TRANSONIC PRESSURE DISTRIBUTIONS ON A RECTANGULAR SUPERCritical WING OSCILLATING IN PITCH

RODNEY H. RICKETTS, MAYNARD C. SANDFORD
DAVID A. SEIDEL AND JUDITH J. WATSON

MARCH 1983
Abstract

Steady and unsteady aerodynamic data were measured on a rectangular wing with a 12 percent thick supercritical airfoil mounted in the NASA Langley Transonic Dynamics Tunnel. The wing was oscillated in pitch to generate the unsteady aerodynamic data. The purpose of the wind-tunnel test was to measure data for use in the development and assessment of transonic analytical codes. The effects on the wing pressure distributions of Mach number, mean angle of attack, and oscillation frequency and amplitude were measured. Results from the newly-developed XTRAN3S program (a non-linear transonic small disturbance code) and from the RHPIV program (a linear lifting surface kernel function code) were compared to measured data for a Mach number of 0.7 and for oscillation frequencies ranging from 0 to 20 Hz. The XTRAN3S steady and unsteady results agreed fairly well with the measured data. The RHPIV unsteady result agreement was fair but, of course, did not predict shock effects.

Introduction

In recent years NASA Langley Research Center has had a program for measuring unsteady aerodynamic data in the transonic regime for the purposes of assisting analytical code development and providing a data base for active controls design. Two models previously tested in the 16-foot Transonic Dynamics Tunnel (TDT) are a clipped delta wing and a high-aspect-ratio transport wing. The delta wing, which had a circular-arc airfoil, was oscillated in pitch at various mean angles of attack. A trailing-edge control also was oscillated to generate unsteady aerodynamic data. The transport-type wing with a supercritical airfoil had five leading-edge and five trailing-edge control surfaces of which some were oscillated independently and in pairs about various mean control surface angles. The static angle of attack of the transport-type wing was varied to allow data acquisition at cruise lift conditions.

Additional tests have been completed on a third wing—a rectangular wing having a supercritical airfoil. This particular wing (a simple planform geometry) was tested for the purpose of aiding in the development and preliminary assessment of new analytical transonic codes such as XTRAN3S. The results obtained from this test provide the database desired for extension of two-dimensional flows to three-dimensional flows. This paper describes this recent test of the rectangular wing, presents measured data, and correlates these experimental results with theoretical results.

Wing Configuration

A photograph of the wing installed in the TDT is shown in Fig. 1. The wing is attached to a shaft that extends through a splitter plate mounted off the wind-tunnel wall so that the wing root is outside the wall boundary layer. The shaft is connected to a hydraulic rotary actuator that oscillates the wing in pitch.

Geometry

The details of the planform and airfoil shape are shown in Fig. 2. The unswept wing has a rectangular planform with a 2-ft chord and a 4-ft span (panel aspect ratio of 2.0). The airfoil is a 12-percent thick (t/c = 0.12)
minimize the pitch moment of inertia of the wing assembly. The leading- and trailing-edge sections were attached to the center box section at 0.23 and 0.69 fractional chords, respectively.

Instrumentation

Wing instrumentation consisted of 126 differential pressure transducers, eight accelerometers, and one potentiometer. The transducers were mounted at four spanwise stations to measure both static and dynamic pressures along chordwise rows (see Fig. 2) on the upper and lower surfaces. Each transducer was referenced to the tunnel static pressure. In the center box section, the transducers were mounted flush to the surface (in situ). For the leading- and trailing-edge sections, the transducers were located in the joint area between the sections (see Fig. 3) and were connected to orifices at the section surfaces via tubes that had equal length and diameter. This arrangement alleviated the problems associated with in situ mounting in the thin trailing-edge areas and to enable the transducers to be mounted closer to the pitch axis and thereby reduce the accelerations that they experience. This tube technique for measuring unsteady pressures was first introduced by Tijdeman and is often called the Dutch matched-tubing method. A fifth row of matched-tubing transducers was installed with orifices adjacent to the inboard row of in situ transducers in the center box section. Data obtained from these "colocated" in situ and matched-tubing transducers were used to measure (or, calibrate) the tube effects on the unsteady pressure magnitude and phase. The results of the calibration were then applied to the pressure data measured on the leading- and trailing-edge sections. The accelerometers were used to measure wing dynamic motion and were mounted along the front and rear edges of the center box section. A potentiometer connected to the actuator shaft was used to measure both static and dynamic motion of the wing root.

Fig. 1 Wing mounted in TDT test section.

supercritical shape with a two-dimensional design Mach number of 0.8 and design lift coefficient of 0.6. The airfoil was derived from an 11-percent thick airfoil by increasing the thickness-to-chord ratio and the trailing-edge thickness. The wing tip was formed by connecting the upper and lower surfaces with semi-circular arcs. The wing pitch axis is located at the 0.46 fractional chord. This location was chosen to maximize performance of the actuator (considering both aerodynamic and inertia loads).

Construction

The wing was constructed in three sections as shown in Fig. 3 to allow easy access to the instrumentation located within the wing. The wing center box section was made from aluminum halves (upper and lower) that were permanently bonded and bolted together. The leading- and trailing-edge sections were made of lightweight Kevlar and balsawood sandwich material to minimize inertial effects.

Fig. 2 Planform view and airfoil shape of wing. Dimensions in feet.

Fig. 3 Pressure instrumentation in leading- and trailing-edge attachment areas.

†Kevlar: Registered trademark of E. I. du Pont de Nemours & Co., Inc. Use of trade names does not constitute an official endorsement, either expressed or implied, by NASA.
Structural Properties

Laboratory measurements were made to determine the weight, stiffness, and vibration properties of the assembled wing with instrumentation installed. The measured quantities are presented in Table 1. These values are within design objectives to allow oscillations of the wing with an existing actuator to frequencies up to 20 Hz at an amplitude of ±1 deg without significant wing structural deformation. (Note that the wing fundamental elastic frequency is about 35 Hz.) In addition, the airfoil coordinates were measured at five span stations and were shown to be within 0.02 in of the design values.

Wind Tunnel

The Langley Transonic Dynamics Tunnel (TDT) is a closed-circuit continuous-flow tunnel which has a 16-ft square test section with cropped corners and slots in all four walls. Mach number and dynamic pressure can be varied simultaneously, or independently, with either air or Freon used as a test medium. All data presented in this report were obtained using a Freon medium.

Data Acquisition and Reduction

Data from the model instrumentation were acquired using the TDT real-time data acquisition system and reduced in a "near real-time" manner.

Steady (static) pressures were measured using the differential pressure transducers installed in the wing. One thousand samples of data at a rate of 300 samples per second were averaged for each transducer to determine mean values of pressure coefficient. Data were acquired simultaneously from all the transducers at a given span station.

Unsteady (dynamic) pressures were calculated from transducer time-history data that were measured at a rate of 300 samples per second and recorded on digital tape. A discrete Fourier transform of 75-100 cycles of the data (a minimum of 15 samples per cycle) was used to determine the first harmonic pressure coefficient magnitude and phase in relation to the pitch position of the wing root. The magnitude and phase measurements from transducers using the matched-tubing method were determined using transfer functions derived from calibration data from corresponding in situ and matched-tubing transducers. In addition, the wing motion at the root was determined from discrete Fourier transforms of time-history data that were measured using the potentiometer. Aeroelastic deformations of the wing during the pressure data acquisition were determined from discrete Fourier transforms of time-history data measured using the accelerometers.

Test Results and Discussion

Steady and unsteady pressures were measured for a large number of test conditions in the TDT as illustrated in Fig. 4 which shows the wing total lift coefficient plotted against Mach number for angles of attack ranging from -1 to 7 deg. For the unsteady-data points (solid symbols) in Fig. 4, the wing oscillation frequencies were 5, 10, 15 and 20 Hz. Some representative results obtained during these tests are presented in this section. The Reynolds number based on the chord length is four million for all data presented.

Data from the model instrumentation were acquired using the TDT real-time data acquisition system and reduced in a "near real-time" manner.

Steady Results

Upper- and lower-surface steady pressure distributions at the four spanwise stations are shown in Fig. 5 for a Mach number of 0.825 and an angle of attack of 4 deg. (This is close to the 2-D design condition for the airfoil.) At the inboard sections, typical supercritical flow is present on the upper surface—namely, a rather flat pressure region followed by a weak shock far aft (0.50 to 0.60 fractional chord) on the wing. However, for sections farther out on the wing this shock is farther forward toward the leading edge as a result of the effects of the wing tip. At the wing tip the shock is located at about the 0.10 fractional chord. The pressure distributions on the lower surface are not affected by the presence of the wing tip.
ranging from 0.4 to 0.85. The wing mean angle of attack is 2 deg. The oscillation amplitude and frequency are ±1 deg and 10 Hz, respectively (k ranges from 0.31 at 0.4 Mach number to 0.15 at 0.85 Mach number). The pressure peak is located at the leading edge for the low subsonic Mach numbers but rapidly moves aft as the Mach number increases. At a Mach number of 0.85 the estimated shock location is near the three-quarter chord. This is better shown in Fig. 8 where the estimated shock location in fractional chord is shown plotted against Mach number. In this figure it is seen that the shock begins to move aft rapidly as the Mach number is increased above 0.6. For the most part, the phase data (see Fig. 7) show that the pressures lag the motion ahead of the shock and lead behind the shock.

Mean Angle-of-Attack Effects.- Pressure distributions at the inboard station (0.31 fractional span) are shown in Fig. 9 for three mean angles of attack at a Mach number of 0.825. The oscillation amplitude and frequency are ±1 deg and 10 Hz (k = 0.15), respectively. The results show that, as the angle of attack increases, the shock moves aft on the wing, and the pressures ahead of the shock decrease considerably in magnitude. The phase data show that the pressures lag the motion ahead of the shock and lead the motion aft of the shock. For increasing mean angles of attack, the phase angles ahead of the shock increase slightly.

Oscillation Frequency Effects.- Pressure distributions at the inboard chord (0.31 fractional span) are shown in Fig. 10 for seven oscillation frequencies ranging from 2 to 20 Hz (k = 0.03 to 0.31) and an oscillation amplitude of ±1 deg. The Mach number and mean angle of attack are 0.8 and 2 deg, respectively. The results show that the frequency effect is large for both the magnitude and phase. As the

Unsteady Results

Some of the unsteady pressure distributions measured during the tests are summarized in this section. The results are presented in terms of the magnitude and phase of the lifting pressure coefficient (\(\Delta C_p\) and \(\phi\), respectively). On the figures presented in this section, curves are faired through the data points in the region of the shock to show trends and estimated peak-pressure (shock) locations.

Span Effects.- Pressure distributions at the four spanwise stations are shown in Fig. 6 for a mean angle of attack of 4 deg. The oscillation amplitude and frequency are ±1 deg and 10 Hz (k = 0.15), respectively. The steady data (Fig. 5) show that the pressure peaks are located near the same chordwise positions as the upper surface static shocks. The unsteady shock strength decreases nearer the tip region. The phase results in Fig. 6 show that the pressure is generally lagging the wing pitch motion (negative phase) forward of the pitch axis (0.46 fractional chord) and leading it aft of the axis. For the two inboard stations where the shocks are located aft of the pitch axis, the lag-to-lead phase shift occurs aft of the shock.

Mach Number Effects.- Pressure distributions at the inboard station (0.31 fractional span) are shown in Fig. 7 for seven Mach numbers ranging from 0.4 to 0.85. The wing mean angle of attack is 2 deg. The oscillation amplitude and frequency are ±1 deg and 10 Hz, respectively (k ranges from 0.31 at 0.4 Mach number to 0.15 at 0.85 Mach number). The pressure peak is located at the leading edge for the low subsonic Mach numbers but rapidly moves aft as the Mach number increases. At a Mach number of 0.85 the estimated shock location is near the three-quarter chord. This is better shown in Fig. 8 where the estimated shock location in fractional chord is shown plotted against Mach number. In this figure it is seen that the shock begins to move aft rapidly as the Mach number is increased above 0.6. For the most part, the phase data (see Fig. 7) show that the pressures lag the motion ahead of the shock and lead behind the shock.

Mean Angle-of-Attack Effects.- Pressure distributions at the inboard station (0.31 fractional span) are shown in Fig. 9 for three mean angles of attack at a Mach number of 0.825. The oscillation amplitude and frequency are ±1 deg and 10 Hz (k = 0.15), respectively. The results show that, as the angle of attack increases, the shock moves aft on the wing, and the pressures ahead of the shock decrease considerably in magnitude. The phase data show that the pressures lag the motion ahead of the shock and lead the motion aft of the shock. For increasing mean angles of attack, the phase angles ahead of the shock increase slightly.

Oscillation Frequency Effects.- Pressure distributions at the inboard chord (0.31 fractional span) are shown in Fig. 10 for seven oscillation frequencies ranging from 2 to 20 Hz (k = 0.03 to 0.31) and an oscillation amplitude of ±1 deg. The Mach number and mean angle of attack are 0.8 and 2 deg, respectively. The results show that the frequency effect is large for both the magnitude and phase. As the

Unsteady Results

Some of the unsteady pressure distributions measured during the tests are summarized in this section. The results are presented in terms of the magnitude and phase of the lifting pressure coefficient (\(\Delta C_p\) and \(\phi\), respectively). On the figures presented in this section, curves are faired through the data points in the region of the shock to show trends and estimated peak-pressure (shock) locations.

Span Effects.- Pressure distributions at the four spanwise stations are shown in Fig. 6 for a mean angle of attack of 4 deg. The oscillation amplitude and frequency are ±1 deg and 10 Hz (k = 0.15), respectively. The steady data (Fig. 5) show that the pressure peaks are located near the same chordwise positions as the upper surface static shocks. The unsteady shock strength decreases nearer the tip region. The phase results in Fig. 6 show that the pressure is generally lagging the wing pitch motion (negative phase) forward of the pitch axis (0.46 fractional chord) and leading it aft of the axis. For the two inboard stations where the shocks are located aft of the pitch axis, the lag-to-lead phase shift occurs aft of the shock.

Mach Number Effects.- Pressure distributions at the inboard station (0.31 fractional span) are shown in Fig. 7 for seven Mach numbers ranging from 0.4 to 0.85. The wing mean angle of attack is 2 deg. The oscillation amplitude and frequency are ±1 deg and 10 Hz, respectively (k ranges from 0.31 at 0.4 Mach number to 0.15 at 0.85 Mach number). The pressure peak is located at the leading edge for the low subsonic Mach numbers but rapidly moves aft as the Mach number increases. At a Mach number of 0.85 the estimated shock location is near the three-quarter chord. This is better shown in Fig. 8 where the estimated shock location in fractional chord is shown plotted against Mach number. In this figure it is seen that the shock begins to move aft rapidly as the Mach number is increased above 0.6. For the most part, the phase data (see Fig. 7) show that the pressures lag the motion ahead of the shock and lead behind the shock.

Mean Angle-of-Attack Effects.- Pressure distributions at the inboard station (0.31 fractional span) are shown in Fig. 9 for three mean angles of attack at a Mach number of 0.825. The oscillation amplitude and frequency are ±1 deg and 10 Hz (k = 0.15), respectively. The results show that, as the angle of attack increases, the shock moves aft on the wing, and the pressures ahead of the shock decrease considerably in magnitude. The phase data show that the pressures lag the motion ahead of the shock and lead the motion aft of the shock. For increasing mean angles of attack, the phase angles ahead of the shock increase slightly.

Oscillation Frequency Effects.- Pressure distributions at the inboard chord (0.31 fractional span) are shown in Fig. 10 for seven oscillation frequencies ranging from 2 to 20 Hz (k = 0.03 to 0.31) and an oscillation amplitude of ±1 deg. The Mach number and mean angle of attack are 0.8 and 2 deg, respectively. The results show that the frequency effect is large for both the magnitude and phase. As the

Unsteady Results

Some of the unsteady pressure distributions measured during the tests are summarized in this section. The results are presented in terms of the magnitude and phase of the lifting pressure coefficient (\(\Delta C_p\) and \(\phi\), respectively). On the figures presented in this section, curves are faired through the data points in the region of the shock to show trends and estimated peak-pressure (shock) locations.

Span Effects.- Pressure distributions at the four spanwise stations are shown in Fig. 6 for a mean angle of attack of 4 deg and a Mach number of 0.825. The oscillation amplitude and frequency are ±1 deg and 10 Hz (k = 0.15), respectively. The pressure peaks, which are indicative of dynamic shock motion, vary significantly across the wing span. By comparison with the steady data (Fig. 5), it is seen that the pressure peaks are located near the same chordwise positions as the upper surface static shocks. The unsteady shock strength decreases nearer the tip region. The phase results in Fig. 6 show that the pressure is generally lagging the wing pitch motion (negative phase) forward of the pitch axis (0.46 fractional chord) and leading it aft of the axis. For the two inboard stations where the shocks are located aft of the pitch axis, the lag-to-lead phase shift occurs aft of the shock.

Mach Number Effects.- Pressure distributions at the inboard station (0.31 fractional span) are shown in Fig. 7 for seven Mach numbers ranging from 0.4 to 0.85. The wing mean angle of attack is 2 deg. The oscillation amplitude and frequency are ±1 deg and 10 Hz, respectively (k ranges from 0.31 at 0.4 Mach number to 0.15 at 0.85 Mach number). The pressure peak is located at the leading edge for the low subsonic Mach numbers but rapidly moves aft as the Mach number increases. At a Mach number of 0.85 the estimated shock location is near the three-quarter chord. This is better shown in Fig. 8 where the estimated shock location in fractional chord is shown plotted against Mach number. In this figure it is seen that the shock begins to move aft rapidly as the Mach number is increased above 0.6. For the most part, the phase data (see Fig. 7) show that the pressures lag the motion ahead of the shock and lead behind the shock.

Mean Angle-of-Attack Effects.- Pressure distributions at the inboard station (0.31 fractional span) are shown in Fig. 9 for three mean angles of attack at a Mach number of 0.825. The oscillation amplitude and frequency are ±1 deg and 10 Hz (k = 0.15), respectively. The results show that, as the angle of attack increases, the shock moves aft on the wing, and the pressures ahead of the shock decrease considerably in magnitude. The phase data show that the pressures lag the motion ahead of the shock and lead the motion aft of the shock. For increasing mean angles of attack, the phase angles ahead of the shock increase slightly.

Oscillation Frequency Effects.- Pressure distributions at the inboard chord (0.31 fractional span) are shown in Fig. 10 for seven oscillation frequencies ranging from 2 to 20 Hz (k = 0.03 to 0.31) and an oscillation amplitude of ±1 deg. The Mach number and mean angle of attack are 0.8 and 2 deg, respectively. The results show that the frequency effect is large for both the magnitude and phase. As the
The Mach number and mean angle of attack are 0.8 and 3.3 deg, respectively. In the figure the pressure magnitudes are normalized by the oscillation amplitudes and show no appreciable difference either forward or aft of the shock for the three cases. Therefore, in these regions, it follows that the pressure magnitude increases linearly as the motion amplitude is increased in the range 0.5 to 1.5 deg. In the vicinity of the pressure peak there are differences in the data which indicate magnitude non-linearities in this region. No effect of oscillation amplitude is seen in the pressure phase data.

Comparison of Measured and Calculated Results

Unsteady pressure calculations were made with two theoretical programs, and the results are compared with measured data. One program is the newly developed XTRAN3S, which is a three-dimensional non-linear transonic code which uses finite difference methods to derive a time-accurate solution from the small disturbance potential equation. This code does not include the effects of viscosity. These XTRAN3S results were obtained using the following to improve the accuracy and agreement with the measured data: (1) a revised grid arrangement and (2) small disturbance equation coefficients derived by the National Aerospace Laboratory of the Netherlands. The other program used for the unsteady pressure comparisons is RHOIV which is a linear subsonic lifting surface kernel function theory based on the acceleration potential. In addition to the unsteady comparisons, steady pressure comparisons are made using the XTRAN3S program.

Comparisons are made for calculated and measured results at a Mach number of 0.7. The
Gf_ U

Unsteady Results

Upper- and Lower-Surface Pressure
Comparison.- Unsteady upper- and lower-surface pressure distributions from measurements and XTRAN3S calculations are shown in Fig. 13 at a fractional span of 0.59 and an oscillation amplitude and frequency of +1 deg and 10 Hz (k = 0.18), respectively. The agreement of the pressure magnitudes is good over the aft three-quarters of the chord for both the upper- and lower-surface data. In the leading-edge region near the shock, the agreement is not as good. In this region XTRAN3S under predicted the magnitudes. The phase agreement is good over the forward three-quarters of the chord and degrades significantly near the trailing edge. No explanation for this disagreement is apparent.

Spanwise Pressure Comparison.- Unsteady lifting pressure distributions at the four spanwise stations are shown in Fig. 14. The comparison includes both measured data and results from XTRAN3S and RH0IV. The XTRAN3S program predicted fairly well the pressure magnitudes at all spanwise stations in the region aft of the

Steady Results

Comparisons of steady upper- and lower-surface pressure distributions at the four span stations are shown in Fig. 12. The comparisons are good over most of the wing. The XTRAN3S program accurately predicted at all spanwise stations both the upper-surface pressures aft of the shock and the lower-surface pressures in the mid-chord region. The results deviate somewhat in the leading-edge region and on the lower surface near the trailing edge. The comparisons in these regions may possibly be improved by including viscous effects in the code and by decreasing the grid spacing for the calculations in this region to account for the bluntness of this airfoil (see Fig. 2). Analysis of this airfoil with the two-dimensional full potential program1 indicate that including viscous effects at this condition tends to raise the lower-surface pressures in the leading-edge region as a result of a de-cambering effect of the boundary layer in the aft portion of the airfoil. A finer grid may improve the upper-surface pressure-peak definition near the leading edge.

Calculations for a Mach number of 0.825 (not shown here) showed significantly poorer agreement than the results for 0.7 Mach number. For this case the upper surface-shock was calculated to be near the trailing edge rather than located as shown in Fig. 5. Again, the two-dimensional program indicated that inclusion of viscosity in the solution causes the shock to move forward nearer its proper location (approximately 0.6 fractional chord at the inboard spanwise station).
Results from the newly-developed XTRAN3S non-linear transonic program and from the linear RH0IV kernel function program were compared to the measured data. The XTRAN3S steady and unsteady results agreed fairly well with measured data at a Mach number of 0.7. It is believed that the inclusion of viscosity in the analysis and use of a finer grid will give
better results, particularly at the wing leading edge. The RHIV unsteady results were in fair agreement, but, of course, the location or strength of the shock was not predicted.

References


Fig. 15 Effect-of-frequency comparison at η = 0.59. M = 0.7, α = 2 deg, Δa = ±1 deg.


Steady and unsteady aerodynamic data were measured on a rectangular wing with a 12 percent thick supercritical airfoil mounted in the NASA Langley Transonic Dynamics Tunnel. The wing was oscillated in pitch to generate the unsteady aerodynamic data. The purpose of the wind-tunnel test was to measure data for use in the development and assessment of transonic analytical codes. The effects on the wing pressure distributions of Mach number, mean angle of attack, and oscillation frequency and amplitude were measured. Results from the newly-developed XTRAN3S program (a non-linear transonic small disturbance code) and from the RHO1V program (a linear lifting surface kernel function code) were compared to measured data for a Mach number of 0.7 and for oscillation frequencies ranging from 0 to 20 Hz. The XTRAN3S steady and unsteady results agreed fairly well with the measured data. The RHO1V unsteady-result agreement was fair but, of course, did not predict shock effects.