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ABSTRACT

The production of electron-positron pairs by single photons in magnetic
fields > 10‘2G has been investigated in detail for photon energies near
threshold ( Hw > 2 mc2 ) as well as for the asymptotic limit of high photon
energy . The exact attenuation coefficient, which is derived and then
evaluated numerically, is strongly influenced by the discrete energy states of
the electron and positron. Near threshold, it exhibits a "sawtooth” pattern
az a function of photon energy, and its value is significantly below that
predicted by the asymptotic expression for the attenuation coeificient. The
energy distributions of the created pair are computed numerically near
threshold and analytic expressions are derived in the asymptotic limit. These
results indicate that as field strength and photon energy increase, it becomes
increasingly probable for the pair to divide the photon energy unequally.

This effect, as well as the threshold behavior of the attenuation coefficient,

could have important consequences for pulsa: models.



I. INTRODUCTION

The possible presence of superstrong magnetic fields (2 10126) around
astrophysical objects such as neutron stars has motivated extensive study of
the physical processes which can occur in these environments. In particular,
quantum-electrodynamical processes such as magnetic pair production and
synchrotron radiation in the high field 1limit have come to play such a central
role in pulsar models that a complete understanding of these processes 1is
vital to further theoretical development. 1In addition, unexplored
applications of high magnetic field physics to other objects, e.g. gamma ray
burst sources, require further investigation of single photon annihilation and
pair production.

The creation of electron-positron pairs by single photons in strong
magnetic fields has been studied in a number of instances. The first detailed
treatments were carried out independently by Toll (1952) and Klepikov (1954)
who calculated the attenuation coefficient for photon pair conversion using
the exact Dirac equation for electrons and positrons in a constant, uniform
magnetic field, treating the radiation field of the photon as a first order
perturbation. Their results, which were in mutual agreement, indicated that
even for photon energies well in excess of threshold (fw = 2mc2) extremely
high magaetic fields (B > 109 Gauss) were required for a non-negligible rate
of pair production. In the limit of high photon energies the rate was found
to depend on the parameter y = th/chz) (B sin G/Bcr), where 6 is the angle
between the field and the photon wave vector, and Bcr = m2c3/e4ﬁ =
4,414 x 1013 Gauss. The constant B,,. is the critical field strength, in which

the gyroenergy‘ﬁmc of an electron (or positron) is equal to its rest mass.



Since changes in the electron's energy perpendicular to the field occur in
quantized increments of AE ~ hmc, B,, sets a scale on which to gauge the
importance of quantum effects in magnetic fields. The calculated conversion
rates indicate that magnetic pair production is not expected to occur with
significant probability unless yx > 0.1, even though it is kinematically
possible for any photon with 4w > chz to produce a pair, no matter how

low x is.

These results were later reconfirmed and extended by Erber (1966), Baier
and Katkov (1968), Rassbach (1971) and Tsai and Erber (1974). These authors
were primarily concerned with the derivation of asymptotic expressions for the
total pair production rates in the limit of low field strengths (B << B,.) and
photon energies much higher than threshold. However, at energies near
threshold, quantum erfects due to the discreteness of the electron and
positron energies in the magnetic field stiongly affect the properties of pair
production. When the photon energy and propagation direction are such
that Aw sin O > 2mc2 (a situation which can occur in pulsar cascades) the
asymptotic limits become unreliable. Unfortunately, the properties of
threshold magnetic pair production have not been sufficiently explored in the
published literature and are discussed only qualitatively if at all (Toll
1952). Furthermore, no quantitative treatment of the energy distribution =€
the created pairs exists, even in the asymptotic limit. Toll (1952) and Arons
and Scharlemann (1979) do give qualitative discussions of the differential
conversion rates, concluding that the pairs should most probably share the
parent photon energy equally, but do not derive expressions for the energy
distribution.

This paper is an investigation of these several important areas where

gaps exist in the literature on magnetic pair production and which are



relevant to aatrophysical applications: properties of pair production near
threshold, Mw > 2mc2, and the energy distribution of the pairs, both near
threshold and in the asymptotic limit. We also review the previous results
with an emphasis on their physical significance and attempt to define more
clearly the approximations under which the asymptotic results have been
derived. 1In Section II, we begin with a discussion of the kinematics of pair
production which, aside from being of interest in it_elf, greatly helps to
clarify the meaning of the results which follow. The derivation of the exact
palr production rate for both photon polarizations 1is outlined in Section III,
in which we also present numerical calculations of the rates and pair energy
distributions near threshold. Section IV reviews the derivation of the rate
in the asymptotic limit of large photon cnergy. We also give a comparison of
the exact and asymptotic rates and derive the asymptotic pair energy
distributions. In Section V, we show how the results can be generalized to
arbitrary photon directions and non-vanishing electric fields through Lorentz
transformations and discuss {n Section VI the importance of some of the new

features for models of astrophysical sources.
IT. KINEMATICS OF MAGNETIC PAIR PRODUCTION

Consider a photon with energy w propagating at an angle O to a uniform
magnecic field B. (Natural units, with 4 = ¢ = 1, will be used throughout).
Without loss of generality, it is possible to choose a frame in which B =

Bé, and k = w (0, sin 8, cos 6). Then the energy-momentum conservation

laws governing magnetic pair production may be written as

m-Ej+Ek (1a)

wcos O =p + q, (1b)
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where the energy quantum numbers (j, k = 0, 1, 2, ...) and the longitudinal
momentum components (p, q) refer to the positron and electron respectively.
The Landau energy levels fcr the two particles have the forms (see for example

Johnson & Lippman 1949)

2 2 172
Ej-[p +n(1+2j8——-)] / (2a)
Bcr
E, - & + (1 + 2 By /2 (2b)
B
(D4

Note that the conservation laws do not require conservation of momentum
perpendicular to the field direction. Indeed, the fact that the external
field participates in the particle momentum transfer is what makes this
first-order transition kinematically possible. However, it is the "rigidity”
of the intense field lines which preserves the energy conservation law [Eqn
(1a)].

In the derivation of the photon attenuation coefficients, it 1is
convenient to specialize further to the frame in which k.B = 0, so that

Pp=-q. In this frame, equation (la) ma, be solved for p to yleld

B' 1/2

2 2 g
p=p(i,k) »2tmfw -1-(jJ+k)B'+ (jk) ! 3)
4u'

2

where w' = w/2m, B' = B/Bcr . Since p“ must be nonnegative, the allowed

te~ pair states represented by integer pairs (j,k) are just

2

transitions to e
those points in the j-k plane enclosed by the curve p“ = 0, as shown in

Figure 1.
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It turns out that transitions to states close to this boundary are the
most probable, as might be expected from the fact that classically the pair
should most probably appear with high "forward” momentum ({.e., large
transverse energy levels and relatively small momentum components along the
field direction). In any case, the maximum Landau level obtainable by either
member of the pair is found by assuming that either j or k = 0 on the boundary

2
curve p (j,k) = 0, from which it is found that

20' (w'=1)

B'

(4)

max max -

2
For w' > 1, this reduces to jmax ~ £ = 2w' /B'. The parameter E appears

in the derivation of the attenuation coefficient in Section III below. Similarly,

2
along the symmetry axis J = k, it is found that j _ < (w' - 1)/2n' .
The number of integer (j k) pairs enclosed within the boundary p2 = 0 1is

2 2
given approximately by N (w', B') ~ 20" (' + 2)(w' - 1) /3B' , which

states

L 2
for the limit w'>>1l, reduces to N (w',B') ~ 2w' /3B' . Hence for

states

fixed B', an increase in the photon energy dw' corresponds to an increment
3 2

dNgpapeg ~ 80 dw'/3B' . This number is just twice the number of

singularities which appear in the photon attenuation coefficient between

energies w' and w' + duw', as will be discussed in Section III below.
III. DERIVATION OF THE PHOTON ATTENUATION COEFFICIENT

The S-matrix element for magnetic pair production is simply the first-

order transition

[
i - "
Sgp e fAx v gy O YA () ¥ g (O
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where the electron wavefunctions are solutions of the Dirac Hamiltonian for
motion in a constant, uniform magnetic field. The precise form of these
wavefunctions depends both on the choices of gauge and constants of the
motion. The wavefuctions used in the present analysis are described 1 detail
by Daugherty and Bussard (1980); for alternative solutions, see for example
Johnson and Lippmann (1949).

The attenuation coefficients for photons whose electric vectors are

polarized parallel or perpendicular to the magnetic field direction may be

written as
2 2 2
R, 2 1 1 nfpdpde (g Iodsgly ) ®
> T 3o kdo 2 2n 2m\° 2n) s,= lg =1 ’

where L3T is the space-time volume element and kz = 1/eB. The summations over
j and k range over all kinematically allowed final states (cf. Fig. 1). The
s. and s, summations range over the spin states of tte electron and
positron. The continuous variables (a,b) are eigenvalues of the x-coordinates
of the orbit centers, which are constants of the motion for the wavefunctions
used here. As indicated in the earlier discussion on kinematics, the sum over
Landau levels j and k is restricted to those states for which
pz(j,k) 2 0 [see equation (3)].

The derivation of the attenuatfion coefficients using the wavefunctions
specified above is straightforward and confirms the results originally
obtained by Toll (1952) and Klepikov (1954). For details on techniques for

handling the mairix elements, seaz also Daugherty and Bussard (1980), Appendix I.
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The results may be written in the forms

%y 1 2 2 f 2
RyCu',B') = — T ] —— {(EE, 4 -p )(IN(3,k; [+IM (3-1,k-1)] )
2¢ 3 klpy,|

2
+ 2/ B'm [(MT(3,k) M(3-1,k-1) + MT(3-1,k-1) M(3,K))} (6a)

% 1 2 2 2 2
R (u',B") = 57 T j=— {(E E +m +p )(IM(4-1,k) | +IM(3,k-1)%)
>3 k'Pik! 3k
2
-2/7 B'm [(MT(3-1,k)M(3,k-1) + MF(3,k=1IM(3-1,K) 1} (6b)
where £ -~29L ,
B'
_ /2 GS
M(3,k) = -9 [SL 78T e 7 68 (g, %

and G = max (j,k), § = min (j,k)..

LG;S (£) is the generalized Laguerre polymomial, defined according to the
standard in Abramowitz & Stegun (1964). These results may also be extended to
the cases in which j or k (or both) is zero, if one adopts the convention

L%, (&) = 0.

The attenuation coefficients are immediately seen to have singularities
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or absorption edges whenever w' and B' have values such that the longitudinal
monentur p(j,k) vanishes for any of the allowed transitions (j,k) in the
summations of Equation (6). If the attenuation coefficients are considered as

functions of w' for fixed B', theses singularities occur at the eneréies

w' 1« w1l (/132387 + /I+2kB" ) (8)
Figure 2 shows this behavior in the parallel and perpendicular attenuation
coefficients in the vicinity of the threshold energy for several field
strengths. Two major trends with decreasing field strength to be noted in
this figure are the decrease of the typical spacing between peaks and the
sharp increase of the attenuation coefficient (averaged over small energy
intervals) at energies near threshold. The spacing between peaks can be
understood from the kinematical discuseion in Section II, and in particular
for w' >> 1, the number of absorption peaks between w' and w' + duw' is

approximately

3
4 o' duw'
- 2

dN =1/, dN ~
/2 states 3 B'

peaks

The "sawtooth” behavior of the attenuatinn coefficients has been
discussed both by Toll (1952) und Klepikov (1954), but has generally been
ignored in astrophysical applications to date. One argument for neglecting
such effects {s that in pulsar magnetospheres one is typically dealing with
energetic photons (w' >> 1) and field strengths somewhat less than L Y

Hence one might expect sufficiently small spacing between peaks so that the
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well known asymptotic, energy-averaged form of the attenuation coefficients
(sec Section IV below) sre suitable approximations. However, it must be noted
that in these same situations, one typically finds that these photons
propagate at small angles to the local field direction. Since the asyaptotic
forrs, like the discrete summations [cf. Eqn. (6)] above, apply only to
propagation perpendicular to the field, it 1is in fact necessary to verify (by
Lorentz transformations) whether {t is still true that w' > 1 in the frame
for which k.B#0. This question will be pursued in Section V below, where 1t
is shown that typically "encrgetic” gamma radiation may actually be subject to
the near-threshold behavior of the attenuation coefficients.

The relative individual contributions of the (j,k) states in the
summations of Equation (6) are illustrated in the plot of Figure 3. As noted

2.0 are by far the most

earlier, the states nearest the boundary p
significant. However, Figure 3a suggests that there should be a broad energy
distribution for each member of the created pair. This indication is
confirmed by the enersy distribution obtained by a sampling technique over the
(3§, k) plane, which is shown in Figure 4. For B = 10126, w= 3 MeV, there is
a strong tendency for the pair to divide the phccon energy equally. However,
for the case B = B.p» w = 3 MeV, there is actually a greater probability . at
each member of the pair will be created with an energy near either the minimum
(E = mcz) or maximum (E = o - mcz) allowable. This behavior near threshold

will be compared to energy distributions in two distinct asymptotic regions in

Section 1IV.




3

12

ORIGINAL PAGE IS

IV. ASYMPTOTIC EXPRESSIONS OF POOR QUALITY

a) Attenuation Coefficients

For photon energies and field strengths such that the parameter
E = 2w'2/B’ (and hence the number of allowed j—k siates for the created pair)
becomes large, it is possible to reduce the attenuation coefficients [Eqn (6))
to asymptotic forms which are effectively averaged over small energy intervals
to remove the sawtooth behavior. This is feusidle because the number of peaks
in such small intervals increases rapidly beyond threshold, while the peaks
themselves become more narrow at an even raster rate (Toll 1952). The
averaging process is actually done by replacing the discrete summations ove
j,k (in which individual singular contributions mske the entire sum infiaita)
with integrations over continuous variables. Since the contributions from
transitions on opposite -‘des of the symmetry axis j = k in Figures 1 and 3

are identical, it is reasonable to start by defining such variables as

follows:
u=(j+k)/E 9
ve (§-%k)/¢

In trrms of these quantities,

2 2 2 2
P *m [w (1-2u+v )-1] (10)

2

Since one integration boundary is determined by the curve p“ = 0, {t proves

convenlent to define a further variable (cf. Figure 1)
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2 1/2
¢ = (1-2utv ) (11)

2 2 2 2
which is then related to p by p =m [w' é - i]. The most probable final

states lie in the vicinity of ¢ ain - 1/w' , hence it will be reasonable to
expand quantities in the integrand in powers of 4.

The principal ingredient in obtaining these asymptotic results is a
suitable approximation for the matrix element M(j,k) defined in Equation
(7). A derivation of asymptotic forms for M(j, k) based on that of Klepikov
(1954) is given in the Appendix. The reduction of the attenuation
coefficients to their asymptotic forms then begins by rewriting the matrix
elements M (3, k), M (j-1, k-1), M (3-1, k) and M (3, k-1) entirely in terms
of ¢ and v, using Equations (A3), (A6) and (A7). Also, with the use of
Equations (9) and (10), the various energy terms in Equation (6) may be

expanded to give the following:

2 2 2 '2 2 2
Ejak +m-p ~m |24 (1-v - ¢ )] (12a)
2 2 2 2 2 2
EjEk +m +p ~nw' (1-v+4) (12b)
2 2 2 2 2 2
2/ B n~nw' [1I-v - ¢ .&Lﬁt_yz)] (12¢)
(1-v)

The insertion of these expressions and those for the matrix elements into

Equation (6), an: “"ue replacement of the sums by integrals,
1 1-¢ )
YY+2 [de [ dv (26 ¢)
Jk 1 o
Gv
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leads to expressions for the (smoothed-out) attenuation coefficients valid for
E » e,

Replacement of the variable ¢ by n = ¢/¢ = w'¢ allows the attenuation

nin

coefficients to be written in the forms

a o 1
RI ~o _ 8 [ dn N fdv
X 3!2m'28' 1 /nZ-1 o 1-v2
2 4
2 4 2 2
A+ n =3 > TRy + T—; Kg,3(0)} (13a)
(1- v) 1- v
a o 1
X 31'2 o' 2 g ! /nZ-1 o 1-v2
nlo 2 4 v2 2
Ty Ky 3 (@) + 0 g Kog3(0)] (13b)
1-v (1-v™)
3
where ¢ = % E-Q——~ .
2
1-v

Klepikov (1954) has written the attenuation coefficient for unpolarized

photons 1in the form

% o, 2 x g 2 5
+R,) == B ["dx [ dy{2 cosh y cosh”™ x
. 2 2, o

3n

i-}.(R'
2 X
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2 4 2 3 2 3 2 g 2 3
K1/3 (= cosh y cosh x) - sinh x cosh x Kllg(—— cosh y cosh x)
3x 3x

2 s 2 o 2 3
+(2 cosh y-1) cosh x Kp,3 (— cosh y cosh x) } (14)
b 3x

where y = w' B'. This expression is found to be equivalent to the average of

equatfons (13a) and (13b) through the replacements

cosh x = n

(15)

cosh y = -

/i-v?
2 9&

In these variables, sinh x = (n -1) = p/m, so that the x integration in

Equation (14) 1is essentially an integration over the longitudinal momentum.

The variables v in Equation (13) and y in Equation (14) are related to the

energy of the electron or positron through Equations (2), (9), (10) and (11),

which give:
ve=l]l-2c¢l|
2
1 - v =4¢e(l - ¢) (16)

where ¢ = Ej/w {Ek/w] {s the fractional energy received by one member of the
pair. Therefore, the v and y integrations in Equations (13) and (14) are

integrations over the pair energy.

Equations (13) may be further reduced in the limits y << 1 and y > 1.

S ————
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For the case of small x in particular, both of the modified Bessel functions
approach the asymptotic form

172 _
K1/3 (¢) ~ Kz/s (z) ~ (%EW / e .

Furthermore, the integrand becomes sharply peaked around the symmetry axis
2 2
(v=0), so that it is permissible to approximate 1/1-v as 1+v in the
exponential above. Integration over v after this step, followed in turn by
the approximation n ~ l4p, p<{<1, yields the well-known result
a
= (o} ' 4
R ~0.23 —— B' exp (- —). an
X
3x
This is in fact the expression usually assumed in astrophysical calculationms,
although as shown in Section V below it is sometimes inappropriate. The
convergence of the exact attenuation coefficient derived in Section III [cf.
Eqn. (6)] to this asymptotic limit is illustrated in Figures 5 and 6. The
exact attenuation coefficient i{s at least several orders of magnitude less
12
than the asymptotic value near threshold for field strengths around 10
Gauss. Below threshold, of course, the asymptotic expression becomes

completely invalid.

b) Pair Energy Distributions
The energy distribution of each member of the created pair (which are
identical because of the symmetry of the integrand about v = 0) can then be
obtained by integraiing Equation (13) first over n, and then substituting for
v in terms of € in the resulting integrand. Tsai and Erber (1974) have shown

that the polarization-averaged attenuation coefficient [Equation (14)] can he
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expressed in a simpler form,
_ a B 1 - 2 2
Ra2_Y3 fav O =¥y 23[4/3x(1 - v) 1 . (18)
X 181y o (a-v 2)

By the simple change of variables of Equation (16) we obtain the differential
attenuation coefficient as a function of pair energy:

- a B'

dR(e,x) . o /3 [2 + e(1l-€)]

= ST ey Keys [M3xe(i-e)] (19)

which has the asymptotic forms

- a B'
dr (g,x) .o 1 [2 + e(1l-€)] exp [-1/3xe(1-€)], x < 1 (208)
€ x W Inx /T e(i=e)
N uoB' 426 [2 + e(l-€)] 5> 1 (208)
x 1 IERRC ¢ 5D

3 1
TX [e(1l-¢€)]

These energy distributions have a number of interesting properties. The
first to note is that the parameter y alone determines the shape of the
distribution, which has been plotted in Figure 7 for different values of
using the exact form in Equation (19). For small yx , the distributions are
centrally peaked around ¢ =%Q and have half-widths ~ .36 ¥V y for yx << 1.
For large x , the distributions completely change shape, actually becowning
peaked at € = 0 and ¢ = 1. For x > 1, the shape of the distribution
becomes independent of x altogether. Near € = 0 and € = 1, the
condition x >> 1 does not insure that the argument of K2/3(x) is small, and

the exact expression of Equation (19) is needed to describe the drop to zero
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at the edges of the dtstribution. By comparing the curves in Figure 7 to
those of Figure 4, it is apparent that the energy distributions near threshold
have a similar dependence on x .

From the behavior of the pair energy distributions, we can conclude that
in the case of low fields and photon energies near thresho.d the pair tend to
share the photon energy equally. However, in the case of large fields or high
photon energies, there is an increasing tendency for one member of the pair to
take all the energy of the photon, while the other receives little more than
{ts rest mass. In the limit y >> 1, this is actually the most probable final

state of pair production.

V. LORENTZ TRANSFORMATIONS OF THE ATTENUATION COEFFICIENTS

The results of the previous sections all apply to the special Lorentz
frame in which k.B = 0. To generalize the (unpolarized) photon attenuation
coefficient to frames in which the photon wave vector makes an arbitrary angle
8 with the magnetic field, .t is sufficient to perform a Lorentz
transformation with velocity v = cos 8 along the field direction. The
transformation law for the attenuation coefficient is most easily understood
in terms of its inverse, the mean free path, which obeys the simple invariance
law

2 2 2 2
Ay, At (21)

From this law and the transformation properties of w and B, it 1is immediately

possible to write




19
ORIGINAL PACE IS
OF POOR Q:'ALITY

R (w, B) =sin 8 R (wsin 0, B) - (22)
where ;o is now used to denote the functional form of the attenuation
coefficient in the special frame for which k.B = 0, as derived in previous
sections. Note that this transformation law is valid for both the exact foruws
in Eqn (6) and the asymptotic limits of Section 1IV.

In particnlar, for the asymptotic case ¥y >> 1, the well-known
approximation [Equation (17)] for the attenuation coefficient appears to be
modified simply by the replacement of B with B sin 6. However, from Equation
(22) it may be seen that it is really w which becomes w sin 6 1in the
product x = (w/Zn)(B/Bcr). This distinction {s quite important, since in the
non-asymptotic case the attenuation coefficient does not depend only on x.

The behavior of the transformed coefficient near threshold {s illustrated
in Figure 8. Note that the threshold energy itself is displaced upward by the
factor 1 / sin 0, which also is the factor by which the energy scale is
stretched in the new frame. The reduction of the attenuation coefficients by
the factor sin 6 is also evident.

The transformation property implies an additional point of interest in
pulsar cascade theory. Here a primary electron with energy Ymcz, accelerated
along a curved field line, may emit gamma radiation nearly along its direction
of motion, within a forward cone of half-angle 8 ~ 1/v. To follow such a
photon along its trajectory outward through the magnetosphere, it is necessary
to perform a sequence of Lorentz transformations at small intervals, where the
field makes a slowly Increasing angle with the photon wave vector. As Figure
8 {llustrates, this sequence of transformations may initially put even high-
energy photons below the threshold for pair production, and in such cases

these photons will propagate at least until they exceed the local threshold
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energy. Hence the near-threshold forms of the attenuation coefficients must
be used over some portion of the photon trajectory, and the commonly used
asymptotic form may not be appropriate over any portion of the actual photon
trajectory before its annihilation.

It may also be noted that a Lorentz transformation in which v is
perpendicular to B may also be used to generalize the attenuation coefficient
to situations in which both electric and magnetic ifi1elds are present, at least
within the restrictions §2— §2> 0, B+ E =0 (Daugherty and Lerche 1975).
Such cases are important for tracing cascades in rapidly rotating pulsars (as
for example the Crab pulsar) in which significant rotation-induced electric
fields are expected. Here the transformation law for the attenuation

coefficients may be written in the form
= = B
R(w, B) = v(1 = nv) R (yu(l-nv), 7 (23)

in which (nx, "y’ nz) are the photon direction cosines in a frame chosen so
that B = B ;, E=E ;, the velocity of transformation v = gxngz, and the
Lorentz factor y = (1 - EZIBZ) -H@ .

The full generalization to situations in which electric fields both
parallel and perpendicrlar to B are present requires explicit calculation of
the attenuation coefficients using the Schwinger proper-time technique
(Urrutia 1978). However, for known pulsars the ratio E'/B is sufficiently
small that such cases are of only minor interest in cascade theory (Ayasli

1978, Harding et al. 1978).
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VI. DISCUSSION of PO

We have obtained results on several aspects of magnetic pair production
which should be of interest in future astrophysical applications. The pair
production attenuation coefficient near threshold is dominated by magnetic
field quantum effects, showing sharp resonance peaks at photon energiles
corresponding to discrete states of the electron and positron. As the field
approaches the critical field strength, the spacing of these peaks at
threshold increases, approaching mczlsine. As the photon energy increases
above threshold at a given magnetic field strength, the peak spacings decrease
rapidly and the mean value of the attenuation coefficient approaches, from
below, the asymptotic limit derived for very large pair quantum numbers. The
parameter { = Zw'z/B' , which is the number of the highest energetically
allowed Landau state available to either the electron or positron, is not a
Lorentz invariant quantity and must be evaluated in the frame in which the
photon propagates perpendicular to the field. Thus, the asymptotic
condition £ >>1 does not ensure that threshold (quantum) effects are
unimportant in an arbitrary frame. Neither is the threshold energy for pair
production frame invariant; in an arbitrary frame in which the photon
propagates at an angle 6 to the field, the threshold energy is 2mc2/sine.
This result has the somewhat surprising consequence that even extremely high
energy photons, 1if they are propagating at very small angles to the field, may
have perpendicular energies below threshold.

Since the complicated expressions [cf. Eqn (6)] for the threshold
attenuation coefficients are unwieldy for practical calculations involving
palr production, we give here an analytic expression which approximates their
average behavior, and also describes their approach to the asympto.ic limit.

For x< 1,
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R+0233 8 exp [- -'-‘-—f‘s"‘-(’-'-'-—‘-'-)-] w1,

0 w'<1l,
-2 .7 - 00038
where f(w',B') = 1 + 0.42 w' B' (24)

The function f(w',B') has been obtained by a three parameter fit to the
attenuation coefficient R(w',B') averaged over fixed intervals of w' large
enough to contain at least several resonance peaks. The fit is not terribly
sengitive to the B' dependence, owing to uncertainties from averaging over the
the peaks. We point out that the threshold condition, w'>l, must be put in
artifically, and that the expression for arbitrary photon angles may be
obtained using eqn (22). 1t is interesting tc note that while the asymptotic
expression [Eqn (17)] is a function only of x, the exact attenuation
coefficient, as approximated by Eqn (24), depends on w' and B' independently.
We have also found that the probability distribution of pair energies is
determined by the parameter y, which is Lorentz invariant (for the case of a
pure B field and transformations along B). For small y, the most probable
pair energy is half of the parent photon energy. In the limit of large x, the
most probable final state is one where the photon energy is given almost
entirely to one member of the pair. This unequal division of the photon
energy was shown by Sokolov et. al. (1974) to be the case for B > Bcr where,
of course, y is always greater than 1. From the results derived in Section
IV, however, we have shown that unequal divie ‘on of the photon energy can
occur also for B < Bcr , 48 long as y > 1. Probabilicy distributions of pair
anergy very similar to those of Figure 7 have been computed for both y-y pair
production (Burns and Lovelace 1982; Burns, private communication) and y-
nucleus pair production (Rossi and Greisen 1941) which also are seen to change

their shape as a function of a single parameter characterizing each process.




23

The production of pairs with one member of the pair receiving all the
photon energy, and therefore occupying a high Landau state, while the other
member receives only its rest mass, thus occupying the ground state, is
possibly related to the dominance of ground state transitions in synchrotron
radiation. It has been found (Sokolov et al. 1973; White 1974, 1976) that
transitions of an electron from an excited state to the ground state in a
magnetic field become more probable as the field approaches and exceeds the
critical field strength. This tendency of the electron to radiate away all
its energy via a single photon causes the tail of the synchrotron spectrum to
rise near the "tip", where #fiu equals the electron energy. Although the
kinematics of this process are different from those of pair production, the
probability distribution of initial and final states of synchrotron radiating
electrons in a near critical field would look very similar to the pair
distributfons we have found for y >> 1l.

The properties of magnetic pair production explored in this paper have
immediate significance for pulsar models. In current polar cap models (eg.
Ruderman and Sutherland 1975, Arous and Scharlemann 1979), particles are
accelerated to high energies (1012-1013 aV) along magnetic field lines and
emit y-ray phctons through curvature radiation. These photons are initially
propagating parallel to the field and thus have w sin6=0. In order to produce
pairs, they must acquire a sin6 large enough to (at least) reach threshold by
traveling a straight trajectory in the curved and rotating dipole field. If B

2

> 1012 G, these photons will have w 8in8 ~ 2mc“ when they pair produce and the

~
asymptotic attenuation coefficient will under-estimate their mean free paths
because (1) it overestimates the exact attenuation coefficient near threshold

and (2) it has a non-zero (and possibly large) value below threshold. The

absorption of phctons in strong fields may be further complicated by threshold
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behavior of the vacuum index of refraction. Shabad and Usov (1982) have
argued that curvature photons in fields > 5 x 1012 G will be refracted along
the direction of B. If this is the case, then the photon mean free paths will
be even larger. In any event, the increase !n mean free paths from the pair
production threshold behavior may be regarded as a lower limit.

Since the ete” pairs produced within the accelerating region tend to short
out the electric field, the spatial extent of this region is proportional to
the photon mean free path. Larger mean free paths will increase the distance
over which the voltage drop occurs. However, due to the weak dependence of
the size of the voltage drop on the altitude at which the shorting-out occurs
in these models, the acceleration energies may not be much larger.

The increased mean free paths are expected to have a larger effect on the
cascades which occur above the accelerating repion. Threshold effects on
individual mean free paths will be magnified by the numbers of photons
involved and could produce significant changes in the predicted y-ray and pair
spectra for fields in excess of ~ 4 x 1012 ¢, Use of the computed pair energy
distributions in simulations of pulsar cascades may also have interesting
effects. Most previous calculations of this sort (Daugherty and Harding 1982,
Ogelman et al. 1976) have assumed that the pairs are always produced with one-
half the parent photon energy. As we have shown here, the energy
distributions are in fact quite broad for y > 0.1 when pair production {is
most likely to occur. Both of these topics will be the subject of future

investigation.
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APPENDIX

Derivation of Asymptotic Forms for M(j,k)

Following Klepikov (1954), we start from the contour integral

representation for the generalized Laguerre polynomial

G
G-S 1 dz  Ez (1-2)
g (B =3 (5 e S(':)“s;' (A1)

where the contour encloses the origin. Replacement of G and S by the
parametized variables defined in Equations (9) and (11) above allows one to

write the saddle points of the integrand as
z, = Yo (1 -v %¢) (A2)

Both of these points lie on the positive real axis, and the inner point z_ may
be crossed by initially deforming the original contour about the origin,
However, such a straightforward application of the method of steepest
descents proves insufficient vhen ¢ + Qmin = 1/w', for then the two saddle
points (which are oriented in mutually perpendicular fashion) move quite close
together. Hence the precise choice of contour through the point z_ is
critical. Klepikov's approach is to make the transformation z = z_et and

then to expand the resulting exponential function of t about the origin (which
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is now also the saddle point), retaining powers up to t3. This method ylelds
an approximation for the Laguerre polynomials which, when combined with

Stirliag‘'s approximation for the factorial functions in Equation (7), yields

finally
M3, > Me,w) | ~ - & &, 50 (A3)
/I /1-v2 /
where
3
r=—2g? (A4)
3 2
l-v

An unfortunate complication which arises in the expressions in Equation
(6) for the attenuation coefficients is that the quantities M(j-1, k-1), M(J-
1,k) and M(j,k-1) all appear in addit.ion to M(j,k). While in the limits of
large (j, k) these adjacent matrix elaments approach M(j,k) itself, the small
remaining differences must be taken into account in Equation (6). The
principal reason is that each coefficient i{s found to be the differzuce of two
terms vh!ch are nearly identical, so that the small differences in the matrix
elements in distinct terms are significant in the final result. The technique
for ‘inding the adjacent matrix elements involves the use of the relations

dL® (x)

- Al (x) = (a*a)Ll>  (x) (ASa)

S it Y )] (A5b)
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for the generalized Laguerre polynomials to prove the following relations

between the matrix elements:

TR M(3-1,k-1) = L (3He-g) m(g k) -g LD (Aa)
2 dE

L/TE M(3-1,k) = - (EXM)(y,k) - ¢ MUK (A6b)
2 df

-4/ (D) = (B0 + g 4300 (A6c)

From Equation (A3) it is found that

2
aM(y.k) -1 6 2/3(8) (A7)

g 2/ /T-v2

Substitution of Equations (A7) and (A3) into (A6) then gives expressions for

the adjacent matrix elements in terms of ¢ and v.

27
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FIGURE CAPTIONS
Kinematically allowed Landau states for the created electron-
positron pair with principal quantum numbers (j, k), for the
case B = B,., w= 3 MeV. These states are determined by the
condition p2 > 0 [cf. Equation (3)] which, as illustrated, 1is
the area inside the line p = 0. The variables v and ¢ are used

in the derivation of the asymptotic limit in Section IV [cf.

Equation (9)].

Exact attenuation coefficient for pair production [cf. Equation
(6)] in the case where the photon propagates perpendicular to a
pure magnetic field, plotted against photon energy. Threshold

energy is 1.022 MeV, below which R(w) = O.

a) Attenuation coefficients for polarization (of the electric
vector) parallel and perpendicular to a magnetic fileld at the
critical field strength.

b) Attenuation coefficient averaged over both polarizations

for B = 5 x 101%G.

Relative contributions of individual (j, k) states of the
created electron-positron pair to the total pair production
attenuation coefficient for the cases

a) B =B, = 4.416 x 10'36, 4w = 3 MeV, having 3,,, = 11 and

b) B =10!%G, w = 3 MeV, having j . = 502

The vertical scales are log scales with an artificial lower

o

cutoff .




Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:
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Energy distribution of one member of the created pair, computed
from an integration over the (j,k) probability distributions of
Figure 3. Plotted here is the normalized probability density
as a function of pair energy E divided by photon energy w. Any
asymmetries in the dlstributions about E/w = 0.5 are due to

statisitcal errors in the Monte Carlo sampling used.

Comparison of the exact and asymptotic pair production
attenuation coefficients, R and EA’ averaged over both photon
polarizations, for two field strengths. Each "X" point for B =
1012G 1s an average of the exact attenuation coefficient over
the many absorption edges (which are much more closely spaced

then the absorption edges for B = 5 x 10126) in the surrounding

energy interval.

Convergence of the exact attenuation coefficient to its
asymptotic limit for a fleld of 1012G. The ratio of the
asymptotic to the exact attenuation coefficient, as shown in
Figure 5, are plotted against photon energy. Dependence on the

parameters X and £ (see text) is also shown.

Energy distribution of one member of the electron-positron
palr, derived in the asymptotic limit [cf. Equation (19)] for
different values of y = (hm/chz) (B/Bcr)‘ The quantities

plotted here are the same as those of FiG. 4.

Lorentz-transformed pair production attenuation coefficient for
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the case sinf = 0.2, where 6 is the angle between the magnetic

field and the photon propagation vector.
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