intensity to produce a training effect. Oxygen uptake

values at 1.4, 1.5 and 1.7g exceeded expected values (l.Og) by approximately

40, 45 and 50%, respectfully and were consistent with those observed by Cureton,

et al (1978) during pack carrying activities. These values were not achieved, however

without problems. Subjects complained that the higher loads caused pain in the

ankles and knees and extreme stress in the low back and shoulders. One subject

complained that the 1.7g load occluded circulation and caused numbness in his arms.
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Bungee loads of 1.4 to 1.7g provided minimal physiological stress at a

speed of 90 m/min (3.3 mph). Responses to 1.7g bungee force were similar to

those observed with a 1.4g backpack force load. Observation may be attributable,

in part, to an unloading of bungee cords as the center of gravity changes during

the walking process. The stress during running (175 m/min; 6.5 mph) with bungee

imposed forces exceeded threshold level and should produce a training effect.

Physical discomfort occurs during running with bungee loads in excess of 1.5g.

Additional research is needed at 1.0 and zero-g to determine minimal and

optimal loads for the development/maintenance of aerobic fitness. Investigators

should use multiple load cells and cinematographic techniques. Comparative data

should be collected on motor-driven and the Thornton-Whitmore treadmill. Various

bungee loads and treadmill speeds should be examined. Attempts should be made

to design a more comfortable and effective harness-restraint system. A more

accurate method of estimating bungee load should be developed.

The TW treadmill and previously described harness-restraint system have been

used in shuttle flights. Little systematic scientific data have been recorded

during exercise. Plans should be formulated with which the effectiveness of the

current and alternate restraint systems can be evaluated. At this time, no data

exist to indicate that the current system will involke threshold metabolic

responses.
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FIGURE 1. Mean Oxygen Cost For Bungee and Backpack Load
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FIGURE 2. Mean Ventilation Rate Bungee and Backpack Loads
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FIGURE 3. Heart Rate Response for Bungee and Backpack Loads.
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FIGURE 4. Mean Oxygen Cost for Bungee Loads During Jogging
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FIGURE 5. Mean Ventilation Rate for Bungee Loads During Jogging
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FIGURE 6. Heart Rate Response for Bungee Loads During Jogging
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Figure 7. Force values during walking with bungee load of 1.4g.

HC = Heel contact

FS = Full support

TO = Toe off



OF POOR QUALITY 37

Experiment III: Evaluation of Omnikinetic Training Device.

PURPOSE

The purpose of this study was to evaluate a physical training device that

could enhance/maintain muscular strength while requiring minimal cabin space,

weight, electrical power and subject time in flight. The specific exercise

device evaluated was the Hydrafitness Total Power which utilizes Omnikinetics :

dynamic accommodating resistive training with isotonic of isokinetic principles.

Specifically, the purpose of this study was to examine the effectiveness of the

aforementioned apparatus to enhance muscular strength, body composition, and

aerobic capacity.

PROCEDURE

Subjects were 7 college male volunteers, mean age 22.4±2.1 years, from the

student population of the University of Houston at Clear Lake City. Prior to

training, each subject was evaluated for pulmonary function, aerobic capacity,

body composition and muscular strength.

Pulmonary function (FVC, FEV^Q, TLC and residual volume) was determined using

a Collins Modular Lung Analyzer and Collins Helium Analyzer according to pro-

cedures outlined by W.E. Collins, Inc. Aerobic capacity was determined from

results of a maximal treadmill test using the Bruce protocol. Heart rate and

blood pressure were continuously monitored at rest (5 minutes), during exercise

and following exercise (5 minutes) using a 6-lead ECG system and sphygmomanometer.

Oxygen uptake was determined by open circuit methods using a semi-automated

system as described by Wilmore and Costill (1974). Hydrostatic weighing was

conducted in a 6 x 6 foot redwood tank. The hydrostatic weighing procedure was

repeated 10 times until 3 similar readings to th'e nearest 20g were obtained.

The 3 values were averaged. The technique for determining body density followed
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the method outlined by Goldman and Buskirk (1961), and the calculation of body

density from the equation of Brozek et al (1963). Density was converted to

percent body fat by Siri's equation (1956). Absolute body fat was determined

from the product of relative body fat and total body weight. Lean body weight

was the difference between total body weight and absolute body fat.

Unilateral upper and lower body strength were determined on a Cybex II

machine (Thornton and Rummel 1974; Coleman 1982). Arm and shoulder strength was

assessed by measuring the maximal flexion and extension force the subject could

generate during a rowing motion. The rowing motion consisted of a pushing and a

pulling phase. During the pushing phase (shoulder flexion), the subject simul-

taneously flexed the shoulder joint and extended the elbow joint in a horizontal

plane. Shoulder extension was measured as the maximal force exerted by the

shoulder and arm during the pulling phase of the rowing motion (extension of the

shoulder and flexion of the elbow).

Unilateral strength of the quadriceps (knee extension) and hamstring

(knee flexion) muscles was determined as the subject extended and flexed the

lower leg at the knee joint. Each strength test was repeated tfiree times,

with each contraction conducted at a velocity of 60°/sec. The score for each

test was the mean of the three trials.

The subjects trained three times per week for a period of 8 weeks.

Training sessions were approximately 30 minutes in length and were conducted

on alternate days. Training sessions consisted of 6 basic exercises: knee

extension-knee flexion, chest press-rowing, shoulder press-lat pull. Three

sets of 10 maximal repetitions of each exercise were performed daily with

approximately 3 minutes of rest between sets. A self re-setting timer (0 to 20

seconds) attached to the exercise device was used to pace each subject. Move-

ment time was set at approximately 60°/second and 'subjects were asked to perform

10 maximal repetitions per set in 20 seconds. Hydraulic guages attached to the
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device were used to provide feedback concerning the maximal force generated

per contraction. Daily records of the peak force generated in each lift were

reported by each subject. These data were tabulated weekly and used for

motivational purposes.

Correlated t-tests were used to determine the significance of differences

between pre and post training scores. The .05 level of confidence was used as

the index of significance.

RESULTS

Changes consequent to training in body composition are presented in Table 1.

No significant changes were observed in total body weight, absolute fat and relative

fat. A significant increase was observed in lean body weight. Alterations

in cardiovascular parameters both at rest and during exercise following training

are presented in Table 2. No significant improvements in treadmill time to

exhaustion, VOo max or VE max were observed. Changes in muscular strength are

presented in Table 3. All subjects exhibited significant increases in each of the

6 movements tested.

DISCUSSION

Although total body weight did not change significantly, there were obvious

changes in body composition. The subjects demonstrated a significant increase

in lean body weight (2.8%) and decrease in absolute (-2.1%) and relative body

fat (-4.6%) that were not significant. The fact that the decreases in fat

weight were not statistically significant was probably attributable to the

relative short duration of the study. Research by Pollock (1973) suggests that

programs of 8 to 10 weeks duration generally result in less changes in body

composition parameters. These changes are consistent with those of other

studies involving strength training. Coleman (1977) reported reductions in
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total body weight (-2.4%), relative body fat (-9.1%) and absolute body fat

(-6.9%) and increases in lean body mass (=3.9%) in college males who trained

isotonically for 10 weeks. Similar results were observed by Gettman et al (1978)

following 20 weeks of circuit weight training and by Wilmore (1974) following

10 weeks of weight training and 10 weeks of circuit weight training (Wilmore

et al, 1978).

No significant improvements in V02 max, VE max, max heart rate or total

treadmill time were observed following training. The mean improvement in V02

max (1.9 ml/Kg/mim, 42%) was comparable to that observed in other studies

utilizing strength training programs. Previous research by Wilmore et al (1978)

and Gettman et al (1978) indicate that strength training alone is not a

sufficient stimulus to enhance aerobic capacity. Improvements following strength

training are, in general, approximately 5% while those following running are 10

to 20%. Initial and final strength scares are presented in Table 3. Significant

increases in strength for all exercise movements were observed. These findings

were, in general, expected since previous studies involving weight training have

shown similar results (Berger, 1962, 1965; Coleman 1972, 1977/1982). While

the changes in strength were significant, they were not as large as those observed

for other studies utilizing isotonic training. Berger (1962; 1965) and Johnson

(1972) have reported increases in arm and shoulder strength as large as 23 and

29 percent, respectfully for college males who trained isotonically. Likewise,

Coleman (1977), Wilmore (1974) and O'Shea (1968) observed increases in leg

strength in excess of 17 percent in isotonically trained college males. Few

studies have been completed using isokinetic training and isokinetic testing

protocols. Pipes and Wilmore (1975) trained and tested 36 male volunteers at

low and high speed resistance loads on isokinetic devices. After 8 weeks, they

observed a 5 percent and 25 percent increase in .arm strength in the groups

that trained using slow and fast repetitions, respectively. Increases in leg
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strength in these groups were similar to those observed in the present study

(6 and 15%). The discrepancy in the magnitude of strength gains observed in the

present study and previous data may be due, in part, to differences in the duration

of the studies. Subjects in the present study trained for a period of 8 weeks,

while those in the referred studies trained for 10 to 20 weeks. Data indicate

that the magnitude of strength gained is related to the duration of training

i.e., the longer the training period (weeks), the greater the gains.

The popularity of most omnikinetic (isokinetic) training devices is due

more to their simplicity of design and operation, low cost and promotional program,

than to proven scientific merit. Theoretically, the operation of these devices

is sound, i.e., they offer variable resistance throughout the full range of

muscular movement. Manufacturers contend that since acceleration is controlled

within the device, more energy is available for producing muscular force. Like-

wise, they contend that the isokinetic device permits a muscle to maintain

a maximal state of contraction throughout it's range of motion, a condition not

possible in isotonic or isometric contraction.

The wholesale adoption of the omnikinetic (isokinetic) training principle

is not to be accepted without reservation. As mentioned earlier, little

scientific evidence exists to attest to the validity of the claims of the various

manufacturers. The data that exists are mostly testimonial and opinion rather

that the result of scientific study. The supportive data cited in the Pipes

and Wilmore (1975) study were obtained on isokinetic devices manufactured by

Cybex, not Hydrafitness, Furthermore, there exists a cloud of doubt as to the

authenticity of the Pipes and Wilmore date (Wilmore, 1979).

Data obtained in the present study were obtained using a Hydrafitness'

Total Power. While the results of the study indicated that the 'Hydrafitness

device will produce significant improvements in .strength, this writer still
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has some reservations concerning the practically of this device. First, the

governor used to regulate the speed of movement is not precise from machine to

machine. Utilization of a given speed setting will not ensure uniform move-

ment time between different machines. Second, the principle of variable resis-

tance' allows an individual to "let - up" or exert less muscular force as he

becomes fatigued. While manufacturers attest this to be an advantage of the

device, i.e., it accomodates the maximal resistance that an individual is capable

of producing at a given time, there exists no method to ensure that the effort

given is maximal. Psychological data indicate that man quits psychologically

before reaching his physiological limit (Coleman and Carver, 1976). Utilization

of variable resistance devices permit individuals, especially those who are

not highly motivated, to give less than maximal effort. The manufacturers have

attempted to eliminate this problem by installing pressure guages on each

device. The guages are a realistic approach, but unfortunately, it is not

possible to calibrate a unit and the guages have no fixed pointers. The

electronic pacer is a helpful device. The pacer, as used in this investigation,

facilitated maximal effort by encouraging the participants to move as rapidly as

possible in order to complete the prescribed number of repetitions in the

alloted time. To better ensure maximal effort, each device should be equipped

with a strip recorder or LED display that would present feedback concerning

the maximal force generated per contraction.

A third objection to the Hydrafitness- device is that it does not permit

eccentric contractions. While the manufacturers attest that eccentric contrac-

tions contribute to muscle soreness, ample data exist to indicate that eccentric

contractions are as effective as concentric contractions for developing muscular

strength. Studies by Johnson (1972) suggest that training programs utilizing

both concentric and eccentric contractions will .produce larger increases in

muscular strength than programs utilizing only concentric or eccentric contractions.
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Finally, most movements required of man at work or play at 1-g require both

eccentric and concentric contractions. Therefore, it seems prudent to

recommend both concentric and eccentric contractions for maximal muscular

development and function.

CONCLUSIONS

In conclusion, the Hydrafitness does appear to be an.efficient mode of '

training for altering body composition and muscular strength. This device is

not as effective as running or cycling for the development of aerobic capacity

and thus should not be expected to produce total fitness. The hydraulic

cylinders are small, sturdy, light-weight, adaptable to numerous movement

patterns and require no electrical power. These devices could be mounted to the

walls of a space craft in various configuations so as to occupy a minimal amount

of cabin space and permit a wide variety of exercise movements. Small exercise

circuits could be formed within the craft so that several crew members could

exercise simultaneously. When used in conjunction with an in-flight treadmill

or bicycle ergometer, these devices should enable crew members to improve and/or

maintain total fitness during exposure to zero-g.
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Table 1

Changes in body composition with training.

Variable Initial Final Change ^Change

Height (cm)

Weight (Kg)

Lean Weight (Kg)

Fat Weight (Kg)

Relative Fat (%)

175.4±3.3

73.7±6.1

64.2+3.4

9.5+4.5

12.9±4.7

175. ±3. 4

75.2±5.5

66.0±3.9

9.3±3.7

12.3±4.2

.01

1.5

1.8a

-.2

-.6

--

2.0

2.8

-2.1

-4.6

a Significant at .05 level of confidence.
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Table 2

Changes in aerobic capacity with training.

Variable Initial Final Change % Change

Rest HR (bpm)

SBP (mmHg)

DBP (mmHg}

VOg max (L/min)

V02 max (ml/Kg/min)

Tmill Time (min)

HR max (bpm)

VE max (L/min)

73.0±8.8

114.9±9.5

69.6±6.6

3.3± .5

44.3±5.6

12.6+1.3

194.3±4.5

131.3±11.7

71.6±9.1

114.0±8.7

68.7±7.1

3.4± .6

46.1+6.1

13.3±1.2

195.7±4.8

135.2H2.8

1.4

g

- .9

.1

1.8

.7

1.4

3.9

1.9

- .8

-1.2

3.0

4.1

5.6

.7

3.0
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Changes in strength with training.

Initial (Kg) Final (Kg) Change (Kg) Change (%)

R Arm Flex

R Arm Ext

L Arm Flex

L Arm Ext

R Leg Flex

R Leg Ext

L Leg Flex

L Leg Ext

41.5±6.5

46.0±8.4

40.9±4.4

44.5±7.4

43.0±5.1

67.5±8.7

42.6±6.5

68.5±8.6

46.5±7.1

52.9±8.6

46.2+3.1

50.7±7.8

53.8+6.1

82.4±8.5

52.6±9.3

84.3±5.4

5.0a

6.9a

5.3a

6.2a

10. 8a

14. 9a

10. Oa

15. 8a

12.1

- 15.0

13.1

13.9

25.1

22.1

23.5

23.1

a Significant at .05 level of confidence
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