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1.0 INTRODUCTION

The NASA suborbital program is an extremely valuable and productive
element in the overall NASA science program., It has provided NASA with a
highly flexible, low-cost means for performing high quality research in many
scientific fields, for supporting a broad spectrum of research nrograms both
within and outside of NASA, and for stimulating international scientific
cooperation. Its research programs range frem studies of cosmologically 3%{
important astrophysical objects to the study of the Earth's energy budget; it *
plays an essential role in the study of the Earth's stratosphere and
lonosphere, plays an important role in studies of the Earth's weather, and
provides essential support capabilities for NASA corbital programs.

1.1 Objective and Scope

The objective of this report is to review the status of the NASA
suborbital program and to assess its importance to the astrophysical and geo-
physical programs within NASA and to the scientific community as a whole. The
report provides a summary of the entire program; a more detailed breakdown of
some aspects of the program is presented in an appendix.

The scope of the report lncludes a survey of past .sclentific and
developmental accomplishments; an examinatlon of the trends in program costs,
and an analysis of current and future program roles. The technical disci-
plines examined will be primarily those of astronomy/astrophysics/solar
physics and magnetospherice/ionospheric/atmospheric physics. Meterologilcal
studies and Earth and ocean observation programs will be excluded.

1.2 Program Overview

The suborbital program provides NASA with an inexpensive, responsive
means for acquiring scientific data, supporting its orbital programs, and ful-
filling its charter to conduct scientific investigations of the terrestrial
environment. The program may be conveniently broken down into three
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components~~the sounding rocket program, the balloon program, and the airborne
program,

1.2,1 Types of Platforms

The airborne program operates aircraft from ground level to approxi-
mately 22 km (70,000 ft); the primary vehicles in the NASA fleet are the
Kuiper Observatory (C-141), a Lear Jet, two Convair 990s, a U~2, an ER-2, and
several WB~57Fs. MaJjor research areas are tropospheric chemistry and dyna-
mics, atmospheric aerosols, troposphere/stratosphere exchange processes, and
the role of thunderstorms in the global electric circuit, Important opportu-
nities in iufrared (IR) astronomy are provided by the Kuilper Observatory.
Program benefits include the ability to observe objects above most of the
atmospheric water vapor (IR astronomy), to perform extended manned observa-
tions, and to conduct in 3itu measurements in the troposphere and lower
stratosphere,

The balloon program enables scilentific instrumentation to be carried
up to an altitude of nvU45 km (140,000 ft), allowing in situ studies to be per-
formed throughout the stratosphere, a region containing most of the Earth's
ozone. Balloons in astronomy provide an opportunity to perform IR observa-
tions with greater sensitivity because of the higher observation altitudes
than obtainable using aircraft instrumentation; moreover, they provide an
opportunity to perform extended observations in the areas of hard X-ray,
y-ray, and high-energy cosmic ray astronomy, In atmospheric research,
balloons provide an opportunity to collect data on an extended time scale,
using both in situ measurements and remote sensing techniques. Ballons are
capable of lifting payloads weighing as much as 7500 1lbs (3400 kg).

Sounding rockets provide access to altitudes of several 100's of
kilometers and are the only means of obtalning in situ measurements in the
altitude region above balloon float altitudes (w45 km) and below orbital alti-
tudes (V200 km). Sounding rockets were the first to indicate the potential
importance of high energy astrophysics, with observation of solar ultraviolet
(UV) and X-ray emission. Sounding rockets provide the primary tool for

i
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obtaining information on the lower ionosphere, which is vital for under-
standing the impact of solar and terrestrial influences on communications.

Thz limitation of sounding rockets for astronomy is their observing time,
usually no more than 10 minutes.

1.2.2 Seclence Fields

1.2.2.1 Astronomy/Astrophysics. This discipline has undergone

dramatic development in the last 20 years, in large part because of the sub-
orbital program. The subjects of study in this field include the Sun and
planets, stars, tenuous clouds of gas and dust between the stars, magnetic
fields associated with normal stars, neutron stars, and galaxies, and galaxies
themselves. Information on physical processes occurring in these sources
arrives at the Earth in the form of electromagnetic radiation (photons) and
high energy subatomic particles (cosmic rays). Astronomers have been able to
learn a great deal about celestial objects by the examination of this radia-
tion as it contains information on the temperature, density, chemical composi-
tion, presence of magnetic fields, and large- and small-scale motions in the
emitting region.

However, before a signal can reach the Earth's surface, it must pass
through the atmosphere, and the atmosphere blocks the cosmic rays and all
electromagnetic radiation except that in the visual and radio regions (Figure
1-1). Information contained in cosmic ravs and most of the electromagnetic
spectrum could not be obtained until instrumentation was carried above the
Earth's surface and this was first done from suborbital platforms and then
satellites.

Electromagnetic radiation is usually discussed as being in one of
several categories, distinguished by the energy of the radiation. In order of
decreasing energy, there is Y-ray, X-ray (frequently divided into hard-(high
energy) and soft-(low energy) X-rays), ultraviolet (UV), visual, infrared
(IR), millimeter, and radio radiation. Thermal sources, i.e., sources
emitting electromagnetic radiation characterized by the temperature of the
source, emit most of their energy into one of these energy regions, with the
higher temperature objects emitting in the higher energy regimes. Stars are
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the paradigm thermal sources., Non~thermal sources, such as synchrotron
sources, emit electromagnetic radiation with a different type of energy
distribution. Such sources are in general more complex and the radiation
signature depends on parameters other than the temperature in the emitting
reglion, In synchrotron sources the energy of the emitting particles and the
strength of the magnetic field are the important parameters. Radio pulsars
are synchrotron sources. A matrix linking the photon energy regimes, the
characteristic thermal temperatures, and typical astronomical sources is
presented in Table 1-1,

Cosmic rays are extremely energetic charged particles seen almost
exclusively in the Earth's magnetosphere and upper atmosphere., Cosmic ray
energles can exceed the greatest energles obtainable with manmade accelerators
by many orders of magnitude, and the objective of cosmic ray astronomy is to
explain the origin and history of these particles., Understanding the
acceleration mechanism generating cosmic rays might lead to an improved
picture of high energy astrophysical processes and a determination of the
source location will have significant cosmological implications,

Because of the attenuation introduced by the Earth's atmosphere, the
objective of the NASA programs for astronomy is to get the astronomical
instrumentation above enough of the atmosphere to permit useful observations
to be made, Orbiting instrumentation does this best, but only at great cost
and the accompanying lack of flexibility. The suborbital programs have played
an extremely valuable role in collecting data, in guiding instrument
development, and in supporting orbiting platform missions, Moreover, some
types of studies can be performed more effectively and at much lower cost from
suborbital platforms than from orbiting systems.

One subfield important for its astronomlcal studies as well as its
connection with geophysical phenomena is solar physies. The study of the Sun
through the entire range of the electromagnetic spectrum has contributed
numerous important findings. Suborbital platforms are particularly well-
suited for studying such transient phenomena as the solar corona during solar
eclipses and particle fluxes associated with solar flare activity,

The matrix of Table 1-2 identifies the essential involvement of the
suborbital programs in the various areas of astronomical research. Of the

S S
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CHARACTERISTIC TEMPERATURE AND TYPES OF
SOURCES IN DIFFERENT SPECTRAL REGIMES

7Ly

Spectral Reglion
(Photon Energy)

Characteristic Source
Temperature (°K)

Type of Objects
Observed

Y=Ray (>1 MEV)

Hard X-Ray
(20 KeV~1MeV)

Soft X-ray
(100 eV-20 KeV)

Visible

IR

Millimeter

Radio

109

107-109

106

109

103-104

100

10

Y=-ray
bursts,
interstellar
synchroton,
solar flares

Solar flares,
active galaxies

Pulsars,
acaretion
dises around
black holes,
solar corona

Solar chromosphere,
central stars

of planetary
nebulae

Stars

Cool stars,
planetary
atmospheres,
pre-main
sequence stars

Cold
interstellar
clouds

Cosmic
background
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astronomy fields listed in this table, only IR astronomy can be effectively
conducted from the ground, and that is only possible in the small IR windows
at suitable observation sites such as Hawail. The rationale for suborbital
program involvement in these areas 1s briefly stated in the following
paragraphs. )

TABLE 1-2. PRIMARY SUBORBITAL PROGRAM CONTRIBUTORS TO
VARIOUS FIELDS OF ASTRONOMICAL STUDY

Suborbital '
Field Program Driving Factors
Cosmic Ray Balloon High Altitude, Massive Detectors
Y-ray Balloon High Altitude, Massive Detectors
X-ray (hard) Balloon High Altitude, Massive Detectors
X-ray (soft) Sounding Rockets Highest Altitude
uv Sounding Rockets Highest Altitude
IR Airborne, Balloon Above Water Vapor
Millimeter Balloon Above Water Vapor

Y -ray Astronomy

Y-ray radiation is degraded by ionization, pair production, anl
photodissociation processes occurring with atoms and molecules in the upper
atmosphere. Although roughly half of the signal has been attenuated by the
time the radiation reaches maximum balloon float altitudes, nearly all of the
signal has been lost at maximum aircraft cruise altitudes. Sounding rockets
are not effective for conducting research on Y~ray sources because the sources
are intrinsically faint and because Y-ray detectors are very massive.
Balloons can operate at altitudes where there has been an acceptably small
amount of attenuation and are capable of lifting the large detectors required
to study most sources, and so suborbital Y~-ray studies are conducted almost

entirely from balloons.



A=-ray Astronomy

The X-ray region of the energy spectrum lies between the Y-ray and
UV regions, Hard X-rays, those with photon energiles from 20 KeV to 1 MeV,
present detection problems similar to those encountered in y-ray observatiors;
balloon borne instruments can be used effectively, Soft X-rays, those with
energies from 100 eV to 20 KeV, can only be observed from sounding rockets.

UV Astronomy

In contrast to the Y-ray radiation which penetrates to balloon alti-
tudes, most UV radiation is absorbed before it gets to that altitude range.
Consequently, sounding rockets provide the only suitable platform for
conducting suborbital research over most of the UV range and observations are
limited by the necessarily brief time associated with a rocket flight, Over
the limited useful range of balloon altitudes, however, some testing of UV

detectors can be conducted.

IR Astronomy

The major source of opacity in the IR is water vapor, most of which
is confined to the troposphere. Since instrumentation in each of the sub-
orbital programs operates above the troposphere, useful observations can be
made from any of the platforms, In practice, the limited observing time
available on a given sounding rocket flight has resulted in the majority of IR
work being done from airborne and balloon platforms.

The Kuiper Airborne Observatory (KAO), operating at 40,000 ft (13
km) is above 95 percent of the water vapor, the 130,000-140,000 ft float alti-
tude places for balloons place that instrumentation above most of Earth's
atmosphere. Both programs are capable of carrying large instrumentation and
have the lifting capacity to use cryogenically cooled detectors. Extended
time on station, up to 7 hours on KAO and up to days on halloons, are also
obtainable.
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The airborne program has the advantage of using manned instrumenta-
tion, allowing greater flexibility in the observing schedule and in the obser-
vations taken and low marginal cost for conducting observations. Balloons
have the advantage of greater time on station, less atmospheric background,
and less atmospheric line contamination,

1.2.2.2 Plasma Physics, The presence of plasmas in and above the

Earth's atmosphere provides an extremely valuable research opportunity for the
field of plasma physics, Plasmas play a major role in the Earth's environment
from about 50 km to 75,000 km, These plasmas have a direct impact on communi-
cations and may play a role in controlling the Earth's weather and climate.

As subJects of study to plasma physicists, these plasmas possess
propertles which cannot be duplicated in the laboratory. They may possess
relatively low volumetric charges, as in the mesospheric plasma, or be highly
charged, as for the ionospheric and magnetospheric plasmas; they may be high-
density collision-dominated, as for the ionospheric and mesospheric plasmas,
or low~density and collisionless, as for the magnetospheric plasma. Labora-
tory plasmas are physically confined and this introduces boundary effects
which seriously disturb the large-scale plasma properties; in contrast,
plasmas surrounding the Earth are magnetic-~field contained and will perhaps
provide insights on containment mechanisms for controlled nuclear fusion.
Access to these plasmas using sounding rockets therefore allows the in situ
acquisition of plasma data that cannot be acquired in the laboratory.

These plasmas are astrophysically important because they are
accessible space plasmas with signatures also seen in astrophysical sources.
An understanding of the local conditions associated with specific plasma
properties therefore provides insight into local conditions in some
astrophysical sources.

Studies of these plasmas also promise to provide valuable insight
into the Earth's global electrical current, its effect on the neutral

atmosphere, and its effect on the Earth's weather.
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1.2.2.3 Atmospheric Physics. The state of the Earth's atmosphere
1s controlled by the distribution and flux of energy arriving from the Sun,

the release of chemical and particulate material from the Earth's surface, and B
processes occurring at the air~ocean interface. There are two broad study s
areas in atmospheric physics--atmospheric processes, the study of the short-
vterm (hours to months) behavior of the atmosphere, and climate, the study of ;
the long-term atmospheric state., A primary objective of current atmospheric
research is to determine the way in which energy inputs from the Sun and 4 (
energy and chemical inputs from the Earth affect atmospheric processes and
establish climate trends.
Suborbital platforms provide much of the data needed to understand
the role and importance of various atmospheric constituents and atmospheric
processes. NASA has been primarily concerned with developing an understanding
of the atmospheric energy budget, which requires an understanding of processes
by which solar electromagnetic radiation is absorbed, how this energy source
influences and is influenced by molecular abundances and chemical processes,
how the presence of particulates and aerosols affect the atmospheric chem~
istry, and how energy sources from the Earth's surface lead to the weather
patterns produced in the troposphere.
The NASA atmospheric research program has been divided into an upper
atmospheric research program, concerned with the altitude regime from roughly
15-50 km, and the tropospheric program, covering altitudes up to 15 km. Both
remote-sensed and in situ measurements are taken, but NASA has emphasized the
development of remote sensing instrumentation to support atmospheric research

from satellites. Balloons and aircraft are used in both programs.

Upper Atmospheric Research )

The upper atmospheric research program consists primarily of strat-
ospheric research work covering the altitude regime of 15-50 km, an altitude Lo

regime extremely important because it contains most of the atmospheric ozone.

Most of this regime is accessible by balloon and the balloons use both in situ
and remote sensing instrumentation. Although balloons are the most heavily fﬁg
used platforms, some research is carried on from airplanes, particularly in s
studying the troposphere/stratosphere transition. b
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The atmosphere from 80-~90 km has aroused increasing interest because
of its potentially important electrodynamic properties and has provided a new

area for research from sounding rockets.

Troposphere Research

The troposphere program is concerned with the chemical and dynamical
properties of the troposphere, the atmospheric region from 0-15 km, the region
containing most of the atmospheric COp, The emphasls for the NASA program has
been on developing instruments suitable for assessing global tropospheric
chemical properties and, in this study, airborne platforms play the major
role,

Severe Storm Studies

The study of processes occurring in association with severe storm
systems is an important function of the NASA atmospheric sciences effort. The
primary platform used in this effort is balloons, with a reliance on sounding
rockets to monitor the phenomena occurring above the storm cell, and aircraft
to observe within the storm., The severe storm program involves the combined
efforts of the atmospheric and plasma physies research activities.

1.2.3 Program Objectives

The suborbital program performs a number of functions, It supports
a wide variety of research activities, provides many forms of support for NASA
orbital programs, and supports the business of' conducting scientific effort in
several ways, To facilitate the discussion of specific program objectives, a
classification of objectives into (1) research (1.2.3.1), (2) development
(1.2.3.2), and (3) general support (1.2.3.3) categories will be made.

1.2.3.1 Research Objectives. The research objectives involve

activities in five general areas:



(1) Continuing studies.,

Suborbital platforms represent the only means for obtaining some
types of data; examples are the sounding rockets for in situ lower ionospheric
studies, balloons for in situ upper stratospheric study, and manned, broad-
band IR astronomical observations in the airborne program. Moreover, the sub-
orbital program provides an opportunity to employ additional instrumentation
to complement other programs; examples are IR telescopes on balloons, X-ray
and UV telescopes on sounding rockets.

The study of solar eclipses and solar flares has yielded important
information on physical processes occurring on the Sun, while studies of the
response of the Earth's atmosphere have provided insight into the nature of
the Sun-Earth interaction.

(2) Search for new phenomena.

The suborbital program provides a reasonably inexpensive means to
introduce new types of instrumentation to look for new phenomena. Based on
the results obtained, this activity provides a guide for directions of
development of more expensive, specialized instrumentation., The classic
example for such a development is the field of high energy astrophysies, in
which the early sounding rocket and balloon data indicated there was a large
variety of highly active, highly energetic, cosmologically important astro-
nomical sources that were undetectable to ground-based instrumentation.

(3) Scientific support of other research programs,

The suborbital program supports a variety of NASA research programs,
Calibration and ground truth* support of satellite instrumentation are often
essential to obtaining usable data from satellites. In plasma physics,
sounding rockets provide vertical profiles that complement the geographical
coverage provided by satellites. In general, high energy astrophysical
sources are time varying so that there are no "standard" references. Cali-
bration for the manned Skylab missions and the Orbiting Astronomical
Observatories (OAO's) of the 1970s was provided by sounding rockets and will

be needed for future science platforms such as AXAF as well. Provision of

*In situ sampling to verify remote sensing measurements.
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photometric standards in the IR will be a project to be accomplished by the
airborne and balloon programs, to support future IR orbiting detectors (e.g.,
those on IRAS).

(4) Time-critical studies.

The study of transient phenomena, for example, comets, eclipses, or
solar flares, may not Justify the expense of an orbital program yet may repre-
sent a source of useful scientific data, For observing transient phenomena,
the relatively small expense involved in acquiring suborbital data is ﬁ!
important.

The occurrence of an event that requires a rapid introduction of
instrumentation for its study represents another use of the suborbital plat-
forms. The relative simplicity and consequent short development time for the
suborbital flights is important. Airborne observations can vccur almost
immediately; sounding rocket development times as short as a month have

occurred to place a new inotrument into operation.

1.2.3.2 Development Objectives. The development objectives fall

into two general areas:

(1) Development and testing of scientific instruments and

detectors,

The suborbital platforms provide a relatively inexpensive means of
developing and testing new ideas for improving the quality of currently
acquired data as well as for opening up new areas for data acquisition. This
function has been extremely important in the past and will continue as such in
the future; the history of instrument and detector development has been one of
increasing complexity with the attendant need to verify design concepts and
establish reliability.

The suborbital program has performed the development and testing
function for most of the NASA orbital programs. Instrument concepts for the
Cosmic Background Explorer (COBE), International Ultraviolet Explorer (IUE),
and Voyager were developed and tested within the balloon and sounding rocket
programs. All of the instruments on the Gamma Ray Observatory (GRO) have
growa from design concepts tested in the balloon program. One of the

limitations of satellite programs has been that the large expense of placing
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instrumentation in orbit requires relatively old (8-~10 years) technology and
instrument designs of high reliability be used.

Hardware testing within the ouborbital program has been facilitated
by the ability to refly instrumentation. For sounding rockets, parachute
recovery systems have allowed land recovery of scilence payloads and support
hardware for many years. Recent developments at the Wallops Flight Center
have enabled even very delicate sounding rocket payloads to be captured by
airplane so that recovery over water can also be achieved. Balloon hardware
is nominally returned by a parachute recovery system and reflown.

(2) Enhancement of support capabilities.

Collection of useful scientific data and the development and testing
of new hardware are primary objectives in the suborbital program. Enhancement
of' the support capabilities within the program is therefore a major
responsibility.

Providing better support for the science has been an ongoing
activity, ranging from the introduction of new carriers and new payload
support interfaces to the development of new techniques to get the data into
the hands of the investigators. Such activity will remain of great importance
in the future as the detector technology places greater demands on data acqui-
sition capabilities.

An area of continual development is that of attitude control systems
(ACS). Significant progress in the sounding rocket ACS selection has been
made in the last 15 years, Of special importance to astronomy has been the
development of fine pointing ACS's and the development of a ground-based
interactive ACS for use in both solar and stellar observations. For
experiments requiring orientation with respect to the local magnetic field
lines, the development of attitude control driven by the local field has been
very important.

In the balloon program, an ongoing low-level effort has been
maintained to make long duration ballooning a scientifically useful option.
Development of support for multiple sensor atmospheric research payloads is
enabling more data to be gathered on each balloon flight. The drive to
provide geographic f'lexibility in launch facilities has also been of great

value in the atmospheric and magnetospheric physics areas. The concept of
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portable launch facilities in both the sounding rocket and balloon programs
has gained in popularity with investigators in the past several years. In the
future, such flexibility will be in demand if sufficient funding can be made
available to support it,

1,2.3.3 General Science Support. The suborbital program offers

NASA an opportunity to provide general science support in two ways:

(1) Graduate research and education.

The low=-cost, relative simplicity, and short development times
provide established researchers with a means for introducing graduate students
to space research. In a suborbital project, a graduate student can reasonably
expect to partiecipate in all phases of a project--from instrument design
through data reduction and analysis--during his period of graduate work.

(2) Continuity in science areas.

e

R

NASA orbital programs are sufficiently costly to be seriously

i
i
it

limited* by government and NASA budgetary constraints. Moreover, the scope

and size of such programs demand long lead times once funds become available.

Funding constraints and program delays make it impossible to provide
continuous availability of orbital facilities in all established fields of
study. For any particular technical discipline, e.g., X-ray astronomy,
orbital facilities may be available for several years and then absent for an
equal or longer period while emphasis shifts to other needs. During this
period useful research can be done from suborbital platforms. This has the
important effects of providing an opportunity for investigators to remain
active in a field when orbital data 1s not being acquired and helping to
assure the development and success of the next orbital program,

(3) Support international cooperation.

The suborbital program provides a low cost way for foreign countries
to gain access to the special research capabilities which the program can
offer. Each of the three types of platforms have been used extensively by

foreign nations., A summary of this collaboration is provided in Table 1=3.

¥Both in terms of the pace with which orbital programs can proceed and the
extent to which complementary or equally important programs can be
simultaneously funded. ‘

P
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The suborbital program itself benefits by this cooperation as it
greatly extends the geographic coverage it can offer to its investigators.

Many phenomena, such as solar eclipses, plasma wave instabilities, and aurora,

can only be observed in certain locales; without international cooperation
many of these locales would be inaccessible.

TABLE 1~-3. NUMBER OF FOREIGN COUNTRIES PARTICIPATING
IN THE NASA SUBORBITAL PROGRAM DURING
THE PERIOD 1960-1981

Sounding Rocket 19
Balloon 8
Airborne 11

1.2.4 Importance to Affected Science Areas

The impact of the suborbital program on the many science fields it
affects has been significant. In many cases, suborbital observatiens have
pointed the way for future orbital instrumentation; in other cases, the
suborbital observations have been and will continue to be the only source of
data.

Much of the intense activity in astronomy in the last 20 years can
be directly attributed to the availability of satellite data; these data and
the types of instruments used to collect it grew out of early sounding rocket
and balloon flights, As in the past, the suborbital program will continue to
play an essential role in collecting data when orbital instrumentation is not
available and in developing new instrumentation ideas when satellite programs
are in progress.

As with astronomy, the fields of atmospheric and space plasma
physics research has relied heavily on the NASA suborbital program and will
continue to do so in the future. Suborbital observations have been'used to
calibrate orbital instrumentation, such as the Nimbus VII satellite, and will

o
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provide a similar service for the proposed Upper Atmospheric Research Satel~
lite (UARS). Such activities will be essential to future work on the

global electric circuit and on establishing global weather and climate models,
Suborbital platforms will continue to provide the unique service of allowing
investigators to probe specific regions of the atmosphere, lonosphere, and
magnetosphere with high spatial and temporal resolution to obtain data that
are essential to understanding the chemistry and dynamics of the Earth's
atmosphere,
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2.0 THE SOUNDING ROCKET PROGRAM

The sounding rocket research program can be traced to the post~-World
War II era of research with German V-2 rockets. In its early stages it formed
the foundation for the U.S. space program, encompassing such luminaries as
Werner von Braun and James van Allen., As the art of rocketry matured, the
twofold role of rockets as military weapons and as research instruments
emerged., Sclentific research from sounding rockets in the late 40's and 50's
kept a non-military cadre of rocket experts which would one day form the
civilian space progranm,

Although NASA was formed in part in response to the Russian move
into space with orbiting instruments, one of its first acts was to establish
the NASA sounding rocket program and embark on a program of scientific
research. A continuous record of flights in this program has been maintained,
starting with the first test of an Arcon rocket by Carl Medrow of the Goddard
Space Flight Center (GSFC) on May 14, 1959. Since that time, there have been
2233 flights (as of September 20, 1981) performing such diverse activities as
monitoring the solar corona, studying auroral activity with in situ
instrumentation, measuring electric currents associabted with thunderstorms,
investigating galaxy morphology in the UV, and performing experiments on
materials processing in near zero-g environments. Sounding rockets have
allowed NASA to conduct a research program greater i content, depth, and
diversity than would have been possible had NASA pursued only orbital

programs,

2.1 Capabilities and Limitations

Sounding rockets provide the altitude link between the lower alti-
tude capabilities of the airborne and balloon programs and orbital instru-
mentation. They are essential research tools in the study of the Earth's
upper atmosphere and have been instrumental in the development of the field of
high energy astronomy/astrophysics. While the public attention has been
captured by the orbital programs, a considerable amount of important science
has been obtained in this program.
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2.1.1 Capabilities

The capabilities 4f sounding rockets will be demonstrated in the
discussion of significant scientific accomplishments, in the satisfaction of
program objectives, and in the future role of the sounding rocket program. In
this section, these capabilities will be categorized and discussed.

Perhaps the most descriptive stahbement relating to sounding rocket
izapabilities is that it is (relatively) simple to organize and conduct
research programs on sounding rockets. In orbital programs, hundreds of
people are involved in spending millions of dollars over years of time to plan
and build a single spacecraft., Such an effort is well invested, as such
instrumentation will yield months or years of data., In sounding rockets, a
few tens of people spend thousands of dollars over months to plan the
experiment, build and fly the insrumentation, and analyze the data. This
aspect of sounding rocket research provides several significant advantages.

Most important is the flexibility introduced by the short develop-
ment times and low cost. Instrument testing is an effective use for a flight,
so sounding rockets serve as a test beds for new design ideas and new tech-
nology; where a satellite package is based on conservative hardware and design
ideas, a sounding rocket payload freguently carries new ideas and new tech-
nology; where an instrument failure may be a catastrophe on a satellite, it
can be a learning experience on sounding rockets. Because of this, sounding
rockets have been used by WASA to test and verify instrumentation to be used
on satellites such as the International Ultraviolet Explorer (IUE) and
Voyager.,

Lower costs and enhanced instrument testing capabilities have been
facilitated by recovery ang reflight of the science payloads~-the scientific
instruments, telemetry package, and attitude control system. Moreover, a
minimal investment in development of new rockets is made; instead, motors from
surplus DoD missiles have been acquired and fitted to satisfy sounding rocket
requirements. These have included the Nike aizxl Terrier motors, wriich have
been used as boosters, and the Minuteman (Aries) and Hawk (Orion).

Besides serving a testing role, sounding rockets represent a
significant source of scientific data. In plasma and neutral atmosphere

[ =g

o



2-3

research, gsounding rockets play an essentlal role sinee they are the only
moans of obtaining in situ data from 4% km, the maximum balloon altitude, up
to about 200 km, the lower limit for orbital instrumentation. In addltion,
sounding rouvkots ean be targotod %0 study spooific reglons, for example where
auroral aetivity is oocurring or regions in which plasma waves are being
obsorved., By colleoting data near apogee and by using parachutes to rebtard
desoent rates, data can be collected with high spatial and temporal
resolution. The "snapshot" vertical profiles obtainable from sounding rockets
are oxtromoly useful for studylng atmospheric interaction processes.

In astronomy/astrophysies sounding rooket instrumentation has played
mora of a plonsering and testsing role whieh is superseded in a gilven applica-
tion when orbital instrumontation becomes avallable, Sounding rockets werae
the firat platforma to indlcate the exlstence of X-ray emission from objects
such as tnhe Sun, stars, and galaxies. Data acquired in these sounding rockel
flights were used to gulde tho dovelopment of orbital instrumentation such as
the very sucoessful Orbiting Astronomionl Observatory (O0AQ) Satellites. In
studios whioh must ba conduated during solar eolipses, sounding ronkets have
the advantnge of muoh longor observing times than satellite instrumentation,
which would pass through the reglon of tobality in seconds (in faaot thie has
naver occourred) gso that sounding rockets willl continue to play an imporiant
role in gathering data assoclated with aallpse events,

2.1.2 Limitationa

The primary limitatlon of the soundlng rocket experiment is the
nagesgarily short duratlen for data acqulisition. For astronomical payloads,
obgerving times of less than 10 minutes limit observations to relatlvely
bright sources. Data acquisition in abtmoapheric studies can be extended to
about 1 hour by deploying a high altitude parachute near apoges.

Atmospherie studles from sounding rookets (or indeed any suborbiltal
platform) give only a looallzed sampling of a coupled, global phenomenon.
This limitation is ameliorated somewhat by the eapabllity to launch elther
from a geographioally diversa set of established launch sites or from
temporary launch sites using portable support aquipment.
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2.2 Program History

The sounding rocket program in its current form began immediately
after World War II with the use of captured German V-2 rockets and the
cooperation of German rocket scilentists, The V-2 capability to loft a 2000 1lb
payload to 160 km made it possible for sclentists to immediately begin probing
the Earth's upper atmosphere, ionosphere, and lower magnetosphere. The first
U.S. V-2 flight was made on April 16, 1946, and before the end of 1946 the
solar ultraviolet spectrum had beer photographed for the first time,

Aerobee rockets, developed to replace the V-2's and provide greater
reliability, enabled payloads of a few tens of pounds to be lofted to
altitudes of 500 km., This scientific activity, by exerting pressure for
enhanced rocket performance--greater payload weights, higher altitudes,
greater reliability--maintained an active civilian community in rocket
research which eventually led to the formation of NASA and the establishment
of a significant civilian snace program,

The NASA sounding rocket program was initiated immediately after the
formation of NASA, The initial flight was a test of the Arcon rocket on May
14, 1959, The first successful flight with a science payload was the launch
of a Nike Asp on August 17, 1959, to study properties of the Earth's
ionosphere., The number of flights increased each year until FY 1965 during
which 207 flights were flown.

After 1965, the number of flights per year decliqed. This was due,
not to the decline in demand for sounding rocket services, which has always
greatly exceeded the available resources, but instead to the erosion of pur-
chasing power by the combined effects of inflation and constant, funding level.

The response within the program to monetary restrictions has been to
minimize program costs by reflying science and supy ..t hardware, refurbishing
and reflying liquid fuel rockets, adapting surplus military rocket motors, and
providing carrier and support capabilities to accommodate larger, multiple
experiment payloads. Development efforts were directed toward providing
improved telemetry support, allowing more complex, in some cases remote-
controlled, on board activities, and proyiding more accurate, more responsive

attitude control. 1In short, the development emphasis has been to accommodate




2-5

more sclence on each flight to offset, somewhat, the negative effect of
decreased purchasing power,

A summary of the program evolution is presented in Table 2-1. An
example of the type of effort involved in a typical sounding rocket flight
today is the flight of a Nike-Orion out of Wallops Flight Center (WFC) on June
23, 1982. This flight, which used two DoD surplus motors, lofted four experi-
ments: an X-ray monitor to study the deposition of high-energy particles in
the upper atmosphere, a set of detectors to measure the ionospheric and meso-
pheric electric fields, a Gerdien probe to measure atmospheric cenductivity,
and a two~axis magnetometer o determine aspect.

The launch was coordinated with a satellite passing overhead and the
operation of a high power transmitter in Annapolis, Maryland; the launch oc-
curred in the required window. During the flight, X-ray data were obtained
over 5 energy ranges, booms were deployed for electric field measurements, and
Gerdien probe data were obtained, A high altitude parachute was deployed to
float the payload back to aircraft altitude, a process which allowed more than
an hour of electric field and conductivity data to be collected. The descent
of the payload was terminated by an airecraft retrieval at 12,000 ft, All of
the science and support hardware was recovered; it was the second flight of
the science package, the third for the telemetry. The equipment was ready,
with minor modifications to improve the science instrumentation, to be flown
in Peru in 1983. At the termination of the flight, the science team was given
a digital data tape and was able to begin data analysis less than 24 hours
after the flight.

2.2.1 Trends in Key Parameters

An understanding of the directions of development, amount of activ-
ity, and general health of the sounding rocket program can be best obtained by
examining trends in key aspects of the program. In this section, trends in
the following areas will be presented and discussed:

(1) Launch activity, including breakdown by discipline

(2) Types of rockets flown and reliability

(3) Launch sites used
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(4) Science support
(5) Mission parameters

(6) Costs.

Launch Activity

A primary indicator of activity in the sounding rocket program is
the number of launches occeurring each year. These data are presented in
graphical form in Figure 2-1. Activity rose to peak levels, in the mid and
late 1960s, of over 150 launches per year. In the 1970s it steadily declined
to its present level of about 50 launches per year. This decline was caused
by the combined effects of high monetary inflation rates, budgetary limita-
tions, and increased costs (due to need for increasingly large, heavy, and
sophisticated experiment packages). These effects will be discussed further
later.

A breakdown of flight aectivity into disecipline, grouped into 3-year
sets, 1s presented in Figure 2-2 and shown as percentages in Figure 2-3. The
preponderence of flights devoted to atmospherice and magnetospheric studies is
expected. During the 1970's, astronomical flights took a larger portion of
the flights, reflecting the value of the capability to do astronomy from

sounding rockets.

Types of Rockets Flown and Reliabllity

The trend in sounding rocket usage has been to employ rockets
permitting larger, heavier science payloads with heavier, more sophisticated
support hardware. Thils is most easily seen by comparing the rockets flown in
the 1960-61 flights listed in Table 2-2, and those flown in 1980-81, listed in
Table 2-~3. Performance curves for some of these rockets are presented in
Figure 2-4.

Over the years, a very large number of rnckets, with mixtures of
boosters to enhance performance, have been flown in the sounding rocket pro-
gram. In many cases, these choices have been guided by the availability of
surplus or outdated military missiles, which may be acquired at a reasonable

e
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price without investing in extensive development projects. The exception to
this has been the Black Brant, which was developed with sounding rocket fund-

ing and is in demand for use in sounding rocket programs in other countries.

TABLE 2-2. SOUNDING ROCKETS
FLOWN IN THE YEARS
1960 AND 1961

Aerobee 100
Aerobee 150/150A
Aerobee 300
Argo D-8
Iris
Javelin
Nike Apache
Nike Asp
Nike Cajun
Skylark

TABLE 2-3. SOUNDING ROCKETS FLOWN
IN THE YEARS 1980
AND 1981

Arcas
Aries
Astrobee D
Astrobee F
Black Brant VC
Nike Black Brant V
Nike Orion
Nike Tomahawk
Orion
Taurus Orion
Taurus Tomahawk
Terrier Malemute
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The resourcefulness of this program management approach is reflected
in the large variety of rockets that have been flown. Thée complete list is
presented in Table 2-4, with additional information on the number of launches
and percentage of successes. The overall rocket success rate has been about
95 percent; with a similar success rate in sclience payload operation, nearly
90 percent of the sounding rocket flights meet or exceed the minimum science
requirements.

Launch Sites Used

The ability to launch sounding rockets from a variety of established
and temporary launch sites, allowing data to be acquired at many geographical
or geomagnetic localities, is an important asset to the program, offsetting
the necessarily localized aspect of individual rocket missions. The first
major display of geographic flexibility was conducted in the 1965 shipboard
campalgn on the USS Croatan and, in fact, much of the mobile equipmeni being
used today to support mobile launch operations was acquired for this campaign.

Geographic flexibility allows scientific data to be acquired for
localized events, such as solar eclipses, as well as to allow study of
phenomena from unique locatlons. The study of the interaction between the
Barth's atmosphere and charged particles trapped in the Earth's magnetic field
must be conducted near the magnetic poles, from locations such as Ft.
Churchill or Poker Flat; on the other hand, plasma wave instabilities are best
studied near the magnetie equator. The planned campaign for ionospheric
studies at the geomagnetic equator, to be conducted in 1983 in Peru, will be
conducted using temporary launch facilities.

Table 2-5 shows the history of this flexibility. Four established
rocket ranges, Wallops Flight Center (WFC), White Sands Missile Range (WSMR),
Fort Churchill Rocket Range (CRR), and Poker Flat Rocket Range (PFRR) are dis-
tinguished from other launch sites. Some of these other sites, e.g. those in
Sweden, are maintained launch facilities but others require support from the
mobile launch equipment to conduct operations.

An appreciation of the diversity in launch sites can be gained by
observing the number of different sites that have been used in the course of
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TABLE 2-5, LAUNCH HISTORY BY FIRING SITE FOR THE MOST HEAVILY
USED SITES (PERCENTAGE IN PARENTHESES)

Wallops White Sands  Fort Churchill Poker Flat
Flight Center Missile Range Rocket Range Rocket Range Other

1959 12 (75.0) 4 (25.0)
1960 37 (61.7) 22 (36.7) 1 (1.
1961 55 (78.6) 9 (12.9) 6 (8.
1962 59 (75.6) 5 ( 6.4) 4 (5.1) 10 (12,
1963 51 (54.8) 11 (11.8) 16 (17.2) 15 (16,
1964 63 (41.4) 21 (13.8) 28 (18.4) 4o (26,
1965 54 (28.3) 22 (11.5) 34 (17.8) 81 (42.
1966 53 (33.3) 29 (18.2) 33 (20,8) uy (27,
1967 39 (24.1) 33 (20.4) 23 (14.2) 67 (U1,
1968 54 (31.0) h2 (24.1) 37 (21.3) 41 (23.
1969 46 (36.8) 34 (27.2) 17 (13.6) 1 (.8) 27 (21,
1970 63 (38.0) 31 (18.7) 26 (15.7) 5 (3.0) 41 (24,
1971 27 (19.2) 34 (24.1) 12 (8.5) 5 (3.6) 63 (uy,
1972 12 (14.3) 33 (39.3) 11 (13.1) 9 (10.7) 19 (22,
1973 13 (16.1) 33 (40.7) 4 (4.9) 8 (9.9) 23 (28,
1974 19 (24.7) 32 (41.6) T (9.1) 5 (6.5) 14 (18,
1975 15 (18.1) 28 (33.7) 6 (7.2) 7 (8.4) 27 (32,
1976 13 (20.6) 25 (39.7) 5 (7.9) 11 (17.5) 9 (14,
1977 ¢ (11.3) 24 (45.3) 5 (9.4) 4 (7.6) 14 (26,
1978 9 (15.0) 22 (36.7) 4 (6.7) 16 (26.7) 9 (15.
1979 17 (26.6) 26 (40.6) 2 (3.1) 8 (12.5) 11 (17.2
1980 6 (11.5) 21 (4o0.4) 1 (1.9) bo(7.7) 20 (38.5)
1981 11 (36.7) 10 (33.3) 3 (10,0) 2 (6.7) 4 (13.3)
85 (3.8) 586 (26.2)

Total 734 (32.9) 516 (23.1) 313 (14.0)

R S S T
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the program's history. This list is presented in Table 2-6, along with the
number of launches that have ocourred from each site.

Science Support

Key elements of science support have occurred in the areas of atti-
tude control systems (ACS), data availability, and payload recovery,

ACS davelopment has been extensive, as was shown in Table 2-1.

While attitude control systems become capable of providing much finer pointing
accuracy and stability, they have become more frequently used. Coarse gui-
dance, which was first provided by rate integrating gyroscopes can now be
provided by timed restraint gyroscopes, similar to those used in larger
rockets such as the Delta. Star trackers are used for fine guldance in the
STRAP series of attitude control systems; a solar tracker is used on the
SPARCS system. In 1981, a magnetic ACS was flown and will be extremely useful
for experiments requiring aspect with respect to the local magnetic field.
Figure 2-5 provides a history of the inertially stabilized flights, excluding
SPARCS. Ground interaction to control attitude is a feature which is now sup~
ported within both the STRAP and SPARCS ACS packages. (*)

In the mid-60s, pulsed code modulated (PCM) telemetry systems were
developed, allowing direct acquisition of digital data during this time,
equipment was also developed to transmit in the P band, allowing higher data
rates, use of antennae with reduced aerodynamic profile, and transmittal of
signals with less interference. Current flight systems are modularized,
accommodating analog or digital user input over a wide range of data rates,
and provide a standard interface to the science package. The standard
telemetry system has been adapted for use in the SPARTAN program and will be
used with some other attached payloads.

On the ground, quick-look, microprocessor-driven receivers with a
data processing capability provide the experimenter an ability to obtain real~
time data analysis and evaluation.

The silver cell battery, the standard power source on sounding
rockets, provided the technology to provide battery power for payloads in the
SPARTAN program.

s o
o e,
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TABLE 2~6. NUMBER OF LAUNCHES GROUPED BY FIRING SITE

1. Antigua (ANT) 8
2. Argentina (ARG) 2
3. Ascension Island (ASC) 12
4, Australia (AUS) 21
5. Barter Island, Alaska (BI) 3
6. Brazil (BRAZ) 5
7. Chikuni, Canada (CHIKUNI) 2
8. Eglin AFB, Fla. (EGL) 6
9. Fort Churchill, Canada (FC, CRR) 313
10. Fox Main, Hall Beach, NWT, Canada (FM) 8
11, French Guiana (Kourou) (FGU) 23
12, Ft. Greely, Alaska (FGR) 3
13, Greece (GREECE) 7
i, Greenland (GRN) 9
15, Hawail (HAWAII) 13
16. India (IND) 52
17. Italy (ITALY) 3
18. Kenya (San Marco) (KENYA) 8
19. Kerguelen Islands (KI) 5
20, Keweenaw, Michigan (KE) 2
21. New Zealand (NZ) 7
22. Cape Perry, NWT, Canada (NWT) 3
23, Norway (NOR) 69
24, Pakistan (PAK) 16
25, Panama (PN) 2
26. Peru (PERU) 19
27. Pacific Missile Range (PMR) 8
28. Poker Flat Rocket Range, Alaska (PFRR) 85
29, Primrose Lake, Canada (PL) 2
30. Pt. Barrow, Alaska (PB) 73
31. Puerto Rico (PR) 9
32, Red Lake, Canada (RED LAKE) 5
33. Resolute Bay, NWT, Canada (RB) 7
34, Ship (SHIP) 47
35. Siple Station, Antarctica (SIP) "
36. Spain (SP) 10
37. Surinam (SUR) l
38. Sweden (SWE) 61
39. Wallops Flight Center (WFC) T34
4o, White Sands Missile Range (WSMR) 516
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Data reduction techniques have undergone a major alteration since
the program inception. In 1960, most data were extracted from analog output
and reduced by hand. Today, the need to translate the analog telemetry tapes
to a digital format can present a major block in the data reduction process.
Wallops flights from WFC can now make a digital tape as the data are recelved,
enabling investigators to begin examining their data as soon as they can get
onto a computer.,

Finally, the Wallops capability to achieve airborne retrieval of
science payloads makes sounding rocket flights over water a possibility for
science payloads which should not be exposed to water.

Mission Parameters

Two of the key parameters that define sounding rocket missions are
peak altitude and payload weight. A history of peak altitudes achieved in
past sounding rocket missions is depicted in Figure 2~6, which shows average
peak altitude by fiscal year. The ability of rockets to achieve high alti-
tudes in general has not been a problem in the NASA program. In fact, average
mission peak altitudes were higher in the early 1960's than they are now.

They have remained relatively constant for the last 15 years.

The constant average altitude of missions belies the fact that
rockets and performance capabilities have grown subatantially over the past 20
years. Rocketeers have used this capability to accommodate significant
increases in payload size and weight. This trend is shown in Figure 2-7,
which 1s a record of average payload weight by fiscal year. Average rocket
payload weights are now four times what they were in the 1960s. This weight
growth has allowed increasingly sophisticated experiment packages, significant
improvements in flight support systems (attitude control, power, data hand-
ling, telemetry, ete.), and the incorporation of payload recovery systems that
have had a favorable impact on program costs. Also, it has served to siften
the impact of declining launch rates. Even though the launch rate has
declined to less than a third of what it once was, the total weight of pay-
loads launched each year is as high now as it ever was. As shown in
Figure 2-8, total payload weight (annual) increased through the 1960s and has
remained relatively constant since then.
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Costs

The budget history for the sounding rocket program is provided in
Table 2-7. Costs shown include the rockets, experiments, operations program
support, ete., but exclude the cost of civil service manpower. The years
shown are fiscal years. The FY 1976 transition quarter which moved the start
of fiscal year 1977 from July 1, 1976, to October 1, 1976, has been omitted.
Funding for this quarter was $6.2 M for the period 1965-1981. These data are
presented graphically in Figure 2-9. To translate this funding into purchas-
ing power, the allocation is devalued by the NASA inflation factor since 1965
and presented in terms of constant $1965.

Figure 2-9 demonstrates that even though the actual sounding rocket
budget has been increasing, the buying power of the program has been cut to
less than half its 1960 value. If the history of cost-per-flight is examined
(Figure 2-10), they are seen to increase substantially. Even the inflation
adjusted costs (lower curve) increase somewhat. However, when it is remem-
bered that over this time period flight rates were cut by a factor of three
while payload weights increased by a factor of four, the historical increase
in the inflation adjusted cost-per-flight is remarkably modest. The result is
that the cost per pound of mission payload calculated in constant $1965
(Figure 2-11) has been cut in half since 1965. This may be contrasted with
the cost per pound of orbiting spacecraft which has remained relatively con-
stant in constant year dollars. One of the reasons for the favorable trend in
sounding rockets $/pound payload costs no doubt is the advent and increasing
use of reliable payload recovery systems that allow the recovery and reflight
of costly payload hardware.

The significant reduction in cost-per-pound payload (as measured in
constant $1965) is surprising and says something very positive about the
program. As was shown in Table 2-1, a 1980 launch requires much elaborate
support, is capable of obtaining much more science, and requires larger
rockets than a flight in the 1960's. In short, the sounding rocket program is
providing far more for the money invested today that it did 15 years ago, an
unusual trend that came about by pursuing programs to reduce costs, keeping
administrative overhead to a minimum, and maintaining a sharp focus on the

scientific objectives.



TABLE 2-7.

ORIGINAL PAGE I3

OF POOR QUALITY
2-24

SOUNDING ROCKET FUNDING HISTORY

Fiscal Year

Funding, $M

1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981

5.0

9.7

8.2
12.1
17.2
171
16.0
18.5
19.7
19.8
19.1
18.2
18.7
18.2
20.0
18.0
19.4
20.0
20.6
19.6
21.8
21.5
22.8
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The efficiency with which the sounding rocket program has functioned
has probably had the positive effect of making the funding levels tolerable,
However, the combination of increasing lead time for hardware procurement and
tightness of money in the program are beginning to have a negative impact on
flexibility in the program, and this is a trend that should be reversed,

2.2.2 Accomplishments

In this section, significant accomplishments within the sounding
rocket program will be discussed from three perspectives--significant scien-
tific results, advances in hardware and data analysis, and satisfaction of
program objectives,

2.2.2.1 Significant Scientific Results. Significant scientific
accomplishments will be discussed by science field,

UV Astrononmy

The very earliest sounding rocket UV observations of the Sun and
other bright sources gave the first indication that very interesting phenomena
were ocecurring in astronomical objects which were completely masked by the
Earth's atmosphere., From these early flights, the term "rocket ultraviolet"
was coined to refer to the region from 500-2500 K.

In more recent research on the Sun, sounding rockets have measured
mass outflow rates through coronal holes, have determined the solar boron
abundance, and determined solar UV emission line widths. Such results provide
important information on coronal structure and dynamics and on mechanisms for
coronal heating. The connection between supersonic jets in the corona and the
acceleration of the solar wind is being investigated.

In non-solar work, direct imaging of galaxies in the UV is being
used to gain new insights into galactic structure and evolution? UV observa=-
tions of the central regions of spiral and barred-spiral galaxies remove the
dominating luminosity that the old stars in that region have in visible light

and reveal regions of active star formation. Sounding rocket instruments were

[P
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used to obtain the first UV spectra of quasars and, in work that is important
for understanding mass loss in stars, to obtain the first observational

evidence of stellar winds.

X-ray Astronomy

The first observation of X-rays from a celestial source occurred in
sounding rocket observations of the Sun. This observation was anticipated
since the Sun was expected to be a weak X-ray source. An observation that was
unexpected and had a major impact on the fileld of astronomy was the identifi-
cation of Sco X-1, the first non-solar X-ray source, in 1962. This observa-
tion essentially gave birth to the field of X<ray astronomy.

In the following years, significant work continued from sounding
rockets., A large number of X-ray sources were catalogued in the next 10 years
and provided the foundation and basis for embarking on X-ray satellite
programs. In 1976, the first X-ray polarimeters were flown on sounding
rockets and began to provide evidence for magnetic fields associated with
pulsars., The first such object investigated was the phlsar at the center of
the Crab nebula.

Earth/Sun Interface

Three significant observations using UV detectors have important
bearing on the Sun's influence on the Earth. In 1975, the first accurate
measurements of the solar energy flux in the 50-575 A region were made; this
wavelength iregion contributes the major flux of ionizing radiation affecting
the uppar atmosphere. Shortly thereafter, variability in one of the solar UV
heliuw emission lines, a line which has a major influence on the state of the
upper atmosphere, was detected. In 1977 observations were performed which
determined the free-free cross section of an electron in the neighborhood of
atomic oxygen. This cross section, throught to be a major source of energy
deposition in the upper atmosphere, could not be determined in the laboratory.

In the fields of atmospheric/magnetospheric physics there are many
significant scientific results. From the upper stratosphere, at altitude 40

m. A #fhe Tewer macnarnanhaoana abk aTbeddde OO0 bm cmiarmmdd e svmmlemds o o oomom dola m
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only means of plaeing instrumentation in situ. Among the significant results
coming from studies of this region by sounding rockets are:
® Detection of radiation by van Allen which led him to
hypothesize the existence of the radiation belts that become
known as the van Allen Belts
e High spatial and temporal resolution studies of the auroral
streamer regions
o Possible detection of large electric fields in the mesosphere, a
region previously considered passive in the global electric
circuitcs)
e Disusovery and analysis of wave-like instabilities in the
ionosphere at low geomagnetic latitudes,

2.2.2.2 Significant Hardware Advances. The hardware requirements

for obtaining astronomical, solar, and geophysical observations are suffi-
clently distinet that each will be discussed individually.

In astronomical work, the limited observation #ime is the key
factor. To acquire data from faint sources, it 1s necessary to increase the
collecting area, improve the detection threshold, or do both. Larger sounding
rockets~-not just for performance but also of larger diameter--make it pos-
sible to loft a 90 cm telescope, giving a factor of 80 increase in the collec-
tion area of telescopes flown in 1960. Further, these telescopes are flown
higher, reducing the atmospheric background and increasing the observation
time. All of these factors have enhanced the instrument sensitivity. Further
enhancement has occurred by applying new detector technologies to sounding
rocket telescopes. Signal enhancement using microchannel plates, charge
coupled detectors, and diode arrays have provided sounding rockets with suf-
ficiently sensitive detectors that useful data can be collected in the absence
of orbiting instrumentation.

Perhaps the most significant recent development in solar investi-
gations from sounding rockets is the interactive ACS. This system enables
high resolution studies of those areas of particular interest to be selected
"at the telescope'.

The significant hardware development in geophysical studies has been
the development of multiple instrument payloads.
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2.2.2,3 Contribution ko Achleving Program Objectives. The
objoetives of the suborbital ,rogram were presented in Sectlon 1.2.3. In this
seation, the way in which the sounding rocket program has satisfied these
objeobives will be discussed.

Continulng Rasaaroh

An active program of continuing ressaroh has beon conducted in both
the astophysical and geophyaloal flelds., Thore is an ongolng program in UV
astronomy, foocusing on galaxles as well as objeots within the Galaxy. Plans
area being made by several investigators to rasume X-ray studles from soundlng

-

rockets, An aotive progrom of research ls belng conducted in atmospheric
studlaes.

Ongoing rosearch programs in astronomy ineclude studles of solar
flares and acbive raglons, the solar wind and solar coronal structures, direct
image studles of galaxies in the UV, UV spoctrosaopy of galacble and
oxbtragalactic sources, and studles of the properbles of diffuse and discrete
X-ray sources., In abmospheric studles, programs to study the aurorae,
magnetosphaeric properties, megospherie glectric flelds, and vertioal
atmospharie structure above balloon floab altitudes are continuing.

Search for New Pheonomena

Significant and unexpected results have been obtalned from sounding
rockets in the past--the discovery of the X-ray source Sco X~1 being an excel-
lont examplae, the discovery of large mesoapheric B flelds, and the ilndleatilon
of the van Allen Belbts being other cases in point. The first observational
gvidence for "stellar winds" was acquired from sounding rocket UV
gspectroscopy. Furbher studles of the btransfer of energy from the
magnetogphera through the lonosphere and mesosphere will undoubtedly reveal
the presence of unanticlpated processaa. In astronomy, polarimetry studies in
the X-ray may provide an improved understanding of the physiecal phenomena
agsgoclated with pulsars.
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Support for Other Programs

Support of other NASA programs has come about in several ways. A
function of major importance in sounding rockets has been the support of
orbital instrumentation. This has been accomplished by providing a test bed
for instrument development, by providing experienced science personnel to

serve as investigators on satellites, by providing instrument oalibrationfagnd

by establishing standard reference sources.

The involvement of sounding rocket personnel in satellite projects
is illustrated in Table 2-8. The development and testing of most of the
instrumentation on these satellites occurred on sounding rockets. The
calibration support of Skylab by sounding rockets e¢nsiderably enhanced the

value of the data which were acquired.(s)

Time Critical Studies

A particularly productive research program has been associated with
soiar eclipse occurrences. Such »rograms not only benefit by the relatively
small expense of sounding rocket flights, but also require the use of trans-
portable launch facilities. A series of flights to study the upper
atmospheric response to a solar eclipse were launched in 1963 from Fort
Churchill in 1966 from Brazil and aboard ship off the coast of Greece. Other
eclipse-related programs have been conducted from Kenya, New Zeland, and, in
1970, a majer program from Wallops Island.

Comets have also been the subject of sequences of rocket flights.
Comet Kahoutek was observed in the UV in January 1974, and another series of
comet flights were conducted in March 1976, to observe Comet West. The deci-

sion to go for flights to study Comet West was made 59 days prior to launch,

after it had been determined that the comet would be of sufficient interest to

the scientific community to merit the investment.
A very useful feature of sounding rocket research of auroral
phenomena is the ability of the investigator to hold his firing until the

conditions of interest are occurring in the region which the payload will

traverse. When such conditions occur, he can place his instrumentation in the

§oa o
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E 2-8, SOUNDING ROCKET PROGRAM INVESTIGATORS ON SATELLITES

Percent of
Number of Number of Number of PI's which
Sounding Rocket  Sounding Rocket Investigators were Sounding
Investigators Investigators on All Rocket
Serving as PI's on All Instruments Instruments Investigators

SMM 3 9 b 33
(2 foreign) (13 foreign)

Heao~1 3 24 36 75

Heao~2 5 20 100
(10 foreign)

Heao~C 0 0 0 0

ISEE-1 7 17 75 50
(30 foreign)

ISEE-2 (ESA) 3 7 50 38
(25 foreign)

ISEE-3 I 11 67 26
(21 foreign)

Skylab 2 6 21 70 47
(4 foreign) (13 foreign)

DE-A 4 12 37 50
(6 foreign)

DE-B 7 23 46 54

(1

foreign)
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region within several minutes. Such a capability has also proven useful in
the study of phenomena related to solar flare activity.

Development and Testing of Scientific
Instruments and Detectors

The primary thrust for instrument and detector development in
astronomy has occurred in the fields of UV and X-ray astronomy. Sounding
rockets were fiprst used to extend normal incidence optics and detectors to
wavelengths below 900 K, allowing the first stellar spectroscopy to be
conducted in that wavelength region. More recently, microchannel plates have
been tested and used to perform direct imaging of galaxies in the UV. In the
soft X-ray reglon, imaging, grazing-incidence telescopes were first flown on
sounding rockets. Array detectors, charge coupled detectors, and diode array
detectors are currently being tested. Each of these development programs had
as the goal placing instrumentation on orbit--in the case of the microchannel
plates and array detectors, use on the Space Telescope is planned.

Instrument and detector developments for geophysical and geochemical
studies have tended to focus on the adaptation of existing technology rather
than pushing for new technology. A case in point is the current work being
done to produce a payload/sensor design that will verify the reality of the
large horizontal mesospheric electric currents that are apparently being
observed.

Enhancement of Support Capabilities

Support trends in the areas of rocket performance and reliability,
attitude control system development, geographic flexibility, data avail-
ability, and payload retrieval were discussed in Section 2.2.1. These areas
cover the essential support features required by investigators and significant
progress has been made in all areas in recent years. Especially notable
advances have occurred in attitude control and pointing, both for astronomical
and geophysical studies. An ongoing effort remains to minimize program
expenses by acquiring and adapting surplus rocket engines for use in the

program.
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Graduate Research and Education

The relatively brief time from project inception to flight makes the
sounding rocket program well suited to providing research opportunities to
graduate students. To date about 350 advanced degrees have been granted as a
result of these research opportunities.

Continuity in Science Areas Hk

For sounding rockets, continuity in affected science fields is only
an issue for astronomy. The sounding rocket program has contributed to
continuity in two ways. First, by serving as a test bed for future orbital
instrumentation it stimulates the need for successive generations of i
satellites~-there will always be something new and exciting to fly next time. ﬁ
Second, the development process itself yilelds scientific results as a by- E
product and provides an incentive for people to maintain contacts with the 1
program. i
The process of investigators transferring from satellites back to i
sounding rockets has been occurring in the X-ray astronomy field. New
dctector technologies will have a considerable impact on future satellites and
that the design and development of new instruments on sounding rockets will
provide an important contribution to the field.

Support of International Cooperation

The sounding rocket program has had an active involvement with other
countries, providing them with a capability for acquiring data in and above
the atmosphere while greatly increasing the geographic flexibility that the
program can offer. The countries which have been involved in the program are
shown in Table 2-9. The number of launches shown f7r each country reflect
launches of large sounding rockets such as contained in the compendium; a much

larger number of small meteorological rockets have also been flown.
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In some cases, the launches have occurred during campaigns, for
example, the eclipse launches in Greece in 1966 and the 1975 campaign in Peru
to study ionospheric and magnetospheric properties at the :uignetic equator,
but in many cases the cooperation reflects a long-term working relationship.

TABLE 2~9. NUMBER OF INTERNATIONALLY SPONSORED
SOUNDING ROCKET LAUNCHES GROUPED BY
CO-SPONSORING COUNTRY OR ORGANIZATION

Argentina 19
Australia 25
Brazil 75
Canada 205
Denmark 6
ESA 1
France 41
Germany 54
Greece 7
India 54
Israel by
Italy 49
Netherlands 5
New Zealand 10
Norway 94
Peru 19
Spain 10
Sweden 58
Switerzerland 2

United Kingdom 28

[

w2

et}



S

1.

2.

1e

2.

3.

5.

2-37 AGE 13
ORIGINAL P
_OF POOR QUAL‘TY

Bibliography

Corliss, W. R., NASA Sounding Rockets, 1958-1968, A Historical Summary,

Sounding Rockets - Their Role in Space Research, report of the Committee

on Rocket Research, National Academy of Sciences, February 1969.

Newell, H. E. Beyond the Atmosphere--Early Years of Space Science, NASA
SP-4211, 1980,

References

Striekland, R. L., and J. M. Shigamoto. Computerized Real Time Sounding
Rocket Control, Proceedings of the AIAA 5th Sounding Rocket Technology

Conference, 1979.

Stecher, T. P., B. C. Bohlin, J. K. Hill, and M. A. Jura. Ultraviolet
Images of M101: Observations of Dust and Inferences on Metallicity,

Astrophysical Journal, 225, 2, L99.

Maynard, N. C. Middle Atmosphere Electric Fieids, Proceedings of the Vth
ESA~PAC Symposium on European Rocket and Balloon Programmes and Related
Research, ESA SP-152, 1980.

Brothers, J. R. Skylab ATM Calibration Rocket Project, Final Report to
NASA Marshall Space Flight Center, April 30, 1974.

Guidotti, J. G. The National leronautics and Space Administration

(NASA)/Goddard Space Flight Center (GSFC) Sounding Rocket Program, NASA X~

T40-T6-144, June 1976.



3

At eaiiasandd

AR
B .

E e =T
= i

b s et &
-

3-1

3.0 THE BALLOON PROGRAM

Seientific ballooning provides an opportunity to attack a wide
variety of research problems in the flelds of astronomy and atmospheric
studies. Some factors which enhance the usefulness of balloons for conducting
research are traits found throughout the suborbital program--a relatively low
cost to fly, short development times, and geographic flexibility. However,
there are also unique factors which give balloons special capabilities. ,
Balloons are able to operate above enough of the Earth's atmosphere to collect 5&
Y-ray and high energy cosmic ray data; moreover, they can carry the large,
heavy detectors these fields require for the extended observing times needed
to gather the low-flux data from these characteristically faint sources.

Astronomical investigations in the IR provide data with minimal atmospheric

interference, so that spectroscopic information can be gathered to provide i
information on the physical state and chemical composition of astronomical IR K
sources. For atmospheric research, balloons are the only means for in situ {
placement of instrumentation. Balloons can probe the entire stratosphere with

high spatial and temporal resolution while introducing minimal disturbance in

the local conditions. The NASA balloon program complements activities in the

sounding rocket and airborne programs, operating above aircraft altitude to a

max.mum float altitude of about 140,000 ft.

Unlike the sounding rocket and airborne programs, the NASA balloon

program is conducted in concert with other government agencies. The most
active of these has been the National Science Foundation (NSF) through its
support of the National Center for Atmospheric Research (NCAR) and the NCAR
parent organization, the University Committee for Atmospheric Research (UCAR).
Through September 1982, NCAR operated the National Scientific Balloon Facility
(NSBF) in Palestine, Texas, which supported about half of the NASA balloon
launches. Other agencies supporting balloon programs are the Environmental
Protection Agency (EPA) and the Department of Energy (DOE).

The NSBF i1s the principal site worldwide for large volume scientific

balloon launches and much of the reliable data on the balloon program comes

from the records of NSBF. This data has been relied upon heavily in providing

input for balloon trend analyses in this report. Operation and funding of the
NSBF was transferred from NSF to NASA as of October 1, 1982.
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Balloons

Most balloons used in scientific research up to this time have been
"zero-pressure" balloons, balloons which maintain pressure equilibrium with
the surrounding atmosphere and must therefore have an open vent to the
atmosphere. The zero pressure balloon has two components--a load bearing
network of reinforced fibre strips (load tapes) to which the payload is
attached, and a set of thin plastic panels (gores) connected to these strips
to form the gas bag (usually containing helium). Because the balloon main-
tains pressure equilibrium with the atmosphere, these gores experience minimal
stress and can be made of lightweight material. Balloons of this type have
been built to reach a float volume of 70,000,000 cubic feet and are able to
carry as much as 7,500 1lbs of science payload; 3,000 lbs of payload can be
carried to an altitude of 140,000 ft.

The principal limitation of zero pressure balloons is flight dura-
tion. At launch the balloon is only partially inflated so that as it gains
altitude and the atmospheric pressure decreases, the helium in the balloon
expands until the balloon becomes fully inflated. As the ascent continues
some helium is vented to prevent overpressuring. At sunset, the atmosphere
and the balloon both experience a temperature decrease. The atmophere, con-
sisting primarily of heavy molecules--N> and Op--in contrast to the balloon
gas bag containing helium, leads to the balloon experiencing a loss of volume
and a consequent decrease in bouyancy. The balloon will sink to the altitude
at which bouyancy halts the fall, but this nightly altitude change can be tens
of thousands of feet, and in some cases can cause the balloon to drop all the
way to the Earth's surface. The altitude fluctuation can be moderated by
dropping ballast at night and venting helium during the day, but carrying
enough ballast to remain aloft more than a few dars severely limits the
allowable scientific payloads.

An alternative to the zero-pressure balloon is the "super-pressure'
balloon, a sealed balloon which maintains a pressure excess over its surround-
ings. These balloons, which maintain density equilibrium with their surround-
ings, are sealed, and therefore are capable of indefinitely long float

durations. However, construction, handling, and launch of these balloons
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require special techniques that presently limit the size of the balloon that
practically can be manufactured and used. A maximum seience payload weight of
about 500 1lbs can be carried by current super-pressure balloons. Since the
balloon maintains a pressure excess over the surrounding atmosphere, the gas
bag must be strong enough (and therefore heavier than zero pressure balloon
gores) to withstand the stress; small perforations in the gas bag, which
always occur when handling and launching large zero pressure balloons, cannot
be tolerated and, at this time, the engineering problems associated with
providing superpressure balloons of several millions of cubic feet appear
formidable. As such large balloons come closer to realization, otlier problems
in long term ballooning--power sources, command, control, and thermal
control--will have to be addressed.

An experimental program on a hybrid balloon system, called "Sky
Anchor", has been on-going at a low level of effort for many years. This sys-
tem employs two balloons, a large zero-pressure balloon to provide loft and a
smaller superpressure balloon to moderate the nightly altitude loss,

Importance to Science Filelds--Overview

Two broad fields--astronomy/astrophysics and atmospheric physios--
are affected by the balloon program. In astronomy, the prineipal areas influ-
enced are cosmic ray, Y-ray, hard-X-ray, and IR astronomy. In atmospheric
physics both IR remote sensors and in situ sampling instruments are used and
the area of primary interest is atmospheric chemistry.

Within the scientific community, an active balloon program is
regarded as essential to the well-being of the science fields. Much of the
instrument development for any of the affected orbital astronomy programs
comes from the balloon program, and balloons play a continuing role in
obtaining scientific data to complement satellite data when available and in
place of it when satellites are not available. Balloons provide the only
means of obtaining samples of the stratospheric constituents in the 70,000~
140,000 foot altitude range.
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3.1 Capabilities and Limitation

Balloons provide the altitude link between the airborne instrumen-
tation and typical sounding rocket altitudes. They serve as probes from the
lower stratosphere up to the lower mesosphere, covering a critical region in
the Sun-Earth interface.

Balloons possess unique capabilities for conducting research in IR,
Y-ray, and cosmic ray astronomy and atmospheric chemistry. In conducting
these programs, balloons can serve in a support role for orbital instrumen-
tation or instead be the primary research vehicle.

On the negative side, the fact that the balloon program has
encountered some cost growth over the past several years is a concern. The
situation may become even more critical ir the near future when NASA must
assume management of the National Scientific Balloon Facility. The pressure
to channel funds into needed research activities has made and will continue in
the future to make it difficult to justify the significant investment required
to bring superpressure balloons to an operational status for scientific
ballooning.

3.1.1 Capabilities

Balloons offer an opportunity to conduct research in a way that is
relatively simple and inexpensive. Historically, the balloon science team has
been responsible for providing and integrating the entire scientific payload--
instruments, telemetry, attitude control. The balloon program provides the
balloon, helium, recovery system, and launch facilities. Typical balloon
costs have recently been in the range of $15K-$60K, typical science develop-
ment in the vieinity of $500K. However, reflying the science packages reduces
the cost per flight to the $150K-200K range. This relatively low cost
encourages the use of new technology and makes instrument testing a valuable
feature in the program. Such testing not only makes balloons more valuable in
this research capacity, but also makes an essential contribution to orbiting
programs. All of the instruments to be flown on the Cosmic Background
Explorer (COBE) and on the Gamma Ray Observatory (GRO) have been tested and
proved in the balloon program.
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The relatively small expense involved in funding balloon projects
makes them ideal vehicles in which to introduce and test new technology and
new design concepts. Balloon instrumentation may be very nearly the state of
the art. In contrast, greatly more expensive satellite programs nust work :
with dated technology using a conservative design approach. The recently %
flown Solar Maximum Mission (SMM) accepted instrument proposals in 1972,
selected instruments in 1975, and flew in 1980, nearly {0 years after the
involved experimenters proposed their instruments. Similarly, the GRO

S

instrument proposals were written in 1977, for launch now scheduled for 1988.

In atmospheric physics, balloons are capable of obtaining vertical
samples throughout the stratosphere in a benign thermal and stress load
environment. The breakdown of ozone by fluorocarbons emitted on the Earth's
surface occurs in this altitude regime; an understanding of the chemical
processes and process sensitivities driving this breakdown is best obtained by
chemically analyzing small volume samples, so that balloons provide an ;
especially appropriate tool for this work. Balloons also provide a test bed |
for remote sensing instruments that will be used on satellites and provide 4
calibration for these instruments once they are flown. NASA has emphasized !
the development of remote sensing capabilities in its balloon program to (
support its long-range objective of obtaining global atmospheric data from
satellites.

In astronomy, balloons operate at an altitude which make them well-
suited for studying objects in the IR, hard X-ray, and y-ray regions of the
electromagnetic spectrum. High-energy cosmic-rays also may be studied at bal-
loon altitudes. Balloons are capable of lifting the large, heavy equipment
which is reduired for these studies and, the extended float duration provides
an opportunity for studying faint sources.

3.1.2 Limitations

Although zero-pressure balloons are capable of providing hours to
several days of observation time on each flight, the restriction on flight
duration is perceived by the scientific community as the principal program
limitation. Flight duration is a controlling factor in Y~ray and cosmic ray i
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studies, in which sources are rainé%) In Y~-ray work at balloon altlitudes, the
atmospheric diffuse background, arising primarily from interactions between
the atmosphere and cosmic rays, is about 10 times the cosmic diffuse back-
ground. In cosmic ray work, the limited float time prevents study for
directional anisotropy.

Flight duration is not just controlled by the use of zero-pressure
balloons, but also by the lack of international agreements on the crossing of
balloons over national boundaries-~balloons cannot cross into Mexico, for
instanee}‘ Also, flights which are in danger of flying over the ocean are
terminated so that the science payload will not be lost. To circumvent these
geographical restrictions, flights during the Spring and Autumn turnaround,
during which the upper atmospheric winds change direction and are temporarily
gquiet, are in demand. However, the duration of turnaround is unpredictable
and the demand for launches can excesd the support which can be provided by
the launch facilities,

Superpressure balloons have performed flights of several months (in
the Southern hemisphere, where there will be no crossing of national
boundaries) but at this time the payload Qeight which these balloons can carry
is small (500 1lbs) compared to the science equipment which needs to be flown
(~5000 1bs).

In X-ray astronomy, the a‘mospheric opacity increases with decreas-
ing photon energy. At balloon float altitudes, useful data at energies less
than 20 KeV is almost impossible to collect, making balloons suitable for
studying high-energy X-ray sources but unsuitable for soft X-ray sources. The
atmosphere remains ¢paque until the near«UV is reached. Balloons can extend
observations somewhat further into the near-UV than ground-based instrumen-~
tation, but such observations are primarily useful for testing instruments and
detectors.

The primary limitation in atmospheric research 1s that the sampling
volume is localized whereas in many cases data are needed on a global scale.

3.2 Program History

Balloons have a long and colorful history, providing man with his
first opportunity to leave the Earth's surface for any significant amount of
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time, The early balloon sxperimenters were men with wide-ranging scientific
- ~* Licy; on the earliest flights, sclentific data suchk as air temperature
and pressure were twcorded.

Solentific ballooning as a government funded operation began before
World War II. After World War II interest was maintained and capabilities
increased with the introduction of stronger, lighter weight balloon materials.
One of the earliest projects of the modern era of sclantific ballooning was in
the area of optical astronomy--~the Stratoscope Project conducted by Martin
Schwarzschild. Although the Earth's atmosphere does not strongly absorb
visible light, small scale turbulence and temperature and density variations
in the atmosphere make any astronomical image appear "fuzzy" when viewed under
high magnification. Schwarzschild, who had an ongoing interest in stellar
structure and evolution, was interested in obtaining high resolution pictures
of the rearen. star~-the Sun. Images of the Sun to look for small scals
structure in the solar photosphere (solar granules) couyld only be obtained by
getting above most of the atmosphere, which Schwarzschild accomplished using
balloons.

In 1960, a balloon engineering group was formed which led to the
creation of the NSBF, located in Palestine, Texas. The NSBF, which performed
its first launch in 1962 and became operational August 1963, has since become
the leading balloon facility in the world. From its inception, the NSBF has
served various organizations interested In launching large balloons., To date
it has been run by the University Council for Atmospheric Research (UCAR) as
the management arm for the National Center for Atmospheric Research (NCAR), an
organization funded by the National Sclence Foundation (NSF).

NASA has been the most frequent user of the NSBF, contributing atout
50 percent of the NSBF launches., NASA's balloon program is extensive, its
NSBF activity representing only about half of the NASA total. Control of NSBF
is being transferred from NSF to NASA in FY 1983. NASA is assuming management
and support of the facility.

Prior to 1976, the NASA balloon program was directed and managed out
of NASA !leadquarters. In 1976, management was delegated to the Wallops Flight
Center. Balloon researchers have been funded for building their scientific
payload and incorporating supporting flight systems (e.g., power, pointing,
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computing, etc.). With the experiment ready for flight, NASA has bought the
balloon, helium, parachute, and other required hardware. For NSBF launches,
the NSBF has supplied the launch, tracking, telemetry, and recovery crews.
Today, with the exit of the NSF from support of the NSBF, scientific
ballooning im the U.S. is at a crossroads. The NASA Balloon Program has been
funding-limited for many years and must now expand to support NSBF.

3.2.1 Trends in Key Parameters :

&

The scope of the balloon program has changed dramatically in the
last 20 years. Single instrument gondolas have been replaced by multiple
sensor systems; more collaboratlion between investigators is producing more
science on each flight; stratospheric research is becoming more important. A
mid-60s launch typically would involve a balloon volume of a million cubic
feet lifting a man-sized payload of a f'ew hundred pounds; today a typical
flight uses a 20 million cubic foot balloon to 1lift a pickup truck-sized
payload weighing several thousands of pounds.

There are several parameters whose trends reflect the increasing
utility of the program:

(1) Flight activity

(2) Mission parameters

(3) Launch site usage

(4) Costs.

In the discussion of trends it is important to note that information
available on the NASA balloon program for the time prior to 1976 is incomplete
and inconsistent. Hence, long term trend information was taken from NSBF
sources; such trend charts will be labelled as NSBF data. As noted earlier
NSBF data does not reflect only NASA launches, and there are many NASA
launches not performed by NSBF.

Since 1976, data on the NASA balloon program has been maintained and
this data has been used where possible to discuss the NASA program itself.

R



Flight Activity

A record of launches supported by the NSBF has been mairitained since
1963. This record is summarized in Figure 3-1; from 1977 to the present the
NASA contribution to this flight total is shown.

The NASA launches have been recorded since 1976. Figure 3-2 pre-
sents this information for this period.

Balloon reliability is an important consideration. In the last two
years it has exceeded 80 percent. The NSBF launch failure and success
breakout is shown in Figure 3-3.

Breakout of launches into scientific fields has been accomplished
for both the N3BF history--Figure 3-l--and WASA launches since 1976~-

Figure 3-5.

Mission Parameters

In the period from 1963 to 1980, the average NSBF payload weight
increased by a factor of six (Figure 3~6). Since 1977, NASA balloon
payload weights have increased 40 percent as shown in Figure 3~7. These
increases contributed to a tresmendous improvement in the level of scientific
ingtrumentation brought to balloon research projects.

In 1963 a payload was typically small encugh that the investigator
could carry it to the launch platform. Today, a typical payload requires
elaborate mechanical contrivances for successful launch; a cosmic ray payload
being prepared for flight at GSFC is a cylinder-shaped payload nearly 20 ft
high and 20 ft across.

In 1976, a precipitous increase in the failure rate of heavy lift
balloons was experienced. A task force of scientific and engineering balloon
personnel was convened to determine the source of the problem. Out of this
task force came recommendations to adopt more couservative procedures in heavy
1ift operations and failures were reduced to a tolerable level,

Balloons are difficult to categorize-=-gach balloon sgems unique.

Parameters which reflect balloon capabilities are baliloon volume, float

s
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altitude, and float time. From 1963 to 1976, NSBF balloons experienced a
steady increase in average balloon volume (Figure 3-8), a trend that has
leveled off since that time. The average volume of NASA balloons launched
since 1976 has remained relatively constant (Figure 3-9). This leveling off
reflects a satisfaction within the science community in the service being
provided by balloons. Although cosmic ray, Y-ray, hard X-ray, and IR
astronomers would like to obtain higher float altitudes, this is not perceived
to be as important as obtaining longer flight duration. However, in the soft
X~-ray and UV astronomy areas, an increase in float altitude would enhance the
balloon research capability.

NASA Balloon average float altitudes and float times (flight
duration) are shown in Figures 3~10 and 3-11. Both parameters have remained

relatively constant since 1976.

Launch Site Usage

Geographic flexibility in ballooning has been emphasized since bal- i
loon sampling must occur in varied regions. Figure 3-12 shows the selection
of NASA balloon launch sites.

Although Palestine has been the most heavily used site in the u.s.,
obtaining long duration flights from this location requires launching during a
brief period at spring or autumn turn-around, when the high altitude winds
reverse their direction. During the switch, there is usually a dead period of
a few days to a couple of weeks. Long duration launches atf, other times are in
danger of crossing coastal boundaries or into Mexican air-space and are
aborted.

To provide an opportunity for long duration ballooning at other
times of the year, summer launches are being tried from Greenville, South
Carolina. The summer winds move east to west so that balloons can remain in
flight for several days before leaving U.S. airspace.

In 1981, 27 NASA balloons were launched at Palestine; 29 were
launched at remote sites including Laramie, Wyoming, Holloman AFB, New Mexico,
and Gimli, Canada. Two overseas campaigns were conducted--one from Barking
Sands, Hawaii and one from Alice Springs, Australia.
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Costs

The NASA balloon budget line item covers the cost of the balloon,
helium, supporting equipmont, and some use of facilities and special services
charges. The cost of the science packages, payload support equipment, and
integration are carried under the SR&T budgets of the NASA divisions involved.
This discussion primarily deals with the direct balloon procurement and use
costs represented by the balloon budget line item.

Figure 3-13 summarizes NASA balloon line item costs for the FY 1977-
FY 1981 time period. Both the actual costs, and cost converted to constant
$1977 are presented to show the impact of inflation. Looking at the $1977
costs (inflation adjusted costs) it may be concluded that the buying power of
the ballcon budget has remained approximétely level or even decreased slightly
since 1977.

Figure 3-14 presents the average cost per flight of NASA balloons
launched since 1977. This data was obtained by dividing the fiscal year
budget by the number of flights flown in that year. Since some flights flown
in a given year may be funded by money :.rom a different FY budget, some
inaccuracy is present in individual data points. However, the overall trend
is accurate. The average cost of balloons launched in 1981 increased nearly
50 percent when compared to those launched in 1977. However, in terms of
constant $1977, cost per flight has increased only slightly, if at all.

The balloon cost per pound of payload delivered aloft is shown in
Figure 3-15. The two curves plotted (cost per pound in $ actual and $1977)
roughly parallel the cost per flight curves. Cost per pound in 1981 is
significantly higher than that for 1977. However, cost per pound in constant
$1977 increased only slightly.

Although balloon costs expressed in constant year dollars have not
increased significantly, a number of factors have put upward pressure on those
costs. In the mid-1970s it became desirable to institute more formal
management of the balloon program, which until that time had been managed by a

single program manager at NASA Headquarters. A program office with a staff of
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six persons (including the program manager) was established at the Wallops
Flight Center (WFC).* About the same time, reliability problems were
encountered with heavy-lift balloons (a moratorium on heavy-lift flights was
in effect in 1978), and stricter, more formal reliability and quality
assurance measures were implemented. A number of test flights were conducted
to investigate the failures that had occurred and testing in general in the
program increased substantially. Quality control provisions implemented at :¥!
the balloon contractors' facilities increased balloon production costs. .
Balloon production costs were also adversely affected by the emergence of one
dominant supplier and the weakness of competitors. This situation has begun
to improve recently as stronger competition between suppliers is beginning to
oceur.

NASA participation in NSBF balloon operations costs has increased ﬂ
leading up to the transfer of NSBF from the NSF to NASA. NASA used to pay 4
only for the balloons, helium, and any speclial services needed, e.g. the i
additional cost of offsite operations (both domestic and international) ?
ineluding all travel and other NSBF staff expenses. In 1980 and 1981 NASA '
participation increased to include larger incremental costs associated with
NASA support. Finally in recent years increasing support for improvements in
balloons has been provided.

The average cost per flight range of $30K-$50K reflected in Figure
3-14 is in agreement with data obtained from the NSBF and listed in Table 3-1.
This table also shows that a downturn in balloon cost is now occurring. This
downturn in part is due to an improving competitive situation between

candidate balloon suppliers.

¥The staff increase does not affect the budget directly as it is civil service

manpower not charged to the budget. However, the increased attention to
management and reporting had some affect on contract costs.
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TABLE 3~1. NSBF SAMPLE BALLOON COST TRENDS

Volume Cost
Year (MCF) ($ Actual)
1967 5.250 $ 4,193
1975 5.200 5,084
1981 5.048 13,382
1973 11.600 6,927
1976 11.600 12,108
1979 10,700 21,502
1980 11,600 16,700
1981 11.600 16,700
1972 15.500 9,800
1976 15.300 16,742
1977 15.500 19,500
1979 15.300 29,530
1981 15.900 25,807
1982 1£.600 19,543
1975 20.300 19,886
1976 20.111 24,011
1978 20.111 29,813
1979 20.500 37,623
1981 20.500 21,156
1975 30.000 32,201
1977 31.650 37,402
1979 31.160 47,315
1980 31.150 55,593
1982 30.250 38,490
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3.2.2 Accomplishments

In this section, balloon program accomplishments will be discussed
from the standpoint of significant scientific accomplishments as well as in
the context of satisfaction of program objectives.

3.2.2.1 Significant Scientific Results. Significant scientific
accomplishments will be discussed by science field.

Cosmic Ray Astronony

Balloons have been essential to the development of high-energy
cosmic ray astronomy. Cosnfic rays; which are charged particles--electrons,
protons, atomic nuclei, and the anti-matter correspondents--interact both with
the magnetosphere as they approach the Earth and with the Earth's atmosphere.
Low-energy cosmic rays are deflected by the magnetosphere and are not observed
from balloons. High-energy cosmic rays enter the atmosphecre and are
thermalized--ground based detectors provide very little information, but at
balloon altitudes the atmosphere has had only a minimal effect.

The sources and energizing mechanisms of cosmic rays are a puzzle--
the Sun is a known source of low-energy cosmic rays--but for galactic cosmic
rays the sources and accelerating mechanisms--supernovae, interstellar shock
waves, large scale magnetic fields are current candidates~-can only be indi-
cated indirectly at this time. The existence of discrete sources or aniso-
tropy in the background can only be conjectured.

Early studies of cosmic rays were concerned primarily with
establishing their chemical composition and energy distribution. Current
studies are addressing issues of more cosmological concern, attempting to
obtain a congistent picture of cosmic ray sources and acceleration mechanisms.
Isotope and chemical composition studies are helping to resolve the question
of what fraction of cosmic ray nuclei originated from nucleosynthetic pro-
cesses in stars and supernovae and what fraction are nuclear collision

fragments, information that can also be used to obtain estimates of cosmic ray
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life-timesfz)Results of these studies may have broad cosmological implica-
tions; depending on the location of cosmic ray sources--near the solar systemn,
galactic, or intergalactic--the amount of material in cosmic rays may be
sufficient to close the universe.

Balloons have provided most of our information on the energy depen-
dence of cosmic rays. New studies are being conducted on the energy depen-
dence of the chemical composition. The first observation of ultraheavy
nuclei, those nuclei above iron--were obtained from balloons as were the first
observations of anti-matter components. Balloons offer an ongoing capability
for observing the extremely high energy transitions which may produce new

insights into fundamental particles and nuclear processes.

Y-Ray Ast.onomy

Certainly one of the most productive fields of balloon research has
been Y-ray astronomy. The types of sources seen, the types of instruments
used, and the types of data acquired have not only produced valuable science,
but spurred the initiation of the next major NASA science satellite--the Gamma
Ray Observatory.

Y-rays are the extremely energetic photous produced either by tran-
sitions in or reactions between atomic nuclei, by the interaction of extremely
energetic charged particles with a magnetic field, or by the annihilation
reaction between matter and anti-matter. The very high energy of thegé
photons makes them the most effective radiation to study in the observation of
high energy sources. '

Y-ray sources which also exhibit pulsed radiation in the radio
region were discovered from balloons; both the Crab and Vela pulsars have been
studiedgs)Extragalactic Y-ray sources in the Seyfert Galaxy NGC 4151 and in
Centaurus A have been observed. A diffuse Y-ray background has been detected;
a possible and unexpected exwess of radiation in the 1-10 MeV energy range may
provide new information on the Galactic magnetic field and the cosmic rays
which it contains. Y-ray bursts, a phenomenon not yet understood, have been
observed from balloons.
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In a rather novel role, Y-ray detectors have been used to obtain
information on the chemical composition of the surface of Mercury by studying
the Y-ray radiation emitted by the surface in response to cosmic ray bombard-
ment. Such a technique could be applied to any body lacking an atmosphere.

The Y-ray emission associated with solar flare activity was the sub-
ject of study during the last solar maximum. A new temperature component of
the flare material was discovered, one that could not be detected at low
spectral resolution.

Recently, a major step forward in obtaining high resolution Y-ray
spectra has been taken with the flying of germanium detectors. These
detectors are capable of much better resolution than previous ones (Nal
crystals) and have now been applied to both solar and galactic/extra-galactic
work.

IR Astronony

The field of IR astronomy is of interest in both the balloon ang
airborne programs. Balloons, because they operate at higher altitudes, have
to contend with less atmospheric interference, and are better suited for
studying faint sources and for obtaining IR spectra. Most of the balloon work
falls into these categories. Other activities have involved obtaining all-sky
surveys and producing low-resolution mapping of particular regions. Cooled
detectors are used on balloons to reduce the thermal detector noise but bal-
loons are not well-suited to cooling the entire instrument; instead, the large
lifting capacity of balloons has been used to carry large enough telescopes to
effectively enhance the signal to noise ratio of the incoming data.

Balloons have provided the first detection of numerous molecular
lines in3the Sun, in planetary atmospheres, and in interstellar "molecular
clouds". Using various atmespheric windows and atmospheric emission line, the
temperature and chemical composition of planetary atmospheres have been
studied. Jupiter's atmosphere, for example, has been observed from an
altitude where the pressure is 0.01 atm down to an altitude whers the pressure
is 5 atm. Since the exposed surfaces of moons and planets in the solar system
radiate in the IR and far ‘IR, studies of the temperature and thermal
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properties of these surfaces have been performed from balloon. Balloon
observations of the Jovian moons first revealed the presence of internal heat
sources.,

Beyond the solar system, studies of early star development in
molecular c¢louds and HII regions is advancing our understanding of the early
stages of stellar evolution. All the catalogues of sources in the far
infrared have been compiled in the balloon program, and initial investigations
of the spectrum and anisotropy in the 30K cosmic background radiation were
first made from balloons. Studies in the far IR have provided new information
on the distribution of dust and new stars in and near the galactic plane.

Studies of the Sun in the IR provide information on the
photosphere/chromosphere transition region and provide input to improved
models of the solar atmosphere.

UV Astrononmy

Some work in the ultraviolet region of the spectrum can be conducted
from balloona. Ozone, which exists mostly below the altitude of 25 km, is the
dominant absorber down to 1900 K, so that some work can be conducted in the
near UV (1900-30003). Since there is considerable variability in the atmos-
pheric opacity in this region, UV studies of stellar sources on balloons are
most w4 ful in studying small wavelength regions--most notably performing high
resoiution spectroscopy. These studies have produced new information on a
number of hot, emission line sources such as Be and shell stars, contact
binaries (where mass transfer is occurring), and chromospheric regions in F

(3)

and A stars.

X-Ray Astronomy

High energy X-rays are not blocked before they reach balloon alti-
tudes, so that useful observations can be performed here.
Significant observations from balloons have beengz)
(1) Identification of the continuum in the Crab Nebula as non-

thermal
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(2) Detection of a diffuse component in the high energy
X=ray reglon

(3) First observation of an X-ray flare

(4) Observation of the long term variability in Cyg X-1.

Atmospheric Sciences

Atmospheric studies have become an inereasingly important part of
the balloon program. This interest has arisen in part because the capability
to understand, model, and perhaps influence weather and climate patterns is
closer to being a realizable goal. However, a more urgent concern in this
activity is the realization that the Earth's energy budget is in delicate
balance, and that man is capable of (and in fact is) disturbing this balance,
perhaps irreversibly.

The ozone depletion problem has been a topic of extensive research
effort for balloons. Ozone exists almost entirely in the stratosphere and is
the dominant opacity to UV radiation in the energy range 1900-3000&. If ozone
breakdown is caused by fluorocarbon emissions at the Earth's surface, more of
this radiation will get to the Earth's surface, an event that will be inimical
to many forms of life on the Earth.

Balloon measurements of atmospheric properties use both in situ and
remote sensing techniques. In the NASA program, the emphasis has been on the
development of remote sensors, since these instruments can serve as precursors
to satellite instrumentation. In situ measurements are most useful for
detecting rare species and determining chemical reaction kineties; using such
techniques, scientists first discovered the free radicals involved with ozone
breakdown and led to the conslusion that ozone breakdown, which had not been
though to be a problem, was in fact a problem of considerable magnitude.
Remote sensors are essentially the same as those used for IR astronomy, the
difference being that the large fluxes eliminate the need to use telescopes
and cryogens. Recent development of emission line detectors will faciliate
studies of the diurnal dependence of chemical states.

A series of studies beginning in 1970 revealed unexpectically large
amounts of NpO, NO, and NOz in the ozone layer of the stratosphere and led to

e
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tne conclusion that the ozone content in the stratosphere must be decreasing.
Subsequent studies, in which balloons played an essential role, were able to
attribute these elevated oxide concentrations to the emission of fluorocarbons
from the Earth's surface. More recent balloon observations using IR
spectrometers have detected nitric acid, HNO3, providing further evidence that
stratospheric ozone is being chemically degraded.

3.2.2.2 Significant Hardware Advances. The role of ballons as test
vehicles for satellite instrumentation is an important one; the capability of
allowing greater lifting welghts by balloons has facilitated this activity.
This is fortunate, as the instrument development role will continue to
increase in importance in the future. Early in the program life, any obser-

vations ware notable and the primary goal was to get some instrumentation into
the air. Now, the most easily obtained data has been collected, and obtaining
new, groundbreaking information will more and more frequently require new
types of instruments, larger collection areas, and more sophisticated
observational techniques.

In hard X-ray astronomy, higher resolution instruments are being
developed to reduce the resolution from degrees to arc minutes. Germanium
detectors are presently being tested tc advance the capability for performing
high resolutica Y~-ray and X-ray spectroscopy. The development of electronic
readout of spark/chamber data, replacing photographic readout, was accom-
plished on balloons. In the future, increased detection areas may be obtained
by employing arrays of spark chambers, a development program which would
undoubtedly be performed on balloons.

Cosmic ray study requirements have been primarily responsible for
the pressure to 1lift larger payloads. In cosmic ray work, the emphasis has
been on the development of new technology as well as on scaling existing tech-
nology to larger instruments. The volume of the detector is a significant
parameter in cosmic ray work and these volumes have continued to grow in the
balloon program.

In IR astronomy, the greater lifting capacity in the research
balloons has allowed large telescopes to be used, lessening the need to use
cryogens to obtain useful data.
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Significant advances are being obtained in the atmospheric work., A
testing program is about to begin on an atmospheric emission line detector
which will greatly enharice the capability for obtaining diurnal variations in
the atmospheric chemical composition,

3.2.2.3 Contribution to Achieving Program Objectives. The
suborbital program objectives have been satisfied in the balloon program.

Continuing Research

An active program of research has been continuing in the balloon
program, In the Y-ray, hard X-ray field high resolution spectroscopy with
enhanced spatial resolution 1s providing more detailed information on diffuse
and discrete sources. Sky surveys are continuing in the IR fileld and will
provide preliminary data and lists of significant sources for the COBE, IRAS,
and SIRTF instrumentation. The large telescopes and long obugrving times
allow important research to continue,

In atmospheric research, combined in situ and remote sensing

detectors will continue to be used to investigate the time dependent chemical
constituents in the stratosphere.

Search for New Phenomena

In conducting research, new and sometimes puzzling phenomena may
appear at any time, In the balloon program, evidence for ozone breakdown in
the atmosphere and yY-ray burst events of unknown origin beyond the solar
system are examples of such events, The next generatlion of cosmic ray
detectors, which will obtain new information on isotopic abundances and
provide better directional resolution, might yield new, unexpected results.

Support for Other Programs

The support the Balloon Program provides for NASA orbital programs
is of major importance. All of the iustruments to be flown on GRO will be
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fl:w on balloons to test and verify designs. The high resolution germanium
¢etoncors will be ready for the next generation yY-ray satellite. All of the
ing* ruments and principle investigators on COBE have come from the balloon IR
program. Balloons provided calibration of the SMM instruments since it did
not carry its own calibration sources.

In atmospheric research, balloon instruments provided calibration
support for satellite observations from the NIMBUS IV, VI, and VII satellites.
The development of emission line IR spectrometers which it& now in progress
will provide new instrumentation for the proposed Upper Abnosphere Research
Satellite. Such development also supported experiments on board the Voyager
flights.

Time Critical Studies

Time considerations enter in the need to get instruments into the
field to observe transient events. The balloon program facilitates this by
encouraging short duration experiment development and by allowing flexible
launch times.

A good example of both capabilities is provided by a recently flown
solar X-ray package. Go-ahead on the project was obtained in February 1980;
the first launch occurred on November 1 of that year. Reflight from

Greznville, South Carolina, was scheduled in May 1982, a time when the Sun was
expected to be active. When the experiment was ready for launch, however, the

Sun entered a quiet state and the launch was placed on hold. The report that

a major active area was coming into view spurred preparations for launch, but

a period of windy surface conditions prevented it from ocecuring (unf »rtunately

a major flare event occurred during this time). When the surface winds died
off, launch oceurred within 2l hours, and 29 hours of useful data were
obtained.

Development and Testing of Scientific Instruments and Detectors

There is an ongoing program of testing and instrument developments

using balloons. In part, this supports the requirement that proposed

O~
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satellite ingtrumentation be able t# demonstrate a record of performance and
reliability. The germanuim detectors currently being developed and tested in
the balloon program promise to provide a significant advance in Y=-ray
spectroscopy. These detectors are being used for both solar and non-golar
astrophysical sources and will be ready for use on aY-~ray satellite after
GRO.,

Programs are now being considered for development of a Comnton
telescope to observe in Lhe 100 KeV tvo 30 MeV energy range and to develop a
Dicke camera for normal incidence imaging of X-ray sources. In the future,
testing of mercury iodide (HgI) detectors to perform X-ray spectroscopy might
be instituted; such detectora require no cooling and so are well suited for
satellite work. ¢

Development of detector arrays using charge coupled detectors
(CCD's) or diode arrays will become important.

Enhancement of Support Capabilities

A rise in balloon failures of heavy lift balloon flights in 1976
prompted a moratorium on such flights while the source of failure could be

determined. Out of this study came a more conservativ2 approach to conducting

such launches and improved mechanical support.

As balloon flight duration increases, or as higher data rates are
introduced by more sophisticated instrumentation (e.g., matrix detectors),
additional support of the science teams will be required. There are the

obvious considerations of providing long-term tracking and data acquisition,

long-life power sources, and long-term therital control. Not so obvious may be

the need to support efforts to provide more sophisticated capabilities for on-

board data processing and selective transmission.
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,0 THE AIRBORNE PROGRAM

4.1 Introduction

The NASA Airborne Program provides a family of speaially equipped
alroraft as national facilities in support of research and development in a
variaty of solentific disciplines., Alroraft ocurrently used include: a
Lookheed C130, a Convair 990 ("Galileo Observatory"), a Lear Jet, a Lookheed
U-2, a C141 ("Kulper Airborne Observatory"--KAO), a Loockheed ER-2, and a ¥
General Dynamics WB-57F. The basic capabilities of these alreraft are sum-
marized in Figures 4-1 to 4-7. Solence payloads of up to 100,000 pounds can
be carried to over 40,000 feet altitude. Lesser payloads of 1,000 to 3,00u
pounds oan be carried to altitudes exceeding 60,000 feet, Experiment dura-
tions ranging from 2-1/2 to 8 hours are achieved depanding on the airoraft
used.(l’z)

The C130 was one of the first airoraft used by NASA as a scilentifioe
research platform, In fact, its first use in 1955 predates NASA, This air-
oraft is still in service today and used primarily as an Earth observing
vehiclefl)

NASA's airborne astronomy program began in 1964 with the development
and introduction of the Convair 990 ("dalileo IM) observing platform, The
NASA Ames Research Center (ARC) was assigned responsibility for operating this
facility. The abiliby of this alroraft to operate at altitudes above more
than 99 percent of the #arth's wabter vapor openaed up the near infrared reglon
of the spectrum for astronomical research,® However, since the astronomiocal
instruments could not be operated open port, its usefulness for the infrared
was limited to the shorter wavelengths., Nonetheless the payload ocarrying
capability, endurance, and rangs of the alrcraft made the Galileo a versatile

(3

and oconvenlent tool for salentists conducting research,

®*Atmospheric water vapor absorbs most incoming infrared radiation. At ground
level, only very limited infrared observations can be made at only a few
mountaintop geographic locations.
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Early planetary observations aboard the Galileo were made by Dr,
Gerard P, Kulper of the University of Arizona. His research team conducted
the first detailed near-infrared spectroscopic studies virtually free from the
degradation of atmospheric water vapor absorption. They demonstrated that,
contrary to previous findings, the atmosphere of Venus contains very little
water, This activity led to the development and operation (beginning in 1968)
of an "open port" infrared telescope (in order to extend the wavelength
capability) aboard a NASA Ames Lear Jet airecraft. Dr. Frank Low, a colleague
of Dr. Kuiper, led early Lear Jet research activities. He and his colleagues
made the first measurements of far-infrared emission from another galaxy,
measured the infrared luminosities of Jupiter and Saturn, and pressed forward
with the development of new instrumentation€3)

Tragically, in April 1973, the Galileo I and its entire crew were
lost in a midair collision at Moffett Field. However, only 8 months later,
its replacement, another Convair 990, named "Galileo II", first flew to
observe Comet Kohoutek. In addition, the success of research efforts with the
Convair 990 and Lear Jet had led NASA to embark on the development of a larger
facility based on the Lockhead C141 "Starlifter" military cargo aircraft.
Development began in 1969 and the first research mission for astronomy was
flown in February 1974. On May 15, 1975, the C141 was dedicated as the
"Kuiper Airborne Observatory" (KAO) in honor of Dr. Kuiper who had passed away
in 197421)

Since that time the KAO has become the mainstay of NASA's Airborne
astronomy program. Use of the CV 990 Galileo II has diversified., Research on
this aireraft and the C130 now emphasizes Earth observations, atmospheric
studies, and airborne radar system development. In 1975, Ames acquired an
additional CV 990. It has been used as a dedicated platform for USAF Project
Macy.(l)

Due to the high demand for infrared astronomical studies using the
Lear Jet, Ames leased a seccnd Lear in 1970 and subsequently purchased it in
1974. From 1958 to 1975, the Lears served as forerunners to the KAO, Once
the KAO hecame operational, the use of the Lears for astronomical studies
declined, and in 1980 one of the aircraft was transferred to NSTL. However,

the remaining aircraft is still in use to do the wide field infrared astronomy
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studies it is well equipped to perform, and it is frequently the choice of
foreign investigators involved in international programs. In addition, a
varlety of other research diseiplinas now utilize the Lear Jet, and it is also
used to economically maintain pilot training/ourrency for the larger Jjets. '
A desire for a higher altitude airborne research mission capability
led NASA Ames to acquire a Lockheed U-2 alreraft in 1971, and a Lockheed ER-2
(Super U-2) in 1981. NASA/JSC acquired a high altitude General Dynamics WB-
57F alrcraft. These ailreraft contribute significantly in land use,
atmospheric research, satellite sensor development, satellite ground truth

calibration, and other activities.

4.2 Capabllities and Limitations

Airborne platforms provide a capabiliby to psrform a variety of
needed research activities at altitudes up to 70,000 ft (21 km). Compared to
other modes of research in this regime (sounding rockets, balloons, remote i
land based, remote satellites), aircraft offer a number of advantages in many :
classes of activities, Airoraft are a relatively inexpensive means of con=-
ducting investigations of up to 7.5 hours duration (per mission), in which all
equipment can be returned safely to the ground for analysis and possible
reuse. Relntively high mission rates and rapid turnaround can be maintained
if needed. For example, the KAO can conduct up to 80 infrared astronomy
missions each year.(1’4)

The larger transport aircraft provide the capability to carry heavy
payloads, support equipment, and a team of investigators to the mission desti-
nation. Thus, man-in~loop research operations can be conducted with real time
response to results and equipment behavior, In many cases test flights can be
conducted to test equipment and practice procedures., The ability to respond
in real time is further alded by the existence of a good on-board computa-
tional capablility. 1In addition, the aircraft can generally supply ample
electrical power to operate experimental equipmentgs)

Aircraft offer a great deal of flexibility in mission operations.
They can and have been operated from airfields over much of the world (host

nations permitting), and provide good flexibility in mission scheduling. They
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also allow investigators considerable latitude in experiment design (at
minimum complexity) due, once again, to their favorable welghtlifting capa-
bility and the availability of support equipment and services, The KAO is
op~rated as a fully guest investigator facllity similar to ground observa-
tories, Its on-board equipment complement gives investigators the capability
to do infrared astronomical studies using photometry, spectroscopy, or intepr=-
ferometry., For these studies the investigator can rely on accurate instrument
pointing (v1 arc second) and high image resolution--provided by the KAOSI’B)

High flight rate and repeat mission capabilities with identlcal sup-
porting equipment make the airborne programs ideal for instrument development.
They are also valuable in providing reliable ground truth, in situ measure-
ments for satellite calibration purposes,

The primary limitation for airborne platforms is theilr operating
ceiling. The larger aireraft can operate no higher than 40,000-45,000 ft with
the smaller airecraft reaching 60,000-70,000 ft, This permits astronomical
observations in the longer wavelengths (with the infrared being the portion of
the spectrum of primary interest), but precludes observation of shorter wave-
length radiation, much of which is absorbed by the upper atmosphere. Even in
the infrared, the sensitivity of observations is limited somewhat by the small
amount of water vapor that is contained in the upper atmosphere above
operating altitudes. In situ atmospheric studies are also obviously limited
by the operating ceiling. Nonetheless the airborne platforms provide unique
capabilities that should be and are used to the maximum extent that opera-
tional limitations permit.

4.3 Accomplishments

Review of present and past activities in NASA's airborne program
reveals that they have contiributed significantly to the satisfaction of NASA
program objectives in the areas of research, development, and general support
defined in Section 1.2.3. The following discussion summarizes examples of
program achievements. It is not a complete listing and intended only to char-

acterize the scope and significance of the airborne program.
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4,3,1 Significant Selentific Results

h.3.1.1 Atmospheric Scienys, At this Junscture airecraft are being

used primarily in an exploratory mode in the atmospheric sciences. The sclen-
tifioc community is Jjust beginning to gather enough jinformation about
atmospheric processes to define investigations needed to understand those
processes, Research alrcraft have been, and continue to be one of the main
sources of data in this eflort which also demands significant contributions
from ground based, balloon, sounding rocket, and satellite systems. While the
main thrusts are in instrument development and ground truth support of satel-
lite systems, significant scientific results are also being obtained.

In the mid 1970's the National Climate Program was established by
Congressional Mandate, The National Oceanic and Atmospheric Administration
was assigned the lead role in the program; NASA was given the task of deter-
mining the Earth's Radiation Budget. The Climate program consists of four
main activities: (1) the assembly of global climate data sets, (2) studies of
atmospheric processes, (3) atmospheric modeling, and (4) satellite obser-
vations and measurement of global atmospheric properties and the radiatior
budget. NASA research aircraft play an important role in ongoing process
studies by conducting in situ sampling and analyses, This information allows
the construction of atmospheric process models that enable NASA to interpret
satellite data.

In 1980, NASA began a Jjoint effort with the Environmental Protection
Agency (EPA) directed toward the study of tropospheric air quality. Since
then, participation of the EPA has waned, but NASA is committing to a growing
interest in the troposphere and its problems. At this stage the program is
almost entirely suborbital., NASA airborne platforms are being used to
increase the understanding of the troposphere and develop instrumentation
needed to study it so that an effective satellite program can be defined and
designed.

NASA's Severe Storm Program now uses the Convair 990 Galileo IT,
equipped with a doppler lidar (laser) system to conduct wind field measure-
ments in the vieinity of storms. Understanding the mechanisms of storms and
local weather conditions requires detailed measurements of the associated
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state variable (e.g., wind) fields, The lidar equipped CV 990 provides a
potent tool for high resolution measurement of veotor wind fields over large
areas--a 10 km x 10 km map is produced in approximately 80 seconds, Analysis
and modeling of hurricane life cycles was notably adviiced by tropospheric
surveys along the projected path of a tropical storm, and of the high energy
ecirculation just prior to and after two landfall events in a fullv developed
hurricanegshll)
The use of multi-instrumental, high altitude remote sensing alrcraft
is essential for studies of clouds., The WB-5TF was equipped and used to: (1)
examine cloud tops with high resolution infrared and other wavelength instru-
mentation to improve interpretations of satellite observations; (2) use remote
sensors and other instrumentati:iu, some active (e.g., lidar) to assess the
promise and feasibility of new types of satellite measurements, and (3) de-
velop methods to use remote sensors to investigate cloud top processes and
their interactions with their surroundings. The WB-57F has been used to study
five different storm systems over the past 3 years. Now, it iz heing retired
and the instrumentution is being transferred to the newer, high-flying ER=-2:
The U-2 is being utilized in the Optical Lightning Detection Experi=-
ment (OLDE) in which storm clouds are overflown to observe topside lightning
discharges. Results show that the intensity of lightning-generated optical
emissions radiating from cloud tops are typically one order of magnitude or
more greater than was previously predicted. One benefit derivable from the
sﬁudy of severe storm electricity is better understanding of the relationship
between lightning activity and storm dynamicsgs)
Using the CV 990, measurements of atmospheric OH concentration were
made, for the first time, by a resonance fluorescence techn.que., High concen-
trations were observed at high altitudes over urban areas. The role of this
molecule in atmospheric chemistry remains to be determinedgll)
The roles of cloud fields and atmospheric aerosols in the total
radiation budgets of geographical regions critical to development of the
Indian summer monsoon were defined by CV 990 measurements of radiation fluxes,
and the associated microphysical properties of clouds and aerosols. Soil

derived aerosols having optical properties charzcteristic of arid and semi-

(6,7)
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arid regions appear to be a significant component of the total aerosol burden,
at altitude up to at least 5 km, A data base was established for the
atmospheric trace gas carbon monoxide (CO)., CO concentration profiles with
altitude and latitude, in the context of a maturing monsoon circulation,

provide information on large scale atmospheric convection prooesses.cgﬂll)

4.3.1.2 Astronomy/Astrophysics. Research in astronomy, particu-

larly infrared astronomy has been the longest running (since 1964) and a very
productive effort in NASA's Airborne Program. Today the primary astronomy
facility operated under the Airborne Program is the KAO; for experiments not
requiring the capabilities of the KAO, the Lear Jet Observatory is also
available. Both facilities contain telescopes designed especially for
observations in infrared spectral regions. Occasilonally, the Airborne Program
has supported highly specialized astronomical observations from NASA U-2 and
CV 990 aircraft.(2’4)

From initial pioneering efforts over 15 years ago, the Alrborne
Program has grown and matured to produce many important scientific dis-
coveries. The program made possible the first observations of luminous far-
infrared emissions from other galaxies and provided an important series of
infrared observations of our galactic center, Such observations have also
been tools for the study of the interstellar gas and dust within our galaxy,
bringing new information to bear on stellar birth and mass loss processes,
Within our solar system, the airborne facilities have made possible the dis-
covery of internal energy sources in Jupiter, Saturn, and Neptune, the
discovery of rings around Uranus, and the discovery of water in the atmosphere
of Jupiter and sulfuric acid in the clouds of Venus.s)

The KAO has made significant contributions to the study of a wide
range of astrophysical problems., In many cases, the KAO observations have
discovered and studied previously unknown and unsuspected phenomena, In other
cases the full significance and value of the airborne work is realized only
when it is combined with, or used to extend and augment, obseryvations at
ultraviolet, optical, radio, or near-infrared wavelengths. Some of the
discoveries made from the airborne observatories, and some of the scientific
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areas where airborne observations have been particularly important, are ?‘*
highlighted below 3 ‘

1o

2.

Galactiec Nuclei and Extragalactic Astronomy .

o First measurements of the infrared luminosities of the -
peculilar Seyfert galaxies which are more than 100 times that Lo
of our own Galaxy, and greater than the luminosities of many<3) x
quasars., It is difficult to understand how the likely energy ©ohy
sources could support such high luminosities i1f they persist “;zﬁf

over the lifetime of the galaxies. T
¢ First detailed far-infrared studies of H II regions in o
external galaxies., Results suggest that massive stars in our
nearest extragalactic neighbor, the Large Magellanic Cloud,
form in reglons of lower dust density than is seen to occur
in our Galaxy.
e Detection at far-infrared wavelengths of nearly two dozen
spiral galaxies which have luminositles in the range between
0.1 and 100 times that of our Galaxy, and exploration of a
possible assoclation between far-infrared and molecular emis-
alon in these galaxies by coordinated far-infrared and radio
observations,
o Determination of the luminosity, excitation conditions, and
dust distribution in the innermost regions of our own Galaxy,
whigh cannot be observed optically, but can be studied in
great detall at all infrared wavelengths.3

Star Formation and Evolution

e Determination of the luminosities of protostellar objects«-
stars in the earliest observable stages--by measurements of
their far-infrared energy distributions. _

o Determination of the luminosity, energy balance, composition, .
and structure of regions of active star formation, such as ‘
the Orion Nebula and the Omega Nebula, by mapping the distri-
bution of far-infrared line and continuum radiation across
them.,
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Discovery of spectral emission features produced by dust
grains in the interface between H II regions surrounding hot,
young stars and the molecular clouds out of which the stars
formed.

Discovery of far«infrared emission arising from cool,

extended circumstellar dust shells assoeiated with low-maasfa)
premain sequence stars such as T Taurl stars. These shells
may be the remnants of the clouds within which the stars have
recently formed.

First identification of Si0, and of infrared bands of the
polyatomic molecular species HCN, C3, and SiCp in the
photospheres of carbon stars. These data are of primary
importance for understanding the atmospheric structure of
these stars,

Determination of luminosities and mass loss rates for rapidly
evolving, highly variable, dust embedded post-main sequence
stars by combining far-infrared measurements with simul-
taneous ground-based near-infrared and radio observations
Precise observations of the apparent increase in the Sun's
diameter as seen in the infrared, compared to its apparent
diameter in the visible. This measurement can be used to

model the inhomogeneous nature of the solar chromosphere,

The Interstellar Medium

Observation of a previously unobserved warm, neutral atomic
phase of the intergtellar medium, first detection of the far-
infrared lines of neutral and singly ionized carbon in the
interstellar medium., The emission in these lines is a major
cooling mechanism for the gas in many cool interstellar
clouds.

Determination of the properties of a hot, shocked region of
the Orion Molecular Cloud by observations of emission from
highly excited CO, OH, and Hy molecules at wavelengths not
accessible from the ground.
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Determination of luminosities and gas and dust properties for
many planetary and pre-planetary nebulae,

Determination of the physical conditlons and atomic
abundances in H II regilons by the detection and detailed
study of infrared emission lines from ions of oxygen,
nitrogen, sulfyr, and argan$3)

Determination of the structure of warm molecular cloud cores
and the optical propertiles of dust grailns wmbedded in them by
interpretation of airborne observations of their thermal
emission.

First detection of thermal emission from dust in cold, iso~-
lated interstellar clouds ("Bok globules"), and from dust in
reflection nebulae.

Discovery of spectral absorption [eatures attributed to much
larger than expected abundances of hydrocarbon grains in

(3)

dense mulecular clouda.

Planetary Astronomy

Discovery of the rings of Uranus, revolutionlizing concepts of
ring formation and dynamigs.

Demonstration that the giant planets Jupiter, Saturn, and
Neptune have internal heat sources, which implies that their
irterior regions are still evolving.

Disaovery of Hp0, PHg3, and GeHy in the atmosphere of Jupiter,
and PH3 in the atmosphere of Saturn; these molecules are
important tracers of atmospheric chemistry and dynamics.
Measurement of the extent of water frost coverage on the
surfaces of the outer three Galilean satellites of Jupiter,
Discovery of sulfuric acid droplets as the major aerosol con-

stituent in the clouds of Venus§3’12)
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4,3,2 Significant Hardware Advances

Over the life of the Airborne Program, research capabilities have
increased steadily with the acquisition of aircraft that could carry larger
payloads (KAO-~C141), fly higher (U2, ER2), or provide for more economical
operations (Lear Jet).* Equally important has been the development of
supporting equipment that provide users with the assistance and flexibility
needed to conduct successful research operations. This includes on=board
power supply, environmental control, platform stabilization, command and
control, imaging, data recording, computing, and c¢ommunications. In the use
of the larger aircraft, a crew of scientific investigators is carried for
manned experimentation, The KAO carries a 91 cm "open-port" infrared
telescope system for infrared sensor development and infrared astronomical
research. The telescope is carried on a floating stabilized mount located in
a cavity just ahead of the left wing of the aircraft. The external port to
the cavity is open during observation periods. Pointing precision of <1 are

second is pvovideé}’B)

4.3.3 Satisfaction of Program Objectives

4,3.3.1 Continuing Research. The Airborne Program contributes sig-
nificantly to the satisfaction of NASA research objectives in the fields of

infrared astronomy and atmospheric sciences., It also contributes to NASA

efforts in various Earth observational programs (land use, agriculture, pollu~-
tion monitoring, ete.) not covered in this report. In infrared astronomy,
airborne observatories continue to be used extensively to study infrared
sources using a wide variety of sensors and observational equipment,
Frequently, photometric and spectroscopic measurements from the KAO are

focused on the same object; in combination with a variety of observations in

¥The Lear Jet was not originally acquired for reasons of economy, but it is
much more economical to use in appropriate applications.
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other spectral bands this capability ylelds a better plecture of the phenomena
and systems under study§2’3>
Sources 'studied regularly with photometry include central regions orf
very luminous galaxies, regions of intensive star formation, "dark" clouds
which have not yet ccndensed into stars, nebulae ejected by stars in the last
stages of their evolution, and all major planets and their moons. Spectro-
scopic studies are conducted to obtain an understanding of the composition
excitation, chemistry, and dynamics of astrophysical systems. Phenomena
studied spectroscopically include the nuclei of galaxies, the outer layers of
cool stars, interstellar gas, interstellar dust clouds, circumstellar clouds
associated both with forming and with evolving stars, and planetary
atmospheres and surfacesgz’s)
In atmospheric research the Airborne Program is an integral part of
national and international efforts to create a new level of understanding of
the atmosphere and atmospheric processes. New observation and measurement
techniques and instruments are being used on board airborne platforms to study
atmospheric dynamics, chemistry, electrification, and evolution. Data
obtained are providing key inputs to global atmospheric modeling and climate
studies as well as providing insight into phenomena such as storm and light-
ning dynamics and the atmospheric impact of volecanic eruptions. The ability
of aireraft to provide ldeterministic wide-ranging geographic coverage of the

troposphere is essential to current NASA atmospheric studies.

4.3.3.2 Search for New Phenomena. Research conductea on airborne

platforms has produced a number of important discoveries. These includeg ?

e The discovery of rings around the planet !Jranus

e Discovery of a number of planetary atmospheric constituents

¢ Discovery that Jupiter, Saturn, and Neptune have internal heat
sources

e Determination of radiative mechanisms of interstellar gas and
dust clouds

e Spectroscopic identification of numerous elements and isotopes

in infrared sources

3,8,11)
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® Determination of the luminosities of bodies thought to be proto=-
stars

o Discovery of far-infrared galaxies that emit only a fraction of
their energy as visible light but are powerful as 1012 Suns and
100 times more luminous than the entire Milky Way

e First reported remote detection of Clear Air Turbulence from
Infrared Observations of water vapor

e Discovery that lightning generated optical emissions are at
least an order of magnitude greater than previously predicted.

Continuing investigations in infrared astronomy and the growing

capability to perform atmospheric studies should provide additional scientific

advances and discoveries.

4,3.3.3 Support for Other Programs. One of the principal roles of

th: ailrborne program is to provide ground truth support of satellite systems,
For example, in 1979 eight flights were conducted for the purpose of cali-
brating the Nimbus 7 satellite. Similar operations have been conducted for
numerous other satellites, including SEASAT, LANDSAT, MAGSAT, HCMM, GOES, SMS,
AEM, SAGE, and TIROS, The Lear Jet and CV990 were used as part of the
"Assess" Program to simulate Shuttle Spacelab operations. The CV990 played an
important role in the development of experiments for the Shuttle STS-2 and
STS-3 missions including underflight of STS-2 to obtain correlative dataflo—ls)

NASA's research aircraft are very useful for observing chemical
releases from rockets and satellites. They can carry the needed viewing
equipment above most cloud cover--high enough for the task to be performed.
For example, low light level TV cameras were carricd aloft to view the resilts
of barium releases from the West German Firewheel satellite.

Planetary astronomical observations from the KAO complemented
Pioneer and Voyager missions findings with regard to two Jupiter's moons,
Galileo and Titan. KAO discoveries concerning the surface composition of
Galileo, helped explain features observed by Voyager. The existence and
structure of particulate matter in Titan's atmosphere were jointly measured by
KAO and Pioneer. B
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The third Shuttle mission (STS-3) saw the successful use of the KAO
infrared observing capability in a unique application, During the atmospheric
reentry of the Shuttle at the conclusion of its mission, the KAO underflew the
Shuttle and obtained an infrared photographic record of the aerodynamic
heating experienced by the Shuttle at the maximum heating portion of the
trajectory, This KAO mission (known as Project IRIS, for Infrared Imagery of
Shuttle) provided NASA engineers with the first overall record of the actual

heating experienced by the Shuttle during reenbrysls)

4,3.3.4 Time Critical Studies. Scientifically equipped Aircraft
are an ideal tool to respond to appropriate short lead time requirements.

Satellite or even rocket or balloon missions require the procurement,
assembly, and test of flight systems equipment, an addition to the acquisi-
tion, preparation and integration of the scientific instrumentation package.
Aircraft provide a flight ready airborne platform, needing only appropriate
instrument complements to proceed with a scientific mission. This capability
has been used in a number of ways. Missions were conducted to assess the
atmospheric effects of recent volecanic eruptions, including the eruption of
Mount Saint Helens in Washington State. Observations were made of the passage
of the Comets Ikeya Seki, and Kohoutek. The use of the KAO in Project IRIS
discussed above (in 4.3.3.3) 1is ancther example of the responsiveness of air-
borne platforms,

4.3.3.5 Support of International Cooperation. Airborne platforms

frequently are involved in cooperative international research efforts. An
example is underflight and observation of chemical releases from West German's
Firewheel satellite.

Foreign investigators have contributed instruments to and partici-
pated in research flights conducted for meteor observation, cloud motion wind
estimates, survey of stratospheric trace constituents infrared steller
observations, solar eclipse studies, and other studies. A total of 17
international airborne programs have been conducted involving 12 foreign

nations$l6)
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4,3.3.6 Instrumentation/Detector Development. The development of
instruments and detectors for satellite applications is one of the major

thrusts of the airborne program. Research aircraft are ideally sulted to the
task, always returning instrumentation undamaged and often allowing real time
man-in-loop operation/adjustment of experimen%. In NASA's present atmospheric
program the primary purpose of many flights 1s the development and test remots
sensing instrumentation and concepts for future satellites., Achievements in
this endeavor thus far inalude: the development of a satellite radar system
for oceanographic research, the first application of microwaves to remote
sensing of surface atmospheric pressure, the first Doppler-Lidar measurements
of horizontal wind fields, the development of a clear air turbulence (CAT)
remote sensor, and the development of various instruments to remotely and
locally determine quantities of various atmospheric constituents. Sophisti~-
cated photometers and spectrometers now in use on the KAO can be consldered as
prototypes of instruments to be developed for use on facilities such as the
planned Shuttle Infrared Teliscope Facility (SIRTF). Monolithic infrared
detector arrays will almost certainly be used on the KAO prior to their use in
Space.

4.3.3.7 Enhancement of Support Capibilities. The Airborne program

has witnessed a steady improvement in capabilities through the introduction of
new aircraft and the improvement of on-board facilities. The Lear Jet pro-
vided for the first time, a 31 cm open port telescope. Then, with the KAO, a
91 cm telescope became available, The sensitivity of instrumentation used for
broadban¢! photometry from the KAO has increased by an order of magnitude over
the 1life of the observatory.(l-s)
The U2 and WB57F aircraft were acquired to provide airborne research
operations at higher altitudes. In 1981, the ER-2 (Super U2) extended the
altitude limit even further to 70,000 ft (13 miles). One benefit this pro-
vides is an improved capability for topside observation and study of storm
cells. The most interesting storms reach the highest altitudes and, where the
U2 cannot get quite high enough to overfly these storms, the ER-2 can.
Airborne platforms provide the greatest geographical flexibility of

all astronomical and atmospheric research tools., In most instances, airecraft
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can go where an event of interest is ocourring; often the experimenter can go
with his instrument to do hands-on research., In 1981, the‘KAO operated from
Japan to observe a solar eclipse, On-board equipment was checked out and the
mission practiced in flight, The first far-infrared observation of a total

eclipse of the sun was obtained on this missionfl4)

4,3.3.8 Support of New Researchers. The airborne program provides

an effective means of training new scientists who will play an important role
in future space missions. The existence of these platforms and the associated
supporting equipment and services allow the investigator to concentrate on his
experiment with minimal concern about the flight system. The KAO is operated
as an investigator facility much the same as ground observatories. The number
of advanced degrees earned based on airborne research is not large (15 in
astronomy) when compared to the sounding rocket and balloon programs, but the
payoff has been significant in terms of key personnel additions to the
scientific community, such as the current Technical Direction of the United
Kingdom Infrared Telescope Facility (UKIRT);—

4,3.3.9 Continuity in Science Areas. Although the airborne program

often carries a significant instrument development emphasis, it also remains
the primary mechanism for accomplishing many scientific tasks. The
atmospheric (tropospheric) instrument development effort itself generates
investigative scientific requirements that only airborne experimentation can
satisfy. There is a need to understand the troposphere better before
effective satellite programs and systems can be defined/designed. At present
these investigations are almost entirely suborbital, mainly relying on
research aireraft. This activity is likely to continue relatively unchangzd
for four to five years--the only orbital instrumentation planned for intro-
duction in that time period is one instrument on the Spacelab II mission.
Research aircraft are likely to continue to be used for atmospheric
studies indefinitely, due to the unique degree of operational flexibility they
provide. Atmospheric properties vary greatly with location and time. Air-
craft can be operated in most geographic locations and can remain in a viein-

ity of interest to record time variations of desired properties.
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In the field of astronomy, airborne platforms, particularly the KAO
have been a mainstay of NASA's infrared astronomy program, As noted earlier,
most infrared astronomy cannot be done from the ground, and orbital facilities
have not been avallable. Research aircraft and balloons are needed.

The KAO is responsible for establishing the viability of several new
areas of infrared astronomy, such as submillimeter heterodyne spectroscopy.
Infrared spectroscopy was piloneered from the KAO, The planned Infrared
Astronomy Satellite (IRAS) will perform an all sky survey in the infrared, but
IRAS will not be equipped to do spectroscopy so the KAO will be used to
perform that and other complementary functions. A vigorous airborne program
will continue to stimulate scientific and technica% ideas which will have a

major impact on future space observing activities,

4,4 Trend and Cost Analyses

Airborne platforms have been heavily used for a variety of NASA
applications., Figure 4~8 summarizes the research flight history of the KAO
since its introduction in 1974, In the 1976-1981 time period, an average of
72 research flights per year were flown. Demand for the KAO remains strong
(about double capacity). In FY 1981 the KAO average cost per flight was $65K
including aireraft operations ($25K), experiments ($16K), and research support
($2uk) 1217

Current usage of NASA's other airborne platforms on atmospheric pro-
grams 1s summarized in Table 4-1, The Convair 990 "Galileo II" flew a total
of 29 research flights in FY 1981. The average cost per flight was $65K,
including aircraft operations ($U40K), and research support ($25K). NASA's
other Convair 990 (used for USAF Project MACY) flew 58 research flights in FY
1981. Its average cost per flight was $49K, including aircraft operations
($42K), and mission support ($7K)Sl’17)

NASA's Lear Jet flew 72 research flights in FY 1981. The average
cost per flight for this aircraft was $4.9K, including airecraft operations
($2.8K), grants ($0.7K), research support ($0.5K), and reimbursable allocation
($0.8K). FY 1981 airborne p'atform cost data are summarized in Table u-2$1’17>
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TABLE 4-1, USAGE OF NASA AIRBORNE PLATFORMS IN ATMOSPHERIC PROGRAMS
(Flight Hours)

Severe
Storms Climate Troposphere
CV 990 8o(a) 30~50(b)
=2 go(a)
60-80
ER-2 8ofa)
Electra 50(b)

nrrmemmmvemn o
- o

(a)User would like to increase to 100 hours.
D)User expects increase to 200-300 hours in the future.

TABLE 4-2. FY 1981 AIRBORNE PLATFORM COST COMPARISON ($K PER FLIGHT))

Flight Experiments/ Research
A/C Operations Grapts Support Other Total
KAO 25 16 24 - 65
CV 990
Galileo II o - 25 - 65
Cv 990
Project MACY 42 - 7 — 49

Lear Jet 2.8 0.7 0.6 0.8 4,9
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5.0 FUTURE OF NASA'S SUBORBITAL PROGRAMS

NASA's suborbital platforms have been an integral part of NASA
research programs in the astronomical, atmospheric, and Earth sciences., Their
demonstrated qualities of low cost, high flexibility, short lead time, and the
capability to provide quality research have often placed them at the forefront
of NASA research efforts. Their proven usefulness should guarantee their
continuation with strong funding support. Unfortunately, they have performed
vnelr tasks over the past two decades with a certain degree of anonymity and
their accomplishmsnts and value to NASA are less well understood than they
should be and need to be (both inside and outside the agency).

To many, suborbital platforms represent only an intermediate step to
the "real" objective¢--on-orbit satellite systems; and, indeed, this is one of
their functions. Those closer to these programs recognize the shallowness of
this viewpoint and appreciate the role that these programs play in basic
research, instrument/experiment development, investigator development, and
support of orbital systems. The lack of universal understanding of the impor-
tance of these programs has contributed to a budget history that has signifi-
cantly lagged inflation and eroded budgetary buying power. To ensure that the
viability of these programs is not jeopardized, NASA must endeavor to provide
adequate future funding.

The major future thrusts, and potential problem areas for the
sounding rocket, balloon, aud airborne programs are summarized in the
following paragraphs.

5.1 Future Status of the Sounding Rocket Program

The future role of the sounding rocket program will depend on the
science which will be done in the program, governed by the interests of the
investigators, new discoveries, and new technology developments, and the
ability of the program to support the scientifin work. Up to this time, the
program has been able to provide adequate support for the scientists; however,
with a continuing deterioration of support dollars and new demands on the
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avallable resources, from the SPARTAN program, for lnstance, will eventually
have a significant impact on the solence obtained from sounding rockets.

Seientific Role

The history of the sounding rocket program in astre¢iiomy has been one
of plonesring discoveries, instrument development, and, with the replacement
of a sounding rooket capability by orbiting instrumentation, a development of
new capabilities. Sounding rockets carried the first UV spectrometers, with
sensitivity in the near UV, When OAO was placed in orbit, its spectrometers
covered this same spectral range; subsequent development on sounding roakets
extended the spectral range to below the Lymen limit. Copernicus was able to
cover this range also, but only for bright sources and sounding rockets
developed off=-set guldance so that they ocould study faint sources. The IUE
was able to study faint sources also, so that the role of sounding rockets in
obtaining stellar UV spectra was effectively eliminated. Sounding rocket
investigators then began a program to study galaxies in the UV using direct
imaging and developed micro-channel plate technology to enhance the signals.
The present capability will be unsurpassed by Space Telescope so once agaln
the program will have to develop a new capability to remaln in the field.
Current possibilities include developing a UV polarimetry program for stars
and non-stellar sources and extending the wavelength range to the extreme
ultraviolet.

Future development on sounding rockets in astronomy will be primar-
ily directed towards detecotor development, on-board data reduction, and com-
munications. The use of CCD and dlode array detectors will make fainbter
sources accessible and serve to verify designs for orbital instrumentation.
Equally important for future orbital instrumentation will be the on~board pro-
ceasing which will be developed to reduce the large data transmission rate
requirements that array detectors would require to transmit raw data. Array
detector and microchannel plate technology now being tested in the sounding
rocket program will be used on AXAF and the Extreme Ultraviolet Explorer
(EUVE).
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In contrast to the development thrust in astronomy which will employ
new technology, research in the atmospheric sciences will emphasize modified
designs using existing technology. An example of this is the new design
developed by Maynard at GSFC to verify the existence of horizontal mesospheric
E fields.

Science Support

A crisis in the program may be the looming in the area of science
support. Up to this time, the program management has been able to deal with
shrinking purchasing power by introducing effective methods for reducing
costs~retrieval and reuse of the pavload support hardware as well as the
science payload being one of the most significant.

Hardware reserves have dropped since the early 70's, when a signifi-
cant inventory was maintained; today there is virtually no reserve hardware.
Such a tight sutiation has reduced program flexibility and had a negative
impact on the willingness both of the scientists and the program managers to
try new and riskier ideas for instrumentation. Equipment in the machine shops
has not been extensively replaced or improved, requiring more involvement in
outside work or more costly procedures within the shops to produce necessary
hardware. Fewer vendors are producing support hardware and these vendors, to
reduce the cost of operations, are carrying a smaller inventory; these effects
combine to produce a less favorable unit cost and lead to back order times of
typically 1 to 3 years.

With the current funding picture, significant support developments
are not expected, and this assessment includes new motor capabilities as well

as new support capabilities.

SPARTAN Program

The Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN)
is a concept for flyirg sounding rocket paylods aboard the space shuttle by
developing small experiment carriers which become detached from the Shuttle

Orbiter and are later retrieved (during the same Shuttle flight) and reused.

s



5=4

The SPARTAN will be deployed with the Remofte Manipulator System (RMS), and
then commence operations as a free-flying spacecraft. It will have its own
power, programming, attitude control, pointing, and data handling and storage
systems. RF links from the SPARTAN to the orbiter will not be used, so all
experiment and housekeeping data must be stored aboard the SPARTAN. The
experiment, and most supporting subsystems that will comprise the SPARTAN will
come directly from funding rocket systemsgl)

Figure 5-1 illustrates the relationship between sounding rocket
hardware and SPARTAN. The SPARTAN package would be rectangular weighing about
1000 pounds. It will be able to operate for up to 40 hours while detached
from the orbiter. The first SPARTAN experiment is one that has been flown
numerous times aboard NASA sounding rockets. It will perform x-ray astronomy
observations in the energy range of 0.5-15 Kev.:L

The objective of the SPARTAN program is to provide an inexpensive
means of extending sounding rocket astronomy observation times from 8-10
minutes to 40 hours. The goal is to accomplish this at a mission cost equiva=-
lent to two or three larger sounding rockets. How well this goal is achieved
is critical, because the cost of SPARTAN is currently planned to be borne by
the sounding rocket budget.

5.2 Future Status of the Balloon Program

The balloon program will continue to provide a service compatible
with its primary capabilities. It will remain the majer resource capability
for studying the Earth's atmosphere in the altitude range of 60,000 to 140,000
ft. Instrument development will play a progressively greater role in the
research programs, and important contributions will be made in the various
areas of astronomy.

Major projects in Y-rays, cosmic ray, and IR astronomy will produce
new information in the next few years. Detector development and testing,
coupled with greater directional discrimination will produce data with greater
spectral resolution than will be possible on GRO with a comparable spatial
resolution. The larger cosmic ray detectors will produce new information on

isotopic abundances in heavy nuclel cosmic rays.
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FIGURE 5-1. SPARTAN RELATIONSHIP TO SOUNDING ROCKET PAYLOADS

A major decision will have to be made in the near future concerning
the fate of long duration ballooning (with large balloons). Such a capability
would have considerable value for the science fields, but it will be achieved
only with a significant investment in development. Long-term issues of ther-
mal control, data transmission, balloon location, and balloon reliability must
be addressed. A significant investment in the resolution of engineering prob-
lems associated with launching large super pressure balioons would have to be
made. In considering such a move, NASA must determine whether the cost per
flight can be kept to a reasonable level, how the result may impact zero-
pressure ballooning, and whether the capability can be used adequately with

the current lack of air-space agreements in the Northern Hemisphere.
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5.3 Future Status of the Airborne Program

The demand for airborne research flights is expected to continue
strong for the next'several years. In the atmospheric sciences, a continuing
and growing need exists for aireraft to perform research operations studying
severe storms, climatology, and the troposphere. In fact, the demand for
tropospheric studies may increase significantly. Aircraft will be used to
assist in the development of tropospheric models, in the continued study of
chemical, electrical and dynamic processes, and the development of experimeants
and instrumentation for orbital programs.

In addition to generalized studies of lower atmospheric properties
and processes, more specifilec studies of important phenomena (e.g., storms)
will be undertaken as needed. For example, polar stratospheric clouds recent-
ly discovered by the Nimbus satellite may he the subject of an airborne study.
Also, the recently introduced ER-2 will be used to perform topside studies of
taller storm clouds than could previously be observed.

In astronomy, the e¢wmphasis will remain in the infrared regime. The
primary research tool will be the Kuiper Airborne Observatory (KAO). The type
of work performed will be affected by the launch of the Infrared Astronomy
Satellite (IRAS). IRAS will perform an all sky survey in the IR, IRAS is
characterized by large band width, but pointing not as good as the KAO, IRAS
will do photometry, but little spectroscopy. The KAO will continue to provide
more accurate pqinting where needed, more complex instrumentation and a spec-
troscopy capability. The IRAS will be able to see farther because it will be
out of the atmosphere and its instruments will be cryogenically cooled.
However, the KAO will be used to learn how to interpret IRAS observations,

The KAO will continue to be used extensively for instrument develop-
ment. These efforts will include photometers , spectrometers, and inter-
ferometers. The photometer work is concerned with the development of detectur
arrays. The KAO instrument development effort will provide the basis for
future orbiting infrared instruments such as the Shuttle Infrared Telescope
Facility (SIRTF) and the Large Deployable Reflector (LDR).

As with the other suborbital programs, the Airborne Program has been
hurt by budget limitations. When the effect of inflation is considered, the
buying power of the Airborne budget has been cut in half just since 1974.
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