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ABSTRACT

The most significant shortcoming of all software development

processes lies in the fact that humans are involved.
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SECTION 1

Introduction

Crucial software ;s any software whose failure could endanger human
lives or threaten the safety of expensive equipment. For example, the
software in computers providing active controls for aircraft is crucial.

Software is defined to be reliable if it complies with its require-
ments specification most of the time. Conversely, software is said to
have failed when it no longer complies with its requirements specifica-
tion. We choose not to define 'most' because that leads to an attempt
to quantify software reliability and the goals of this grant do not
include probabilistic and statistical analysis of software failures.
’Rather, we assume that any increase in reliability is desirable and any
methodology which méy bring about an increase is ﬁorthy of considera-
tion, We assume that the determination of whether an increase has been
achieved 1is ascertained by experiments using conventional statistical
methods.

The purpose of this grant was to examine and extend a preliminary
approach to the engineering of crucial software which was presented in
the original grant proposal. The goals were to prepare a comprehensive
approach together with recommendations of those areas of software tech-
nology which are most likely to produce a substantial improvement in
software quality if vigorously pursued. Our primary conclusion from

extensive reviews of the 1literature and discussions with numerous




experts 1is that it 4is inappropriate at this time to propose a single
comprehensive approach to crucial software development. Rather, we find
several complementary technology areas which seem to offer the potential
of major increase in software reliability yet which are not sufficiently
mature that a clear choice can be made as to which is most appropriate.
This report is di&ided into ten sections. In Section 2, we examine
the various aspects of the conventional software development cycle.
This cycle was the basis of the augmented approach contained in the ori-
ginal grant proposal. We have formed the opinion that this cycle is
inadequate for crucial software development, and the justification for
this opinion is presented in Section 3. 1In Section 4 several possible
enhancements to the conventional software cycle are discussed. Software
fault tolerance 1is a possible enhancement of major importance and is
discussed separately, in depth, in Section 5., Formal verification‘using

mathematical proof is considered briefly in Section 6. Automatic pro-

gramming is a radical alternative to the conventional cycle and is dis-

cussed in Section 7. Our recommendations for a comprehensive approach
are presented in Section 8, and various experiments which could be con-
ducted in AIRLAB aée described in Section 9. Our conclusions are
presented in Section 10. Finally, we present extended bibliographies on
the topics covered in this report. They are intended to provide the
reader with starting points for exploring further any of the subjects

addressed in this report.




SECTION 2

THE SOFTWARE DEVELOPMENT CYCLE

In the short term, the only feasible way to construct crucial
software is to use all of the best available tools and technologies, and
to apply them in the classical software development cycle. Even then,
they may not yield‘ the required quality, but this determination is
specific to the system and the people involved in its creation.

The software development cycle which we are discussing in this sec-
tion is shown in Figure 2.1. It consists of only those steps typically
used at the present time in the development of software systems. As
such, it is a starting point for discussion and is simpler than the
Approach contained in the original proposal for this grant.

In our review of the present state of the art, we have formed cer-
tain conclusions which relate to elements of the classical software
development cycle, each of which is discussed briefly in the following

sections,
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2.1. Requirements Specifications

A requirements specification is a formally written statement of
what a software system is supposed to do rather than (as in a design
document or the actual code) how the system is to do it. Here, what 1is
required of the system is explicitly written down and can be reviewed
with the customer at tﬁe earliest stages to verify that thé system to be
built actually reflects what is wanted. The creation of such a document
affords an early opportunity to review the consistency and completeness
‘of the idea so problems can be corrected before their consequences prol-
iferate. If the requirements specification is written in a formal
requirements language, it is possible to perform some consistency checks

automatically.

2.1.1. State of the Art

-Many projects, such as the original development of the A-TE
software [1], surge ahead into design without ever finding out what the
software system is supposed to do. Others do attempt to organize the
requirements specification in English prose, producing large documents
in which it is easy to get lost, which are often incomplete or wrong
(e.g not specifying functions which the customer wants), and which are
of ten never read nor kept up to date (this was the case with the origi-
nal 2500 page BMD [2] requirements specification).

There is a great deal of current activity in the development of
requirements languages and analyzers. Some of the older attempts are

merely text organizers which are incapable of much more than cross




referencing usages of words in the document [3]. An apparently success-
ful method [1] provides suggestions of how to design and use forms to be
filled out about the project rather than a language per se. There are
those who contend that requirements languages should be especially
designed for restricted application areas, thus we find people working
on requirements languége generators [4]. Work has also been done
towards developing programs which will automatically perform consistency
and completeness checks on machine-readable requirements specifica-
tions [5].

It seems to be somewhat easier to write down the requirements for
business systems and for purely mathematical software than for real-time
systems., As a consequence, languages for those areas are much more
advanced. In the area of real-time software, hardware interfaces and
timing limitations must be specified, and priorities of goals must be
stated in anticipation of neceésary optimizations, Just how best to
express a requirements specification continues to be an area of investi-

gation,

2.1.2. Contribution to Reliability

By definition, reliability of a software system involves the degree
of its fidelity to its requirements specification. The requirements
specification should be written before further work on the system is
started. The requirements specification can be used to verify with the
customer that the developers understand exactly what 1is required, and

then can be used as a reference by the developers in making all deci-

o




sions regarding the project. The continual reference to an explicit
statement of what the product is to do cannot but help to ensure the
product's fidelity to those requirements,

If at all possible, the document should be written in a require-
ments language. When requirements analyzers become available, this
would allow automated éompleteness and consistency checks, this is espe-
cially important for changes during the post-delivery phase of the
sof tware system's life. Requirements languages are designed to avoid
some of the problems of natural languageg. Part of the power of the
English language lies in its ambiguity and the extensive use of context
to convey meanings. Ambiguity is inherently unsafe. For example,
although not a requirements specification, the Ada Reference Manual [6]
has for several years been a source of controversy over the meaning of
the language it is supposed to describe, Further, in a natural language
it is too easy to omit parts of the requirements specification, and the
very structure of the language prevents explicit connection of a network
of interrelationships.

A statement of requirements serves as a reference of what the
sof tware system is really supposed to do, thus it serves as a "contract"
with the customer and with the eventual user, and can guide decisions
duriné design and coding. This helps to prevent "guesses" by design
analysts and programmers. It is far easier to detect and remove basic
concept faults before design than after much of a software system has
been designed (& coded!) to depend on them. A requirements specifica-
tion which is organized by the use of a requirements language can be

analyzed for such faults before a design exists to be infected by then.




A requirements specification helps in the creation of tests which will
;ctually "verify" the software product since it is explicitly stated
what the product is to do in every situation. Thus, each test can actu-
ally contribute to knowledge about the system's reliability, and none
need be superfluous. If the software's response to an input is unspeci-
fied, whatever :gsggnsé it gives is as valid as another. Problems of
cross-accusations of what should have been assumed by whom could be
avoided 1f completeness checks are performed on a requirements specifi-
cation. In this context we completely reject the notion of "robustness"
in software [T]. Robust software is supposed to act "sensibly" when it
receives unexpected input in the event that nothing was in the require-
ments specification. During the post-delivery phase of a system's life,
the document continues to serve as a reference to guide proper or per-
mitted revisions. Moreover, it is an excellent place to document the
whys and wherefores of the changes, and the altered set of requirements
can be checked for consistency and completeness as before. Actually,
since the system wouid have been built around the requirements specifi-
cation, any changes during this period should be due to changes in what
is required of the system, which makes it appropriate to amend the

requirements specification.

2.1.3. Actdivity Centers
For a survey of work in this area, see the May 1982 issue of IEEE
Computer Magazine, 41in particular the chart by R.J.Lauber comparing 11

requirements languages and analysis systems on page 40 [8].




Parnas and Heninger, for the Naval Research Laboratory, Washington,
D.C. while at UNC Chapel Hill, developed a requirements specification
methodology'which is applicable to flight software, since their project
was to build a system duplicating the functionality and time and space
efficiency of the A-TE aircraft operational flight program using modern
software engineering ‘teehniques {1,91. There had been no previous
requirements statement for the A-TE and the document resulting from this
project is being used by the M™maintenance staff" for the original
software, It is unclear how much of their success was due to the fact
that they were writing requirements specifications for an existing sys-
tem [1].

PDL [3] is a text organizing method with limited cross referencing
capabilities and, although intended for design documents, has been used
for requirements specification., A problem is that garbage text is per-
fectly acceptable to its processor.

PSL/PSA (Problem Statement Language/Analyzer) [5] is an older sys-
tem which seems to ﬂave had some success as we find many projects have
used it and there have been favorable comments about it in the 1litera-
ture (see the Bibliogfaphies). \

SREM (RSL/REVS) (Software Requirements Engineering Methodol-
ogy) [10,11,12,13] 4is available from the Ballistic Missile Defense
center in Huntsville, This system has actually been used in specifying
the requirements of a large real-time project.

As can be seen, an explicit requirements specification is highly
desirable in an effort to produce reliable software. However, the tech-

nologies of languages for 1ts expression and analyzers of its
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consistency and completeness are not yet well established. Further,
there is nothing to assure that the document is actually used or kept

up-to~-date as the 1life of a project progresses.
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2.2. Design Methodology

Software Design methods are largely disciplined ways of thinking
through the problems the software is to solve. What the design stage i;
to accomplish is the translation of the "what" description of the
requirements specification (most of the methodologies assume the
existence of a requirehents specification) into an overall plan for
implementation --an overview of "how". This plan is to be written in
what has come to be known as a design language; a sSpecialized notation
for accurately communicating what is to be accomplished to the indivi-
dual programmers who will be implementing the system. Most of the work
in discovering design methods occurred in the early to mid Seventies
under the umbrella term "Software Engineering." Often, the process is
seen as a continuum with only a vague distinction bétween "gross design"
(which we are calling design) and "detailed design" (which we are cal-

ling implementation); in such cases, the design language is effectively

the implementation language.

2.2.1. Contribution to Reliability

There are several motivations for preparing a design:

a) A thorough examination of the regquirements specification for an
implementation strategy affords the opportunity of ascertaining

whether the project can be accomplished at all.

”

b) This same thorough coverage allows the design team to determine the

most vital areas for allocation of implementing personnel. It also
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allows the establishment of milestones for the development process.

c) A large system which is to perform a wide variety of functions
needs a great deal of organization and planning. Creation of a
design forces a disciplined approach to a problem and the resulting
document serves as a guide at every stage of development. A docu-
ment aimed at directing the implementors by limiting their scope of
concerns can serve testers as well, indicating which areas of the
software are intended to correspond to parts of the requirements

specification.

d) A design document provides a mapping from the requirements specifi-
cation to the coded software to limit the search for the modules

affected by later revisions to the requirements.

e) This documentary evidence can be used early on as a check point for
compliance with the requirements specification.

Unfortunately, the entire design process also provides more opportuni-

ties for faults to be introduced; hence, the attempts at devising

analysis tools for design languages [5]. The factor which makes a

design worthwhile is that faulty decisions may be detected as they are

made rather than later when too much work depending upon them is at

stake to do more than patch.

2.2.2. State of the Art
This section provides some warnings about those methods considered

more likely than others to aid in creating effective designs. None of
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them is a panacea. Indeed, it has been observed that most of these
methods are those which have been unconsciously employed by the best
programmers for years [14,15].

Most techniques are still at a stage in which they require lots of
"magic" [16] and often are described in very vague terms by their
devisers (see practicaily anything in the Design bibliography). Two
people using the same method on the same problem (requirements specifi-
cation) will rarely come up with the same design (this, the result of
experiment [16] ). Thus software design is still a game of skill, and
quite prone to human error.

The Jackson meéhodology [17] views a program as a transformer of
the structure of 1its input data to that of its output. Its area of
application has traditionally been in business data processing; other-
wise, it has not been applied in practice to large projects. Whether
the complexity of resolving structural conflicts can remain manageable
has not been determined. This is representative of the "data driven"
design methods, .

In Dijkstra's Programming Calculus [18], the Floyd/Hoare [19,20]
axioms (augmented with later developments [21] ) are used to formally
derive a program from its requirements specification rather than to
prove an existing program. This method is not necessarily a separate
step from coding, and has been found difficult for the "Maverage"™ pro-
grammer to understand. This method works, in the context of algorithms
involving only integers and logicals, and is included within the basis
for the recommendations below, but it can easily be mis-used through

inattention to strict logical detail, a failing for which humans are
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notorious. The Stepwise Rerinement [14] strategy (also known informally

as "structured programming®", "structured design", "top-down program-

ming", and "top-down design") is often incidentally employed to'limit

complexity.

The trend towards including data abstraction mechanisms in program-
ming languages reveals :;1 renewed respect for Parnas! Information Hid-
ing [22]. This method has also been widely misinterpreted [23]. Other
terms informally used concerning methods in this category are "func-
tional decomposition®, "modularization", and "object oriented
design" [24]. -

The Data Flow design methods [25,26,27] attack a project by analyz-
ing the necessary itinerary of various items of information through a
network of transformations which gradually evolve the outputs from the
inputs. The choice of division among nodes of the network, however, can
often change application of this method into application of Functional
Decomposition.

Iterative Enhancement [28,29] is a simultaneous design and imple~
mentation method in which a small portion of a system's functionality is
carried through to completion. This program is then given more func-
tions piecemeal in the same manner as the original chunk., Occasionally,
the original part may have been the prototype model.

SRI's Hierarchical Design Methodology [30] provides a set of tools
and languages which together allow the consistent use of a combination
of the above methods: top-down or hierarchical partitioning of the sys-
tem (requirements specification, design, and implementation) into

mul ti-level abstract machines, separation of the functions provided by
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each machine at its 1level, and verification of the consistency of
requirements specification, of design with requirements specification,
and of the implementing code. The code-level formal proof is (or was,
until recently) based upon the Boyer-Moore theorem prover [31].

The state of many design languages is evidenced by the fact that
Basili's '"system" is‘ simply a means of rapidly changing the syntax of
his "generic" design language [4].

A recommended overview of the more viable categories of methods,
with examples, appears in [16].

A good design is vital to reliable software, but the technology for
assuring production of or adherence to good designs is not there. We
have not progressed far beyond explicit statement of what good program-
mers have always done unconsciously. The technology of design languages
and analyzers is not very far advanced, nor is there any way of prevent-
ing their misuse. The apparently contained system of the HDM still only
allows consistent use of design methods, There 1s 1little to require

appropriate application of the system.




16

2.-3. Programming Languages

2.3.1. Introduction

Crucial systems usually operate in real time. Modula=-2, HAL/S, and
Ada are high-level languages intended for real-time programming. In
this section, we examine some of the facilities in each of these
languages which have met with appreciation from real-time programmers
and those which have been found unsatisfactory. This examination

reviews the state of the art in programming languages.

2.3.2. Modula-2

Wirth claims that ordinary parallel languages contain all ¢that is
needed in a real-time language [32]. He proposes a discipline for their
use in which a correct program is built first and then optimized to tim-
ing constraihts. All time dependencies are confined to interrupt
handlers and the program should not depend on any particular strategy
for process scheduling. There has been some disagreement about this
practiced ignorance of scheduling, and Wipth's second try at designing
Modula, which produced Modula-2, forces the user to design his own
scheduling algorithm. Confining all time dependencies to interrupt
handlers cannot be done other than in programs which merely monitor dev-
ices. A program's computational processes can produce correct results,
but 1f those results are not available for output when needed, the pro-
gram 1s useless as a real-time program. Wirth also suggests avoiding
many timing problems by adding more processors. This is fine if we have

the money and space for the extra processors and necessary wiring.
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However, the suggestion 4ignores the added problems and overhead of
inter-processor communication. One suggestion that seems to get agree-
ment from real~time programmers is that compilers should tell how long
each statement and overhead operation will actually take.

Holden and Wapnd have programmed a loosely constrained real-time
application (an operating system) in Modula [33]. They label as good
the ability to give an absolute address to a variable at its declaration
and complain about the difficulty of writing disk drivers without some
generic parameter type. The latter problem is fixed in Modula-2 with
the types WORD and ADDRESS which match almost anything. Wiprth [34]
claims a variable address declaration is extraneous with these "magic"®
types, but was included in Moqula-2 at his colleagues' insistence. Hol-
den and Wand point out that Modula's design calls for a uniform hardware
I/0 scheme of memory addressable "device registers" and may have prob-
lems on a different architecture such as ports with special I/0 instruc-
tions. Modula-2 does assign static priorities to processes and pro-
cedures and these priérities are defined to be associated with those of
interrupts in the hardware, but a dynamic priority effect can be
achieved since procedﬁres have the option of always being executed at
their own declared priority rather than inheriting the priority of the
process executing them. Thus, Modula-2 allows the user to determine
whether his application will have priorities assigned statically or .
dynamically. Also, of these three languages, only Modula-2 defines what
process priorities mean in relation to the enviromment they must deal

with in real time,
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Holden and Wand say that Modula's design 1imits its range of appli-
cations since all processes must cooperate in sharing the processor. 1In
Modula (which Wiprth [34] considers only a preliminary design for
Modula-2 in the sense of Preliminary Ada and Ada), a process must con-
sent to sending a signal agd in Modula=2 a process must execute pro-
cedure TRANSFER befor-e a process swap can take place. Complaints about
lack of pre-emptability in Modula-2 seem suspect in light of the fact
that pre-emption is generally achieved via interrupts as it is in
Modula-2., These complaints seem to ignore the fact that Modula-2 is
intended to be wused in implementing facilities such as pre-emptive
schedulers.

Modula [33] was a basis for the YELLOW candidate in DoD's search
for a real-time language, i.e. it was a candidate design for Ada: It
-was found lacking in that it does not have a fixed point/floating point
option, it does not provide for machine code inserts in the high-level
language code, it has no exception handling capabilities, it has no
facilities for specifying the machine representation of data objects,
and cannot express, in one program, operation of a multiprocessor sys-
tem.

Certain facts tend to cast doubts on the inherent efficiency of
Modula-2 [34]. Wipth designed his Lilith machine'especially for the
language, Lilith is microcoded so that the instruction set is the
Modula-2 specific M-code, Also, his most time-critical device, the
high-resolution display, has its own bus to memory and that bus has four

times the bandwidth of the CPU's bus.
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Other obvious concerns with Modula-2 as a language for crucial sys-
tems are the relatively low level of typing in the language and the lack
of a systematic approach to constraints. Much of this was corrected in
Yellow, but that language was abandoned. Modula-2 is certainly better
than assembly languages but was not designed for, and does not aid the

development of crucial-systems.

2.3.3. HAL/S

HAL/S [35] was adopted as a NASA standard flight language when an
implementation was demonstrated to have a ten to fifteen percent ineffi-
ciency in size and speed over assembly language. We point out that this
is a ridiculous metric. Efficiency is program dependent and compiler
dependent. The most important issue is reliability and that is ignored.
| The language itself puts the periodicity of process scheduling,
control via wall clock time, events (hardware interrupts), and error
conditions under explicit programmer control. These things are achieved
via a large run-time library support system, and the HALMAT intermediate
language operators for many of these facilities are mnemonic for IBM
03/360 supervisor calls. In contrast to Modula-2, HAL/S does not pro-
vide basic, low-level, facilities for talloring an entire system to an
application but tries to assume the class of real-time programs known as
flight software and to provide a full underpinning for the user to build
on, Where the user needs access to the hardware, the language provides
the SUBBIT operator for bit manipulation and an implementation provides

fMACRO's rather than allow assembly code insertion. This allows com-
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piler checks on usage while providing high-level access to machine
idiosyncrasies.

From the literature, HAL/S does not seem well known outside of
INTERMETRICS and NASA, A brief description of some of its real-time
related constructs f&llows. The words in upper case are keywords of the
HAL/S language.

Outside of implementation-specific $MACRO's, there is no absolute
addressing. Data storage may be AUTOMATIC (allocated only as long as a
procedure is activated), STATIC (allocated as long as the program exe-
cutes), or TEMPORARY (allocated only while a few statements execute),
Data may be DENSE (packed), ALIGNED on unspecified "appropriate"
hardware boundaries, or RIGID (laid out in memory exactly as described
in the declaration). ACCESS rights may be associated with data objects
and they may be grouped into LOCK groups for mutually exclusive access
through UPDATE blocks by tasks. Events are boolean-like variables which
may be LATCHED or not (able to hold a true value for more than an
instant or not). All communication among tasks is through shared vari-
ables. Separately compiled entities access data via a FORTRAN COMMON-
like facility known as COMPQOL's. Procedures and functions may be
expanded INLINE or may be specified to be REENTRANT or not. A degree of
optimization for common flight software applications is achieved by vir-
tue of the special VECTOR and MATRIX operators and data types. A task
may be stopped by another task by two methods: CANCEL allows the current
instance of the task to continue to completion but prohibits any
scheduled future instances of 1t, whereas TERMINATE destroys the current

instance as well. A task may WAIT UNTIL a certain wall clock time, WAIT
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for a certain length of time, WAIT FOR a combination of events to become
true, or WAIT FOR DEPENDENT's to terminate. A hardware interrupt or a
task may SET an event variable true or RESET it false or may make it
true momentarily via SIGNAL. When an event variable changes values,
every event expression which has been reached by any task must be fully
re-evaluated to detefmine if the task is eligible to proceed. Erpor
conditions within a class or entire classes of errors may be raised
(SEND ERROR...), and the set of error handlers may be dynamically
changed by declaring and removing them (ON ERROR... statement; and OFF
ERROR...). As a special case, errors may be ignored or passed to the
support system with an optional change to an event variable (ON ERROR...
SYSTEM... or ON ERROR... IGNORE...).

The most attractive statement in HAL/S for the . real-time programmer
‘is the SCHEDULE statement. A task may be sacheduled to begin execution
AT a certain time, within (IN) a certain time interval of the current
time, or ON the occurrence of true evaluation of an event expression.
It is required to be Started with a priority, and may be made DEPENDENT
on the continued existence of the task executing the SCHEDULE statement.
Execution of the task may be made to begin anew EVERY so often or a cer-
tain amount of time AFTER it completes. Such repetition may continue
WHILE an event expression holds true or UNTIL an event expression
becomes true or UNTIL a certain time. All this may be specified in a
single SCHEDULE statement, and once started, a task's priority may be
changed by the UPDATE PRIORITY statement.

On the surface, HAL/S seems to provide everything a real-time pro-

grammer could want; particularly if a compiler could guarantee the
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scheduling requested in each SCHEDULE statement. Garman [36], however,
describes several problems with HAL/S in the Space Shuttle project.

On occasion the project was forced to take risks by changing shared
variables outside of UPDATE blocks. This casts some doubt on the util-
ity of any language which prohibits shared variables or their unpro-
tected update. Either the implementation (one of three [37] ) of HAL/S
ugsed by the project did not support or the project did not use the fol-
lowing features: DEPENDENT, REPEAT AFTER, TERMINATE, WAIT UNTIL, and ON
ERROR. UPDATE PRIORITY was rarely used, which implies that the need to
change a process' priority is rare in real-time programs but probably
vital when it does arise. Also, the implementation imposed severe 1lim-
its on the complexity of event expressions that could be used. This
last rule was probably imposed to cut down on overhead since all event
expressions must be re-evaluated on any event change.

The original coding of the Shuttle software [36] turned out to be
plagued with throughput problems. For example, the I/0 via READ/WRITE
statements or %MACRO'S was too expensive. The project called for the
various machines to synchronize at most support routine calls. And
there were too many processes, resulting in scheduler queue overflows,
It was also apparent that, even with a SCHEDULE statement, timing con-
straint calculations had to be made by hand or with the aid of FSIM, a
functional simulation tool. The solution chosen was to break up certain
tasks into procedures and change the support executive to call these
procedures 1in an order determined by table-lookup, a technique employed

in many assembly language real-time programs [38].
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The generalized scheduling constructs of HAL/S, a language designed
for flight software, were found to be too inefficient in practice and
some parts were not implementable, Tripathi, Young, Good, and Brown, in
describing a verifiable subset of HAL/S and before completion of a ver-
ifyability study of Ada, concluded that a project should choose Ada over
HAL/S, noting that Ada has all the capability of HAL/S and more [39].

Apart from the functional criticisms of HAL/S, Fbere are major
deficiencies relating to reliability. The language offers relatively
poor typing (no programmer defined types, for example). The process
communication mechanism, which relies on shared variables, is archaic
and very error prone. It is not amenable to automatic checking for
deadlock and similar difficulties, The control structures and expres-
sion structures of the language are also very poor. They are oriented

more towards ease of programming than reliable programming,.

2.3.4. Ada

Ada was chosen as meeting the DoD's specified requirements for a
real-time language. It, like Modula, has gone through at least one re-
design after public comment. These comments came in a wide variety.
Some were-objections to necessary features on purely aesthetic grounds,
e.g the ELSE within a SELECT statement was found "nasty", although it
is needed for proceeding in the face of communications breakdowns or
time-critical processing [40]. Some were specific suggestions about
preliminary Ada which were included in "final" Ada, while others were

disagreements other about whether it was easy to program a favorite
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solution to some pet problem., We yse the word "favorite" since it is
often not the case that "you can't do X in language Y" but instead "you
can't do X in language Y by method Z" [41].

Boute [42], in a study of preliminary Ada on representative commun-
ications control problems found it "very satisfactory", noting that the
complexity and structure of the solutions matched that of the problem
statement. On the other hand, Roberts, Evans, Morgan and Clarke [43],
also looking at communications control and claiming experience in that
area, say that the rendezvous mechanism is overly general and a poten-
tial time waster for message passing within or among processors.
Specifically, a message that does not even need acknowledgement cannot
be sent without at least four scheduling operations and that the sender
is tied down until the receiver is finished reading the message. They
state that Ada's philosophy is wrong for this application in that data
rather than processes should be queued.

Mahjoub [44], also in the area of distributed processing, is more
concerned with the aéymmetry of the rendezvous. A task cannot know the
sender of a message and messages cannot be broadcast. The concern with
the asymmetric rendezvous seems to be a common one in resource alloca-
tion and scheduling [43,45], although there is a solution to this prob-
lem, involving creation of a resource task. An early problem [46] with
scheduling was fixed in "final" Ada with task types so that manipulable
structures of processes could be created. But problems with scheduling
persist. Hapidi, Bauner, and Svensson [47] and Mapjoub [44] favor
static assignment of priorities by the user but, as we have noted, there

are applications in which dynamic priorities are necessary. People
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examining preliminary Ada [43] (before introduction of families of
entries) found the rigid FIFO queue organization prevented urgent
requests and tended to flatten different priorities to one level.
Mahjoub [44] says that real-time programmers need to be able to write
their own schedulers since different algorithms will be optimal for dif-
ferent applications. ﬁoberts et al [43]. agree and declare that, to
build a scheduler in Ada, one is building one scheduler on top of
another, thus multiplying the overhead in what, in practice, is already
a tight situation. Different applications have different ranges of
speed requirements, some of the more highly constrained of which need
radically different organizations, They conclude that Ada offers the
wrong level of granularity of parallelism.

The method of inclusion of interrupt handling in Ada met with mixed
response,. Bennett, Kormman, and Wilson [48] and Haridi, Bauner, and
Svensson [47] were in favor of it, but Mahjoub [44] was concerned with
response time in that the handler task might not be scheduled right away
or worse, might take a very long time to reach an accept for that entry.

The semantics of several Ada statements could result in bad states
in a distributed systém [44]. Between initiation and termination of an
ABORT statement, a task might be able to communicate with another which,
by virtue of being on another machine, has not been destroyed yet.
Alternatively, a centralized knowledge base of what is alive and what
isn't which had to be 1interrogated at every call would present a
bottleneck which could easily bring a system down. The semantics have
been revised in ANSI standard Ada to alleviate such situations [49].

Other potential overhead problems for real-time systems involve the




"Page missing from available version"




27

implementation 1level, the machine code insert capability was found use-
ful [48] but dangerous if used unnecessarily.

There have been a few experiments and analyses of the potential
efficiency of Ada implementations. Hapidi, Bauyner and Svensson [47]
created a model intermediate language for Ada and ran (it may have been
interpreted) programs- hand-translated into it against a real-time ver-
sion of C. The results of this experiment were deemed favorable for
Ada's efficient implementation., Eventoff, Hapvey, and Price [52] did an
analysis of a generalized monitor based language vs. Ada's rendezvous on
mul tiprocessor shared memory systems. They concluded that each approach
was better suited for its own set of classes of applications, The moni-
tor approach imposed less overhead for problems involving asynchronous
communications and buffered synchronous communications while the rendez-
vous was better for problems requiring direct synchronization and prob-

lems which exhibited any degree of contention.

2.3.2. Summary

Programming languages have received a great deal of attention over
the 1last thirty years and yet new ones continue to be designed. The
reason is that no programming language yet devised is perfect. The
design of languages is not a suitable problem for the short term, but
the proper choice of an existing language to use 1is. There are many
languages that are suitable for describing crucial software. Ada,

HAL/S, and Modula-2 are examples,




28
The difficulties lie in finding a language:

a) which is of modern design,

b) which received sufficient care and analysis during its design,

e) which has a precise, formal definition,

d) for which compilers exist for the machines of interest,

e) for which validation of compilers and run-time support systems

(within the current state of the art) is available,

f) and for which rigid configuration control of the language exists.
In the short term, these apparently minor issues are the really impor-
tant 1ssues. Differing opinions on what a language construct means, or
subtle faults in compilers are major causes of faults in programs, but
which have nothing to do with the programming language itself.,

In practice, the only programming language which has faced all
4these issues and attempted to solve all of them is Ada. In gddition,
Ada is the only widely known and soon to be widely available language to
include facilities for data abstraction. These facilities make thehmore
modern design methodologies (such as Information Hiding, the Jackson
method, and the Yoyrdon and Constantine system) far easier to use, and
far easier for their use to be enforced. We gonclude that Adg is the
only choice of programming language for constructing crucial systems in
the short term, and that language design is such a massive project that
it 41is inappropriate for NASA to consider it. Hoyever, there are inade-~
quacies in Ada and in the description of Ada. Short term investigations
of the use of Ada and into its formal definition are appropriate in sup-

port of crucial software development.
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Although we prefer Ada to the other extant candidates for program-
ming 1languages for crucial reél-time sof'tware, we still bemoan the fact
that Ada was not designed with that purpose unwaveringly in mind. Ada,
despite the original goals, was designed to do "everything for every-
body". Hence, there are many aspects of the 1language which are not
verifiable, Ada proQides facilities which the community has deemed
necessary to the creation of reliable software, but practices which lead
to unreliable software cannot be prevented in any language with current

technology without removal of features which are truly necessary.
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2.4. Testing

Programmers have been running their programs against sample inputs
to see 1f they "work" since the first fault was ever found in a program,
yet no one has managed to move testing out of the world of ad hoec
methods. The situation seems best described by the following quote:

We know less about the theory of testing, which we do often,
than about the theory of program proving, which we do sel-
dom [531].

As long as humans are involved in the transformation of specifica-
tions of ideas into programs, we cannot be sure that no faults have been
introduced without testing the resulting programs. The problem lies in
choosing the set of tests which will uncover any faults in a given pro-
gram. There are kinds of faults which we know about and can categorize,
but there are also faults of a very much more subtle nature which are
heavily involved with the semantics of the individual program and which

we do not know any general way of detecting.

2.4.1. State of the Art

Degpite some attempts [53,54], no one has yet completed a formal
theory upon which to base the activities we call testing. Many of the
proposed methodologies appear to be attempts to systemize the ad hoe
methods of experienced program testers and to find systematic means of
detecting types of faults which it is known that programmers commonly
introduce. This may be in the hope that some formalism will fall out of

such efforts and that an organized approach will help avoid wasted test-
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ing effort in the mean time. Some directions concentrate on categories
of faults while others tend to concentrate on the input spaces of the
programs under test. One thing which must be remembered about testing
real-time software is that one of the dimensions of the input space 1is
time in that the behavior of the program usually changes over time for
the same inputs. This-complicates any testing strategy since the poten-
tial exists for, say, a program which reads two input values to require
an infinite number of tests with different spacing of the linputs in
time, Just when is enough enough? Statistically based reliability
estimation and, of course, the exhaustive testing method, hcowever, seem
to be the major offers of a strategy for telling when to stop testing a
given program [55,56,57]. Yet, there is a great deal of controversy
within the preliability estimation camp about which basic theory of
statistics applies, and exhaustive testing for real-time programs can be
impractical.

There are known types of faults which seem to evade these efforts:

With most testing methods,‘missing path errors are only detected
by mere chance. In fact, missing path errors cannot be found
systematically unless a requirements specification is available.
A correct requirements specification would describe all the
cases that should be handled by the program [58].

The allusion in the above to the unavailability of requirements
specifications brings up a point of difficulty in testing, Due to the
fact that in practice a program often reaches the testing stage without
anyone having bothered to create a requirements specification, testers

often have nothing but their own intuition to use in determining whether

a program run against a test case has passed or not.
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Another difficulty in testing is that programmers often try to
Teover" themselves by including redundant conditionals in their pro-
grams. This fact often makes it difficult for a tester to determine
whether a section of code is mistakenly unreachable or whether the con-
ditions being evaluated are simply impossible. Further, it seems to be
as difficult to create tests which create exceptional situations which
the software is supposed to recognize as it 1s to create test cases

which are intended to "stump" the software.

2.4.2. Contribution to Reliability
Without a formal theory, testing will only do two things for us:

a) It will assure us that, for the gtatistically meaningless set of

inputs which we have tried, a program or system of programs

"yorks, "

b) It will give an unjustified increase to our subjective feelings of

"confidence™ in our software systems.

With a formal theory of testing, a set of tests performed in line with
the theory would give a level of assurance of the program's correctness
comparable to that given by a formal proof of correctness (without human
mistakes in the proof). Short of a formal theory of testing, exhaustive
testing (when possible) is by definition a proof of a program. Without
a formal theory and with no possibility of exhaustive testing, the

activities now pursued give a wholly unjustified confidence in programs.
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2.4.3. Testing Technigues

In this section we give a list and brief explanations of the test-

ing techniques which have been proposed in the literature.

a)

b)

Execute Every Line

Since it is imposéible to have tested everything that a program
does without trying each statement in it, it at first seems reason-
able to create a set of test cases which together cause the execu-
tion of each statement in the program. This does generate a good
number of test cases but it does not follow that executing each

statement in a program exercises all of the program's functions.

Branch Testing

One of the ways functionality can be missed by simply executing
every line in a program is for the program to contain a simple con-
ditional branch around a statement, call it 'S'. The strategy of
executing each statement would generate a test case which caused
evaluation of the conditional to allow the statement 'S* to be exe-
cuted, but wouid not generate the test case which took the other
side of the branch, Branch testing 1s designed to make certain
that each statement is executed and both possibilities are tried

for each conditional branch in the program.

An example of a fault which Branch testing can miss is as follows.
Suppose a statement being guarded by a conditional branch is sup-

posed to be performed only under condition 'A' yet the program as
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coded mistakenly allows the statement to be performed under either
of conditions 'A' or 'B'. A test of both sides of the branch might
be created containing two test cases, one in which 'A' was false,

and one in which 'A' was true. 1If 'B' happened to be false in both-
test cases, we have a situation in which, although both sides of
the branch would i)e exercised, the fault in the conditional expres-

sion would not be detected.

Path Testing

The idea here is to execute each possible path in the code as a
method of checking the program's functionality. Executing each
path is different from taking both sides of each branch. For exam-
ple, if the code contains a loop for which it is possible to exe-
cute the loop 0,1,2, or 3 times based on particular input values,
that loop contains 4 paths and thus requires 4 test cases. Should
that loop be nested within a similar loop, the number of test cases
required to tesf all paths in the loops is multiplied., Path test-
ing cannot consistently detect paths which the requirements specif-
ication (if it éxists) calls for but are missing in the coded pro-
gram, For programs of a practical size, the number of possible
paths approaches the size of the input space, so, to keep from
testing forever, limits need to be made on loop executions or a
closed form for loops needs to be proven to make this method prace-

tical. ’
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Structura]l Testing (Also called White Box Testing)

The internal structure of the program as coded is used as a basis
for choosing test cases, In using such test cases, the entire
functionality of the program as coded is supposed to be revealed
and that is to be compared with the specified requirements.
Several other methods fall under this category. At one level the
structure of a program 1is given by the conditional branches and
call structure. However, one can also see a program's structure in
other components, Geller([su] attempts to formalize structural

testing.

Functional Testing (Also called Black Box Testing)

Functional testing attempts to test against the reguirements
specification for functionality. If the requirements specification
states that the program should function in a certain manner when
confronted with a category of inputs, it is tested with instances
from that category. Test cases are chosen as if nothing other than
the reguired behavior were known about the coded program being
tested. It nhas been noted that this method cannot catch all faults
since the method does not know anything about the coded program's
internal structure i.e. the program may check out perfectly well
but may behave properly only for the inputs used in the test and
branch off into code which does something else entirely for other

inputs.
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Exhaustive Testing

Al] possible inputs are tested. One might think this impractical
if possible, and improbable if (as in most cases) there is a large
input space, but on current computers even the representable number
of 'real' numbers is finite. With VLSI technology, it may become
reasonable to créate a large array of chips to generate test cases
and run tests to exhaustion of the input space for a program. For
truly crucial software, the cost of creating and running the VLSI
chip array for years if it takes that long may be justified if a
formal theory of testing is not found which can definitively give a
more limited set of test cases for each program. Note that an
exhaustive test of a program is by definition a proof of the pro-
gram., All of the other test methods are capable of missing serious
faults while the only problem with exhaustive testing is the 1large

number of cases which must be run,

Error Seeding (Aiso called Mark-Recapture Testing)

In the error seeding strategy, a predetermined number of known
faults are deliberately introduced into a program and arbitrary
test cases are applied to the program (preferably by someone who
does not know how many and what faults were seeded). At any point
during testing, the percentage of seeded faults found is supposed
to approximate the proportion of the naturally occurring faults
which have been found so far by those tests. There is no reason to

believe that the number of seeded faults is anywhere near the

number of natural faults in any given program, nor that they ocecur
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with a gsimjlar distribution. Also, the seeded faults would be
manufactured by humans and as such would reflect the kinds of
faults humans expect themselves to introduce. This biases the dis-
tribution of the seeded faults toward the first few kinds of tests
the testing staff would try anyway. All of the seeded faults would
be found quickly Qhereas the truly subtle and difficult faults

would remain hidden,

Statistical Testing

Test cases are chosen via statistical sampling of the input space.
Because real-time programs usually deal with the physical world,
statistical testing is not likely to generate a realistic set of
tests. Changes in the real world are smooth and gradual whereas a

random sample from the input space is likely to vary widely.

Error-Based Testing

Experience with programming computers tells us that there are cer-
tain kinds of faults which we, as humans, commonly introduce.
Erpror-Based Testing is an approach to testing in which test cases
are designed especially to detect these kinds of faults. Unfor-
tunately, we do not have a complete list of faults which humans can
introduce, s0 no such set of tests is likely to detect all faults
in a given program. Subptle faults are difficult to c¢lassify and
more difficult to ferret out with classification-oriented testing
strategies. This represents the brute-force approach to 1learning

from experience.
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Mutation Testing

Mutation testing derives from error-based testing, but as a metho-
dology, seems to contribute more indirectly through evaluating the
effectiveness of the test set than directly through testing the
program. The required program and the coded program are thought of
as being instaneeé within a “eléud" of similar programs each of
which differs from the others only slightly. The idea 1s to
repeatedly transform the coded program P into similar programs P!
by changing small parts of P. The set of test cases is run through
P* to see if the test set is complete in its ability to distinguish
between P and P'. If not, the tester must find a test which will
distinguish outputs from the two. Each mutation transform is said
to correspond to a class of faults. Among advocates of mutation
testing, there seems to be a consensus that no more than a one
"change" difference between P and P' is necessary to test the test
set's effectiveness i.e. each P' 13 created via one small altera-
tion to P. Tﬁis method seems to call for combinatorically many
more "runs" of tests than the size of the program being tested. It
is difficult té tell how this process is supposed to determine
whether the coded program P is the required program. For example,
mutation testing cannot detect errors of omission where some part

of the requirements specification is not satisfied.

Partition Testing

Goodenough and Gerhart [53] explain this and offer basic defini-

tions and theorems which seem to be acknowledged as a good basis
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for a formal theory. Briefly, the requirements specification is
analyzed to determine a set of equivalence classes (partition) on
tuples of the input space. Running as a test case one tuple from
any equivalence class of the partition is completely equivalent to
running as test cases all tuples in that equivalence class. Thus,
exhaustive testing can be achieved by running one test case based

upon one tuple from each equivalence class of the input space.

This seems like an ideal test method since it 1limits the total
number of tests needed and is equivalent to exhaustive testing.
The problem with this method lies in determining the equivalence

classes. For realistic programs, this is not a solved problem.

Domain Testing

This is a refinement of Path Testing in conjunction with partition
testing. Tests are devised to make sure that the set (domain) of
inputs driving each path is correct, i.e. that the partition of the
input space defined by the requirements specification and the par-
tition of the input space effected by the coded program are one and
the same. Some of the limiting factors are that this method with
current technology cannot handle other than simple conditionals and
that it cannot detect mutually canceling faults, There seems to be

some merit in this approach as a lead-in to a testing formal-

ism [58].
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m)  Boupdary Value Testing
Test cases are created to exercise each conditional in the program
as close as possible to the point where it chénges between True and
False., This is a limited form of component testing where the com-

ponents are conditional expressions controlling branches.

n) Rapge Testing (Also called Stress Testing)
Same as Boundary Value Testing except the extrema of the ranges of

values of each variable and input are exercised as well.

o) Component (Unit) and Integration Testing
Each component of the system is tested as a separate unit using
whatever method is preferred, and test the combination of com-
ponents (the entire system) for functionality as an assemblage of
known-to~be-correct parts. Some people seem to have the idea that

this can be done recursively.

Psychologically, we need to test our software before entrusting the
safety of ourselves.or our equipment to it. Practically, we find that
the methods we use in testing are inadequate to the task. The hopes for
formal theories upon which to base testing strategies worthy of our

trust have not yet come to fruition, and may well never do so.
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2.5. Programming Environments

A Programming Environment is the group of tools employed by humans
to develop and, later, revise software. Much of the paperwork involved
in such things as version control, data dictionaries, and management
reports on programming projects can be considered drudgery and as dis-
tractions from the task at hand (building software). It seems reason-
able to try to migrate that work onto computers as we have migrated much
of the bookkeeping of programs to compilers of high-level 1languages.
Although reasonable, this has seldom been done.

What work in the area has been done in the past seems to be disor-
ganized and skewed toward the initial coding section of the software
life-cycle. The reasons for this seem to be summarized by the following

observations:

The financial structure of many software producers is that pro-

duction costs are a liability but maintenance costs are an asset

or income ... In academic environments, using a portion of

another person's code is often considered cheating. No credit

is given for producing reusable software [59].
A few attempts, notably the Programmer's Workbench and the National
Software Works, have been initiated to collect and implement on comput-
ers some of the tools which designers and programmers typically
use [60,61,62]. More recently, with skyrocketing software costs (both
in development and later revisions) and increasing complexity of sys-
tems, the DoD has become concerned about both automating the tools and
integrating themn. The DoD has commissioned the construction of

integrated Ada Programming Support Enviromments (APSE's) [63,64] and the

NBS (651, in the Spring of 1981, studied what can be done with today's
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technology for medium and large software projects and what directions
funding of research should take in the next five to fifteen years in the
area of integrated environments_for the entire software life-cycle,.

We have had limited language specific computerized environments for
years. Interactive BASIC, APL, and LISP systems have usually had their
own file systems and editors, have been able to detect and notify the
programmer about syntax and context-sensitive syntax errors as programs
are entered, They have run-time systems capable of indicating errors in
terms of source lines or statements. Some are capable of backing up,
allowing source changes at execution time, and otherwise suspending exe-
cution while the programmer does other things, and have uniform and
omnipresent sets of commands so that a programmer, for instance, does
not have to "leave™ the editor in order to "get” another file. A par-
ticular system, INTERLISP, has included many of the other capabilities
and features to be described below [66,67]. Two of the primary quali-
ties these systems have in common, and which are seen to be the enabling
qualities of other pianned environments, are that programmers deal with
the systems interactively and that the tools in the systems "know" about
each other and about fhe programming language.

Working from this starting point, much of the effort which has been
put into programming environment research has gone into "spart" editors
and source level debuggers [68].

Noting that we have been using text editors or other context-
ignoring systems (e.g CDC's UPDATE) to enter and alter programs in com-
puters, and noting the success interpretive interactive systems have had

in detecting errors as they are entered and the fact that the trend in
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language translators has been toward syntax-directed translation, it
becomes reasonable to consider syntax-directed, language-specific edi-
tors for entering program text. The use of such editors could eliminate
compilations which are wused only to detect and remove syntax errors.
Since we are dealing with high-level languages, it is silly not to debug
in terms of high-1e§e1 language statements. Thus the idea of syntax-
directed interactive editing is extended to source-level debugging in
which one is able to interpretively "run” partial programs using such
techniques as "stepping" through statements, substituting values, back-
ing up, forecing branches, and making source-code patches while debug-
ging.

As currently implemented [69,70], many such editor-debugger systems
do not actually deal with a source code "file" byt immediately internal-
ize the input characters so that they use a data structure directly
analogous to the syntax. In combination with CRT's they automatically
"prettyprint®™ the source display as it is entered and might flag errone-
ous text in "reverse video" characters. Some even use color [71]. What
does this buy in terms of reliability of 1life-critical software? We
save syntax error debugging runs, and individual programmers on large
projects can try out decisions in early stages without waiting for later
testing stages when such decisions and any possible alternatives may
have been forgotten.

The Cornell Program Synthesizer [70] allows a programmer to "hide"
sections of code to abbreviate the source so0 all of the currently
interesting parts can be displayed on a CRT at once. It also moves the

CRT's cursor around from statement to statement on the screen as its
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debugger "executes" them and presents a running display of variable-
value pairs on part of the screen; the speed and direction of such "exe-
cution™ can be controlled by the programmer and suspended or altered at
any time. Statements are entered by selecting and filling in templates
and errors are tolerated but flagged until corrected.

Work on improving.the hardware of programming environments is being
performed [T2]. Noting that humans usually refer to several documents
and several areas of a source program at once, this research is concen-
trating on how to partition screens and provide for multiple screens and
still provide portable software and coherent, easily learned controlling
commands as part of the command language of the enviromment.

Of course, the computerized tools already in use would not neces-
sarily be abandoned. Since the editor would parse and internalize pro-
grams, a complete compiler is not needéd. Rather we would need code
improvers, code generators, and simulators for host and non-host target
machines. The internalized form from the editor could also be fed into
a static analyzer, ‘

One ingredient considered essential to an integrated enviromment is
a uniform command 'language. The language should be well human
engineered with extensive help facilities which could, ip advanced sys-
tems, even be anticipatory. The UNIX approach of keeping manuals on-
line is seen as a large step in the right direction but has the failing
that one must know (the name of) what one is looking for in order to
find it. Although experimental systems are geared (consciously or oth-
erwise) to be used by experts (their creators), actual enviromnments must

be able to serve novices with equal ease. The command language should
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also be omnipresent: within reason, any command should be valid at any
time. If the programmer is in the middle of wusing a tool when he
remembers he needs to start up another, he should be able to call upon
that other tool without abandoning the current tool, and the command
language interpreter should be able to figure out the object and change
of viewpoint without being explicitly told.

There has been considerable discussion on the degree of granularity
or tool size and the amount of integration desired in an environment.
Experiments with programming environments have ranged from the monol-
ithic (a single gigantic program) such as INTERLISP [66], to the tool
box approach provided by UNIX [73,T4]. The monolith is seen as ‘being
less flexible and as hindering creation and inclusion of new tools pro-
vided by programmer-users. The tool box can be a Jjumble of bits and
pieces so that a programmer must expend great effort just in picking out
and properly composing the tools needed to perform even a simple opera-
tion. The trend seems to be toward small tools which can be composed,
but for the environmeﬁt to figure out which ones are applicable and how
to compose them (i.e. for the tools to compose themselves), and for the
environment to be easily told about and include new tools. There is
also a strong trend toward having many tools running continuously as
independent processes unseen by the programmer.

File systems and systems for keeping up with what is in each file
play a major role in large projects. Does a given file contain a
requirements specification, design specifications, source text, compiled
binaries, executable code, ipplementor documentation, or test data for a

given module? Where are all of the source modules for a given project
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as they existed six weeks ago? Where is all material relevant to a cer-
tain paragraph of the system design document? Once a project gets to
the stage of needing versions of modules, especially for revisions long
after the original teams are gone, the picture gets even more compli~-
cated.

Mogt, if not all,‘environments involve a well-coordinated database.
The database should manage objects (files), remembering properties about
each one and managing relationships between objects with like properties
and between objects whose properties exhibit dependencies. For security
and information hiding in large complex systems, it should also provide
and use access controls on its objects. All tools can be seen as creat-
ing new objects with properties relating to pre-existing objects. It is
suggested that, in concert with the command language help facilities,
the database could also serve as a kind of "Anp Landers®" to field pro-
grammers' questions about policies, relationships among objects and
groups of objects, and even "how to" questions to prevent people from
constantly having to’"re-invent the wheel", all the while avoiding vio-
lations of information hiding and security rules.

In heavily integrated systems, tools might monitor other tools!
transactions with the database and initiate still other tools automati-
cally when changes occur in objects which are related to other objects
by dependency relationships. For example, a change and recompilation of
an Ada package could trigger automatic recompilation of units which use
it. Such tools might also insist that tﬁe original change be related to
some report or test failure or try to aid the system documentation by

obtaining some other sort of verification stamp.




u7

Other tools (such as the Programmer's Assistant [75] ) might be
able to un-do a programmer's mistakes. This has implications for a
database since a mere trace of a programmer's transactions is insuffi-
cient: the database must remember everything, all versions of all
objects that ever existed for a project and their properties and rela-
tionships. A line Sf research arises here into how to compact this
tremendous amount of information. One proposal is that, rather than
keeping redundant information, the environment should keep a history of
all objects and re-generate individual objects when needed.

Integrated programming environments are envisioned to have every-
thing from the original requirements document in machine-readable form.
Some distant prospects exist for specialized editors which "kpow" about
the various kinds of documents in the system as the above mentioned
smart editors "know" about programming language source. There is also
the suggestion that such a requirements editor or design editor might
feed into a quick prototyping tool which eventually might evolve into a
program generator néeding only a small amount of human "help" in the
form of answering questions about ambiguities in the requirements
specification,

Configuration management tools might monitor various releases of a
system: who got it, did each recipient get all "fixes", etc. Such tools
would track complaints, making sure someone handled them, and following
them through changes and re-testing of modules and being sure the new
conf igurations were actually released to the correct sites. All tests

should be kept automatically by the system from the first test of a par-

tial code segment on the source level debugger through to system
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verification tests and the system should automatically re-run all of
them (which are still applicable) as part of any change before release.
In line with testing, there might also be automatic theorem provers
whose results could be used to keep down the numbers of necessary tests.

One proposal would have management select a methodology or set of
methodologies, based ‘on the project's application domain, which then-
ceforth would drive the enviromnment with respect to the project [76].
This suggestion 1is consistent with the goal of not having a particular
methodology inherent in an environment yet guarantees that all program-
mers abide by management's rules. An environment could provide further
management tools by automatically keeping track of who is working on
what project/module, the amount of time and money being spent, and when
the person moves on to something else. For instance, he might mark a
module "complete" op signal that he has dealt with changes necessitated
by some complaint or design, etc. change. The environment could also
generate reports about these activities for purposes such as scheduling
personnel and monitoring the progress of the project. Other reporting
tools might include redundancy reporters and schedulers of review ses-
sions based on some cémbination of elapsed time, percentage of the sys-
tem that has been changed, and faults reported, etc.

An important consideration for environments for large projects 1is
that often they are scattered over great distances and among many organ-
izations. It has been proposed [77] that enviromments be designed flex-
ibly enough to themselves be distributed with parts communicating with
each other, or to adapt to dealing with other, perhaps manual, environ-

ments in a secure manner, UNIX has mail and news systems which can
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serve for communication among individuals and groups at different sites
or on the same site, but is considered by this proposal to be too gen-
eral. A mail system is desired in which not just any text can be sent
and in which receipt must be acknowledged and, for action requests, in
which the acknowledgement must include an agreement or suggested alter-
native routing, 4

This has been an extremely brief survey of sSome of the things
researchers are trying to do and are thinking about doing with program-
ming environmments. For more depth, it is suggested that one read [65],
and for an analysis of the prospects of introducing efficient environ-
ments into the everyday world of programmers in the field, - that one
read [59].

The technology of programming enviromments as currently implement-
able [65] does not go far beyond collections of "good"™ toolsets
appropriate to general software construction, The prospects for the
future are brighter for well-organized, cooperating systems which may
have a chance at enfo;cing adherence to those methodologies deemed more
likely to produce reliable systems. Unfortunately, that day is not
here, The current toélset approach has the same failing noted in the
other areas examined in this section: The approach allows rather than
enforcesg practices which may lead to the development of reliable

sof tware.




SECTION 3

Enhancements To The Conventional Software Development Cycle

3.1. Qverview

The conventional process of developing software might be made more
reliable through the inclusion of several advanced techniques and a con-
trolled reorganization. Appropriating the prototyping concept from
other fields permits rapid feedback from customers on the accuracy of
the specified requirements and opens the producers' eyes to the problems
which will present themselves during full development. Re-use of the
work of others in the form of components limits the effort reguired in
implementing and verifying a new system. An jintegrated environment can
organize and enforce the flow of activities in the process, carry out
some transformations itself, and provide the "memory"™ necessary for
life-cycle~long confiéuration and enhancement control. Closing the gap
between requirements specification and implementation languages through
development of very-high—level languages (VHLL) would enhance the abil-
ity to simulate proposed designs before committing to them and would
lessen the chances of introducing faults into design and implementation
due to improper semantic mappings.

The cycle itself needs reorganization to place the decision-making
and checking in the proper order and relegate to their proper roles less
beneficial activities. Often, in the conventional process, implementa-

tion decisions are made during the design phase, no checking for design

50
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validity is done until test cases are run on the implementing code, and
the current state of testing methodologies is such that developers place
unjustified importance on that part of the process. One proposal for
automatically enforcing the ordering on activities in the cycle is embo-
died in the SAGA system. Here, a program enforces previously-defined
rules governing which commands (such as "EDIT design document" op "COM-

PILE modulex") are valid at any given point in the development process.
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3.2. Software Prototypes

In most engineering fields, a full-scale product is never attempted
before a pilot plant or prototype version has been built and operated to
the satisfaction of both producers and customers. This has rarely been
the practice in software development projects., Software prototyping has
grown out of experiences in which software systems have been completed
only to be immediately scrapped because the customer realized too late
that the product specified and built was not what was wanted [15].

Software prototyping technology is becoming a useful tool that
should be pursued with a view to applying it to crucial softwaéé. The
New Yopk University implementation of Ada using the SETL system 1is a
superb example of prototyping. The prototype implementation proved that
Ada could be translated, to counter the arguments of those who could not
design compilers for it. It provided early feedback to the language
designers about things which were indeed unimplementable. And it
allowed the Ada Compiler Validation Capability (ACVC) development to
proceed in parallel with other translator development projects, since
proposed validation suites could be tried out on the prototype transla-
tor before anything else existed. There has b;én substantial criticism
of the NYU Ada translator because it executes yery slowly. The critics
are missing the key point that in this prototype, speed has been rou~
tinely sacrificed for functionality.

SETL is not particularly application specific although it is
clearly more appropriate for prototyping compilers than control systems.

Systems oriented to control systems' prototypes could probably be con-

structed on the SETL model.
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An overview of the issues and work being done in software prototyp-
ing can be found in [78]. <There has also been an NBS workshop on rapid
prototyping a report on which is to be included in an issue of Software
Engineering Notes in the Spring of 1983 [79].

To be reliable, a sof@ware system must conform to its requirements
specification, but it Eannot be built to meet requirements which are not
known. A prototype model enables the customer to notice the absence of,
and make explicit, requirements which had been assumed but not previ-
ously specified or the presence of things specified unintentionally.
Large systems' requirements tend to change while they are being built.
The early use of a prototype can serve to stabilize system goals sooner
in the cases where changes to requirements were due to capabilities pre-
viously "left out™ of the requirements specification. Often the origi-
nators of the requirements specification will not have experience with
making explicit such things as a system's desired behavior. So it is
difficult for analysis of the requirements specification to produce an
accurate depiction of. the behaviors wanted. Such problems can be
ameliorated by allowing the eventual users to exercise a rapidly built
prototype of the systém. As in the above example of the SETL Ada imple-
mentation, a prototype may be used to experiment with possibilities for
dealing with novel problems., Thus, production of a prototype serves as
a means of verifying the transformation of the original idea to machine
readable requirements specification., In that they will most 1likely
build the prototype quickly while examining the original requirements
specification, it gives the highest people on the production staff a

chance to foresee some of the problems to be encountered later on,




54

Often, the most risky or uncertain aspects of a problem are placed into
the prototype while more pedestrian aspecté are ignored for the sake of
cost savings on this version which will be thrown away. The analysis of
what to leave out in the simple prototype helps to establish a basis for
later application of funct;onal decomposition. The Irvine report [78]
of fers several exampies or real prototypes and the kinds of functions
emphasized or left out to enable their rapid construction. One example

involved the user-friendly interface and estimates of computational load

for an automated FAA f1ight service station,
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3.3. Software Components

A software component is a routine or set of routines with their own
private data which have been written to provide a service useful to a
variety of larger projects. A component which is in a portable form,
and has been proven to actually provide the service it claims to prd-
vide, can be of great use in building crucial software. The persons
responsible for the project can limit design efforts at higher levels to
matching the components! interfaces. There 1is also less project-
specific code to view with suspicion should faults be detected.

A limited form of software components has been with us for many
years in the form of mathematical subroutine libraries. However, fre-
quently other kinds of components have not been included in such
libraries because of the difficulty of specifying what functions are
performed and of writing understandable interface specifications, A
more important reason is that, previously widespread languages which
could interface to routines in libraries had to be able to access every-
thing within a library; there could be no information or auxiliary rou~
tines hidden from the user. Fupther, the desire for highly optimized
code has led to users' reluctance to use anything they did not tailor to
individual applications.

These otherwise valid reasons do not apply to Ada. The Ada package
mechanism can provide portable abstractions of higher-level concepts and
structures in which external interfaces are fully specified yet with
internal workings inaccessible to users. As for the optimization prob-

lems, to make the language usable in real-time Ada compilers must per-

form extensive optimizations including those which apply across
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procedure boundaries anyway. "Optimization" via algorithm selection can
be done by providing a set of components for each function with addi-
tional specifications describing the types of situation most 1likely to
benefit from each component in the set. These qualities are not
specific to Ada. The technologies were not available in earlier
languages or had not all been brought together in one system before,

One system for using components in the development of efficient and
correct software is described in [80]. The view taken in that system is
that a software component can be seen as a part which itself is composed
of parts depending on level of abstraction, The traditional or crafts-
man approach, through an expensive and time-consuming process, produces
efficient software requiring custom "maintenance™ in the same way as any
"hand-made"” item does. The parts-and-assemblies or components approach
produces cheaper software with a common "language of discussion"™ and
allows the parts to be studied for the ways in which they can fail and
be repaired in all applications. The component approach does not elim=
inate the craftsman since he is needed to build good, reusable parts,
and a system can rarely be built entirely from such reusable parts. The
relative costs of the'approaches depend on the numbers of like programs
to be eventually produced., Since components represent implementation
choices, a fully coded and compiled part cannot be seen as an assembly
which can be opt;mized in a manner which would make software components
usable directly. Thus that system represents components as designs or
input/output specifications and enabling conditions which can influence
the choices of an automatic coding system in optimizing for particular

applications. In that system, libraries of components were built for
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specific application domains but were able to make use of components in
libraries for other domains which had already been built. The com-
ponents contained several alternatives with individual enabling condi-
tions so that an alternative could be chosen based upon "goals" for
development as specified by a human interacting with an experimental
transformation system; The components were relatively small but the
system could build up larger programs by combining them and using some
components for selective replacement within the text of other com-
ponents. The author describes this as "A domain's software components
map statements from the domain into other domains which are used to
model the objects and operations of the domain ... Each object and
operation 1in the resulting program may be explained by the system in
terms of the program specification.”™ The examples actually presented in
the text are necessarily small and textually oriented, but include the
construction of a natural 1language parser-generator and a natural

language relational database.
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3.4. JIntegrated Environments

Environments were discussed in Section 2. However, as was noted,
the current state 1is not as advanced as it could or should be. Much
research needs to be done to create programming environments which
actively take part in the production and correct revision of software
systems rather than paésively offering individual unrelated and inade-
quate tools. This active participation characterizes the concept of an
lntegrated environment, Where the environment knows about the forms and
processes of software projects in general and of an individual project
in particular, it can institute and impose appropriate checks and docu~
mentation policies, Thus, the minimum amount of human work/ineptness
need be applied in a system's development.,

The idea of environments needs to change from the box of tools
approach to active participant. An integrated environment needs to
recognize and save potential components for future use, and recognize
places where a previously developed component can be used and insert it.
The enviromment also ﬁeeds to be able to generate a prototype model from

any level of "document" such as requirements specification, design

language "program", or partially implemented software to allow exercise

by users or simulation at any stage of the project. The order of events
needs to be controlled and enforced. For example, discovery of a fault
should trigger re-examination of the requirements specification before
design, and that before implementing code,

The HOST [81,82] system is to be such an integrated enviromment.
By using H-Graphs as a standard form for internal manipulation, all of

the system's "tools" can deal with the gsemantic basis of the project.
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Thus the project's requirements specification, design language, and
implementation language can all be reduced to H-Graphs, or an H=Graph
form can be entered directly. This allows comparisons for compatibility
and consistency among all forms of the software, and the use of com-
ponents developed for other projects, perhaps in a different language.
Finally, prototyping can be achieved via interpretation of the H=Graph

representation of the requirements specification.
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3.5. An Improved Conventional Software Development Cycle

We propose an enhanced software development cycle to include all
the techniques mentioned above. It is shown in Figure 3.1.

The entire process is controlled by an integrated environment
which, among other things acts as a determiner of the "next valid
activity". All of the-tools interact with a database which is per-
vasive, supplying the appropriate information where needed. The data-
base is made explicit in the figure at the interface between the 1idea
and the requirements specification for two reasons.

The first is that during post-delivery, as needs change, additions
to the original idea can re-enter the system in the process normally
termed "maintenance" (more accurately called "revision"). The original
idea and requirements specification are retrieved from the database and
fed through a consistency checker along with the additions. The con=-
sistency checker should insist that conflicts be explicitly overridden.
(As a part of configuration control in the enviromment, the original
requirements specification is not overwritten but a new one for the
revised project is created.)

The second reasoh that the database is made specific is that during
original entry of wants, previous projects' ideas can be compared and
suggestions made for clarifications, Also the consistency checker can
play a part in- amendments during a project's development. The database
as described resembles what has often been called an "expert system",
and it is intended to be at least a primitive version of one.

Al] but the finél path in the figure lead back to the requirements

specification, Any fault detected during testing, analysis, or exercise
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of a prototype and any item found unimplementable during coding or
design must be traced back to its origin in the requirements specifica-
tion as prime suspect with other areas becoming suspect if the reguire-
ments specification is found innocent.

Prototyping follows the requirements specification since we mnust
have some specification from which to build the prototype no matter how
vague. The prototyping step occurs between the requirements specifica-
tion and design on every iteration., Any revision of the requirements
potentially invalidates the previous requirements specification and its
approval which was derived from exercise of a prototype. This can be
seen as an instance of needing a rapid prototyping capability, and if
the prototype can be automatically generated or revised in real time
during the human-expert interaction that would be even better. In the
case of a fault being found and the requirements specification being
found innocent, the prototyping and analysis box may only entail the
check that the Eéﬁﬁi;éﬂéhigwgﬁgéifiégfion really is correct.

Note here that the figure represents a general plan and the details
of each box may be complex with internal path control directed by the
environment and with the amount of complexity dependent upon the partic-
ular methodology chosen. For example, from Section 2 we saw several
requirements language-analyzer pairs and several design methodologies, a
choice of any of which would radically alter the appropriate box over
the others.

A prototype can be viewed as a model or simulation but we distin-
guish between the vehicle for "verifying" the mapping of ideas to

requirements specifications and that for verifying the mapping of
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requirements specifications to designs, Jjust as testing and static
analysis are distinguished as steps verifying the mapping of designs to
implementations. A device for running a test case may be termed a simu-
lator, but more accurately a target environment emulation device.

Fault tolerance is brought in as early as the design phase. Such
capabilities should be‘designed into a system rather than appended after
full development. We have more to say on fault tolerance in Section 5.

After a design has been verified through simulation or other ana-
1YSe§, its implementation should be made formal wherever possible. This
includes formal derivation where the state of that fechnology is appli-
cable, the use of previously verified components, and proving of coded
portions of the program to the maximum extent possible. A formal seman-
tic definition of the implementation language and a formal semantic
representation of the design can be used to direct and guide the imple-
mentation process to the extent that matching semantic definition
languages may allow the design "document®™ to select statements or rou-
tines., '

Note that the components box involves some give and take with the
impiementation box. . Design information and specified requirements
information influence the choice of components from the database and, ip
a system such as [80], influence automatic optimizations on the com-
ponents chosen, Recognition, automatic or otherwise, of newly created
items 1in a project which could themselves be used elsewhere as com-

ponents can be made to trigger inclusion of these items into the com-

ponents database,
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The problems with testing were described in Section 2. However,
any exercise of a program has the potential for detecting some fault,
and humans have a psychological need for some sort of testing of any
newly developed product. If and when a formal theory of testing is
developed,'the figure has peserved a place for it.

The stages of thé sof'tware life-cycle are often said to be concep-
tual, actually taking place in parallel or in an overlapped manner. The
controlling enviromment should insist on an order which separates the
concerns of requirements specification, design, and coding. Just as
separation of concerns in a design 1limits complexity and enables an
accurate mapping of specified requirements, separation of the stages in
the development cycle limits the amount of information needing to be
dealt with at one time and prevents premature decisions in one part of a
system from having undue influence on the rest of the system. The fact
that we have paths back to the requirements specification does not
change this position. Any alterations to requirements specification,
design, or implemenfation necessitated by traversal of such a path
should cause the replacement of the affected parts, no matter how

widespread.,




SECTION 4

The Inadequacy Of The Software Development Cycle

Given the stringent reliability requirements of crucial software,
can the conventional software development cycle or the cycle described
in Section 3.5 be used to build software of the desired quality? The
answer of course 1is yes, but rarely and unpredictably. There may be
circumstances in which reliable software is developed using conventional
methods. The problem is knowing that the software is sufficiently reli-
able. Cruycial applications will certainly not use software which con-
tains known faults, However, what is required is assurance that either
there are no residual faults or that the unknown number of residual
faults will not lead to failure. We claim that the conventional
sof tware development cycle cannot meet these requirements. We will
attempt to justify this claim with some experimental evidence and expert
opinion,

Two crucial applications relying on digital computers are the con-
trol of manned spacecraft and the control of nuclear weapons. Software
failure in either case could be catastrophic, Both applications
presently rely on conventional software development methods, and both
have experienced failures in production software systems. For example,
the first launch of the Space Shuttle was delayed for two days [36] by a
software fault. Fortunately the consequences were not serious, In

another example, the launch control system for the Trident missiles on
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board a Trident submarine went into an infinite loop when an operator
attempted to Mlaunch®™ all 24 missiles in sequence during an exer-
cise [83]. All the missiles were disabled, and had this been a battle
situation, none could have been launched. The diagnosis of this problem
was operator error since the missiles are supposed to be launched in
three sequences of eight each.

The software which operates the SIFT computer [84] must be regarded
as crucial since the correct operation of the computer relies on the
correct operation of this software. The designers of SIFT did not use
the conventional -software development cycle but chose instead to use a
formal verification method. They feel that faults were found this way
which would not have been found by conventional methods [85].

The software which supports communications of classified data is
-erucial in the sense that failure might allow compromise of classified
data. Note however that failure which causes loss of service is accept-
ablé provided security is maintained [86]. This is far less stringent a
requirement than is imposed on crucial software.

The workshop on The Production of Reliable, Flight=-Crycial
Software [87] was asked to discuss the issues involved in crucial
software development and make recommendations on research areas which
should be pursued. The first conclusion reached (which was agreed upon
unanimously) was:

There is serious doubt that it is presently possible to produce

flight software systems having the stated level of reliability
and to assure that they have that level of reliability.
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Finally, Winograd [88] has argued the case for major changes in
sof'tware development methodologies for various reasons, and Wasserman et
al [89] have pointed out that, ipn crucial applications, the consequences
of software failure may extend beyond the normal céncerns for human life
or expensive equipment to legal actions against the programmers
involved, ~

Taken together, these points convince us that the conventional
software development cycle is inadequate. There may be examples of pro-

grams running which have been created by conventional means and which

appear to be reliable. The key word here is "appear®". It is necessary

to show scientifically that the software is sufficiently reliable.




SECTION 5

Faylt Tolerance

Although fault tolerance has been applied extensively in hardware,
it has received relatively little use in software. There is an impor-
tant distinction between hardware and software faults which must be must
be born in mind in discussing fault tolerance. The majority of hardware
faults are the result of physical degradation of components whereas
software faults have the characteristics of design faults. This pre-
cludes the use of parallel executions of identical software to guard
against faults but, in contrast to hardware, software does have the
potential for being permanently fault free.

In this section we review the state of the art in software fault
tolerance. We assume the reader is familiar with the basic principles
of the various methods. In general we feel that software fault toler-
ance has the potential to increase reliability dramatically. It can be
considered part of the conventional software development cycle, It is

considered here in a separate section because of its importance.
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5.1. Recovery Blocks

Recovery blocks were proposed as a technique for providing toler-
ance to faults in sequential programs. A very strong theoretjical back-
ground has been developed for recovery blocks, Provided erroneous
states are detected, damage assessment and state restoration are totally
reliable, and continuea service can proceed from a secure starting
point. Two disadvantages are the need for hardware support (the
recovery cache) for state restoration and the fact that this is backward
error recovery, Degpite the fact that the recovery cache was patented
ten years ago, there are no commercially available machines with
recovery caches and so there is no opportunity to use recovery blocks in
practice. Backward error recovery could be a problem in real-time sys-
tems and has to be taken into account.

Attempts to extend reeoﬁery blocks to concurrent programs led to
the problem of the domino effect and to the conversation technique as a
solution. Copversations are théoretically quite simple but rather
surprisingly no syntax has been chosen for their inclusion in program-
ming languages (in contrast to recovery blocks). Some proposals have
been made [90,91] but none has gained even modest acceptance and none
has been implemented. The reason for this situation is twofold.
Fipstly, although cogversations séem simple, inpntegration of their seman-
ties into a language supporting concurrency is a major effort. Con~
current languages are still in their infancy and there are many very
difficult issues in their design. Incorporating conversations Jjust
makes a very difficult problem even harder. The second difficulty with

conversations is that once again hardware support is required. In
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contrast to recovery blocks however, ip order to implement a conversa-
tion, a recovery cache is required for every process involved. Thus in
principle, many logically separate cache's have to be provided.

It has been observed [92] that many real-time systems have proper-
ties which allow fault tolerance using backward error recovery to be
included fairly easily; A framework has been proposed which allows
fault tolerance to be included in cyclic real-time systems with no spe-
cial hardware provisions. It has been pointed out that this work does
not cater for real-time systems which are interrupt driven and this is a
serious weakness. The work is being extended to include interrupt
driven systems to provide a comprehensive approach to fault tolerance in

real-time systenms. . .
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5.2. N-Yersion Programming

With obvious analogy to hardware techniques, N-version program-
ming [93] has been proposed as a method of providing software fault
tolerance. It relies for all aspects of fault tolerance on the execu-
tion of multiple versions of a program and comparison of their results.
This is somewhat weaker theoretically that recovery blocks. Damage
assessment is handled by the assumption that damage will be limited to
the versions in the minority when the vote is taken. To ensure that
this is true, the versions must be physically separated. Clearly this
is not easily achieved for parts of programs such as subroutines. In
practice, this 1limits the application of N-version programming to the
system level and precludes its inclusion in technologies 1like software
components,

A further difficulty is the treatment of state restoration. Again,
this is handled by the assumption that the different versions do not
interfere and that the states of the versions in the majority after the
vote are consistent and ready for continued service.

It is important to note that any versions in the minority after
voting must be assumed to have failed. Thus they cannot participate in
any further system activities, If the system is required to continue
operation, there must be sufficient versions remaining for voting to be
possible.

Voting presents another problem for N-version systems. If the ver-

sions are implementing some form of arithmetic, the results may not be

in bit-for-bit agreement. In such cases, have there been failures?

Probably not, but to avoid detecting failures in these cases it is
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necessary to use ranges rather than exact inequality tests. How wide
should the ranges be? If they are too wide, failed versions will not be
detected, and if they are too narrow, successful versions will be
rejected.

An advantage of N-version programming is that i1t can be readily
applied to concurrent and real~time programs since it does not rely on
backward error recovery. Indeed, it has already been applied to a cru-
cial application [94]. Hardware support is required for N-version pro-

gramming in the from of provision for physical separation (usually mul-

tiple processors) and for voting.
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5.3. Reliability Improvement

A major area of concern in all aspects of software fault tolerance
is a lack of data showing that reliability is improved by using it. No
major demonstrations have been performed which show that fault tolerant
crucial systems can be built (although one such experiment is underway
at the University of Newcastle upon Tyne in England [95] ), 1let alone
that they will be adequately reliable.

It is intuitively reasonable to expect software reliability to be
improved by using software fault tolerance. Intuition is often wrong,
and it is necessary to resolve the remaining issues in the technology of
both forms of fault tolerance and to obtain reliable data on reliability
improvements that can be expected before the technology c¢an be recom-

mended for inclusion in crucial software.




SECTION 6

Verification

By verification we mean the technology of establishing a mathemati-
cal proof that an executable computer program complies with its require-
ments specification, We have not spent a great deal of time on this
topic Dbecause of the substantial experience already in Langley's Fault-
Tolerant Systems Branch. The SIFT project and the contact with the SRI
verification group is extensive and provides a far better assessment of
that technology than we could obtain from the literature., For the sake
of completeness, we have included an extensive bibliography on verifica-
tion.

We make several observations of.a cautionary nature because we feel
that it is important that verification not be viewed as a panacea.
First, if a program is to be proved, it's requirements specification has
to be in machine readable form which is amenable to analysis and this is
not always easy. For crucial applications it could be required but that
means that the engineer and the computer scientist will have to communi-
cate in an informal language (English) or the engineer will have to
learn (and be comfortable with) the formal notation. Another difficulty
with verification is the complexity of the proof process. Theorem
provers are a help but there is still a need for human guidance and
inspiration. This makes the proof process long and tedious, and contri-

butes to the fact that program proofs are not a routine matter and
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proofs of programs more than a few hundred lines long are very rare,

Perhaps the biggest danger with verification is the prospect of the
proof being wrong, i.e. a proof being produced for a program containing
faults. There are numerous examples of this 1in the 1literature. One
example is by Geller [54] in which two proofs are presented for a pro-
gram which is wrong. It must also be noted that there are major areas
where verification has had no success whatsoever. These areas include
floating point calculation, concurrent programs, and until recently
real-time programs.

Despite these reservations, there have been some remarkable
successes 1in verification technology. The proof of a simple real-time
program [96] is very encouraging. The recent proof of a program that is
more than 4000 lines long is also a major accomplishment. This program
and its associated proof were constructed at a measured productivity
rate of four lines 6f code per programmer per day [97]. This compares
very favorably with. the productivity obtained using eonventional
methods.

Provided the problems are kept in mind, verification appears to be
a technology that is almost ready for application in some parts of cru-
cial systems. The comprehensive approach to crucial software engineer-

ing that we propose in Section 8 incorporates verification.




SECTION 7

Autcamatic Programming

1.1. nt ction

We have come to the conclusion that in the long term, major
improvements in the reliability of software will only be a