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CANONICAL FORMS FOR NONLINEAR SYSTEMS
Renjeng Su,* L; R. Hunt,? and George Meyér
Ames Research Center
 suMvARY

Necessary and sufficient conditions for transforming a nonlinear system to a
controllable linear system have been established, and this theory has been applied
to the automatic flight control of aircraft. These transformation results show that
the nonlinearities in a system are often not intrinsic, but are the result of unfor-
tunate choices of coordinates in both state and control variables. Given a nonlinear
system (that may not be transformable to a linear system), we construct a canonical
form in which much of the nonlinearity is removed from the system. If a system is
not transformable to a linear one, then the obstructions to the transformation are
.obvious in the canonical form. If the system can be transformed (it is called a
linear equivalent), then the canonical form is a usual one for a controllable linear .
system. Thus our theory of canonical forms generalizes the earlier transformation
(to linear systems) results. Our canonical form is not unique, except up to solu-
tions of certain partial differential equations we discuss. In fact, the important
aspect of this paper is the constructive procedure we introduce to reach the canoni-
cal form. As is the case in many areas of mathematics, it is often easier to work
with the canonical forms than in arbitrary coordinate variables.

I. INTRODUCTION

Suppose we have a ﬁonlinear system
x(t) = £(x(t)) + u(t)g(x(t)) (1)

where f and g are real-analytic vector fields on R™ and £(0) = 0. If -
f(x) = Ax and g(x) =b, where A is nxn and b 1is nxl, and b,Ab, . . LA D
are linearly independent, then we can always find new coordinates Y1sY2s « o «3¥nsV,
where the y; are functions of x, and v 1is a function of (x,u), such that the
system becomes a "string of integrators"

Y1 =Y,

¥, = Vs
. _ (2)

Yn-1 = ¥n

Vo=V
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This is a canonical form for the controllable linear system.

We let [f,gl, (ad®f,g), . . ., (adKf, g)s . . . denote successive Lie brackets
(definitions are given in the second section) of the vector fields f and g from
equation (1). If g,[f,gl, . . ., (ad® f,g) are linearly independent and
g, [f,8], « - ., (ad™ ?f,g) are involutive, then from reference 1 .we know there ex1sts
a neighborhood of the origin in x-space and new coordinates y;,¥,s « « .>¥n and
control v so that we have equation (2). Thus the system (1) appears as a nonlinear
system only because of an unfortunate choice of coordinates,: and system (2)is a’
canonical form for system (1) :

If we want-to bulld a controller for system (1), then a controller can- be .
designed for system (2) and applied to system (1) ‘through the transformation (from -
x~-space to y-space) and its inverse. This is the ‘basic design technique for-the
automatic flight control of aircraft applied in references 2-5. The general multi-" -
input version of transformations of nonlinear to linear systems is given in
reference 6. ' : :

Suppose we retain the assumption that g,[f,gl, . v ., (ad®™ f,g) span IRR for
points near the origin, but remove the assumptlon about involutivity. What canonical
form can we then derive for system (1)? We certainly want this canonical form to - .=
show "a certain amount of linearity." Under what Lie bracket conditions does this -
canonical form exist, and can we actually present the form in’ such a way that it
accentuates the important Lie brackets? : :

For example, the system

.« _ 2 : 2

X, = X, + xj X, + X3 0

. 3 . . . .

X, = X3 + X, , f = |x; + xg s g =10 : : : 3)
Xy = u -0 1

I y ‘ |
can be transformed by y, = X;, ¥, = Xy ¥3 = X3 + Xy, V.= u + 3x§(x3 + xg) to

Jo=9, + (33 = yD2 =y, +v5 - 2yjy, + 3
¥, = Vs , | | (4)
}.’3 =v
Lettj_ng 571 = yl + (y;’)/z’ §2 = yz’ 3;3 = ya, {'I = Vv, we have (deleting the ~ notation)
V. =¥, +y5+y,°
V, =

v, i (5)
3.73 =V '

If we write system (5) as y = f(y) + vg(y), system (5) cannot be reduced to the
linear system (2) since the set {g,[f,g]} is not involutive (see ref. 1) . However,
because




0] | 2531 - : -2 [+ eyl
g=fo|, Ea=|1]|., [BE]-[o] @Ep=| o - ®)
1 0 0 _ 0

we can write the form (5) as

V1 0 0 il [v.l [vs
o |=|Of+]ys| +]O |+]Oo}+]oO
v, v 0 0 _ 0_ 0

1

= = - A0z =1 = 2 (7)
gv + [f’g]‘y3=o vy + 2!_[f,g],g].y3=o v3

N

+ adz?," '
( g) y,=y,=0 72

L, 57 = 2F = 6
+ 6!( (ad”[£,8], (ad f’g)) ‘Y2=Y3=0 Y2 ‘

In equation (5) we point out the two dimensional linear subsystem which is a string
of integrators
Y3 :
' (8)

Vg = v

e
NS
]

Equation (5) (or (7)) is the canonical form of interest to use for this example.
We derive such forms for n dimensional systems, and give conditions under which a
form shows a particular type of linear subsystem (as in eq. (8)). We provide a con-
structive procedure to move a system from the original coordinates to the canonical
form, and this procedure is the main contribution of this paper. Also, the canonical
form is unique only up to solutions of partial differential equations we introduce.

These canonical forms are important because they show the intrinsic nonlineari-
ties of a system and the obstructions to having a transformation to the linear sys-
tem (2). Also, as in all areas of mathematics, it is often much easier to prove
theorems if we assume some canonical form which exhibits the basic mathematical prop-
erties (e.g., Jordan form, rational canonical form, companion form, ‘Brunovsky (ref. 7)
form).

As noted before, one interesting problem is characterizing those nonlinear sys-
tems which can be transformed to controllable linear systems in canonical form (this
research contains multi-input as well as single-input results). We refer here to the
work of Krener (ref. 8), Brockett (ref. 9), Jakubcyzk and Respondek (ref. 10),
Hermann (ref. 11), and the authors (refs. 1, 6, and 12-15). Hermann applies the.
theory of equivalence of exterior differential systems to study canonical forms under
feedback for nonlinear systems.




The results of this paper can easily be generalized to multi-input systems. We |
consider this problem and examine a two-input control system as an example at the
end of the paper. ' ‘

IT. DEFINITIONS AND PRELIMINARIES

For vector fields f and g on R” we define the Lie bracket of f and g
: =2f 28
[£,8] = 5% & 7 Bx £

where 09f/9x and dg/ox ‘denote Jacobian matrices. This is the negative of the stan-
dard definition, but it allows for easier notation in our present study. We can also
define [f,[f,g]], [gs[f,g]1, (£,0£,[£f,8111, (g, [f,[f,g]]1], etc. 1In fact, we let .

(adof’g) =g

(adif,g) = [f,g]
(ad’t,g) = [¢,[f,8]]
(adKf,g) = [f, (adX ™ f,g)]

A set of g?w (smooth) vector fields {X,,X,, . . "Xr} on R" is involutive if
there exist @ functions yijk(x) so that '

r
[X,X51 G0 = 30 vy 0K (), 124, §S71, 44
k=1 ' L

If £ 4dis a vector field on IR and h(x) is a € function,v then

Le(h) = (dh,£) = 2B g 4+ 00 ¢ o 420

9%, ax, 2 d%p fa

where dh is the gradient of h. Similarly, for a €~ one form
W= wy dx; +w, dx, + . . . + w, dx, we define
(w,£) = w fy +wfy + 0 0 o+ wyfy

and the Lie derivative of w with respect to f

[ du* )* of
Lf(w)-(axf +w-é-;

where * denotes the transpose and dw*/3x and 0f /9x . are Jacobian matrices. For g
a vector field on IR" and f, h, and w as before we have the formulas (see ref. 12)




Lf(w,g) (Lf(w)9g? - (ms[f:g]> | . | | “.;(9)

dLg (h) ‘= Lg (dh) = | (10)

The following lemma is implied by results in reference 1, but for the sake of
completeness, we present a proof. Let f and g be as in system (1) (the assumption
of real analytic can be relaxed).

Lemma 1. Suppose the set of vector fields{g,[f,gl, . . .,(ad™ *f,g)} are linearly

independent and {g,[f,gl, . . .,(ad%f,g)} is involutive for some integer q,
1 2qsn-~2. Then the sets of vector fields ‘ .

{g’[fsg]s . o -,(adq"lf,g)}

(g 1281, « . .,(ad9"2¢,g))

'{g,[f.g]}

"are also involutive.

Proof. Since {g,[f,g], . . .,(ad9f,g)} is involutive, by the classical'Frobenius

Theorem there are functions T;,Tpy . . .,Tp gy S0 that dT,,dT,, . . .,dTp_gey
are linearly independent and (dTy,(adJf,g)) =0, 1 =1,2, . . .,n~-q -1 ang

j=0,1, . . .,q. There is at least one Tj, say Tn-q-1, so that
(dTp-q-1, (@d¥£,g)) # 0

Define Tpeq = Le(Tp-q-1)

By formula (9)
LeCdTy_q_y» (add 7£,8)) = (Le(@Tp_gy), (add 2,80 ~ (AT ;. (adiE,g))
for j =1,2, . . .,q
Thus
(Lg (dTp-q-1)» (@dd " £,g8)) = 0
and by equation (10)
(AT, o, (add™'f,8)) =0,  §=1,2, .. ..
Hence

(dTy,(addf,g)) =0 , i=1,2, .. .,n-q and j=0,1, . . .,q -1




Formulas (9) and (10) are applied again to show
(AT, g, (ad¥E,8)) = (AT, o ;. (ad¥™£,g)) # 0

We claim that the vectors dT;,dT,, . . .,dT,_, are linearly independent, know-
ing that dT,,dT,, . . .,dTn_q_l. are independent by assumption., Take constants
C135Cps + « «sCp_q SO that

¢y, dTy + ¢, 4T, + . . . + cn_q'dTn;q =0

We dual product this with (adif,g)

c,{dTy, (ad9f,g)) + c,(dT,, (adlf,g)) + . . . + Cn-q{dTy-qs (adf,g)) = 0

and find that cp_q = 0. Hence ‘¢, =c, = ., . . = Cp~g-1 = 0 and the desired gra-
dients are linearly independent. ‘ :

By the Frobenius Theorem, linearly independent gradients satisfying

Ty, (addf,g)) =0, i=1,2,...,m-q and §=0,1, . . .,q -1

imply that the set {g,[{f,gl, . . .,(ad9"*f,g)} is involutive. Repeating this process
q -~ 2 more times completes the proof. ' ;

A €% distribution A on IR® is an assignment A(x) of a linear subspace of
R at each point x of RP. We assume that A is of positive constant dimension
k and identify A with the set of vector fields in it. We also let A be involu-
tive and regular (in ref. 16 this means that the quotient set IR}/A is a ®° mani-
fold). The distribution A is (f,g) invariant if there exist a(x) and B(x) so that

[£,A) c A

n

[g,4] c A

where f = f + ga and § = gB. Here f and g are as in equation (1).

The following lemma is found in reference 16.
Lemma 2. Let A be an (f,g) invariant regular distribution. Then A induces a
regular equivalence relation on TR™ such that the dynamics in system (1) passes to
the quotient denoted by 1R"/A, whose dimension is n - k.

In our later application of this result, since our theory is local, IR® is
replaced by an open neighborhood of the origin.

III. CANONICAL FORMS

We consider system (1) and assume the following conditions hold on an open
neighborhood of the origin in 1R™. The vector fields g, [f.gl, . . .,(adn-lf,g) are
linearly independent and the set {g,[f,gl, . . .,(ad9f,g)} is involutive for some




fixed integer q, 0 X q £ n - 2. All arguments and results are local and hold in a
neighborhood of the origin. Some coordinate changes used are similar to those in
reference 9. o

Since g 1s nonvanishing there is a well known coordinate change so that g
becomes .

p- _ =y

s
We thus assume that equation (1) is
‘ilj ETh 2
X, £, 0
: = : +u : (11)
Xn-1 fa-1 0
Lin. LE, |1

Using.feedback (new u =o0ld u + f,) we can assume £, = 0.

Let
X = Ax + bu = %%é?l x + gu _ C(12)

be the linearization of system (11) about the origin. Since at the origin

g = b,[f,g] = Ab, . . .,(adn'lf,g) = A" b, we have that this-linearization is con-
trollable. It is well known that coordinate changes and feedback can be applied to
take system (12) to the string of integrators (2). Hence equation (11) can be put
in the form : : :

" %, ] X, + . . )] 0]
i2 Xs + . . . 0
. = o + u - =f + ug : (13)
-1 Xp+t .o« 0
[ %, . 0 . 1

where + . . . denotes higher order terms.




Replace x, + . .. by a new Xy compute xn, and apply feedback to return. the
last entry in f to 0. For equation (13) we have

5] o . o]

iz Kyt .. 0

. = .« +ulel=f+ug (14)
}.{n—z xn-l + . L] L] O
in-l Xn 0

X, (0} 11

We consider the terms
ay (X3 5Xy5 o o ,,xn_l)xﬁ

8y (XysXps o o «sXp-1)Xp

in the f vector field. Using coordinate changes on X15Xps « o +sX,_y Space we
take '

— o . e

a; (Xy5%X,5 o & .,xn__l)xn 0
a, (Xq,%,, . o e sXpog )Xy 10
. . . to . }(*n.
an_z(xl,xz, . . .,xn_l)xn 0
Xp 1
- 0 - 0]
Thus we have form (14) where a; =a, =. . . =a,, = 0.

We have not used the fact that the set {g,[f,g], . . .,(ad9f,g)} is involutive
if q > 0 and the implications of Lemma 1. We take (14) and compute certain Lie
brackets.




We find

B [ af, | 82, |

0 N 2

Xn ox,

of 32%f

0 5 2 2

Xn Bxg

g=||., (£ge1=| . |, =[[f,g],g] =1

0fnq a2fn—1

0 2

9Xp axn

with 9f, /9%, =1 ‘and " 02%f,.,/3x2 = 0. By Lemma 1 we must have Y, (x) and v, (x)
such that

[1£.81.8] = v. ) [£.8] + v, (o)g

0 vector and

ThlS 1mp11es that [[f,g],g]
92f,-1/3x3 = 0 (and hence

9%f, /oxh = 3%f,/0x4 = .

3f /3%, = 0, 9f,/9%, =0, . . ., 3f, /3%, = O §ince a, =a, =...=a,,=0).

Replace x, , +. . . 1in (14) by a new x,_,, compute Xn—l’ make coordinate
changes for x,, compute %, and apply feedback to return the last entry in f to O.
For equation (14) we have

_5(1- —x2 + .. ] 0]
X, Xy + . 0
T lxpe, v .. TY o] sEtve "(15>
Xy Xn-1 0
Xp-1 X, 0
-in_ - o - 3_




We examine the terms
[_bl (xlv,xz, . . c,}[n__z)xn—l

bz(xl,xz, . . .,xn_z)xn._1

bp-g (xy5x%,, + . ¢ sXpal, )Xp g
*n-1,
0
.. 0 o

in the f vector field from equation (15). Coordinate changes on
Xl ’XZ 9 o e . ,Xn_2 SpaCe move .

by (X15Xps o .’xn—z),... KN
bz(xl,xz, . . "xn—z) . 0
. o to .
bn_a(xl,xz, R 0
1 {1
0 0

! 0 J Lo

Hence in equatioﬁ (15) we assume b1 = b2 =, . = bn_3 = 0.

If q > 1, then {g,[f,g],(adzf;g)} is involutive by Lemma 1. Computing again,

] T KN | - [e2g,]
0 0 : - —
3%p—y 0x2_,
of, | I 8%,
0 0
a‘x’l.'l"l axrzl...]_
g=1" s [f,g] =1- s (adzf,g) = ¢ ’ [(adzf’g)s[f’g]] = ¢
0 0 1 0
0 1 0 0
1 0 0 0
m-J s el o - e —

10




There are yl(x), Y, (x), and Y4 (%) such that

[(ad?t.0).1£.81] = v, () (ad?E,8) + v, () [£,8] + v, (0)g

But this implies that azfi/axﬁ_1 =0 for i

Oy /Ay = 0, 3, /0%y

by, =b, =. . .=by ;= 0.

We then repeat the above arguments until our equation (15) becomes

x| T o, T [0
x, £, 0
Kn-qe2| | facq- 0
2| _[*e=qm2f
*n-q-1 fn—q-
}.{n.—l fn"' 1 0
X, 0 J 1
with
£, =x, + > hy , gxp + .3 1 (X%, o LsXy 1)
i=2 j =2 i=
£, = x, + 2: h, . ix7 + 2: h2,J 1 (X15%,,
i= j=2 i=1
n-q ©°

fa-q-2 = Xp-q-1 + 2: hn-q-2),1, ix + 3 > h(n—q-z) s i(xl,xz, o e esXu

j=2 i=1
fn-q-1 = Xn—q

fh-1 = %p

the definitions and functional dependences of the h's

11

= 1,2,

0, . .., 0f ,/8x,_, =0 since

.,n‘é 3, and hence

being obvious.

a7




We apply coordinate changes on KysKys o +»¥Xp_q-1 Space to take

hl,n—q;l(xl’XZ’ .. .,xn_q_l)
hz,n—q,l(x1’x2’ c ;“Xn—q—l)

h(n-q-z),n—q,l(xl’xz’ . "xn?q-l)

-

J

o

1
0
o 0
Also in new coordingtes on xl,xz, » ¢ +sXy_q-, SPace
hl’n_q_l’l(xl,xz, . .‘.,xnfq_z)

h2,n"'q-1,1(x1’x2’ » . »‘ ,Xn_q_z)

N(n-q-3) ,n-q-1,1 (KysXs . *sXp_q-2)

{ .

Similar arguments allow us to arrive at

12

1+ h(n_—-q—Z)',n*q—l,l(Xlslfz, . . Osxn_q__z)

to

appears as

prew  avey

0




- hamn e —— o i
r- Xy fl 0
X, £, 0
*n-q-2| fn-q-2 0
q = ) + . ‘ ‘ ‘ (18)
kn_q_l fa-q-1| - |0 o
).{n"'l fn-l 0
N *n £ 1
where -
n-q .
f, = x, + 2: }: th,j,i(xl,xz, . . "Xj~l)xj
j=1 i=2
00 i 00 ‘ i n__q © i
B =%+ L By, ixy * Z h2,2,i(xl)xz +X X o, j,1(XusXas o o o5%yo1)xy
i=2 i=1 j=3 i=2 ‘
3 i K ¢ | .
fn—q-z = Xp-q-1 t z h(n_q—z),1,1X1 + Z E h(n-q—z),j,i(xl’XZ’ . . ”xj—l)xj
P 1=2 : j=z i=1 k ‘ ‘ g
n-q © ’ ‘ ’ )
+ Z 2 h(n_q'z),jsi(x],-’xz’ *e "Xj-l)Xj ‘
j=n-q-1 i=2 » » ) |
fa-g-1 = ¥n—q
fn-1 = Xn
fo =0 -
(19)

with new h functions.

Equation (18) is our canonical form for the nonlinear system (1). We have proved
the following result.

13




Theorem 1. Suppose f and g in system (1) satisfy, in a neighborhood of the origin,
1. g,[f,gls + « .,(ad®1f,g) are linearly independent,
2. g,[f,gl, . . .,(ad9f,g) are involutive.

Then there are new state space coordinates, which are also called X3sXps o o esXps
and a new control u so that system (1) becomes system (18).

If q =n - 2 then equation (18) is a linear system, and we have the results of
reference 1.

Suppose we are given two systems, (18) and

Yy L] |
Y2 £, 0

Yn-q- foq-2 0 :

S I B (20)
Yn-q-1 fn-q-1 0
in—l fn-l 0
y 0 0
houss yn -~ - et e o
with ‘f f . .,f ~ as in equation (19) _except that x,,x,, .'.'.,xn u are

replaced by yl,yz, « + +s¥ysv and h by h. We wish to know if they are equivalent
In the sense that system (20) is simply system (18) in new coordinates

yl(x),yz(x), o o os¥n(x),v(x,u). If this is true, there is a transformation from
system (18) to system (20). Since involutivity is invariant under these transforma-
‘tions we assume that the integer q is the same for both systems.

If (18) is equivalent to (20), then we have a transformation as above which
satisfies the following partial differential equations.

14




o —f; = £
i=1 aXi i 1
fi REWIN
: EY P SR Y}
i=1 9%y ,
} .
. (21)
9Yn-1 =
f1 = £,
& Toxg n 1‘

Here we need y,,y,, . . +s¥n-; as functions of x;,x,, . . «sX,_y only and Ynp @&
function of x3,%X5, . . +sXp. Writing these equations out we ohtain

3y, oy : 3y, )

1
3;: (x2 + ... + 3;;-(x3 + .04+ . .+ 3Xn-1 Xn
n-q s
=y2+.2 hl,j,i(yl’y2’ . . .’yj—l)yj
o j=1 d=2
9y, Y2 dy,
3;; (X2 + .. .0) + 5;; (Xa + .0 )+ . .. +_3Xn_1 Xp

o ® n-q o g 4

= 1 = . . 1
=Y3+iZ:2 hy,197 121 hy 2,1 ()Y + > X By 3,1 01s¥as - ©sY§-1)7j
= = . =92

(2N
]
w

e

oy : dy : y
n-1 n-1 n-1
3%, (x, + . . ) + x, (xg+. . ) +. ..+ s
= Yo | )

(22)

In the left-hand side of the first (n - 2) equations, the terms

0y, /9%p-1)%ys (BY,/3%n—1)%ys « o oy (3Ypep /3%y )%y consist of functions of

XysXys o « +5Xy_, times the variable x,. In the right-hand side of these equationms,
the only possible terms of this type are those that contain a ¥n (and this can occur
only if q = 0). But such terms are raised to powers of two or greater. Hence

Y1s¥2s ¢« « «s¥p-, are functions of Xy1sX3s o« «sXy ., Only,

We examine the terms (3y,/dxp—,)Xp-1, (3Y,/8%p-p)%n-y1, « . s (Oyp-3/9%p-,) %1

from the left-hand side of the first (n - 3) equations. The only possible way such
terms can appear on the right-hand side of these equations is through Yn-1 and y,

15




(if q =
argument to achieve

yl(xl ’x2’ . . . ,Xn_q_z)

Yo (RysXys v o wsXpogoy)

Yn-q-p (%1 5%,

« + esXpog-y)

yn—QEl(xl’XZ’ ,

"xn—q-l)

“2Xp_y)

Yn(XysXps o o <aXpy)

Yn-1 (%1%,

The partial differential equations (22) now become

n"‘q"' 2 ayl

(x + .. 0.)
Eg; X X4 it+1
n-q : .
=y, + 2: z: h, 1,4, i(yl,yz, SRS F) 4
j=1 i=2 o
n-q-2 8y2
(Xi+1 + . . .)
£§; 3xy *i
© (o]
i i
+ 2 hy 1,491 F 2. h h, , i(yl)y2 + 2: 2:
i=2 i=1 j=3
n-—q—2 3yn_ -
i=1 ——3;%—_ (Xi+1 e .)

o . n-q-2
= ; T ' i :
T Yn—q-1 * iz: h(neq-2),1,191 Z
) : = j=2

E(leyZ’ . . "yj_l)Y§

.P18 :N

n-q
D>
j=n-q

2

-1 1

16

1), but again these are raised to powers greater than one.

2,,102¥2s -

~E§i'h(n‘Q'2)sj,i(yl’yz’v’ . "yj'l)yj

i
. st_l)Yj

We repeat this

(23)

(24




&P gy ' ayn—g-ll B |
& aXi (xi“l"l + . . .) + axn_q—l xn__q = yn_q
n-q-2 3y  nq gy
& Toxg Gjpy + 00 ) juley IR h T Yamgh
B B > (24)
- (Cont)
n-g-2 9y . , ol ey,
c—— (Xi+1 + . e ) + o Z "—"—}‘ X + =Y
i;l. axi i=n-q—1 3}{1 it n J

Thus we have reduced the equivalence problem of two systems to that of‘finding a
transformation of the form (23) which satisfies equations (24). We present examples
in this dire¢tion. = . 8 ‘ : v

Example 1. We take two systems which are already in the canonical form.

il = x2'+‘% x1x§
Uk, = x, | (25)
X =.u

V. =¥, +v,7>

2 =¥s (26)

‘G

Yy =v
Now by the results of reference 8, there is no state space coordinate changes
which takes one system to the other. However, if we allow transformations also
involving controls, this is possible.

By equation (23) we have y,(x;), y,(x,,x,) and y,(x,,X,,%5). Substituting into
equation (24) we find o

By |

1 1

% (?2 +-§ xlxg) =y, + ylyg
71 o

(27)
£ X N N WL S
Ix, F2 T *1¥3 3%, ®3 T Y3
Since we are looking for real-analytic solutions we expand
Vo (R1a%,) = To0(%)) + Tpy (%)%, + 15, (x,)%; + . '
(28)

_ . ' 2
ys(xl,xz,xa) = r30(x1,x2) + ral(xl,xz)x3 + rsz(xl,xz)x3 + . .

17




Thus the first equation in (27) gives

3}’1 8}’1 1 ‘ 2 ' ‘ . s 2
5;; X, 5;;-(5 xlxg) = rzo(xl) + r21(x1)x2 + rzz(xl)x2 + .. .

- ) . . 2
T Gy (rpoxy) kT (xR, +T, (xx )R ')
:Computing we have

Yo (xy5%,) = 1,, (%)%,

. (29)
Y3 (XyaX,5%g) = 1y (%)%
and from equation (27)
391 ayl.l 2 _ o . ' \2
ox, 2 +,axl'§ X1X3 = Ty (%)%, + y1(x1)(r31(x1)xa)
| ©(30)

3y, TN\, ,
%, (%2 3 x1x3) * %, X T r3;(x)) %,

Hence 38y,/dx, =0, y,(x;,%,) = y,(x,) = Ty1X,, 3Y,/3%; =1y, (x;) = ryy, and
dy,/dx, = r,, where 'r,, and ry, are constants. Integrating we have

y, =r,.x
Yo = 3%,

Y3 = Ig,X

3173
Since y, = ry,X,, ry, = r,, and there is a constant r # 0 suqh that
¥y, = rx;
¥y, = rX,
¥y = rX,

To find r we substitute into the first equation in (30).

l ¢
rx, +-§ rxlx

2 v 2.2
3 rxz + ;xlr Xy

'or
1 .
7 r - r

with solution r = 1/(2)1/2.
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Hence the transformation

Y3

takes system (25) to system (26).

We take the expansions (28) for yz(xl,xz)
(33) is

=T, () +r,, (x))x,

+ yl(xl)(rso(xl,xz) +

NEE F 1 L

e

,
+ rzz.(xl)x2 + .

X3

Example 2. Again our systems are in canonical form
X, = x, + xzxgw
X, = X, (. (31)
is =u /
Vi =Y, * yly§’
Yo = Vs o : S - (32)
}.’3 =V )
The partial differential equations (24) in this example are
dy
1 2y _ 2
B%, (x, +3,%3) =y, +v,7;5
(33)
3y2 2 ‘3y2
——SXI (X2 + X2X3) +"‘—‘—‘3X2 X3 = ys

and y,(x,,X,,X,). The first equation in

)

' 2
ral(xl,xz)x3 + rsz(xl,xz)x3 + .

19




This implies

¥, (x5%,) = £, (x))x,

. (34)
Y3 (xysX%,5%,) = 14y (X,%,)%,
and from equation (33)
oy, 3y1 2 . ' '
3;; Xy +'§§; X,X3 = Ty (%)%, +-y1(x1)r§1(x1,x2)x§
(35)
Y, 3y,
: 2

0%, Gy + x,%3) + 3%, 3 T3y (Xy,%y) %y

Therefore, dy,/dx, = r,,(x;), (dy,/3x,)x, = ylrgl(xixz), ayz/axl =0, y,(x,) =1r,,x%,,
dy,/3x, = ral(xz), where r, ~is now a constant. 1so

ry, (%)%, = ylrgl(x2)
(36)
T,y =Ty, (x,)

Then ry, is a constant and ry, =r

1 21°

The first equation in (36)
r, x, = r2 v, (x.) ]
2172 3171 \™
is impossible to satisfy, and our systems are not equivalent,
We now discuss the linear subsystem contained in equations (18) and (19). It is

clear that {g,[f,g]l, . . .,(ad%f,g)} being involutive implies the existence of the
linear subsystem o 3

*n-q ~ *n-q-1
. | (37)
Xp-1 = ¥
X, = u

However, there may be a "larger" linear subsystem as illustrated by the following
example.

20




Example- 3. Consi@qrson R

» —- ‘ 2
2 =% + xuW

. 2
X, = X, + X

2 3 2

. (38)

Xs = Xl,
Xy, = u )

Now the set {g,[f,gl]} is not involﬁtive, implying q = 0. But the coordinate changes

<
o

n

»
N

= . 3
¥y, = x, + 2x,x, + 2x;

<
H]

2 ' 2
u + 2x,x, + 2(x3 + xz)x3 + 6x2(x3 + xz)

yield the system

Y, =¥, +VE - by,y,y, + 4y§y§1
Y, =Y, | ' o
. ( o (39)
Y3 = ¥y . .
5’4 =v )

Thus we have a "larger" linear system than indicated by the involutive assump-
tion. However, the coordinate changes just used are contained in those applied in
the proof of Theorem 1. Hence the process we introduced in Theorem 1 will provide
the linearity beyond that given to us by the integer q. In our system (39) above we
can also use coordinate changes on- y,,y,,y; Space to send b ” '

ﬁ4y2y; 01
0 0
’ - to
1 1
. 0 - Lol

For system (39) let A be the distribution consisting of the vector field

© O O
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Then [£,A] C A and [g,A) g‘A -and A is an (f,g) invariant distribution with. o = 0
and B = 1. By Lemma 2, the dynamics on the quotient manifold R*/A 1is linear.

We return to system (18) and 1ét A be the distribution spanned by the vector
fields . ! l

0 1 .
0 0 0
s s . 1
. . 0
| 01 Lo | 0]

where thé 1 din the last vector field is in the (n-q-2) position. Since the
Jacobian matrix of f in equation (18) has only zero elements on and below the
diagonal,

[£,4] €A
Trivially,
[g,4] € A
and ‘A is an (f,g) invariént distribution with o =0 and B8 = 1.

Hence the dynamics on the quotient manifold TR®/A, where WR? is actually an
open neighborhood of the origin, is linear. This dynamics is actually the linear
part of equations (18) and (19), and linear design techniques can be applied on
R"/A. As Example 3 shows, if more linear dynamics exists, this procedure can still
be applied. ' ' ' :

Equations (18) and (19) emphésize the essential;nonliﬁearities of the nonlinear
system (1l). Since a part of the system actually appears in linear form, a design
technique based on equation (18) should be simpler than on the original system.

If the integer q is equal to n - 2, then equation (18) is: a linear system,
and we have a transformation from a nonlinear to a linear system. The design of ‘an
automatic flight controller involving a multi-input generalization of this transfor-
mation is presented in references 2-5, as mentioned before.

Suppose we have a multi-input system

RS . - m ) ' ’
x(e) = £(x(e)) + }:1 uy (£)gy(x(£)) (40)
i= .
where f,g,, . . .,g, are real analytic. - It is not difficult to extend the results

of this paper to develop a canonical form for equation (40). We consider thg case
n=7,m= 2, and gl,[f,gl],(adzf;gl),(adsf;gl),gz,[f,gz],(adzf,gz) span IR’.
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‘We also assume the set {gl,gz,[f,gl];[f,gz]} is involutive, and a parallel reéult to
Lemma 1 implies the set {g,,g,} is involutive. Thus we take (possibly renaming
controls) - R L

- - "
0 0 '
0 : 0
0 : 0
g, =1 and - g, =10
0 0
0 0
0 1J
After applying feedback we have as our system
. !-. —— ’—- — P> -y ol
X, £ 1 |0 0
x, f, 0 0
X, f, 0 0
%, [={o|+u1]+u]o o (41)
kg £, 0 0
&6 £, 0 0
%] L0 LO] |1

We use linear feedback and linear coordinate changes on TR’ to take the lineariza-
tion of (41) about the origin to Brunovsky (ref. 7) form. Hence equation (41)
becomes

%] [e+.. o] [0

X, Xg+ .o . 0 0

X4 X, t ... 0 Q

%, | = 0 +uf1]+ o0 | (42)
X Xg + . . 0 0

is x, + . . 0 0

X 0 0 1

L 7. e - e e

where + . . . denotes higher order terms.

Replace x, + . . . by x%,, %, +. .. by X,, compute X, and x,, and apply
feedback so that equation (42) becomes '

23




b oved

Next we compute

(f,g,] =

,(kz + .. ; i
_—
Xy
- 0 + U,
Xg + .
Xy
0
- -
3f,
Bxu
3f2
Xy
1
0 ’ [f.gz] =
af ¢
Bxu
0
0 -
[~ N2
3%f,
3X“BX7
2
3 f2
Bxuax;
0
f,8,]1.8, 0
2
] f5
8x48x7
0
h— 0 w——

of
90X,

of,

8x7

s
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[[f,gll,gl] =

2
] f1
2
x5
2
3°f,
2
8x7
0
0
2
3°f,
ng
0
0
e, -
razfl
Bxﬁ
8%f,
Bx:
.0
0
9%f,
axﬁ
0
0 ]

0]=f£f +ug;, +u,g,

(43)




The set {gl,gz,[f,gll,[f,gz]} being involutive implies that azfilaxﬁ, Bzfi/axg,
82f1/8x43x7 vanish for "1 = 1,2,5. Also, coordinate changes can be made on
XysX,5Xg,XgsX, Space to convert Co

0 0
1 P o
[f.g,] to |0} and [£f,g,] to |O
S 0 0
0 1

o] ERUE
We assume (43) is in these new coordinates.

Replace x, + . . . by anew x5, Xg + . . . by a new xg, compute 'ia and is,
make coordinate changes for x, and x,, compute X, and k,, and apply feedback to
return the fourth and last entries in £ to zero. Thus we find

EAA 0] [o]
X, £, 0 0
X, £, 0 0
X, [ = [ £, | +uf 1|+ uy|0 44)
X5 £ 0 0
Xg £, 0 0
R I 2 B S B
with
£, = x, + flw
f, = X,
£, =%,
£, =0 r (45)
f5 = %4
fo = %y
£, =0 ‘

%1 being a function of x;,X,,X3,X5,Xg only and containing no linear terms.
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- It is interesting to note the various equations (e.g., eq. (44)) that result if
we take different involutive assumptions (in the above we took {81,825 [f,811,[f,821}
as our involutive set). For example, if the sets {g1582.[f,8,1,[£,8,]1} and

{gl,gz,[f,gll,[f,gz],(adzf,gl),(adzf,gz)} are both involutive, we have a linear sys-
tem as shown in reference 6.

. IV. CONCLUDING REMARKS

We have introduced a canonical form for the nonlinear system

xR = £(x(6)) + u(t)g(x(v))

which emphasizes the intrinsic nonlinearities of the system. This form is derived by
proceeding through a series of coordinate changes in state and control variables.

Applications of this canonical form theory to the problem of system equivalence and
an extension to multi-input systems are also discussed.

If a system is transformable
to a controllable linear system, then its canonical form is the Brunovsky one.
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