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ABSTRACT

The production of electron-positron pairs by single photons in magnetic

12
fields > 10 G has been investigated in detail for photon energies near

2
threshold ( ,Kw > 2 me ) as well as for the asymptotic limit of high photon

energy. The exact attenuation coefficient, which is derived and then

evaluated numerically, is strongly influenced by the discrete energy states of

the electron and positron. Near threshold, it exhibits a "sawtooth" pattern

as a function of photon energy, and its value is significantly below that

predicted by the asymptotic expression for the attenuation coefficient. The

energy distributions of the created pair are computed numerically near

threshold and analytic expressions are derived in the asymptotic limit. These

results indicate that as field strength and photon energy increase, it becomes

increasingly probable for the pair to divide the photon energy unequally.

This effect, as well as the threshold behavior of the attenuation coefficient,

could have important consequences for pulsar models.
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I. INTRODUCTION

12
The possible presence of superstrong magnetic fields (> 10 G) around

astrophysical objects such as neutron stars has motivated extensive study of

the physical processes which can occur in these environments. In particular,

quantum-electrodynamical processes such as magnetic pair production and

synchrotron radiation in the high field limit have come to play such a central

role in pulsar models that a complete understanding of these processes is

vital to further theoretical development. In addition, unexplored

applications of high magnetic field physics to other objects, e.g. gamma ray

burst sources, require further investigation of single photon annihilation and

pair production.

The creation of electron-positron pairs by single photons in strong

magnetic fields has been studied in a number of instances. The first detailed

treatments were carried out independently by Toll (1952) and Klepikov (1954)

who calculated the attenuation coefficient for photon pair conversion using

the exact Dirac equation for electrons and positrons in a constant, uniform

magnetic field, treating the radiation field of the photon as a first order

perturbation. Their results, which were in mutual agreement, indicated that

even for photon energies well in excess of threshold Ow - 2mc 2) extremely

high magaetic fields (B > 109 Gauss) were required for a non-negligible rate

of pair production. In the limit of high photon energies the rate was found

2
to depend on the parameter x = (41w/2mc ) (B sin 0/B cr ), where 8 is the angle

2 3
between the field and the photon wave vector, and B cr = m c /eh =

4.414 x 10 13 Gauss. The constant Bcr is the critical field strength, in which

the gyroenergy *wc of an electron (or positron) is equal to its rest mass.



Since changes in the electron's energy perpendicular to the field occur in

quantized increments of AE N Awc , Bcr sets a scale on which to gauge the

importance of quantum effects in magnetic fields. The calculated conversion

rates indicate that magnetic pair production is not expected to occur with

significant probability unless X > 0.1, even though it is kinematically

2
possible for any photon with 4w > 2mc to produce a pair, no matter how

low X is .

These results were later reconfirmed and extended by Erber (1966), Baier

and Katkov (1968), Rassbach (1971) and Tsai and Erber (1974). These authors

were primarily concerned with the derivation of asymptotic expressions for the

total pair production rates in the limit of low field strengths (B << B cr ) and

photon energies much higher than threshold. However, at energies near

threshold, quantum effects due to the discreteness of the electron and

positron energies in the magnetic field strongly affect the properties of pair

production. When the photon energy and propagation direction are such

2
that Aw sin 0 > 2mc (a situation which can occur in pulsar cascades) the

asymptotic limits become unreliable. Unfortunately, the properties of

threshold magnetic pair production have not been sufficiently explored in the

published literature and are discussed only qualitatively if at all (Toll

1952). Furthermore, no quantitative treatment of the energy distribution cf

the created pairs exists, even in the asymptotic limit. Toll (1952) and Arons

and Scharlemann (1979) do give qualitative discussions of the differential

conversion rates, concluding that the pairs should most probably share the

parent photon energy equally, but do not derive expressions for the energy

distribution.

This paper is an investigation of these several important areas where

gaps exist in the literature on magnetic pair production and which are
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relevant to astrophysical applications: properties of pair production near

2
threshold, 4Sw > 2mc , and the energy distribution of the pairs, both near

threshold and in the asymptotic limit.	 We also review the previous results

with an emphasis on their physical significance and attempt to define more

clearly the approximations under which the asymptotic results have been

derived. In Section II, we begin with a discussion of the kinematics of pair

production which, aside from being of interest in itself, greatly helps to

clarify the meaning of the results which follow. The derivation of the exact

pair production rate for both photon polarizations is outlined in Section III,

in which we also present numerical calculations of the rates and pair energy

distributions near threshold. Section IV reviews the derivation of the rate

in the asymptotic limit of large photon onergy. We also give a comparison of

the exact and asymptotic rates and derive the asymptotic pair energy

distributions. In Section V, we show how the results can be generalized to

arbitrary photon directions and non-vanishing electric fields through Lorentz

transformations and discuss in Section VI the importance of some of the new

features for models of astrophysical sources.

II. KINEMATICS OF MAGNETIC PAIR PRODUCTION

Consider a photon with energy w propagating at an angle 0 to a uniform

magnetic field B. (Natural units, with 41 - c - 1, will be used throughout).

Without loss of generality, it is possible to choose a frame in which B -

Bz, and k - w (0, sin 0, cos 0).	 Then the energy-momentum conservation

laws governing magnetic pair production may be written as

w- E i + E 
k
	 (la)

W cos	 p + q,	 (lb)
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where the energy quantum numbers (j, k - 0, 1, 2, ...) and the longitudinal

momentum components (p, q) refer to the positron and electron respectively.

The Landau energy levels fcr the two particles have the forms (see for example

Johnson b Lippman 1949)

Ej - 1p2 + a2 (1 + 2j B )] 
1/2	

(2a)
B
cr

2	 2	 g	 1/2
Ek - (q + m (1 + 2k B	 (2b)

B
c y.

Note that the conservation laws do not require conservation of momentum

perpendicular to the field direction. Indeed, the fact that the external

field participates in the particle momentum transfer is what makes this

first-order transition kinematically possible. However, it is the "rigidity"

of the intense field lines which preserves the energy conservation law [Eqn

(la)].

In the derivation of the photon attenuation coefficients, it is

convenient to specialize further to the frame in which k-B - 0, so that

p - -q. In this frame, equation (la) ma; be solved for p to yield

2

p - p(j,k) - t m (w' 2- 1 - (j + k) B' + (j-k) 2	 L 2 i 1/2	 (3)

4w'

where w' - w/2m, B' - B/Bcr .	 Since p2 must be nonnegative, the allowed

transitions to a+e - pair states represented by integer pairs (j,k) are just

those points in the j-k plane enclosed by the curve p 2 - 0, as shown in

l

Figure 1.
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It turns out that transitions to states close to this boundary are the

most probable, as might be expected from the fact that classically the pair

should most probably appear with high "forward" momentum (i.e., large

transverse energy levels and relatively small momentum components along the

field direction). In any case, the maximum Landau level obtainable by either

member of the pair is found by assuming that either j or k - 0 on the boundary

2
curve p (j,k) - 0, from which it is found that

k	 ^ 2w'(w'-1'

Amax	 max	 Be

2
For w' >> 1, this reduces to 

jmax 
	 2w' /B'. The parameter E appears

in the derivation of the attenuation coefficient in Section III below. Similarly,

2
along the symmetry axis j - k, it is found that jmax < (w' - 1)/2n' .

The number of integer ( j k) pairs enclosed within the boundary p2 - 0 is

2	 2
given approximately by Nstates (w', B') - 2w' (w' + 2)(w' - 1) /3B' , which

4	 2
for the limit w'» 1, reduces to Nstates (w',B') - 2w' /3B' . Hence for

fixed B', an increase in the photon energy dw' correAponds to an increment

3	 2
	dFstates - Sw' dw'/3B'	 This number is just twice the number of

singularities which appear in the photon attenuation coefficient between

energies w' and w' + dw', as will be discussed in Section III below.

III. DERIVATION OF THE PHOTON ATTENUATION COEFFICIENT

The S-matrix element for magnetic pair production is simply the first-

order transition

4
S fi - ie fd x ; final

(
x) Y uAy (x) * initial (x)

7

(4)
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where the electron wavefunctions are solutions of the Dirac Hamiltonian for

motion in a constant, unifom magnetic field. The precise form of these

wavefunctions depends both on the choices of gauge and constants of the

motion. The wavefuctions used in the present analysis are described i , detail

by Daugherty and Bussard (1980); for alternative solutions, see for example

Johnson and Lippmann (1949).

The attenuation coefficients for photons whose electric vectors are

polarized parallel or perpendicular to the magnetic field direction may be

written as

R	 1	 ^L ^^L SJLda (Ir—db-
M ' 1	 T j>o k>o	 2e	 2n 2f a2	 2n a2

where L 3 T is the space-time volume element and a 2 R 1/eB. The summations over

j and k range over all kinematically allowed final states (cf. Fig. 1). The

s - and s+ summations range over the spin states of the electron and

positron. The continuous variables (a,b) are eigenvalues of the x-coordinates

of the orbit centers, which are constants of the motion for the wavefunctions

used here. As indicated in the earlier discussion on kinematics, the sum over

Landau levels j and k is restricted to those states for which

2
p (j,k) > 0 [see equation (3)j.

The derivation of the attenuation coefficients using the wavefunctions

specified above is straightforward and confirms the results originally

obtained by Toll (1952) and Klepikov (1954). For details on techniques for

handling the matrix elements, see also Daugherty and Bussard (1980), Appendix I.
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The results may be written in the forms

2 2 2 	2
R^(w'.B')

	

	 F f 1 {(B jEk +m -p )(IM(^.kI+IM (J-1,k-1)I )
2E j kip jkl

+ 2 k B'm 2 [Mt(j,k) M(j-l,k-1) + Mt( j-l,k-1) M(j,k)]}	 (6a)

R
I 
(w',

	2f 
S 

711
kI 

{( E E+2+p2)(IM( j-1 , k.) I +IM(j,k-1)I 2)j	 j	 j k

-21ji B'm 2 [Mt(j-1,k)M(j,k-1) + Mt(j,k-1)M(j-l,k)l}	 (6b)

2

where f, - 2w'

B'

2	 G-S

M( j , k ) - (-0
G-S 

JdS-', a &/	
—2- LG-S 

MI	 (7)

and G - max (j,k), S - min (j,k)..

L G 
S S (E) is the generalized Laguerre polymomial, defined according to the

standard in Abramowitz b Stegun (1964). These results may also be extended to

the cases in which j or k (or both) is zero, if one adopts the convention

La-1 M = 0.

The attenuation coefficients are immediately seen to have singularities
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or absorption edges whenever w' and B' have values such that the longitudinal

momentu@ p(,j,k) vanishes for any of the allowed transitions ( j,k) in the

summations of Equation (6). If the attenuation coefficients are considered as

functions of w' for fixed B', these singularities occur at the energies

W' 
jk - 

1/2 ( 11+^ + 1+2kB'
	

(8)

Figure 2 shows this behavior in the parallel and perpendicular attenuation

coefficients in the vicinity of the threshold energy for several field

strengths. Two major trends with decreasing field strength to be noted in

this figure are the decrease of the typical spacing between peaks and the

sharp increase of the attenuation coefficient (averaged over small energy

intervals) at energies near threshold. The spacing between peaks can be

understood from the kinematical discussion in Section II, and in particular

for w' >> 1, the number of absorption peaks between w' and w' + dw' is

approximately

3
4 w' dw'

dN peaks l/2 dN states	 , 2
3 B

The "sawtooth" behavior of the attenuation coefficients has been

discussed both by Toll (1952) and Klepikov (1954), but has generally been

ignored in astrophysical applications to date. One argument for neglecting

such effects is that in pulsar magnetospheres one is typically dealing with

energetic photons (w' >> 1) and field strengths somewhat less than Bcr'

Hence one might expect sufficiently small spacing between peaks so that the
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well known asymptotic, energy-averaged forms of the attenuation coefficients

(see Section IV below) .'re suitable approximations. However, it must be noted

that in these same situations, one typically finds that these photons

propagate at small angles to the local field direction. Since the asymptotic

form.@, like the discrete sunmations (cf. Eqn. (6)) above, apply only to

propagation perpendicular to the field, it is in fact necessary to verify (by

Lorentz transformations) whether it is still true that w' ') 1 in the frame

for which k.2#0. This question will be pursued in Section V below, where it

is shown that typically "energetic" gamma radiation may actually be subject to

the near-threshold behavior of the attenuation coefficients.

The relative individual contributions of the (j,k) states in the

summations of Equation (6) are illustrated in the plot of Figure 3. M noted

earlier, the states nearest the boundary p2 - 0 are by far the most

significant. However, Figure 3a suggests that there should be a broad energy

distribution for each member of the created pair. This indication is

confirmed by the energy distribution obtained by a sampling technique over the

(j, k) plane, which is shown in Figure 4. For B - 10 12G, w - 3 MeV, there is

a strong tenJency for the pair to divide the phc;ton energy equally. However,

for the case B - Bcr , w - 3 MeV, there is actually a greater probability at

each member of the pair will be created with an energy near either the minimum

(E - mc 2 ) or maximum (E - w - mc 2 ) allowable. This behavior near threshold

will be compared to energy distributions in two distinct asymptotic regions in

Section IV.
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a) Attenuation Coefficients

For photon energies an4 field strengths such that the parameter

2
2w' /B' (and hence the number of allowed J-k states for the created pair)

becomes large, it is poeiible to reduce the attenuation coefficients [Bqn (6);

to asymptotic forms which are effectively averaged over small energy intervals

to remove the sawtooth behavior. This is fees 0lebecause the number of peaks

in such small intervals increases rapidly beyond threshold, while the peaks

themselves become more narrow at an even taster rate (Toll 1952). The

averaging procesii is actually done by replacing the discrete summations a,cr

j,k (in which individual singular contributions make the entire sum infi.,ral aa)

with integrations over continuous variables. Since the contributions from

transitions on opposite 7 + des of the symmetry axis ,j - k in Figures 1 and 3

are identical, it is reasonable to start by defining such variables as

follows:

u - ( .j + k)/t	 (9)

v- (j -k)/r^

In t:arms of these quantities,

2	 2	 2	 2
p - m (w' (1-2u+v )-11	 (10)

Since one integration boundary is determined by the curve p 2 = 0, it proves

convenient to define a further variable (cf. Figure 1)
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a - (1-2u+v 2 ) I/2
	

(11)

2	 2	 2 2

	

which is then related to p by p	 m [w' # - 1]. The most probable final

states lie in the vicinity of m min 
M 1/w' , hence it will be reasonable to

expand quantities in the integrand in powers of d.

The principal ingredient in obtaining these asymptotic results is a

suitable approximation for the matrix element M(j,k) defined in Equation

(7). A derivation of asymptotic forms for M(j, k) based on that of Klepikov

(1954) is given in the Appendix. The reduction of the attenuation

coefficients to their asymptotic forms tI ,9n begins by rewriting the matrix

elements M (j, k), M (j-1, k-1), M (j-1, k) and M (j, k-1) entirely in terms

of 0 and v, using Equations (A3), (A6) and (A7). Also, with the use of

Equations ( 9) and (10), the various energy terms in Equation (6) may be

expanded to give the following:

	

2	 2	 2	 2	 2	 2
Ej Ek + m - p	 m (2+w' (1-v - ^ )1	 (12a)

	

2	 2	 2 2	 2	 2
EJF + m + p	 m w' (1-v + )	 (12b)

2

2 k B' m 2- m 2w' 2 (1- v2 - ^2 (
1 + 
	 (12c)

2
(1 - v )

The insertion of these expressions and those for the matrix elements into

Equation ( 6), an: `ae replacement of the sums by Integrals,

	

1	 1-^

7 S + 2 ( d^ (	 dv (2E;2^)
j 	 1	 0

W1

13



14
OMMMU. PAGE 0
OF POOR QUALITY

leads to expressions for the (smoothed-out) attenuation coefficients valid for

E + W.

Replacement of the variable ^ by n - 4/4min
 - W'® allows the attenuation

coefficients to be written in the forms

1

R a°- — 8--- ( do n r dv

K 3w 2W' 2B 1 1	
0 1-v2

2	 4

• {( n2+ n4 — 
y	

IK1/3(F) + n	 2 K2/3(01

v )	

(13a)
2	 1- v

(1- 

a	 1

R a° $	 ^dr1—T'  
dv

1	 3R2 wo 2 B' 
1	 0 1-v2

4	 2
24 v	

2	
13b)•{ n-^ K1 / 3 M + n ---2 K 2/3(x)}

	

1-v	 (1"v )

3

where C - F t -
2

1-v

Klepikov ( 1954) has written the attenuation coefficient for unpolarized

photons in the form

R - 1 (R + R ) - °̂ B'- 2 -	 (adx Cwdy {2 cosh 2y cosh x

2	
A	

1	 'k	
3w X2 0
	 0
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is

2	 2	 2	 3	 2	 3	 2 2	 2	 3
K 113 (— cosh y cosh x) - sinh x cosh x R 1 3(— cosh y cosh x)

3X	 I 3X

2	 5	 2	 2	 2	 3
+(2 cosh y-1) cosh x K213 (3 cosh y cosh x) }	 (14)

X

where X - w' B'. This expression is found to be equivalent to the average of

equations (13a) and (13b) through the replacements

cosh x - n

cosh y -	 1	 (15)

1

In these variables, sinh x - (n 2_ 1)  
I/ 
2 - p/m, so that the x integration in

Equation (14) is essentially an integration over the longitudinal momentum.

The variables v in Equation (13) and y in Equation (14) are related to the

energy of the electron or positron through Equations (2), (9), (10) and (11),

which give:

v- 11 -2 el

2
1 - v - 4c(1 - e)
	

(16)

where r - E
i
/w ;Ek/w] is the fractional energy received by one member of the

pair. Therefore, the v and y integrations in Equations (13) and (14) are

integrations over the pair energy.

Equations (13) may be further reduced in the limits X << 1 and X >> 1.
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For the case of small X in particular, both of the modified Bessel functions

approach the asymptotic form

1/2
K1 / 3 (C) - K2/3 M - (2-) / e-^

Furthermore, the integrand becomes sharply peaked around the symmetry axis

	

2	 2
(v-0), so that it is permissible to approximate 1/1-v as l+v in the

exponential above. Integration over v after this step, followed in turn by

the approximation n - l+p, p«1, yields the well-known result

R	
4

0.23— B' exp (- 
	

) .
3X

This is in fact the expression usually assumed in astrophysical calculations,

although as shown in Section V below it is sometimes inappropriate. The

convergence of the exact attenuation coefficient derived in Section III [cf.

Eqn. (6)] to this asymptotic limit is illustrated in Figures 5 and 6. The

exact attenuation coefficient is at least several orders of magnitude less

than the asymptotic value near threshold for field strengths around 1012

Gauss. Below threshold, of course, the asymptotic expression becomes

completely invalid.

b) Pair Energy Distributions

The energy distribution of each member of the created pair (which are

identical because of the symmetry of the integrand about v - 0) can then be

obtained by integrating Equation (13) first over n, and then substituting for

v in terms of E in the resulting integrand. Tsai and Erber (1974) have shown

that the polarization-averaged attenuation coefficient [Equation (14)] can he

(17)

LA
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expressed in a simpler form,

a B r 	 1	 2	 2

R	
o	 f dv (9 - v ) Y 2/3 (4/3X(1 - v )1	 (18)

X 18x X o	 2

(1 - v )

By the simple change of variables of Equation (16) we obtain the differential

attenuation coefficient as a function of pair energy:

dR(c,X) 
= ao /	 [2 E C('))] 

K2/3 [1/3Xc(1-c)]	 (19)
X

which has the asymptotic forms

di (aeX ) _(10 B
e

1 [ 2 + E(1_E)]-_ exp [-1/3Xc(1-c)], X << 1 	 (20a)

4( 3d-3,►X r_c(1 -E)

°toB1 .426 [2 + c(1 -01 	 X » 1	 (20b)

TrX 1/3
	 1/3	 c(1- E)

These energy distributions have a number of interesting properties. The

first to note is that the parameter X alone determines the shape of the

distribution, which has been plotted in Figure 7 for different values of X

using the exact form in Equation (19). For small X the distributions are

centrally peaked around c =1/2 and have half-widths	 .36 r _X for X << 1.

For large X the distributions completely change shape, actually becoming

peaked at c	 0 and c = 1.	 For X >> 1, the shape of the distribution

becomes independent of X altogether. Near c = 0 and E - 1, the

condition X >> 1 does not insure that the argument of K2/3 (x) is small, and

the exact expression of Equation (19) is needed to describe the drop to zero
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at the edges of the dtstribution. By comparing the curves in Figure 7 to

those of Figure 4, it is apparent that the energy distributions near threshold

have a similar dependence on X .

From the behavior of the pair energy distributions, we can conclude that

in the case of low fields and photon energies near threshold the pair tend to

share the photon energy equally. However, in the case of large fields or high

photon energies, there is an increasing tendency for one member of the pair to

take all the energy of the photon, while the other receives little more than

its rest mass. In the limit X >> 1, this is actually the most probable final

state of pair production.

V. LORENTZ TRANSFORMATIONS OF THE ATTENUATION COEFFICIENTS

The results of the previous sections all apply to the special Lorentz

frame in which k-B - 0. To generalize the (unpolarized) photon attenuation

coefficient to frames in which the photon wave vector makes an arbitrary angle

0 with the magnetic field, Lt is sufficient to perform a Lorentz

transformation with velocity v - cos 0 along the field direction. The

transformation law for the attenuation coefficient is most easily understood

in terms of its inverse, the mean free path, which obeys the simple invariance

law

2	 2	 2	 2
a - t - a - t
0	 0

From this law and the transformation properties of w and B, it is immediately

possible to write

(21)
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R (w, B) - sin 8 o(w sin e, B)
	

(22)

where Ro is now used to denote the functional fors of the attenuation

coefficient in the special frame for which k.B - 0, as derived in previous

sections. Note that this transformation law is valid for both the exact forms

in Eqn (6) and the asymptotic limits of Section IV.

In partic-alar, for the asymptotic case X >> 1, the well-known

approximation [Equation (17)] for the attenuation coefficient appears to be

modified simply by the replacement of B with B sin 8. However, from Equation

(22) it may be seen that it is really w which becomes w sin 8 in the

product X - (w/2m)(B/Bcr). This distinction is quite important, since in the

non-asymptotic case the attenuation coefficient does not depend only on X.

The behavior of the transformed coefficient near threshold is illustrated

in Figure 8. Note that the threshold energy itself is displaced upward by the

factor 1 / sin 8, which also is the factor by which the energy scale is

stretched in the new frame. The reduction of the attenuation coefficients by

the factor sin a is also evident.

The transformation property implies an additional point of interest in

2
pulsar cascade theory. Here a primary electron with energy Yme , accelerated

along a curved field line, may emit gamma radiation nearly along its direction

of motion, within a forward cone of half-angle 8 - 1/Y.	 To follow such a

photon along its trajectory outward through the magnetosphere, it is necessary

to perform a sequence of Lorentz transformations at small intervals, where the

field makes a slowly increasing angle with the photon wave vector. As Figure

8 illustrates, this sequence of transformations may initially put even high-

energy photons below the threshold for pair production, and in such cases

these photons will propagate at least until they exceed the local threshold
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energy. Hence the near-threshold forms of the attenuation coefficients must

be used over some portion of the photon trajectory, and the commonly used

asymptotic form may not be appropriate over any portion of the actual photon

trajectory before its annihilation.

It may also be noted that a Lorentz transformation in which v is

perpendicular to B may also be used to generalize the attenuation coefficient

to situations in which both electric and magnetic fields are present, at least

2	 2
within the restrictions B - E > 0, B • E - 0 (Daugherty and Lerche 1975).

Such cases are important for tracing cascades in rapidly rotating pulsars (as

for example the Crab pulsar) in which significant rotation-induced electric

fields are expected. Here the transformation law for the attenuation

coetficients may be written in the form

Q(w, B) = Y( 1 - nxv) Ro (Yw( 1 -nxv ), $)
	

(23)

in which (nx , ny , nz ) are the photon direction cosines in a frame chosen so

w	 w	 2
that B - B z, E E y, the velocity of transformation v - hxB/B , and the

2 21
Lorentz factor Y - (1 - E /B ) -1/2 .

The full generalization to situations in which electric fields both

parallel and perpendicular to B are present requires explicit calculation of

the attenuation coefficients using the Schwinger proper-time technique

(Urrutia 1978). However, for known pulsars the ratio E N /B is sufficiently

small that such cases are of only minor interest in cascade theory (Ayasli

1978, Harding et al. 1978).
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We have obtsined results on several aspects of magnetic pair production

which should be of interest in future astrophysical applications. The pair

production attenuation coefficient near threshold is dominated by magnetic

field quantum effects, showing sharp resonance peaks at photon energies

corresponding to discrete states of the electron and positron. As the field

approaches the critical field strength, the spacing of these peaks at

threshold increases, approaching mc 2 /sin8. As the photon energy increases

above threshold at a given magnetic field strength, the peak spacings decrease

rapidly and the mean value of the attenuation coefficient approaches, from

below, the asymptotic limit derived for very large pair quantum numbers. The

2
parameter	 = 2w' /B' , which is the number of the highest energetically

allowed Landau state available to either the electron or positron, is not a

Lorentz invariant quantity and must be evaluated in the frame in which the

photon propagates perpendicular to the field. Thus, the asymptotic

condition ^ »1 does not ensure that threshold (quantum) effects are

unimportant in an arbitrary frame. Neither is the threshold energy for pair

production frame invariant; in an arbitrary frame in which the photon

propagates at an angle 8 to the field, the threshold energy is 2mc2/sin8.

This result has the somewhat surprising consequence that even extremely high

energy photons, if they are propagating at very small angles to the field, may

have perpendicular energies below threshold.

Since the complicated expressions [cf. Eqn (6)] for the threshold

attenuation coefficients are unwieldy for practical calculations involving

pair production, we give here an analytic expression which approximates their

average behavior, and also describes their approach to the asymptotic limit.

For X< 1,
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R 0.23 B' exp f- 4 fW, B')i
X

0	 w'< 1,
-2.7 -.0038

where f(w',B') - 1 + 0.42 w' 	 B'	 (24)

The function f(w',B') has been obtained by a three parameter fit to the

attenuation coefficient R(w',B') averaged over fixed intervals of w' large

enough to contain at least several resonance peaks. The fit is not terribly

sensitive to the B' dependence, owing to uncertainties from averaging over the

the peaks. We point out that the threshold condition, w'>l, mist be put in

artifically, and that the expression for arbitrary photon angles may be

obtained using eqn (22). It is interesting tc note that while the asymptotic

expression [Eqn (17)] is a function only of X, the exact attenuation

coefficient, as approximated by Eqn (24), depends on w' and B' independently.

We have also found that the probability distribution of pair energies is

determined by the parameter X, which is Lorentz invariant (for the case of a

pure B field and transformations along B). For small X, the most probable

pair energy is half of the parent photon energy. In the limit of large X, the

most probable final state is one where the photon energy is given almost

entirely to one member of the pair. This unequal division of the photon

energy was shown by Sokolov et. al. (1974) to be the case for B > B cr where,

of course, X is always greater than 1. From the results derived in Section

IV, however, we have shown that unequal divie_on of the photon energy can

occur also for B < Bcr , as long as X > 1. Probability distributions of pair

Energy very similar to those of Figure 7 have been computed for both Y-y pair

production (Burns and Lovelace 1982; Burns, private communication) and Y-

nucleus pair production (Rossi and Greisen 1941) which also are seen to change

their shape as a function of a single parameter characterizing each process.



The production of pairs with one member of the pair receiving all the

photon energy, and therefore occupying a high Landau state, while the other

member receives only its rest mass, thus occupying the ground state, is

possibly related to the dominance of ground state transitions in synchrotron

radiation. It has been found (Sokolov et al. 1973; White 1974, 1976) that

transitions of an electron from an excited state to the ground state in a

magnetic field become more probable as the field approaches and exceeds the

critical field strength. This tendency of the electron to radiate away all

its energy via a single photon causes the tail of the synchrotron spectrum to

rise near the "tip", where 41w equals the electron energy. Although the

kinematics of this process are different from those of pair production, the

probability distribution of initial and final states of synchrotron radiating

electrons in a near critical field would look very similar to the pair

distributions we have found for X >> 1.

The properties of magnetic pair production explored in this paper have

immediate significance for pulsar models. In current polar cap models (eg.

Ruderman and Sutherland 1975, Arons and Scharlemann 1979), particles are

accelerated to high energies X10 12-10 13 .V) along magnetic field lines and

emit Y-ray photons through curvature radiation. These photons are initially

propagating parallel to the field and thus have w sine-0. In order to produce

pairs, they must acquire a sine large enough to (at least) reach threshold by

traveling a straight trajectory in the curved and rotating dipole field. If B

>1012 G, these photons will have w sine - 2mc 2 when they pair produce and the

asymptotic attenuation coefficient will under-estimate their mean free paths

because (1) it overestimates the exact attenuation coefficient near threshold

and (2) it has a non-zero (and possibly large) value below threshold. The

absorption of photons in strong fields may be further complicated by threshold
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behavior of the vacuum index of refraction. Shabad and Usov (1982) have

argued that curvature photons in fields > 5 x 10 12 G will be refracted along

the direction of B. If this is the case, then the photon won free paths will

be even larger. In any event, the increase fn mean free paths from the pair

production threshold behavior may be regarded as a lower limit.

Since the a+e- pairs produced within the accelerating region tend to short

out the electric field, the spatial extent of this region is proportional to

the photon mean free path. Larger mean free paths will increase the distance

over which the voltage drop occurs. However, due to the weak dependence of

the size of the voltage drop on the altitude at which the shorting-out occurs

in these models, the acceleration energies may not be such larger.

The increased mean free paths are expected to have a larger effect on the

cascades which occur above the accelerating re gion. Threshold effects on

individual mean free paths will be magnified by the numbers of photons

involved and could produce significant changes in the predicted y-ray and pair

spectra for fields in excess of - 4 x 10 12 G. Use of the computed pair energy

distributions in simulations of pulsar cascades may also have interesting

effects. Most previous calculations of this sort (Daugherty and Harding 1982,

Ogelman et al. 1976) have assumed that the pairs are always produced with one-

half the parent photon energy. As we have shown here, the energy

distributions are in fact quite broad for X > 0.1 when pair production is

most likely to occur. Both of these topics will be the subject of future

investigation.
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APPENDLX

Derivation of Asymptotic Forms for M(j,k)

Following Klepikov (1954), we start from the contour integral

representation for the generalized Laguerre polynomial

LS-S M	 i yz 
a Ez 1-z)S	

(Al)
(-z)

where the contour encloses the origin. Replacement of G and S by the

parametized variables defined in Equations (9) and (11) above allows one to

write the saddle points of the integrand as

z* . 1/2 ( 1 - I! *0
	

(A2)

Both of these points lie on the positive real axis, and the inner point z_ aay

be crossed by initially deforming the original contour about the origin.

However, such a straightforward application of the method of steepest

descents proves insufficient when m + mmin 0 11w', for then the two saddle

points (which are oriented in mutually perpendicular fashion) move quite close

together. Hence the precise choice of contour through the point z_ is

critical. Klepikov's approach is to make the transformation z • z_e t and

then to expand the resulting exponential function of t about the origin (which
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Is now also the saddle point), retaining powers up to t 3 . This method yields

an approximation for the Laguerre polynomials which, when combined with

8tirltug's approximation for the factorial functions in Equation (7), yields

finally

JM(j. k)I + IM(®.v)) - 1 O E 1 3(t)	 (A3)
/R- J1--V2

where

3

1 F,	 (A4)
3	 2

1-v

An unfortunate complication which arises in the expressions in Equation

(6) for the attenuation coefficients is that the quantities M(j-1, k-1), M( j-

1,k) and M(j,k-1) all appear in addition to M(j,k). While in the limits of

large (j, k) these adjacent matrix elements approach M(j,k) itself, the small

remaining differences must be taken into account in Equation (6). The

principal reason is that each coefficient is found to be the difference of two

terms which are nearly identical, so that the small differences in the matrix

elements in distinct terms are significant in the final result. The technique

for 'finding the adjacent matrix elements involves the use of the relations

dLa (x)
x	

n	 . nLn(x) - (n+a)Ln-1(x)	 We)
dx

a( )

dLn dx - L Cr+l (x) 	 (ASb)



L nl (x) - LO (x) - LO-1 (x)
(A5c)
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for the generalized Laguerre polynomials to prove the following relations

between the matrix elements:

k M(j-l,k-1) 1 ( J+k-E) M( j . k) 
-& dK(j.k)	 (A6a)

2	 dE

i E M( j-1 , k) - - (E-
k+J

)M(J,k) - F, dM(3,k)	 (A6b)
2	 dt

-ice M(j,k-1) - ( ^
 Z-j 

)M(j.k) + E a'!( 'k)	
(A60

From Equation (0) it is found that

2

MKIA-k) —1 — K 21 3(0	 lA7)
2i5w-

Substitution of Equations (A7) and (A3) into (A6) then gives expressions for

the adjacent matrix elements in terms of ® and v-



28

ORIGINAL PANE 9

REFERENCES	 OF POOR QUALM

Abramowitz, M. and Stegun, I. A. (ed.) 1964, "Handbook of Mathematical

Functions" (National Bureau of Standards).

Arons, J. and Scharlemann, E. T. 1979, Ap. J., 231, 854.

Ayasli, S. 1978, Ph.D. thesis, Middle East Tech. Univ., Ankara, Turkey.

Baier, V. N. and Katkov, V. M. 1968, Soviet Phys. JETP, 26, 854.

Burns, M. L. and Lovelace, R. V. E. 1982, A .J., in press.

Cheng, A. F. and Ruderman, M. A. 1977, Ap. J., 214, 598.

Daugherty, J. K. and Bussard, R. W. 1980, Ap. J., 238, 296.

Daugherty, J. K. and Harding, A. K. 1982, Ap. J., 252, 337.

Daugherty, J. K. and Lerche, I. 1975, Ap. Space Sci., 38, 437.

Erber, T. 1966, Rev. Mod. Phys., 38, 636.

Harding, A. K., Tademaru, E. and Esposito, L. W. 1978, Ap. J., 225, 226.

Johnson, M. H. and Lippmann, B. A. 1949, Phys. Rev., 76, 828.

Klepikov, N. P. 1954, Zh. Eksp. Teor. Fiz., 26, 19.

Ogelman, H., Ayasli, S. and Hacinliyan, A. 1976, "The Structure and Content of

the Galaxy and Galactic Gamma Rays" ed. C. E. Fichtel and F. W. Stecker

(NASA, Washington, D. C.).

Rassbach, M. E. 1971, Ph.D. Thesis, Caltech.

Rossi, B. and Greisen, K. 1941, Rev. Mod. Phys., 13, 240.

Ruderman, M. A. and Sutherland, P. G. 1975, Ap. J., 196, 51.

Shabad, A. E. and Usov, V. V. 1982, Nature, 295, 215.

Sokolov, A. A., Zhukovskii, V. Ch. and Nikitina, N. S. 1973, Phys. Lett., 43A,

85.

Sokolov, A. A., Ternov, I. M., Borison, A. V. and Zhukovskii, V. Ch. 1974,

Phys. Lett., 49A, 9.



ORIGINAL PAN 15	
2 9

OF POOR QUALITY

Toll, J. S. 1952, Ph.D. Thesis, Princeton University.

Tsai, W. and Erber, T. 1974, Phys. Rev. D, 10, 492.

Urrutia, L. F. 1978, Phys. Rev. D, 17, 1977.

White, D. 1974, Phys. Rev. D, 9, 868,

White, D. 1976, Phys. Rev. D, 13, 1791.



FIGURE CAPTIONS

Figure 1:	 Kinematically allowed Landau states for the created electron-

positron pair with principal quantum numbers (j, k), for the

case B - Bcr , w - 3 MeV. These states are determined by the

condition p 2 > 0 [cf. Equation (3)) which, as illustrated, is

the area inside the line p - 0. The variables v and * are used

in the derivation of the asymptotic limit in Section IV [cf.

Equation (9)).

Figure 2: Exact attenuation coefficient for pair production [cf. Equation

(6)) in the case where the photon propagates perpendicular to a

pure magnetic field, plotted against photon energy. Threshold

energy is 1.022 MeV, below which R(w) - 0.

a) Attenuation coefficients for polarization (of the electric

vector) parallel and perpendicular to a magnetic field at the

critical field strength.

b) Attenuation coefficient averaged over both polarizations

for B - 5 x 1012G.

Figure 3:	 Relative contributions of individual (j, k) states of the

created electron-positron pair to the total pair production

attenuation coefficient for the cages

a) B - Bcr - 4.414 x 10 13G, w - 3 MeV, having j.x - 11 and

b) B - 1012G, w - 3 MeV, having jmax - 502

The vertical scales are log scales with an artificial lower

cutoff.

30
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Figure 4:	 Energy distribution of one member of the created pair, computed

from an integration over the (j,k) probability distributions of

Figure 3. Plotted here is the normalized probability density

as a function of pair energy E divided by photon energy w. Any

asymmetries in the distributions about E/w = 0.5 are due to

statisitcal errors in the Monte Carlo sampling used.

Figure 5:	 Comparison of the exact and asymptotic pair production

attenuation coefficients, R and RA , averaged over both photon

polarizations, for two field strengths. Each "X" point for B -

1012G is an average of the exact attenuation coefficient over

the many absorption edges (which are much more closely spaced

then the absorption edges for B 5 x 10 12G) in the surrounding

energy interval.

Figure 6:	 Convergence of the exact attenuation coefficient to its

asymptotic limit for a field of 10 12G. The ratio of the

asymptotic to the exact attenuation coefficient, as shown in

Figure 5, are plotted against photon energy. Dependence on the

parameters X and F, (see text) is also shown.

Figure 7:	 Energy distribution of one member of the electron-positron

pair, derived in the asymptotic limit [cf. Equation (19)] for

different values of X - (,Iw/2mc 2) (B/Bcr ). The quantities

plotted here are the same as those of FiG. 4.

Figure 8:	 Lorentz-transformed pair production attenuation coefficient for



the case sing - 0.2, where 8 is the angle between the magnetic

field and the photon propagation vector.
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