
NASA Technical Memorandum 81323 _ A 5 _ _T"_ % 1 5 _

NASA-TM-81323 1983001.2365

CanonicalFormsfor Nonlinear
Systems
RenjengSu, L. R. Hunt and George Meyer

Febrdary 1983

LANG!.[.:Y . ,...r.rt _c d Cff.NrKR

N/ A ........I._t, ,. ,R'{, I,IAt3A
I"l/\J_.4l'1O1"I,VIRGINIA

NationalAeronauticsand
SpaceAdministration





NASATM-81323 L

A-8990

N83-20636#









NASA TechnicalMemorandum81323

CanonicalFormsfor Nonlinear
Systems
Renjeng Sul
George Meyer, Ames Research Center, Moffett Field, California
L. R. Hunt, Texas Tech University, Lubbock, Texas

, NationalAeronautics and
Space Administration

t

AmesResearchCenter
Moffett Field, California 94035

__--. _ to5 64#-
II





CANONICAL FORMS FOR NONLINEAR SYSTEMS

Renjeng Su,* L. R. Hunt,+ and George Meyer

Ames Research Center

SUMMARY

Necessary and sufficient conditions for transforming a nonlinear system to a

controllable linear system have been established, and this theory has been applied
to the automatic flight control of aircraft. These transformation results show that

the nonlinearities in a system are often not intrinsic, but are the result of unfor-

tunate choices of coordinates in both state and control variables. Given a nonlinear

system (that may not be transformable to a linear system), we construct a canonical

form in which much of the nonlinearity is removed from the system. If a system is
not transformable to a linear one, then the obstructions to the transformation are

obvious in the canonical form. If the system can be transformed (it is called a

linear equivalent), then the canonical form is a usual one for a controllable linear

system. Thus our theory of canonical forms generalizes the earlier transformation

(to linear systems) results. Our canonical form is not unique, except up to solu-

tions of certain partial differential equations we discuss. In fact, the important
aspect of this paper is the constructive procedure we introduce to reach the canoni-

cal form. As is the case in many areas of mathematics, it is often easier to work
with the canonical forms than in arbitrary coordinate variables.

I. INTRODUCTION

Suppose we have a nonlinear system

_(t) = f(x(t)) + u(t)g(x(t)) (i)

where f and g are real-analytic vector fields on ]Rn and f(O) = O. If

f(x) = Ax and g(x) = b, where A is n×n and b is n×l, and b,Ab, . . .,An-lb

are linearly independent, then we can always find new coordinates Yl,Y2, • • .,Yn,V,
where the Yi are functions of x, and v is a function of (x,u), such that the
system becomes a "string of integrators"

11 = Y2

92 = YS

['

• (2)

#n-1 = Yn

Yn = v
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This is a canonical form for the controllable linear system.

We let [f,g],(ad2f,g), • .,(adkf,g), . . denote successive Lie brackets

(definitions are given in the second section) of the vector fields f and g from

equation (i). If g,[f,g], . .,(adn-lf,g) are_linearly independent and

g,[f,g], . . .,(adn-2f,g) are involutive, then from reference i we know there exists
a neighborhood of the origin in x-space and new coordinates Yl,Y2, • • ",Yn and
control v so that we have equation (2). Thus the system (i) appears as anonlinear

system only because of an unfortunate choice of coordinates, and system (2) is a
canonical form for system (i).

If we want to build a controller for system (I), then a controller can be

designed for system (2) and applied to system (i) through the transformation (from

x-space to y-space) and its inverse. This is the basic design techniqUe for the

automatic flight control of aircraft applied in references 2-5. The general multi-

input version of transformations of nonlinear to linear systems is given in
reference 6.

Suppose we retain the assumption that g,[f,g], .... (adn'if,g) span ]Rn for

points near the origin, but remove the assumption about involutivity_ What canonical
form can we then derive for system (i)? We certainly want this canonical form to
show "a certain amount of linearity." Under what Lie bracket conditions:does this

canonical form exist, and can we actually present the form in such a way that it

accentuates the important Lie brackets?

For example, the system

x2 = x3 + x_ , f = a + x , g = (3)

x3 = u 0 1

can be transformed by Yl = xl, Y2 = x2, Y3 = x3 + x_, v = u + 3x_(x 3 + x23) to

3y1
11 = Y2 + (Y3 - y_)2 = Y2 + Y_ - 2y2y3 + 2

Y2 = Y3 (4)

Y3 = V

Letting Yl = Yl + (y_)/2, Y2 = Y2' Y3 = Y3' _ = v, we have (deleting the notation)

#I = Y2 + y23 + Y2b"

#2 = Y_ _ (5)

!3 = V

If we write system (5) as # = f(y) + v_(y), system (5) cannot be reduced to the

linear system (2) since the set {_,[f,g]} is not involutive (see ref. i). However,
because



+ (ad2f'g) y2=Y3=0 Y2

+ 6_(_(adS[_,_],(ad2_,_) ) Y2=Y3 =0 yS

In equation (5) we point out the two dimensional linear subsystem which is a string
of integrators

(a)

Equation (5) (or (7)) is the canonical'form of interest to use for this example.
We derive such forms for n dimensional systems, and give conditions under which a
form shows a particular type of linear subsystem .(as in eq. (8)). We provide a con-
structive procedure to move a system from the original coordinates to the canonical
form, and this procedure is the main contribution of this paper. Also,the canonical
form is unique only up to solutions of partial differential equations we introduce.

These canonical forms are important because they show the intrinsic nonlineari-

ties of a system and the obstructions to having a transformation to the linear sys-

tem (2). Also, as in all areas of mathematics, it is often much easier to prove
theorems if we assume some canonical form which exhibits the basic mathematical prop-

erties (e.g., Jordan form, rational canonical form, companion form, Brunovsky (ref. 7)
form).

As noted before, one interesting problem is characterizing those nonlinear sys-

tems which can be transformed to controllable linear systems in canonical form (this

research contains multi-input as well as single-input results). We refer here to the

work of Krener (ref. 8), Brockett (ref. 9), Jakubcyzk and Respondek (ref. i0),

Hermann (ref. ii), and the authors (refs. i_ 6, and 12-15). Hermann applies the
theory of equivalence of exterior differential systems to study canonical forms under

feedback for nonlinear systems.



The results of this paper can easily be generalized to multi-input systems. We

consider this problem and examine a two-input control system as an example at the
end of the paper.

II. DEFINITIONSAND PRELIMINARIES

For vector fields f and g on IRn we define the Lie bracket of f and g

_f 3gf
If'g] = _ g - _x

where _f/_x and _g/_x denote Jacoblan matrices. This is the negative of the stan-

dard definition, but it allows for easier notation in our present study. We can also

define If,If,g]], [g,[f,g]], [f,[f,[f,g]]], [g,[f,[f,g]]], etc. In fact, we let

(ad°f,g) = g

(adlf,g) = If,g]

(ad2f,g) = If, [f,g]]

(adkf,g) = [f,(adk-lf,g)]

A set of _ (smooth) vector fields {XI,X2, . . .,Xr} on _n is involutive if

there exist _ functions Yijk(X) so that

r

[Xi,Xj](x) = _ Yijk(X)Xk(X ) , i _ i, j S r, i # j
k=l

If f is a vector field on _n and h(x) is a function, then

_h 3h 8h

Lf(h) = <dh,f) = _-_xI fl +_-_x2 f2 + " • • +_Xn fn

where dh is the gradient of h. Similarly, for a one form

= _i_dxl + _2 dx2 + • + _n dXn we define

(_,f) = _ifi + m2f2 + . . + _nfn

and the Lie derivative of m with respect to f

(3_* )* 3fLf (_) = \-3_x f + _ _-_

where * denotes the transpose and _m*/_x and _f/_x are Jacobian matrices. For g
a vector field on IRn and f, h, and _ as before we have the formulas (see ref. 12)



Lf(_,g> = (Lf(_),g> - <_,[f,g]> (9)

dLf (h) = Lf (dh) (i0)

The following lemma is implied by results in reference I, but for the sake of

completeness, we present a proof. Let f and g be as in system (i) (the assumption
of real analytic can be relaxed).

Lemma i. Suppose the set of vector fields {g,[f,g], . . .,(adn-lf,g)} are linearly
independent and {g,[f,g], . . .,(adqf,g)} is involutive for some integer q,
i < q < n - 2. Then the sets of vector fields

{g,[f,g], • . .,(adq-lf,g)}

{g,[f,g], • . .,(adq-2f,g)}

{g,[f,g]}

are also involutive.

Proof. Since {g,[f,g], . . .,(adqf,g)} is involutive, by the classical Frobenius

Theorem there are functions TI,T2, . ..,Tn_q_ I so that dT1,dT2, . ,dTn_._1
are linearly independent and (dTi,(adJf,g)> = 0, i = 1,2,...,n - q - i ann

j = 0,i, . . .,q. There is at least one Ti, say Tn-q-1, so that

<dTn_q_1,(adq+if,g)> # 0

Define Tn_ q = Lf(Tn_q_ I)

By formula (9)

Lf<dTn_q_ 1,(adj-lf,g)> = (Lf(dTn_q_l) ,(adj-lf,g)> - (dTn_q_1,(adJf,g)>

for j = 1,2, .,q

Thus

<Lf(dTn_q_l),(adJ-lf,g)> = 0

and by equation (i0)

<dTn_q,(adJ-lf,g)> = 0 , j = 1,2, . . .,q

Hence

<dTi,(adJf,g)) = 0 , i = 1,2, . . .,n - q and j = 0,i, . . .,q - i



Formulas (9) and (i0) are applied again to show

(dTn_ q, (adqf,g)> = (dTn_q_ I, (adq+If,g)> # 0

We claim that the vectors dT1,dT z, . . .,dTn q are linearly independent, know-
ing that dT1,dT2, . . .,dTn_q_ I are independent by assumption. Take constants
cl,c 2, . .,Cn_ q so that

cI dT I + c2 dT z + . • . + Cn_ q dTn, q = 0

We dual product this with (adqf,g)

cl(dT1,(adqf,g)> + c2<dT2,(adqf,g)) + • • • + Cn_q<dTn,q,(adqf,g)> = 0

and find that Cn_ q = 0. Hence cI = c2 = . . . = Cn_q_ l = 0 and the desired gra-
dients are linearly independent.

By the Frobenius Theorem, linearly independent gradients satisfying

(dTi,(adJf,g)> = 0 , i = 1,2, . .,n - q and j = 0,i, . . .,q - i

imply that the set {g,[f,g], . . .,(adq-lf,g)} is involutive. Repeating this process
q - 2 more times completes the proof.

A _ distribution A on IRn is an assignment A (x) of a linear subspace of
_n at each point x of R n. We assume that A is of positive constant dimension
k and identify A with the set of vector fields in it. We also let A be involu-

tive and regular (in ref. 16 this means that the quotient set ]Rn/A is a _ mani-

fold). The distribution A is (f,g) invariant if there exist _(x) and B(x) so that

If,A] C A

where f = f + g_ and g = gS. Here f and g are as in equation (i).

The following lemma is found in reference 16.

Lemma 2. Let A be an (f,g) invariant regular distribution. Then A induces a

regular equivalence relation on IRn such that the dynamics in system (I) passes to
the quotient denoted by IRn/A, whose dimension is n - k.

In our later application of this result, since our theory is local, IRn is
replaced by an open neighborhood of the origin.

III. CANONICAL FORMS

We consider system (!) and assume the following conditions hold on an open

neighborhood of the origin in _n. The vector fields g,[f,g], • • .,(adn-lf,g) are
linearly independent and the set {g,[f,g], . . .,(adqf,g)} is involutive for some

6



fixed integer q, 0 _ q _ n - 2. All arguments and results are local and hold in a
neighborhood of the origin. Some coordinate changes usedare similar to those in
reference 9.

Since g is nonvanishing there is a well known coordinate change so that g
becomes

"0"
0

0

i

We thus assume that equation (I) is

X2 f2 0

• = • + u • (11)

Xn-_ fn-] 0

LXnJ .fn 1

Using feedback (new u = old u + fn) we can assume fn = 0.

Let

= Ax + bu = _f(0)
_----_x+ gu (12)

be the linearization of system (ii) about the origin. Since at the origin

g b,[f,g] Ab, . .,(adn-lf,g) An-lb= = = , we have that this'iinearization is con-

trollable. It is well known that coordinate changes and feedback can be applied to

take system (12) to the string of integrators (2). Hence equation (ii) can be put
in the form

'_l_ _2+ • • " "0"

_2 xs + • 0

• = • + = f + ug (13)

_n-1 Xn + • • • 0

.An. 0 _i.

where + . . . denotes higher order terms.



Replace xn + . . . by a new xn, compute Xn, and apply feedback to return the
last entry in f to 0. For equation (13) we have

J _ n m n •

x, x2 + • • • 0

x 2 x 3 + • • • 0

• = • + • = f + ug (14)

Xn-2 _n-l + • ' • 0

Xn__ xn 0

xn 0
i m m m

We consider the terms

m

al (xI,x2, •,Xn_l)x n

a2(xl_x 2, • . .,Xn_1)x n

an-2(xl,x2, • • ",Xn-1)Xn

Xn

0 wn

in the f vector field. Using coordinate changes on x1,x 2, • . .,Xn_I space we
take

-a I(xl,x 2, • •,Xn_l)xJ "0"

a2(x 1,x 2, • • .,Xn_1)Xn 0

• to • Xn

an-2(xl,x 2, • .,Xn_1)x r 0

xn i

0 0
ua

Thus we have form (14) where aI = az = • • . = an_ 2 = 0.

We have not used the fact that the set {g,[f,g] .... ,(adqf,g)} is involutive

if q > 0 and the implications of Lemma i. We take (14) and compute certain Lie
brackets.



We find

o] -• _ _f,_ - _2fi
| ._

_Xn _

01 _f2 _2f 2

• _- • •g = , [f, ] , , , =

_fn-1 _2fn-10 --
Xn _x_

1 0 0
m m

with _fn_i/_Xn = l and _2fn_i/_XnZ = 0. By Lemma i we must have 71(x) and Y2(x)
such that

[[f,g],g] = Y2(x)[f,g] + y1(x)g

This implies that [[f,g],g] = 0 vector and
_2fl/_x_ = _2f2/_x_ = . = _2fn_i/_x_ = 0 (and hence

_fl/_xn = O, _f2/_xn = O, • ., _fn_2/_xn = 0 since aI = a2 = . . . = an_2 = 0).

Replace Xn_ I + . . . in (14) by a new Xn_l, compute Xn-l, make coordinate
changes for xn, compute Xn, and apply feedback to return the last entry in f to 0.
For equation (14) we have

xI x2 + • • . 0

_2 x3 + • • • 0

Xn_ 3 Xn_ 2 + . . + 0 = f + ug (15)

£n-2 Xn-1 0

Xn-1 Xn 0

_n 0 i



We examinethe terms

B g

b1(xl,x2,• . .,Xn,2)Xn_l

b2(x1,x2, • . .,Xn_2)Xn_I

bn_s(xl,xz, • . .,XnJ2)Xn_I

Xn- 1

o

0

in the f vector field from equation (15). Coordinate changes on
xl,x 2, • • .,Xn_ 2 space move

m m

b1(xl,x2, • • .,Xn_2) 0

b2(xl,x2, • • .,Xn. 2) 0

to

bn-3(xl,x 2.... ,Xn_ 2) 0

1 1

o 0

0 0

Hence in equation (15) we assume bI = b2 = = bn_ 3 = 0.

If q > i, then {g,[f,g],(ad2f,g)} is involutive by Lenuua i. Computing again,

..... _fl-- "_2fi"o o
_Xn-1 _x__---_

_fz _2f 2o o
_Xn-1 _x__ l

g= • , , = • , (adZf, = . , ad 2 , , , = .
• • • •

• • • •

0 0 i 0

o 1 o o

0 0 0.J

i0



There are 7 l(x), Y2(x)' and Y3 (x) such that

[(adZf,g),[f,g]] --73 (x) (ad2f,g) + 72(x)[f,g] + 71(x)g

But this implies that 32fi/__i = 0 for i = 1,2, . . .,n - 3, and hence

8fl/SXn_I = O, _fz/SXn_1= O, . .., 3fn_3/SXn_I = 0 since
b x = = bn_ 3 = O.=b 2 . . .

We then repeat _he above arguments until our equation (15) becomes

i q _ u _ ,m

xl fx O i

x2 f2 OR

Xn-q-2 fn-q-2 0
= +

Xn-q-l fn-q-li 0

• • ] •

_n-i fn-x 0

_n 0 i

with

n_q f ifl = x2 + Z hl,l,ixli + hl, j i(Xl,X2, • • .,xj_1)x
i=2 j =2. i=I '

i
"xi + Z h2,j,i(xl,xz, • ,xj_1)xjf2 = x3 + h2,151 i • "

i=2 j=2 i=i

f i t
fn-q-2 = Xn-q-1 + h(n-q-a),l,ix 1 + h(n_q_2),j,t(xl,x 2, • • .,xj_l)x j

i=2 j=Z i=i

fn-q-m = Xn-q

fn-i = Xn

fn = 0
(17)

the definitions and functional dependences of the h's being obvious.

ii



We apply coordinate changes on x1'x2' " " "'Xn-€-i space to take
m

hl,n-q,l (xl'x2, • • •,Xn-q-l) 0

h2,n-q,1(xl'xz' " " ",Xn-q-1) 0

h(n-q-2),n-q,l(xl,x2, • • .,Xn,q_ !) to 0

1 1

o o

_ 0 .0._

Also in new coordinates on xl,x2, . . .,Xn_q_ 2 space

hl,n-q-1,1(x1'x2, • • ",Xn_q-2) -0"

h2,n-q-l,l(x1'x2' " " ",Xn-q-2) 0

h(n-q-3),n-q-1,1(xl,x2, • .,Xn_q_ 2) appears as 0

i + h(n,q_2),n.q_1, l(xl,xz, . . .,Xn_q_2) i

0 0

L 0 0

Similar arguments allow us to arrive at

12



i m m N _ •

Xl fl 0

X2 fz 0

Xn-q-2 fn-q-2 0
= + (18)

Q-q- i fn-q- 1 0

_-I fn-i 0

£n fn i

where

fl = x2 + hl,j,i(xl,xz,• • .,xj-l)x
j=l i=2

f nEq £ 31.f2 = x3 + E hz,l,ixli + hz,2,i(xl) xi + h2,j,i(Xl,X2, • • .,Xj_l)!X
i=2 i=i j=3 i=2

f n-q-2ffn-q-2 = Xn-q-i + h(n-q-2),1,1xi + E h(n-q-2),j,i(xl'x2, • • ",xj-1)x
i=2 j=z i=I

n_q f i+ h(n_q_2),j i(xl'x 2, • . .,xj_l)x
j=n-q-1 i=2

fn-q-1 = Xn-q

fn-i = Xn

fn = 0

(19)
with new h functions•

Equation (18) is our canonical form for the nonlinear system (i). We have proved
the following result.

13



Theorem i. Suppose f and g in system (i) satisfy, in a neighborhood of the origin,

i. g,[f,g], • • .,(adn-lf,g) are linearly independent,

2. g,[f,g], . . .,(adqf,g) are involutlve.

Then there are new state space coordinates, which are also called xl,x2, . . .,Xn,
and a new control u so that system (i) becomes system (18).

If q = n - 2 then equation (18) is a linear system, and we have the results of
reference i.

Suppose we are given two systems, (18) and

fl "o"

92 f2 0

Yn-q-2 fn-q-2 0
= + v (20)

Yn-q-1 fn-q-I 0

#n-i fn-i 0

Yn 0 0
m N i N mu

D

with fl'f2 ' " " "'fn-i as in equation (19) except that xl,x _, • • .,Xn,U are
replaced by Yl,Y2, • • •,Yn,V and h by h. We wish to know if they are equivalent
in the sense that system (20) is simply system (18) in new coordinates

Yl (x),y2 (x), . . .,Yn(X),V(X,U). If this is true, there is a transformation from
system (18) to system (20). Since involutivity is invariant under these transforma-

tions we assume that the integer q is the same for both systems.

If (18) is equivalent to (20), then we have a transformation as above which

satisfies the following partial differential equations.

14



l _Yz

n _Y2

i_i _ fi = f2

(21)

_Yn-i fi
_=i _xi fn-1

Here we need Yl,Y2, • • "'Yn-1 as functions of x1,x 2, • • .,Xn_ I only and Yn a
function of xl,x2, • • .,xn. Writing these equations out we obtain

_Yl _Y_ _Yz

_x-_ (x2 + " " ") +_x 2 (x3 + " " ") + " " + _Xn_ l Xn

nr £
=Y2 + hl,j,i(Yi'Y_, " " "'Yj-I)Y Ij=l i=2

_Y2 _Y2 BY2

_x---_(x2 + " " ') + _-_2 (x3 + " " ") + " + _Xn_ z xn

=Y3 + _ h2,i,i yl + _ h2,2,i(Yl)Y i + "_ _ h2,j,i(Yl,Y2 .... 'YJ-I)Y
i=2 i=z . j=3 1--2

_Yn-I %Yn-1 8Yn-i

_xl (x2+ " ")+ _x---_(x3+ " " •) + " " "+ Xn_Xn_1

= Yn

(22)

In the left-hand side of the first (n - 2) equatlons, the terms

(_Yl/_Xn-l)Xn , (_Y2/_Xn-l)x n, • • .,(_Yn_2/_Xn_1)x n consist of functions of

x1,x 2, .... Xn_ l times the variable xn. In the right-hand side of these equations,

the only possible terms of this type are those that contaln a Yn (and this can occur

only if q = 0). But such terms are raised to powers of two or greater. Hence

Yl,Y2, • • ",Yn-2 are functions of xl,x 2, • • .,Xn_ 2 only.

We examine the terms (3yi/_Xn_2)Xn_l, (_y2/3Xn_2)Xn_1, . . .,(_yn_s/_Xn_2)Xn_1
from the left-hand side of the first (n - 3) equations. The only possible way such

terms can appear on the rlght-hand side of these equations is through Yn-I and Yn

15



(if q -<i), but again these are raised to powers greater than one. We repeat this
argument to achieve

Y11(xl,x2, • . .,Xn_q_ z)

Y2(Xl,X2, • ",Xn-q-2)

Yn_q,2(x1,x2, • .,Xn_q_ z)
(23)

Yn-q-l(Xl,X2, • • ",Xn-q-l)

Yn-l(xl,x2, • ",Xn-l)

Yn (xl,x2, .... Xn)

The partial differential equations (22) now become

n-q-2 _Yl

i_ _ (xi+1+...)

n-q

= Y2 + _ _ hl,j,i(Yl,Yz, • • ",Yj-I)Y i
j=l i=2

n-q-2 _Y2

i=_i (Xi+1 + " " ")_xi

=o oo n-q oo

= Y3 + _ h2,l,iyil + E h2,2,i(Yl )yl + E E h2,j,i(Yl,Y2 , • • ',Yj-I)Y i
i=2 i=I j=3 i=2

n-q-2 ._Yn-q-2
_x± (xi+_+ " " ")i=l

co , n-f2 oo= Yn,q-I + E h(n-q-2),l iyi + E h(n-q-2),j,i(Yl,Y2, . . .,yj_1)yj..i
i=2 j=2 i--i

n-q

+ E f h(Yl'Y2' " "'Yj-I)Y i
j=n-q- ! i=2

(24)

16



n-q-2 1

_Yn-q-I
_xi (xi+1 + ) + _Yn-q-ii=l " " _Xn-q-1 Xn-q = Yn-q

n-q-2 n-q
3Yn-q
_xi (xi+l+ " " ') + _" _xi xi+1 = Yn-q+1i=l i=n-q-1

i (24)

i (Cont)

n-q-2 n-i
_Yn-l _Yn-l
3Xi (Xi+1 + " " ") + E 3xi xi+1 = Yni=l i=n-q-l

Thus we have reducedthe equivalenceproblem of two systems to that of findinga
transformationof the form (23)which satisfiesequations(24). We presentexamples
in this direction.

Example i. We take two systems which are already in the canonical form.

i xlx_

x2= x3 (25)

X3 = U

Yl = Y2 + YlY_

92 = Y3 I (26)3 = V

Now by the resultsof reference8, there is no state space coordinatechanges
which takes one system to the other. However, if we allow transformationsalso
involvingcontrols,this is possible.

By equation (23)we have yl(xl), Y2(Xl,X2) and y3(xl,x2,x3). Substitutinginto
equation (24)we find

_Yl (x i xmx_) y2+ yly23_xI 2 + _ . =

3y2 8y2 (27)

Since we are looking for real-analytic solutions we expand

y2(xl,x2) = r20(xl) + r21(xl)x 2 + r22(xl)x_2 + . .
(28)

y3(xl,x2,x3) = r30(xl,x2) + r31(xl,x2)x 3 + r32(xl,x2)x _ + . . .

17



Thus the first equation in (27) gives

_x--?x2+Tf_xlxlx --r20(xl)+ r21(xl)x2+ r22(xl)x,_+ • • •

+ y1(xi)_r3u(xl,x2) + r31(xl,x2)x3 + r3z(xl,x2)x_ + . . .)2

Computing we have

Y2(x1,x2)= r21(xl)x2|
(29)

Y3(xl,x2,x3) r31(xl)x3_

and from equation (27)

r

.3xI x2 + _xI 2 = r21

(30)
_y_

_x-_ 2 + _ xlx +_x2 x3 = r,1,(xl)x,

Hence 3y2/_xl = 0, Y2(Xl,X2) = y2(x2) = r21x2, _y2/$x2 ='r_1(xl) = r31, and
3yl/_xl = r21 where r21 and r31 are constants. Integrating we have

Yl = r21Xl

Y2 = rSlx2

Y3 = r31x3

Since Y2 = r31x2, r31 = r21 and there is a constant r # 0 such that

Yl = rxl

Y2 = rx2

Y3 = rx3

To find r we substitute into the first equation in (30).

irx_x_=rx2+ rx_r2x_rx2 +

or

1 3
2 r = r

with solution r = 1/(2)I/2.

18



Hence the transformation

i
=--XI.

Yl _f

i_' r

= -- X 2
Y2

i
y_ = x 3

i
V = U

/f

takes system (25) to system (26).

Example 2. Again our systems are in canonical form

_i= X2+ x2x_}

x2 x3 (31)

X3 = U

2}Yl = Y2 + YlY3
Y2 Y_ (32)

3 = V

The partial differential equations (24) in this example are

2) = Y2 + YlY__xI (x2 + x2x 3

(33)
3Y2 2 3Y2

_x_ (x2+ x2x_)+_x2 x3 = Y3

We take the expansions (28) for Y2(Xz,X2) and y3(xl,xz,x3). The first equation in
(33) is

_Yl _Y_ 2 (xz)x_ +_x--_x2 + _x I x2x3 = r20(xl) + r21(Xl)X2 + r22 " "

( 2+ . )2+ yz(xl) r30(xl,x 2) + r31(xl,x2)x 3 + r32(xl,xz)x 3 • .
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Thisimplies

Y2(x1'x2)--r21(xl)x2
(34)

Y3(xl,x2,x3)= r31(x1,x2)x3

and from equation (33)

_Yl _Yx x2x__x--7x2+_ ffir2_(x_)x2+y_(xl)r_(xl,x2)x_

J (35)
_Y2 _Y2

Therefore, 8yl/3x ! = r21(xl), (_yl/_xl)x2 = ylr_1(x )o' _Y2/3xl = 0, y2(x2) ffir21x 2
_y2/_x2 = r,l(x2), where r21 is now a constant. _12s

' /ral(xl)xa= ylr31(xa)
(36)

r21ffirs1(x2)

Then rsl is a constantand r31 = r21. The first equationin (36)

2 (xl)r21x 2 = r31y I

is impossible to satisfy, and our systems are not equivalent.

We now discuss the linear subsystem contained in equations (18) and (19). It is

clear that {g,[f,g], . . .,(adqf,g)} being involutive implies the existence of the

linear subsystem

Xn-q-1 ffiXn_q

Xn-q = Xn-q-l

• (37)

%___--xn

_ffiu

However, there may be a "larger" linear subsystem as illustrated by the following

examp le.

20



Example 3. Consider on IR4

xl = x2 + x_

_2 = x3+ x_
(38)

X3 = X4

X4 = U

Now the set {g,[f,g]}is not involutive,implying q = 0. But the coordinatechanges

Yl = X1

Y2 = X2

2
Y3 = x3 + x2

Y4 = x_ + 2x2x 3 + 2x_

2)v = u + 2x2x _ + 2(x 3 + x_)x s + 6x2(x 3 + x2

yield the system

2 2 2
#z = Y2 + Y4 - 4Y2Y3Y4 + 4Y2Y3

#2 = Y_
(39)

Y3 = Y4

Y4 = V

Thus we have a "larger" linear system than indicated by the involutive assump-
tion. However, the coordinate changes just used are contained in those applied in

the proof of Theorem i. Hence the process we introduced in Theorem i will provide

the linearity beyond that given to us by the integer q. In our system (39) above we

can also use coordinate changes on Yz,Y2,Y3 space to send

F-4Y2Y _ "0", 3i
I
' 0 i 0

to

i i

0 _0m m

For system (39) let A be the distribution consisting of the vector field
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Then [f,A] C_ A _d [g,A] C A and A is an (f,g)invariant distribution with e = 0

and 8 = i. By Lemma 2, the dyn_ics on the quotient manifold _/A is linear.

We return to system (18)and let _ be the distributionspannedby the vector
fields

ii 0 0

0i 1

OI 0 0
' , • • 1

on • 0

ol • •

ol •

OI 0 0

where the i in the last vector field is in the (n - q - 2) position. Since the

Jacoblan matrix of f in equation (18) has only zero elements on _d below the
diagonal,

[f,A]C

Trivially,

[g,A]C A

and _ is an (f,g) invariantdistributionwith _ = 0 and 8 = i.

Hence the dynamicson the quotientmanifold ]Rn/A,where IRn is actuallyan
open neighborhoodof the origin, is linear. This dynamicsis actually the linear
part of equations (18)and (19),and linear design techniquescan be applied on
_n/A. As Example3 shows, if more lineardynamics exists,this procedurecan still
be applied.

Equations (18)and (19) emphasizethe essentlalnonlinearitlesof the nonlinear
system (I). Since a part of the system actuallyappearsin linear form, a design
techniquebased on equation (18) shouldbe simpler than on the original system.

If the integer q is equal to n - 2, then equation (18)is a linear system,
and we have a transformationfrom a nonlinearto a linear system. The design of an
automaticflight controllerinvolvinga multi-lnputgeneralizationof this transfor-
mation is presentedin references2-5, as mentionedbefore.

Supposewe have a multi-inputsystem

m

i=I

where f,gl, • • ",gm are real analytic. It is not difficult to extend the results

of this paper to develop a canonical form for equation (40)• We consider the case

n = 7, m = 2, and g1,[f,gl],(ad2f,gl),(ad3f,gl),g2,[f,g2],(ad2f,g2_-- - - - . . j . _ span _7.

22



We also assume the set {gl,g2,[f,gl],[f,g2]} is involutive, and a parallel result to

Lemma i implies the set {gl,g2} is involutive. Thus we take (possibly renaming
controls) , .

0 0 "

0 0

0 0

gl = i and g2 = 0

0 0

o 0

0 I
m . m m

After applying feedback we have as our system

xl fl 0 0

_'_2 fz 0 0

x3 fa 0 0

x4 = 0 + uI 1 + u2 0 (41)

£2 f5 0 0

x6 f6 0 0

_. 0 0 i

We use linear feedbackand linearcoordinatechangeson _{7 to take the lineariza-
tion of (41)about the origin to Brunovsky (ref. 7) form. Hence equation (41)
becomes

£i x2 + • 0 0

32 x a + • • • 0 0

x 3 x4 + • • 0 0

x4 = 0 + u I + u2 0 (42)

_s x6 + • • 0 0

x6 x7 + • • 0 0

x,. o o 1

where + . . . denotes higher order terms.

Replace x7 + . . by x7, x4 + . . . by x4, compute x7 and x4, and apply
feedback so that equation (42) becomes

23



• _1 x2 + • • • 0 0

£2 x3 + • • • 0 0

_ x4 0 O

_ = 0 + uI i + u 0 = f + ulgI + uzgz (43)

35 x6 + . . . 0 0

_6 x_ 0 0

.£_ 0 0 i

Next we compute
m _ _ m .

_fl _fl _2fi

_x_ _x? _x_

_f2 _f2 _2f2

_x_ _x 7 _x_

I 0 0

[ J[f'gl] = 0 ' [f'g2] = 0 ' [f,g2],g = 0 '

_fs _f5 _2f5

 xT
0 i 0

o o o

_x_x7 _x_

_2f 2 _2f 2

_x_x_ _x_

0 0

[f'gl]'g2 = 0 ' [[f'gl]'g_ = 0

_2fs _2fs
/

_x_x7 _x_

o o

_ o _ . o

24



The set {gl,g2,[f,gl],[f,g2]} being involutlve implies that 32fl/_x2_, _2fi/_x72,

32fl/_X_X 7 vanish for i = 1,2,5. Also, coordinate changes can be made on
xl,x._,xs,xs,x6 space to convert

"0" "0"
0 0

i 0

[f,gl] to 0 and [f,gz] to 0

0 0

0 1

.0. e

We assume (43) is in these new coordinates.

Replace x3 + . . by a new x3, x6 + . . by a new x6, compute x3 and x6,

make coordinate changes for x_ and xT, compute _ and xT' and apply feedback to
return the fourth _and last ent_ries in f to zero. Thus we find

Xl fl 0 [ 0

x2 f2 0 I 0

x3 f3 0 I 0

£_ = f_ + ul iI + uz 0 (44)

_s fs 0 I 0

x6 f6 0 I 0

• Lf 01 ix7 7.

with

fl = x2 + fl

f2 = x3

f3 =x_

f4 = 0 (45)I

fs = x6 [

If6 = X7

f7 = 0

21 beinga functionof xl,x2,x3,x5,x6 onlyand containingno linearterms.
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It is interesting to note the various equations (e.g., eq. (44)) that result if

we take different involutlve assumptions (in the above we took {gl,g2,[f,gl],[f,g2] }

as our involutive set). For example, if the sets {gl,g2,[f,gl],[f,g2]} and

{gl,g2,[f,gl],[f,g2],(ad2f,gl),(ad2f,g2)} are both involutive, we have a linear sys-
tem as shown in reference 6.

IV. CONCLUDING REMARKS

We have introduced a canonical form for the nonlinear system

which emphasizes the intrinsic nonlinearities of the system. This form is derived by
proceeding through a series of coordinate changes in state and control variables.

Applications of this canonical form theory to the problem of system equivalence and

an extension to multi-lnput systems are also discussed. If a system is transformable

to a controllable linear system, then its canonical form is the Brunovsky one.
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