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This is the fourth Semi-Annual Progress Report describing research on the

dissociative recombination (DR) of diatomic ions with electrons.

Introduction

I have developed a new L^ approach for the calculation of the threshold

molecular capture width needed for the determination of DR cross sections. The

widths are calculated with Fermi's golden rule by substituting Rydberg orbitals

for the free electron continuum coulomb orbital. It is shown, using the £u

state of 02 as an example, that the calculated width converges exponentially as

the effective principal quantum number, n , of the Rydberg orbital increases.

The threshold capture width, determined in the limit n*-*-00 is then easily ob-

tained. Since atmospheric recombination involves very low energy electrons

(Te<3000K), the threshold capture widths are essential to the calculation of DR

cross sections for the atmospheric species studied here. The approach described

below makes use of bound state computer codes already in use. The only new

program required is one that collects width matrix elements over CI wavefunc-

tions for the initial and final states (see below).

Method

The "golden rule" formula* >2 for the capture width is given by,

(1)

where we take i|>̂ c to be the initial continuum state consisting of a molecular

ion and an unbound free electron, tyf is the post capture final neutral state and

p is the density of states in the continuum. \pj[c can be constructed from an

appropriately antisymmetrized product of bound ion orbitals and a coulomb orbi-

tal, i.e. ̂ c = a <t>ion <|>c- However, to solve for the appropriate coulomb' orbi-

tal, the molecular potential must be expanded about a single center (e.g., the

midpoint for diatomic molecules). As a result, for diatomic molecules, an

axially symmetric potential must be approximated by a spherically symmetric

potential. Furthermore, in order to calculate the Hamiltonian matrix element

shown in (1) a slowly convergent single center expansion of the tight valence

orbitals of the ion must* be used. In order to avoid these difficulties we

replace \|>ic in (1) with a Rydberg wavefunction, ^ of the neutral molecule,
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i.e. ti ~ a <t>ion 'J'Ryd' • We will show below that relatively low lying Rydberg

states allow for the determination of threshold widths from (1). In order to

gain further insight into the use of Rydberg orbitals in (1), we must first

examine the dependence of the Rydberg orbital on the principal quantum number,

n .

For diatomic molecules of the first row of the periodic table, molecular

Rydberg orbitals have most of their amplitude outside of the region occupied by

the valence orbitals, and it is a good approximation to center the Rydberg orbi-

tal at the molecular midpoint. If we approximate the Rydberg orbital by a

hydrogenic function we can write the energy of the Rydberg orbital in atomic

units as

where n = n-6, and n is the principal quantum number and 6 is the quantum de-

fect. For atoms and for high Rydberg states of molecules, 6 is nearly constant

with n for a fixed angular momentum quantum number, £. If we take n*»& we can

write for the radial part of the bound molecular hydrogenic Rydberg orbital^

n* A
X(6,10),

zr
*

n T?
n * n" (2̂ +2)1

where F is the confluent hypergeometric function which is dependent upon r but

independent of n* for n*»£. Also we take the nuclear charge, z, to be unity

for high Rydberg orbitals. For large n* the radial portion of the Rydberg orbi-

tal is independent of n* aside from the (n*)~3/2 normalization factor and the

exponential factor which will be close to unity for small r. The question that

needs to be asked here is how important is the exponential factor in determining

the magnitude of the matrix element in (1) when the continuum orbital is

replaced by a Rydberg orbital? Since the remaining orbitals in the integral are

valence orbitals it is to be expected that the integral in (1) will cover a

region of r very close to the nuclei. The importance of the exponential factor

will be explored further below. Taking r to be small and replacing 4>c by a



bound Rydberg orbital where the radial part is given by (3) we see that the

matrix element in (1) varies as (n*)~3. The density of states can be defined

for the bound Rydberg orbitals as follows^:

p -
E(n* - i-) - E(n* + ±-)

OF POOR

Inserting (2) we have,

p = 2[(l/(n* - |-/) - (l/(n* + I/)] * . (4)

From (4) we see that p varies approximately as (n*) 3. As a result the full

expression for the width in (1) will be independent of n* for high n* if the

portion of coordinate space sampled by the matrix element in (1) is close to

the nuclei. Therefore if we calculate F using orbitals having successively

higher n we would expect a constant F as n increases and a flat approach to

n =0°. These ideas are explored below in a calculation on the *-£u
+ repulsive

autoionizing state of 02-

Calculation of a Capture Width for 02

The lowest ^̂ u
+ valence state of 02 arises from *D + *S atoms. If Rydberg

character is excluded from this state it provides a diabatic route for direct

dissociative recombination (DR) of 02*. Previous calculations^ have shown that

the £̂u"*~ potential curve crosses the 02"*" ground state potential curve between

the large R turning points of the v=l and v=2 vibrational levels. The ̂ -%u
+

state provides the lowest energy route for generation of O^S) from DR of 02"*"-

DR of 02+ is the major source of 0(̂ -5) at high altitudes in the earth's upper

atmosphere.

For the calculation of the width matrix element given in (1) we use the

valence gaussian basis set reported previously^»6 supplemented with 18 diffuse

2pn gaussians centered on the internuclear axis at the midpoint. Exponents of

.0532, .0210, .0103 and .0041 were taken from Dunning and Hay^. To these were

added two additional basis functions with exponents of .037 and .0072. The

remaining exponents were determined by using a multiplicative factor of 0.6

starting with the exponent .0041. The midpoint functions were only allowed to



enter the Rydberg niru orbitals of the ̂ Eu
+ Rydberg states. The Rydberg orbitals

were also expanded over the valence basis set described above.

The ^-£u
+ state was expanded over orbitals determined in MCSCF calculations

on the ground X^Eg~ state of 02'. The £u
+ state was represented by the 12

configurations shown in Table I. These are all the ^£u
+ configurations which

can be formed in the valence space while keeping the lo and 2a orbitals fully

occupied. The first 8 configurations listed are needed for proper dissociation

of 1£u
+ to 0(1S) + Ô D). A l-Iu"1" Rydberg state described by the two degenerate

configurations shown below was used,

...3og
2 iTy2 irgx iru

2 mrux + ... (x-y) (5)

where ... denotes Iag
2lau

22og
22au

2 and (x~y> denotes the orbital occupancy

obtained by replacing TTX with iTy. Note that a negative sign in (5) would give

rise to a ^-Au state. The valence orbitals used in (5) were the same as those

used in the dissociative state described above. The Rydberg orbitals were

determined in Improved Virtual Orbital (IVO) calculations^ appropriate to the

orbital occupancies shown in (5), i.e. the Rydberg orbitals see a potential due

to both the 2ngx and
 2Hgy 02

+ cores. As a result the Rydberg orbitals for iu
+

Rydberg states are not the same as those for ^Ay states. The Rydberg WTUX

orbitals for Êu"*" are eigenfunctions of the Hamiltonian

H = h + ? 2J± - % + 3/2 J^g + 3/2 K^g - y J-ug ~ I/
2 K-irg1 x x ^ y y

where h is the one electron operator, i runs over all the closed shell orbitals

and J and K are the two electron coulomb and exchange operators.

The results are shown in Table II. A total of 6 £U
1+ states have been

accurately determined in the IVO calculations. The calculated adiabatic excita-

tion energies (obtained by subtracting the IVO ionization potential from the

experimental adiabatic ionization potential, 12.052 eV)̂  agree well with the

energies for the two experimentally determined f and j ̂ £u
+ Rydberg states. The

remaining experimentally derived energies in Table II are estimates obtained

from Eq. (2) with the quantum defect obtained from the energy of j ̂ u
+. The

energies of the four higher calculated states agree quite well with the experi-

mental estimates. In column four we list p/(n*)̂  where it can be seen that the
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highest states differ by about 1% from an (n*)3 dependence. Indeed the density

_ .5000

of states can be represented quite well with the -expression p = (n*)3 e (n )

where for high n , the exponential factor represents a small correction to p.

The fifth column of Table II lists the square of the Hartree-Fock (i.e. using

only the first 2 terms in Table II for 4>f) matrix element multiplied by 2n(n*)~3

.2626
*

* 1.586e n (eV). The fit represents the predissociation widths of the

bound Rydberg states. The exponential part of the matrix element is a necessary

r

but small contributor to the fit and arises from the e n term in the Rydberg

radial orbital given in (3). For n* = 7.396 it gives a correction factor of

.9651 to the fit. The Hartree-Fock capture or autoioniation width is given by

the product of the above two factors,

_ .2626 _ .5000
* * 2

T = 1.586 e (n >

Taking the limit n*-*-", we have T = 1.586 eV at R = 2.2819 ao. Note that the

limiting value of the width is only .061 eV above the highest calculated width.

Now let us consider the effect of configuration interaction in the dissociative

state upon the calculated width. Column 7 of Table II is the same as Column 5

except that i|>f is now represented by the 12 configuration wavefunction of Table

I. It is seen that the results in Column 7 are again exponentially converging

_ .2698
* 3 ~ *with the high roots represented by .5412(n ) e n Once again the latter

expression represents the predissociation widths of bound Rydberg states. The

_ r

exponential dependence is due to the e n term in the radial orbital. Multi-

plying by the exponential density of states fit given above we find F = .5412 eV

for the 12 configuration representation of i|>f at R = 2.2819. We see that the

configuration interaction width is only 39% of the Hartree Fock width.

Therefore one should exercise caution when calculating widths from Hartree Fock

representations of the dissociative state, especially when other configurations

having significant matrix elements with the Rydberg states have CI coefficients

greater than 0.1.



At R = 2.0 a0, the calculated Rydberg widths for the CI representation of

_ <2248 _ .5000
* ~ *2

the 1EU
+ dissociative state are given by T(2.0) = .5207 e n (n ' . Com-

pared to the result for R = 2.2819, we note that the coefficient of 1/n* in the

exponent has decreased slightly due to the smaller region of coordinate space

involved in the width matrix element. From these results we would expect that

for polyatomic molecules, the coefficient of 1/n* in the exponent will be

greater than the coefficient for diatomic molecules. For an equivalent n*, the

calculated Rydberg width for a diatomic molecule will be closer to the capture

width than that for a polyatomic. Nevertheless, once the exponential fit is

determined for a polyatomic, the limit of N**00, will give the capture width.

I am currently investigating the effects of further configuration interac-

tion in both ^i and i|>f on the magnitude of the calculated width. This approach

allows for the rapid calculation of width matrix elements and the study of CI

effects in entrance and exit channels while using programs designed for bound

state calculations.

OF POOR QUALITY



References

1. E. Merzbacher, Quantum Mechanics (John Wiley and Son, Inc., New York, 1970)
pp. 475-481.

2. W. H. Miller, Chem. Phys. Lett. 4_, 627 (1970).

3. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and Two Electron
Atoms (Plenum, New York, 1977) pp. 15-18.

4. See e.g. A. P. Hickman, A. D. Isaacson, and W. H. Miller, Chem. Phys.
Letters 37, 63 (1976).

5. S. L. Guberman, J. Chem. Phys. 67., 1125 (1977).

6. S. L. Guberman, "Potential Energy Curves for Dissociative Recombination,"
in Physics of Ion-Ion and Electron-Ion Collisions ed. by F. Brouillard
(Plenum, New York, 1983) pp. 167-200.

7. T. Dunning and P. J. Hay, " Gaussian Bases Sets for Molecular Calculations,"
in Modern Theoretical Chemistry. Methods of Electronic Structure Theory,
ed. by H. F. Schaefer III (Plenum, New York, 1977).

8. W. J. Hunt and W. A. Goddard III, Chem. Phys. Lett. 6_t 414 (1969); D. C.
Cartwright, W. J. Hunt, W. Williams, S. Trajmar, W. A. Goddard III, Phys.
Rev. A 8, 2436 (1973).



Table I. CI Wavef unction for the Dissociative State

Orbital Occupancy3

CI Coefficient

.66402

.66402

-.21346

-.21346

-.11427

-.11427

-.01955

-.01955

-.00645

-.00645

-.00505

-.00505

3°g

2

2

1

1

1

1

0

0

2

2

2

2

3au

0

0

1

1

1

1

2

2

2

2

2

2

lirux

2

1

2

2

2

0

2

1

1

2

0

1

lTTgX

2

1

2

0

2

2

2

1

1

0

2

1

lliuy

1

2

2

2

0

2

1

2

2

1

1

0

iTTgy

1

2

0

2

2

2

1

2

0

1

1

2
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a. All configurations include the orbital occupancy.
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