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Abstract

A method has been described for decomposing
an optimization problem into a set of subproblems
and a coordination problem which preserves cou-
pling between the subproblems. The decomposition
is achieved by separating the structural element
optimization subproblems from the assembled struc-
ture optimization problem. Each element optimiza-
tion yields the cross-sectional dimensions that
minimize a cumulative measure of the element
constraint violations, assuming that the elemental
forces and stiffness are held constant. The
assembled structure optimization produces the
overall mass and stiffness distributions optimized
for minimum total mass subject to constraints
which include the cumulative measures of the
element constraint violations extrapolated
linearly with respect to the element forces and
stiffnesses,

The method is introduced as a special case of
a multilevel, multidisciplinary system optimiza-
tion and its algorithm is fully described for
two-level optimization for structures assembled of
finite elements of arbitrary type. Numerical
results are given for an example of a framework to
show that the decomposition method converges and
yields results comparable to those obtained with-
out decomposition. It is pointed out that optimi-
zation by decomposition should reduce the design
time by allowing groups of engineers, using
different computers to work concurrently on the
same large problem.

Nomenclature
A cross-sectional area
C cumulative constraint
e equality constraint, element

subscript or superscript

f functional relation

F objective function

g inequality constraint vector of
length m

g¢ elemental inequality constraint
vector of length m(e)

gs system inequality constraint
vector of length m(s)

K stiffness matrix .

I cross-sectional moment of inertia

about centroidal axis y shown in
fig. 3 (inset) :

T,u Tower and upper bounds,
respectively

M mass or moment

NE number of elements

n length of vector

n(e) number of y-variables in element e

P 1oad in eq. (7); concentrated

force in numerical example
elemental force vector

STOC acronym for subject to constraints

t(e) number of elemental properties in
element e

X vector of elemental properties,

which are design variables at the
system level

y vector of detailed design variables
of length n at the subsystem level
z Toading case superscript, z = 1»NLC

(number of loading cases)
overbar denotes optimum values

Other notations defined in the text. .

Introduction

The application of formal optimization
techniques to the design of large engineering
structures such as aircraft is presently hindered
because the number of design variables and
constraints is so large that the optimization is
both intractable and costly and can easily satu-
rate even the most advanced computers available
today. A remedy is to break the problem into
several smaller subproblems and a single coordina-
tion problem, the latter being formulated in a
manner which preserves the couplings between the
subprobiems. In addition to making the problem
more tractable, this approach would be compatible
with the organization of a typical design office
in which diverse engineering groups work concur-
rently on different parts of the problem. Such an
approach would also lend itself to parallel or
multiple computer processing, thereby shortening
the design cycle time.

Several procedures for breaking large struc-
tural optimization problems into subproblems have
been proposed in the literature. A typical effort
is represented by ref. 1 which describes a proce-
dure consisting of an analysis of the structure
followed by optimization of each substructure
while holding invariant the forces acting on it
from the contiguous substructures. Since the
optimizations change the stiffnesses of the sub-
structures, analysis of the assembled structure
has to be repeated to update the forces acting on
the substructures for the next round of substruc-
ture optimizations, and so on, in an iterative
manner. A similar approach was formulated in
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ref, 2. Although computationally efficient, these
approaches do not subject the overall stiffness
distribution to the optimization algorithm. That
algorithm, therefore, cannot be guaranteed to find
the minimum structural weight because, in general,
a controlled trade-off of the structural material
among the substructures is necessary to find such
a minimum. Because of this lack of controlled
trade-off, the methods of refs. 1 and 2 are
basically generalizations of the Fully Stressed
Design method. A method designed to incorporate
control of the material distribution among the
finite elements of an assembled structure has been
offered in ref. 3 for a two-Tevel optimization.

The optimization schemes cited above are al}
rather specialized and would not be suitable for
application to multidisciplinary optimization of
large engineering systems. Recently, ref. 4
proposed a method for decomposing a large multi-
disciplinary optimization problem into a number of
small subproblems and provided a blueprint for
development of a computer implementation for the
method. The method decomposes a large problem in
the manner shown in fig. 1. Each subproblem
depicted by a box in fig. 1 is meant to represent
a physical subsystem of the total system, e.g.,

- airframe or engines in an aircraft, so that the
method is entirely general and admits various
engineering disciplines for analysis of the system
- and the subsystems. In a particular application
to structures, the decomposition for optimization
. purposes coincides with a general, multilevel
substructuring (refs, 5, 6, and 7) in structural
analysis, so that the system acquires a meaning of
a complete structure, the subsystems become
substructures, and the subsystems of the lowest
level, J=imaxs correspond to the individual
finite elements by which the structure is
idealized. In this application, the method of
ref. 4 is in the same category as ref, 3 but
differs in that it allows several levels of sub-
problems and in the way the levels of optimization
are coupled through the concept of optimum
sensitivity to problem parameters given in ref, 8,

Execution of the method would proceed from
the Towest level upward by: (1) minimizing the
constraint violation in each subproblem using its
Tocal design variables while the higher leve]
variables are held as constant parameters, (2)
calculating the sensitivity derivatives of the
subproblem minimum solution to the parameters,
(3) optimizing the system for minimum mass subject
to constraints which include the subproblem
constraint violations extrapolated linearly with
respect to the parameters, and (4) repeating
operations (1) through (3) until convergence is
attained. .

Because ref. 4 was intended to only provide
the blueprint for development of a computer code,
no numerical substantiation of the method was
included. The method has recently been imple-
mented for two-level optimization and applied to a
framework structure as a prelude to proceeding
with implementation of a general multilevel
optimization procedure. The purpose of this paper
is to describe the two-Tevel procedure for the
general case of a structure modeled by an assembly
of arbitrary type finite elements, and to
illustrate its validity in a numerical application
to a simple framework structure which includes a

comparison with the results of a conventional,
one-level optimization.

Two-Level Optimization

This section describes two-level optimization
of a structure assembled of finite elements of
general type.

Definitions

For the purposes of structural analysis by a
finite-element method, one defines n Cross-
sectional dimensions of the finite-element mode1
as entries in the vector y

y={yi};i=1+n (1)
that can also be organized into NE partitions
y = {yl.....ye.....yNE } (2)*

Each partition of Tength n(e) corresponds to
a finite element of the total of NE finite
elements. Stiffness and mass properties of each
finite element, e, are defined by t(e) quantities
X:, collected in a vector X€ which is a

partition e of a vector X for all elements, In
further discussion, the quantities XE are

referred to as elemental properties. They are
computable as functions of ye:

Xe= ff(ye) (3a)

X = {xoixe, L xNE (3b)
Examples of X: are: cross-sectional area,

A, and moment of inertia, I, for a beam element,
polar moment of inertia, J, of a shaft, and
bending stiffness coefficient, Djj, of an
orthotropic plate. One can calculate for element
e, its mass:

Me - f2(xe) (4)

and stiffness matrix referred to the global
Coordinate system. Each entry of the matrix ke
is:

qu = fgq (x) (5)

In the above mass and stiffness expressions,
the relevant material Properties, e.q., density
and Young's modulus are implicit in the functional
relations fg and f:, so that in a most

q

general case, each finite element, e, could be
made of a different but constant material, It is
possible to make the material choice a design

* ] } denotes a column vector written on a single

Tine to save space



variable, in which case the material properties
would be included with the cross-sectional
dimensions in vector, ye. However, the variable
material case is outside of the scope of this
report.

Although the element mass and stiffness
appear in eq. (4) and (5) as functions of Xe,
ultimately they are functions of ¥€ through eq.
(3). Consequently, the elemental properties X&
and the finite-element cross-sectional dimensions
y€ are hierachically related as shown by a Venn
diagram in fig. 2. The vector ¥& carries
information which, for givgn f€ and a set of

f€ , is sufficient to calculate mass and

Pq

stiffness for element e, while the vector X€
carries the information needed to quantify mass
and stiffness of the entire structure.

Proceeding from an element to the assembled
structure, its stiffness matrix K is generated as:

K = S(k& ) (6)
pq
where S symbolizes a procedure for direct sum-

mation of stiffnesses. Formation and solution of
the load deflection equations for displacements u:

Ku = PZ, 2z = 1aNLC (7)

where superscript z refers to a loading case,
yields displacements u and elemental forces
Q¢:Z for element e. Expressed in element

r

coordinate system,

Qe,z - He Ke ue,z (8)

where each vector, Q%2 contains r(e) forces
Q®s2. The forces in vector Q%2 are
-

statibal]y independent and are related to the full
set of elemental forces by the matrix He that
represents the element equilibrium.

One-Level Optimization

A conventional, one-level optimization for
minimum mass can be based on the quantities
defined by eqs. (1)-(7). Namely, taking y as
the vector of design variables one has

in F(y)
oy (sa)

subject to constraints (STOC):

9j(¥) £ 0; j =1 +m (9b)

1Ly <y (9¢c)
where constraints, g, are imposed on the static
behavior variables, such as stresses and displace-
ments, and yy, ¥y, are side constraints.

Two-Level Optimization Procedure

Under a two-level optimization approach, the
problem defined by eq. (9) is decomposed into a

single problem at the assembled structure level
and NE subproblems, one for each finite element,
at the lower level. The two levels are referred
to as system and subsystem levels, respectively.
With respect to a general, multilevel sub-
structuring scheme shown in fig. 1, the two-level
case corresponds to the upper two levels of the
figure, with the "substructures” of the second
level acquiring the physical meaning of individual
finite elements.

Conversion to a two-level optimization scheme
begins with partitioning the vector of constraints

g into
g = {gs, gl,....ge,....gNE } (10)

where g5 contains the constraints on the system
behavior, and the remaining constraints are local
to each element. Examples are a nodal point
displacement for the former and an element stress
for the latter. Tracing the functional relations
for g5 through egs. (7) and (3b) one obtains:

g5 = f3(X) (11)

Similarly, for ¢®, the trace through egs. (8),
(6), (5), and (3a) leads to:

g® = fj(ye,xe,oe) (12)

Furthermore, the structural mass, F, in eq. (9a),
becomes :

F = f5(X) (13)

when the element masses expressed by eq. (4) are
summed.

Subsystem (element) level.- For conversion to
a two-level optimization, 7t Js necessary for each
finite element, e, that the number n(e) of its
cross-sectional variables be no less than the

number t(e) of its elemental properties, X:.

t{e) < n(e); e = 1 +NE (14)

The above equation may be satisfied in both
its equality and inequality parts, or only in its
equality part, dependent on the type of structural
element, as shown by examples in Appendix A. If
eq. (14) holds in its inequality part, then it is
possible to carry out an isolated, local operation
of changing values of the entries in ¢® by
manipulating the design variables in ¥& in such
a way that X€ and, consequently, Q€2 remain
constant. In other words, if the inequality in
eq. (14) is true, there is design freedom to
proportion the element in a new way, improved in
some sense, without affecting the assembled
structure solution. Translated into a formally
stated optimization problem, that means for
element e:

min C€(g®) 15
[ye | (15a)
X - r2ye) = 0 (15b)



RS Ay (15¢)

Constraints of the problem are the side
constraints on y as in eq. (9c) and equality
constraints to enforce invariance of X& for the
duration of the solution of eq. (15). Regardless
of the technique used to satisfy the equality
constraints in eq. (15b), their presence has the
effect of reducing the number of free variables in
¥&® by t(e), hence, the condition of eq. (14).

The problem's objective function, C®, is a
single number that measures the degree of
constraint violation for all constraints that make
up vector g&. The.quantity C® is known in the
Titerature (refs. 4, 9, 10) as a cumulative
constraint and can be formulated in a number of
w:ys. In general, the C®(g®) should be such
that:

>0, if g? >0; i (l...m(e));

. (at least one violated) (16)
ce =
<0, if 93? £0;J=1+mle);

(a1l satisfied)
and must have continuous derivatives.

Two specific formulations for C® will be
discussed later (eqs. (23)-(25)).

The choice of C® for the objective function
in the element optimization subproblem, eq. (15),
is consistent with eq. (4) which for constant
X, and for eq. (14) holding, renders F
unaffected by changes of y®, It means that, as
similarly proposed in ref. 3, there is no control
of the objective function at the lower level of
optimization; the only objective of optimization
at that level is to achieve the best possible
satisfaction of constraints consistent with the
e;ement forces Q%:Z and the elemental properties
x©,

System (structure) level.- The objective
function and the remaining constraints, g5, are
controlled at the assembled structure level. The
single optimization problem to be solved at that
level is then:

min F(X) 17a
STOC g5 < 0; j =1 +m(s) (17b)
i 2
C® < 0; e=1+NE (17¢)
y]e <y® 5y3; e =1+NE (17d)
X1 £ X< Xy (17e)

where the objective function:

F=z M® (18)
e

depends on X through eq. (4), and the entries of
the vector X are the system level design

variables. Presence of the constraints on C& in
eq. (17c) and y® in eq. (17d) assures that when
a solution to the system level optimization
problem is found, satisfaction of all the local
constraints will be a part of that solution.

Coupling between the levels.- The optimiza-
tion probTems in the form given by eq. (15) at the
subsystem level are coupled to the system level
problem. It is a two-way coupling: as input,
each subsystem problem receives the system level
variables X% and the system level analysis
results Q8% (eqs. (12), (15), (16)) and returns
its optimal C€ and y© (eqs. (17c) and (17d)).
However, in practical implementation the
constraints on C® and y® cannot remain in the
form of eq. (17c) and (17d) because their
evaluation for each new X would require a new
solution to the subsystem problem in eq. (15)-a
reoptimization of the elements affected by new X.
Computationally, that would be prohibitively
costly in large problems.

There is a way to bypass these costly
subsystem reoptimizations in the system level
optimization. It is available in the concept of
the sensitivity of the optimum to problem
parameters and an associated algorithm for
computation of the derivatives to quantify that
sensitivity proposed in (ref. 8). Applying that
concept to the optimization represented by eq.
(15), one recognizes immediately that the
optimization constant parameters are XE and

Q%2 (eq. (12)). Consequently, the optimum
r

solution, T® and ¥*, of eq. (15) is a function
of these parameters and has derivatives
dfe/dx:, dce/doﬁ»z, dye/dxf, and

dy®/dQ€»Z, termed optimum sensitivity
r
derivatives.

The algorithm of ref. 8 is based on differen-
tiation of the Lagrange equations that hold at a
constrained minimum with respect to the problem
parameters. This leads to a set of linear,
algebraical equations in which the optimum
sensitivity derivatives appear as unknown and
whose matrix of coefficients and the vector of
free terms include first and second order
derivatives of the behavior variables with respect
to the design variables (y& in this application)
and parameters. Since the computational cost of
the second derivatives may be significant, it is
of interest to know that a version of the
algorithm without the second derivatives of the
behavior is given in ref. 11. Alternative means
to reduce the cost of computing these derivatives
are proposed in refs. 12 and 13.

When the optimum sensitivity derivatives are
available, they can be used in a Taylor series to
convert the nonlinear dependence of C® and y®
on X in eqs. (17c) and (17d) into the linear
extrapolation approximations:



e .8 e
e. -~
cé= Ca = C° + % aXe (Xt - xto)
t
e e,z
Iy aC 3Qp ( e e ) (19)
+) X, - X a
zetr 3Qﬁ’z aXi t to
e e 375 e e
e . £ R -
Y5 E YT Yt ) ax8 (Xt Xto)
t
e e,z
0 3C a0, e e
+ - (X - X)) (19
zetr aoﬁ’z aXi t to ( )

where subscripts a and o denote, respectively, the
approximate and exact values. The above extrapo-
lation turns Ty and y, into linear functions

of X only; the dependence on Qf’z is accounted

for by the chain differentiation in the third term
in each of the two equations. This chain
differentiation reflects the dependence of Q€»Z

on X that occurs in redundant structures. In such
structures, generally speaking, each Qi'z

depends on each X:, therefore, the summation in

the chain differentiation spans the entire vector
X. The derivatives dQe’Z/dxg are in the
r

category of behavior derivatives that are
routinely available through analytical techniques
applied to egs. (7) and (8) (refs, 14,15,16).

The relations established in eq. (19) will be
referred to as a linear representation of the
subsystem.

In summary, the two optimization levels
couple through the information flowing between
them as shown in Table 1. The data passed from
the system level to the subsystem level carry the
information defining the X quantities that were

input into the
output of that
finite-element
transmitted in
information on
sensitivity to
level, for use

system level analysis, and the
analysis in the form of the

forces Q®:Z, The data

the opposite direction conveys the
the subsystem optima and their

the data received from the system
in the subsystem linear

representations at that level.

System (structure) level problem with
embedded coupling.- Substituting eq. (19) into
eq. (17), the system level optimization problem
becomes:

min F(X) (20a)
{x}
sToC gJ? 0§ = 1sm(s) (20b)
e L aEf e e
C; = 36 +7 e (xt + Xto)
taX;
e,z
1rr S e
A (X, - X.o) €05 (20c)
zetr aQ‘:’Z axg t to
e = 1 »NE
y <9e~ie+z‘?jf(xe+xe)
1 a 0 % ax@ t to
X
t
aQe,z
e
zzzxac - — X - x5 ) < x5 (20d)
+ - H
ZEtraQﬁ,z axi t to/ =y
e = 1+NE
X3 £ X< Xy (20e)
foy1oyu) € X < Frlyrayy) (20f)
X <x o (20g)

u

Two new groups of constraints appear in
eqs.(20f) and (20g). The constraints of eq. (20f)
are added to keep the optimization algorithm from
generating such combinations of X: values that

cannot be physically implemented at the
finite-element level (for an example, see eqs.
(C1)-(C5)). The constraints in eq. (20g)
introduce additional bounds on X as move limits,
XT and Xu, needed to control the linearization

errors,

Two-level procedure algorithm and salient
features.- The Tinearization of egs. {(17¢) and
resembles the local linearization technique
based on the behavior sensitivity derivatives that
are known to be very effective in nonlinear
mathematical programing (refs. 16,17,18).




Incidentally, that technique could also be used in
eq. (20b) to linearize gS; whether to exercise
this option is a problem-dependent decision. As
it is the case with any linearization technique
applied to solve an intrinsically nonlinear
problem, an iterative procedure has to be
constructed to allow recovery from the
Tinearization errors and the error controlled by
appropriate move limits (eq. {20g)). In the case
at hand, the procedure algorithm consists of the
following steps:

1. initialize y

2. compute X (eq. (3))

3. analyze assembled structure, obtain €2,
g5, and their derivatives with respect to
X: (egs. (7), (8), and appropriate gradient

calculation technique)

4. solve subsystem optimization, eq. (15), for
each element

5. Calculate optimum sensitivity derivatives for
the optima found in step 4

6. Solve the system optimization, eq. (20)

7. Update X and repeat from step 3 until a
converged solution is obtained

In this procedure, optimizations performed in
step 4 are iterative within themselves and nested
in the overall iteration spanning steps 3 and 7,

- In further discussion, the latter will be referred
to as a cycle while the term "iteration" will be
used in conjunction with step 4.

Since the calculations performed in steps 4
and 5 of the procedure are executed separately for
each finite element, they can be carried out
concurrently using distributed computing
technology.

Information flow between the two levels of
the procedure is restated in Table 1. Readers
familiar with system analysis as formulated in the
discipline of operations research (ref. 19) win
recognize the information returned to the system
level as a particular means to solve the so-called
system coordination problem.

In the two-level procedure, the system

. objective function (e.q., structural mass) is
entirely controlled at the system level by
variables X which can be regarded as generalized
design variables that determine the structure mass
and stiffness distribution. The system objective
function is not directly included in the subsystem
optimizations whose only purpose is to achieve the
best possible satisfaction of the local
constraints consistent with the parameters imposed
from the system level. The procedure is entirely
open to accommodate the designer's judgment as to
the type and number of design variables at each
level. The familiar device of variable linking
(ref. 20) can be freely used at both levels to
keep the number of design variables as small

as possible and, for the same purpose, one may
refrain from including all the available elemental
properties in the set of design variables X (see
example of a composite panel in Appendix A).

Equivalence to a one-level optimization, -
According to eqs. (20 » (16), and (15}, the two-
level procedure, when converged in the Kuhn-Tucker
(ref. 14) sense, produces a feasible design, Just

as a single-level optimization (eq. (9)) does.

Moreover, if the Kuhn-Tucker conditions are
satisfied in the subsystem and system level
problems in the two-level procedure, one can infer
that they are also satisfied in the y-space in the
one-level optimization (eq. (9)). Discussion of
the inference is given in Appendix B. In these
respects then, the two proceduies are equivalent,
However, it does not follow that both will lead to
the same design point in nonconvex problems having
multiple local minima, In suck protlems, that
include many practical applications, the solution
depends on the computaticnal path through the
design space, and the path taken, in turn, depends
on the algorithm. Since the two procedures are
algorithmically different, a difference in their
results in nonconvex applications should be
expected.,

This aspect of the procedure performance, as
well as its convergence characteristics and
overall computational behavior, can only be
assessed by numerical experiments. Such
experiments are described in the next two
sections.

Framework Structure as 3 Test Case

A portal framework shown in fig. 3 is an
example of a hierarchical system that can be
optimized for miminum mass under static load
subject to strength and displacement constraints
using the linear decomposition approach. The
decomposition is two-level and results directly
from the fact that one can use an engineering beam
theory to analyze the framework for internal
forces (the end forces on each beam) and
displacements, assuming that A and I for each beam
are given but without knowing the detailed Cross-
section dimensions (by,ty,...). These dimen-
sions can be optimized Separately for each beam as
long as the end forces in each beam are known and
assumed fixed which, in turn, requires holding
constant A and [ of each beam. The correspondence
of the basic elements of a two-level decomposition
approach to the framework exampie is given in
Table 2.

The Case Definition and Its One-level Formulation

The framework is Composed .of three I-beams
made of the same material and having cross-
sectional dimensions as shown in the inset in
fig. 3. Structural optimization is to be carried
out for a minimum mass subject to constraints on
static response induced by two loading cases: a
concentrated force and a concentrated moment., The
constraints are imposed on the framework displace-
ments--horizontal translation and rotation at the
loaded point of the framework, and on the stresses
in each beam. The extreme normal stresses caused
by bending moment and axial force, and the extreme
shear stress due to the transverse force are
constrained at both ends of each beam to stay
below the material allowable stress and below the
critical stresses of local buckling. The latter
account for buckling of flange and web but ignore
the column buckling., The framework is assumed to
be supported against displacements out of the
plane of fig. 3 to eliminate the need for
constraints on the framework overall instability
and the lateral-torsional buckling of its beams.



Constraints include the bounds on the design
variables. Detailed formulations of all the
constraints are provided in Appendix C.

Analysis of the framework for displacements
and internal forces employs a standard,
displacement-based, finite-element method
representing each beam by a single beam element,
Beam stresses are calculated according to the
engineering beam bending theory. The critical
buckling stresses are computed for each part of
the beam, e.q., a flange, as for an isolated plate
with appropriate boundary conditions using routine
techniques (ref. 21),

Taking the detailed cross-sectional
dimensions of each beam as the design variables of
the problem, the vector y in eq. (2) has 3
partitions, each containing 6 variables for one
beam, for a total of 18 design variables:

y = {{bl,tl,bz...}l, {bl,t]_,bz...}z,
{bl,tl,bz... }3} (21)

Optimization for minimum mass can be replaced
with optimization for minimum material volume
because of the material homogeneity. Denoting the
beam length by 1;, the objective function
becomes a function of cross-sectional area A:

Fz= M=z Al (22)
i
¢ The problem can be solved as a one-level optimiza-

tion with n=18 design variables in a conventional
formulation such as given in eq. (9).

Two-Level Formulation

Under the two-level approach, the framework
(system) is considered decomposed into three beams
(subsystems, finite elements) under the action of
the beam-end forces shown in fig. 3 (inset). If
the decomposed framework were superimposed on the
general, multilevel decomposition scheme shown in
fig. 1, the assembled framework would fall in the
“entire structure" box at level 1 and each beam
would coincide with a substructure at level 2,
although in this case “substructure" simplifies to
a single finite element. For the purposes of the
framework analysis, each beam's stiffness and mass
properties are determined by two elemental
properties: cross-sectional area A and moment of
inertia I. These quantities become the system
level design variables in vector X, eq. (3b) as
indicated in Table 2. The framework displacement
constraints are in the g5 category, while the
beam stress constraints are included as g& in
eq. (10). Since the condition in eq. (14) holds
(t(e)=2<n(e)=6) (see Table 2) for each beam, the
original problem can be solved decomposed into
three subsystem problems of six design varijables
¥€ each and a system problem of six design
variables X, according to eq. (15) and eq. (20),
respectively.

Solution of eq. (20) coupled with eq. (15)
requires a sgecific form of the cumulative
constraint C® in eq. (20c). Two different
formulations for the cumulative constraint were
studied in the test case. One of them is

suggested by the concept of a quadratic exterior
penalty function:

C® =7 (<g.5)? (23a)
: J
J
., if g > 0
o = 3T (23b)
9
J 0.0, if g, < 0

For continuous g; functions, this formulation

has continuous first derivatives which permits use
of gradient-dependent algorithms in solution of
eq. (3). Another function that can be used for
the same purpose is a function proposed in ref, 22
and applied in ref. 10 to approximate the maximum
constraint. The function, henceforth referred to
by the acronym KS, has the form:

1
KS(gj) = E-In (

exp { pg )) (24)
1 J

n ez

J

and has the property of following the maximum
constraint:

MAX(g5) < KS < MAX(g;) +pl In (m) (25)

with a tolerance that depends on the constant o
supplied by the user, The KS function, like the
quadratic exterior penalty function, has
continuous derivatives; in addition it performs as
an extended penalty function because it is defined
throughout the infeasible as well as the feasible
domains.

The seven-step iterative procedure for
solution of the two-level optimization listed
previously has been implemented for the framework
test case in the manner described in Table 3,

Numerical Results

Two-level structural optimization by linear
decomposition is demonstrated for the framework
example. The procedure given in Table 3 is
implemented in a Fortran main program that calls a
finite-element analysis subroutine based on a
stiffness method and an optimization subroutine
(program CONMIN, ref. 23) that employs a usable-
feasible direction technique. Results obtained on
a PRIME 750 computer include benchmark data for a
conventional, one-level optimization and the
two-level optimization data. The detailed
formulation of the constraint functions, including
equality constraints on A; and I used in all
the numerical tests are given in Appendix C.

Results for a Conventional, One-Level Approach

Several variants of the optimization and
several different starting points in both the
feasible and infeasible domains were used to
obtain the benchmark results. In variant 1, which
was chosen to be the reference technique, all
constraints were kept separate, while in variant 2
the constraints, except side constraints, were
collected in a cumulative constraint, A

piecewise-linear procedure combined with the



cumulative constraint (in the form given in eq.
(24)) was carried out in variant 3 using move
Timits of 15 percent. The purpose of including
.variants 2 and 3 in the benchmark testing was to
determine to what extent the optimization results
were influenced by the use of a cumulative
constraint and a piecewise-linear procedure, which
.are both embedded in the two-level optimization.
It turned out that the three variants and
different starting points generate designs having
masses which fell within 5 percent of the variant
1 result. However, there was as much as a 300
percent difference in some design variables.

The dependence of the optimum on the starting
point and search path indicates that the problem
is nonconvex and has local optima, and that a weak
functional relationship exists between the
objective function and constraints and at least
some of the design variables (a “"shallow"
optimum). In this particular example, the scatter
of the local minima is bounded by two extreme
cases both obtained by variant 1 starting from a
feasible design and from an infeasible design near
minimum gage. The two local minima differ
significantly in their distributions of A and I
shown in fig. 4 and also their local dimensions
given in Table 4. The optimum design shown in
fig. 4a transmits the load to the ground support
primarily through flexural stiffness of the right -
hand side vertical heam. In the optimum design
depicted in fig. 4b, the load is transmitted
primarily through flexural and extensional
stiffness of the horizontal beam to the left-hand
side vertical beam which is relatively stiff in
bending due to its shorter length. Despite the
differences reaching 58 percent in I, the
structural masses differ by only 6 percent, and
all constraints are satisfied. The deliberate
exclusion of the displacements out of the plane of
the framework eliminated beam torsional-bending
buckling and resulted, predictably, in the
unusually large depth-to-flange-width ratio
indicated in Table 4. However, since these
proportions have no bearing on the purpose of the
numerical verification of the method, the two
bounding cases of variant 1 were selected as
acceptable benchmark results.

Results for the Two-Level Procedure

Numerical studies with the two-level
optimization were carried out for two formulations
of the subsystem cumulative constraint: the
quadratic exterior penalty function defined in
eq. (23) and the KS function defined in eq. (24).

Cumulative constraint in form of an exterior
penalty function.- Optimization with the quadratic
exterior penalty function formulation (eq. (23))
consistently yielded designs about 15 percent
héavier than the reference result. It was clear
from examination of the history of iterations that
the discrepancy was caused by the loss of the
gradient information near and in the feasible
domain where the exterior penalty function and its
derivatives vanish. The gradient information was
needed by the optimization program (which is based
on the usable-feasible directions method) and the
iteration history showed that as Tong as that
information was available the optimization program
successfully guided the growth of the structure

from the near-minimum-gage starting point toward
the feasible domain. However, it was unable to
reduce the structural mass while maintaining a
feasible design once the feasible design space was
entered. It was concluded that the quadratic
exterior penalty function is not a proper choice
for a cumulative constraint to be used in the
context of the proposed multilevel optimization
method and attention was then directed to the use
of the KS function (eq. (24)), for the cumulative
constraint.

Cumulative constraint in form of KS
function.- Satisfactory resuTts were obtained
using the KS function. They are collected in
Table 4 and show the method's ability to generate
designs comparable to the benchmark design when
starting from the same point, either feasible or
infeasible. In fact, the objective functions
obtained by means of the two-level optimization
started from infeasible and feasible points
exceeded the benchmark value of the objective
function by only 1.6 percent and 1.9 percent,
respectively. Another way to assess the
effectiveness of new optimization method relative
to the reference method is through comparing the
changes they generate in the objective function.
Denoting by “r" the ratio of the final to initial
values of the objective function, one may take
[1-rl as a measure of the change relative to the
initial value. Table 4 shows that the two-level
optimization overestimated the above measure of
change by 2.2 percent when starting from an
infeasible point and underestimating it by 95
percent when starting from a feasible point. To
make this comparison meaningful, the starting
points were deliberately chosen to make the ratios
"r" significantly different from unity, 3.43 and
0.329 for the infeasibie and feasible starting
points, respectively.

More significant differences were recorded
amonyg the individual design variables, at both
Tocal and system levels, in the optimal designs
corresponding to different initial points. As one
may see in Table 4, these differences reach 350
percent, They confirm the distinctly nonconvex
and “shallow" optimum nature of this particular
example problem, Since these are consistent with
similar differences observed in the one-level
optimization, they were not introduced by the
two-level method itself,

Convergence history.- Convergence of
optimization is illustrated by history plots in
fig. 5 for the one-level optimization and in
figs. 6 through 12 for the two-level procedure.
Abscissas of these plots refer to iterations of
the all-in-one optimization and cycles of the
two-level optimization. One iteration is one of
many consecutive executions of the usable-feasible
directions algorithm (for more precise definition
see description of program CONMIN in ref. 23)
while one cycle is one execution of steps 4
through 11 of the procedure described in Table 3.
The convergence was found to be similar in
character to that of the conventional, one-level
method as illustrated by comparison of figure 6
with figure 5 for an infeasible starting point.
In both figures, the objective function rises,
overshoots the optimal level and then returns to
it asymptotically. Constraints are reduced to




feasible (negative) values as illustrated by an
individual stress constraint in fig. 5 and the
cumulative constraint of beam 1 in fig. 6. (The
factor of 5 in fig. 6 is for scale uniformity.)
The jagged character of the plots is inherent in
any algorithm based on the usable-feasible
directions method and is more pronounced in
two-level than in one-level optimization for
reasons to be discussed later.

Objective function history starting with a
feasible design which is also shown in fig. 6
indicates convergence after 18 cycles as compared
to about 28 cycles for an infeasible starting
point. An example of the behavior of the system
level variables is illustrated by the histories of
the cross-sectional areas of the beams in fig. 7a
and 7b. It is apparent from comparison of fig. 7b
with fig. 6 that the design variables require a
few more cycles to converge than the objective
function. To complete the illustration of the
system level optimization history, the framework
displacement constraints are plotted in fig. 8.

At the subsystem level, the optimization
history graphs are given in figs. 9 through 12 for
beam 1. The behavior in the other two beams is
similar. Graphs for variables by, t1, by,
and ty (see fig. 3) are shown in figs. 9a and
9b. They repeat the familiar pattern of rise-
overshoot-descend for infeasible starting designs
and a smocther asymptotic descent for the feasible
starting designs. The variation of the beam
objective function (cumulative constraint) is
shown in fig. 10 which depicts clearly the
elimination of local constraint violations when
starting from an infeasible design, and a
reduction of their oversatisfaction as the beam is
being slimmed down in the optimization that begins
from a feasible design. One of the subsystem
level constraints that makes up that objective
function is local buckling of the beam flange; its
history plots in fig. 11 correspond to those in
fig. 10. Each graph plotted in fig. 11 shows the
value of constraint at the end of subsystem level
optimization (step 6, Table 3) that was carried
out for beam 1 in each cycle. To illustrate the
character of the constraint changes during the
subsystem optimization, the constraint history for
cycle 8 for the infeasible design start case is
plotted in fig. 12,

Accuracy of linear extrapolation.- The
multilevel optimization approach 1s predicated on
the accuracy of the linear extrapolations based on
the optimum sensitivity derivatives. Therefore,
it is interesting to see how the cumulative
constraint predicted by the linear extrapolation
at the end of one cycle (Table 3, steps 10 and 11)
compares with the result of full analysis carried
out at the beginning of the next cycle (Table 3,
step 4). Such a comparison is displayed in figq.
13 and shows that the prediction error eventually
vanishes for a sufficient number of cycles thus
permitting the procedure to converge. The graphs
show that before the convergence is reached the
1inear extrapolation consistently underpredicts
the cumulative constraint value when proceeding
from an infeasible design starting point and-
overpredicts it when the start is made from a
feasible design point.

Characteristically, the relative error is
larger when the optimization is started from an
infeasible design, apparently because the
procedure then goes through a number of changes 1in
the membership of the active constraint set that
comprises constraints defined in eq. (15¢) for
each beam. Consistent with observations reported
in refs. 8 and 24, these changes tend to degrade
the accuracy of the optimum sensitivity
derivatives as the behavior predictors. The
larger prediction errors apparently cause the
history plots to be somewhat more jagged in ali
cases for which the optimization is started from
an infeasible design rather than from a feasible
one. They also slow down the convergence, so that
a larger number of cycles is required when
starting from an infeasible design. However, the
procedure exhibits a good ability to recover from
occasional large prediction errors, e.g., cycle 8
in fig. 13 (infeasible design start) and cycles 11
and 13 in fig, 13 (feasible design start), and
gets back on track with remarkable robustness.

Computational cost.- Since the purpose of the
reported work was a demonstration of a concept, no
attempt was made to refine either the reference,
one-level procedure or the two-level procedure for
maximum computational efficiency, especially since
the framework example is much too small to
demonstrate efficiency of any optimization or
analysis method. Nevertheless, one may obseve
that the two-level optimization converges in a
number of cycles about equal to the number of
iterations in the one-level optimization, with the
numerical workload in a cycle being less than in
an iteration. While the precise workload
difference depends on the algorithmic and
implementation details, the major difference stems
from having to calculate a number of gradient
vectors equal to the number of design variables
which at the system level of the two-level
optimization is smaller than in the one-level
optimization. Specifically, in the framework
example the number is reduced from 18 to 6,
Computational cost savings resulting from that
reduction are partly offset by the cost of the
subsystem level optimizations and the associated
sensitivity analysis, Approximating computational
cost by the CPU time and setting the time for one
cycle at 100 percent, the times spent at the
system and subsystem levels within one cycle were
28 percent and 72 percent, respectively. Thus,
the total time share for each of the three beams
(subsystems) was 24 percent, a nearly uniform
distribution of time among the system and each of
the subsystems. These relative cost values are,
of course, strongly problem dependent as is the
total cost of execution of the entire procedure,
That cost is expected to become smaller relatively
to the cost of a one-level procedure as the system
grows in terms of the number of elastic degrees of
freedom and number of structural components
(subsystems),

Concluding Remarks

A method has been described for decomposing
an optimization problem into a set of subproblems
and a single coordination problem which preserves
the coupling between the subproblems. The
resulting procedure is iterative and calls for
repetitive analysis of the assembled structure,
optimization of the individual components as




subproblems, followed by optimization of the
assembled structure in which the component optimum
solutions are extrapolated linearly using their
optimum sensitivity derivatives with respect to
the system level design variables and internal
forces. The subproblems are organized
hierarchically into two levels. The variables at
the lowest level (the subsystem level) are
physical cross-sectional dimensions; the variables
at the highest level (the system level) are
quantities that govern the stiffness and mass
distribution among the finite elements of the
structure. The overall objective function (such
as structural weight) is controlled at the system
level. Optimization at that level influences the
level below by means of changing the mass and
stiffness distributions, and the associated
distribution of internal forces.

The method is demonstrated using a portal
framework as an example of a two-level structure
in which the system-level variables are the
cross-sectional areas and moments of inertia of
the beams, and the subsystem-level variables are
the beam detailed cross-sectional dimensions.
Verification of the method by comparison with the
results obtained by a conventional, one-level
optimization show the validity and effectiveness
of the proposed approach.

Satisfactory testing of the two-level
approach is a stepping stone for implementation of
a multilevel structural optimization procedure.
That implementation is seen as a stage in
development of a multilevel optimization for
multidisciplinary engineering systems whose goal
is to allow groups of engineers using distributed
computing technology to work concurrently on
various parts of the problem, thereby reducing the
real time of the system design.
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Appendix A

Discussion of the Problem Dimensionality with

Examples

A stiffened panel of the type frequently used
in aircraft wing covers is an example of an
element satisfying eq. (14). Assuming the panel
cross-section to be as in fig. Al, the number of
cross-sectional design variables is n(e)=8, if
stringers are laid in one direction only. To
represent the panel as an orthotropic membrane
finite element in structural analysis and in a
minimum mass optimization, the stiffnesses Axx,
Ayy, Axy, and mass M are needed which, for an
isotropic material, are uniquely defined by only
two elemental properties: TS-skin thickness, and
TR-equivalent ("smeared") thickness of the
stringers to be used as the system level design
variables. Thus, t(e)=2 < n(e)=8.

If the panel were made of several layers of a
composite material, laid in, say, four different
orientation angles then, including the angles
withassociated thicknesses in the set of the
cross-sectional design variables, n(e)=2*4=8, The
panel mass and membrane stiffness definition
requires, as above, total mass M, and
orthotropic stiffness coefficients Axx, Ayy, and
Axy. The total mass is defined by total thickness
T, but, in contrast to the stiffened panel, the
stiffness coefficients depend on all cross-
sectional design variables in an arithmetically
complex way which does not make it practical
expressing them in a closed analytical form by a

subset of the elemental design variables.
Therefore, the elemental properties to be used as
the system level design variables are: T, Axx,
Ayy, and Axy. Hence, t(e)=4 < n(e)=8.

For an opposite example, consider a beam of a
solid circular cross-section. Its diameter D is
the only cross-sectional design variable, n(e)=1.
On the other hand, for a general case of
structural analysis and minimum mass optimization,
the beam must be represented by its cross-section
constants A, Ix, Iy, J, and mass M. Since all
these quantities are uniquely defined by the beam
diameter D, that diameter is the only elemental
property that can be used as a system design
variable. Thus, in this case t(e)=n{e)=1.

In closing, let us return to the composite
panel example to make an important point. The fact
that there are four elemental properties available
does not require using all of them as system level
design variables, Using them all means full
control over the element mass and stiffness. It
is easy to imagine applications where such full
control is unnecessary and giving up a part of it
for the benefit of reducing the number of system
level design variables may be a reasonable
choice. For example, one may choose to use only
M and Axx as design variables while allowing
Ayy and Axy to be "passively" computed from the
panel cross-sectional design variables.

Appendix B

Equivalence of the One-Level and Two-Level
Uptimizations with Respect to the Kuhn-Tucker
Optimality Conditions

Suppose that the two-level optimization
procedure converged to a design in which the
Kuhn-Tucker (K-T) optimality criteria are
satisfied at the system level and for each element
at the subsystem level. A natural question to
ask at that point is whether it would be possible
to obtain a better design, i.e., lower objective
function value, without violation of the
constraints by continuing the optimization in the
y-space in a conventional one-level way. In other
words, the question is whether there is anything
in the two-level approach that would make it stop
short of the design that could be generated by a
one-level procedure. Examination of the K-T
conditions at the design point to which the
two-level procedure has converged provides the
answer. For the two-level procedure, the K-T
conditions corresponding to the system level
eq. (20) are:
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Simultaneously, at the subsystem level the

K-T conditions for each element are consistent

with the formulation in eq. (15):
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where g, denotes active side constraints on
variables y.

"Equation (Bla) means that no further movement
away. from the design point is possible in the
X-space without violating constraints in eq. (Blb)
throigh (Ble). Since eq. (B2b) can be interpreted
as linking t(e) of the n(e) variables y in each
element to the variables X€, it follows that
the linked variables ¥ can not be changed also.
However, the remaining n(e)-t(e) variables y in
gach element also can not be changed because eq.
(B2) indicates that no further reduction of the
cumulative constraint € is possible without
violating the constraints in eq. (B2b) through
(B2d).  Thus, none of the y variables can be
changed and no movement away from the point is
possible in the y-design space which is exactly
the same conclusion that would result from
satisfaction of the K-T conditions at the same
point for a one-level optimization conducted
entirely in that Space.  Hence, one may assert
that #f the two-)evel Procedure terminates because
of satisfaction of the K-T conditions at both
levels, the K-T conditions at the corresponding
point -in the Y-space for a one-level procedure are
satisfied also, Therefore, the termination point
of the; two-level procedure must be at least a
]ocalﬁtonstrained minimum. . .

As noted in the body of the paper, this
assertion does not mean, however, that the two
procedures will arrive at the same result,
evenwhen started from the same point, if the
optimization problem is nonconvex.,

Appendix ¢

Detailed Formulation of the Framework Test Case

This appendix provides details of the
constraint formulation for the framework at the
system-level and at the subsystem (individual
beam) level. Constraints at the system level are
imposed on the horizontal translation and rotation
at the ‘upper right-hand corner of the framework in
both loading cases; the limits are 4.0 cm and

n

0.015 rd, respectively. In addition, there are
constraints on the system level design variables
to guard against occurrence of physically
impossible combinations of these variables (e.qg.,
moment of inertia disproportionately large with
respect to cross-sectional area). These
additional constraints, which correspond to eq.
(20f) are:
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Constraints in eqs. (Cl), (C2), (C3), and
(C4) relate the upper and lower limits of the
system level design variables to those of the
local design variables. The constraints given in
eqs. (C5a) to (C5d) keep the cross-sectional
moment of inertia commensurate with the
cross-sectional area.

At the subsystem (individual beam) level, the
constraints are prescribed for an I-shaped
cross-section as shown in fig. 3 which also
defines the dimensions used as local (subsystem)
design variables. Since there are two equality
constraints:

el = Aj/AS-1 =0 (cé)
1 i
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one can eliminate two local design variables by
expressing them in terms of the remaining,
independent variables. The appropriate relations
obtained from eq. (C6) and eq. (C7) are:

h=(-s + /s2 - 4RT)/2R (c8)
t3 = Az/h (c9)
where .
R = Ag/12 + ALCE + AxCh + AgCE (c9a)
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and the remaining problem is constrained only by
the side constraints and inequality constraints.
The expedient of using a closed-form solution for
the equality constraints (which was used also in
ref. 25) does not detract from generality because
any established technique for handling equality
constraints could have been substituted for the
closed-form solution if such a solution were
unobtainable.

The side constraints are minimum gages and
upper bounds as follows:

bin = 10.0, bpay = 100.0, etc.

The inequality constraints are imposed to
prevent overstress and buckling. The overstress
constraints are written in a standard form:

whers the material allowable oz = 20,000

N/cmé and o 1is a normal stress due to axial
force combined with a bending moment and computed
by means of a textbook formula N/A + Mc/I.
Equation (C10) is evaluated at four points, top
and bottom of the cross-section at both ends of
the beam and, thus, represents four constraints.
Similarly, a constraint on the maximum shear
stress is:

gj = 1— -1 (CII)



where the allowable <, = 11,600 N/cm? and

T = VQ/It. Equation (811) is evaluated at the
cross-section centroid at both ends of the beam
and so it represents two constraints,

Buckling constraints guard the beam flange
stability under action of normal compressive
stress, and the beam web stability under action of
shear stress, It is assumed for buckling
evaluation purposes that each flange is a plate of
thickness t and width b simply supported along
three sides and free along the fourth side, The
web is similarly treated as a plate simply
supported along four sides. The standard form
constraints are:

9j ,o'/oab -1 (c12)

9 = fc|/rap - 1 (C13)

where o and t are computed as for the
overstress constraints and the critical values of
stress are obtained from the familiar formulae:

¢ 2
sab = 0.4 (0.904)E (-) (C14)
b
Tap = 5.5 (0.904)E | & (ci5)
b N

The buckling constraints are evaluated for
both the upper and lower flanges and the web at
both ends of the beam.

Table 1 Interlevel flow of information

System level (assembled structure)
elemental properties elemental optimum
and forces solutions and

their derivatives
Xe; Q8.2
[
3Ce/X
aC®/5 22
r
{} ay®/ax
’ 3ye/aQe,z
r
Subsystem level (individual elements)

Table 2 Correspondence of the quantities in the

framework example to the generic quantities

GENERIC FRAMEWORK

Yoleelffheend [y = (o tiban bty o)

Xe = fé(yE) ’A e
= fé {bl»tl,bz,tz,h,t3}
l[ 1
Yy
e=1, 2, 3.
Q82 {N, M, T }esz
gs constraints on the loaded node

horizontal translation and
rotation due to P and M

g€ beam stress and local buckling
constraints

F beam mass M = f(A1.A2,A3)

NLC 2

NE 3

n 18

n(e) 6

t(e) 2

NE x t(e) 6

q(e) 3

r(e) 3xNC =6

z 2




Table 3 Two-level procedure implemented for the framework test case

This table contains a step-by-step summary of the two-level optimization
procedure for the framework.

System level - whole framework

Component (subsystem) level -
each separate beam

Define loads.

Define displacement constraints.

1.
2.
3.

Initialize detailed dimensions.
Compute A, 1 for each beam.

Move to the system level,

Malyze the framework to compute
its displacements and the end
forces (N,M,T, fig. 2) on each
beam. Compute derivatives of
these quantities with respect to
the A, I of each beam.

Move to the component level.
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For beam 1, hold constant the end
forces N, M, T and the values
A and 1.

Analyze the beam to evaluate its
constraints, such as stress and
local buckling.

Form a single measure of the
constraint violation using, for
example, an exterior penalty
function,

Optimize 6 cross-sectional
dimensions as subsystem design
variables to minimize the measure
of constraint violation as an
objective function subject to
minimum gage and other side
constraints, including equality
constraints on A and 1I.

The equality constraints assure
that the beams A and 1
computed from the cross-sectional
dimensions are equal to those
prescribed at the system level,

For optimized beam, compute de-
rivatives of the minimized meas-
of the constraint violation and
the subsystem design variables
with respect to the constants:
N, M, T and A, I.




Table 3 Concluded.

8.
9.

Repeat steps 6 and 7 for beams
2 and 3.
Move to the system level,

10.

"llo

12.

Approximate the minimized
measures of the constraint viola-
tion in each beam as linear func-
tions of 6 quantities A and

I by a linear Taylor expansion,
using the derivatives computed

in step 7. In this expansion
each of the end forces N, M, T
is also approximated as a linear
function of all 6 quantities A,
and [ using derivatives com-
puted in step 4.

Optimize 6 system level variables
A, 1, to minimize structural
mass subject to:

(2)framework displacement con-
straints approximated as func-
tions of A and 1 by
linear Taylor expansion using
derivatives computed in
step 4,

(b)constraints requiring that the
minimized measure of the con-
straints violation in each
beam be reduced by a pre-
determined decrement.

(c)move limits on the variables
A and 1 to protect
accuracy of the linear Taylor
expansions and to account for
side constraints of the sub-
system design variables., The
latter are approximated as
functions of A and 1 by a
linear Taylour expansion using
derivatives computed 1n
step 7.

(d)side constaints vn A and I.

Go back to step 4 with the system
level design variables A and

1 obtained in step 11, and the
corresponding approximate sub-
system deign variables estimated
by a linear extrapolation as
described in step 1lc.

Terminate when:

(a)the framework displacements
are within constraints,

(b)the minimized measure of con-
straint violation for each
beam is reduced to at least
zero.

(c)no further reduction of the
framework mass appears
possible.
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Table 4 Comparison of Optimization Results

FINAL FINAL FINAL FINAL
INITIAL RESULTS RESULTS INITIAL RESULTS RESULTS
VALUES ONE LEVEL TWO-LEVEL VALUES ONE LEVEL | TWO-LEVEL
OPTIMI- OPTIMI- OPTIMI- OPTIMI-
ZATION ZATION ZATION ZATION
Obj. | 26,469 cm®| 90,682 cm?| 92,090 cm3|| 275,000 cm?| 90,592 cm?| 92,330 cn?
Beam 1
b, 11.0 10.0 10.3 30.0 13.0 10.3
t, 0.275 0.491 0.571 1.0 0.450 0.569
h 22.0 78.1 73.9 50.0 74.9 74.0
ts 0.275 0.517 0.518 1.0 0.497 0.519
b, 5.5 8.08 5.08 30.0 12.1 5.13
t, 0.275 0.511 1.18 1.0 0.487 1.16
Beam 2
b; 11.0 10.3 10.3 30.0 11.4 10.7
t) 0.27% 0.439 0.476 1.0 0.404 0.451
h 22.0 95.7 89.4 50.0 89.9 90.1
ts 0.275 0.421 0.414 1.0 0.397 0.417
b, 5.5 8.46 5.14 30.0 10.7 5.12
t, 0.275% 0.539 0.984 1.0 0.435 0.960
Beam 3
by 5.5 5.0 5.03 30.0 7.50 4,98
t; 0.275 0.267 0.253 1.0 0.268 0.253
h 22.0 47.8 59.1 50.0 61.9 59.0
ts 0.275 0.25 0.251 1.0 0.25 0.25
b, 11.0 10.0 10.0 30.0 10.0 10.0
t, 0.275 0.332 0.400 1.0 0.369 0.393
NOTES: See Figure 3 for dimension definitions.
All beam dimensions are in centimeters.
LEVEL1 lcnrnkssrkucruasl
LEVEL 2 SUBSTRUCTURE [7 2 3
LEVEL j ISUBSTRiUCTURE L i+1 I h a
LEVEL
j ELEE L 2 ]”‘[ “44] [ k+1 I

Fig. 2 A Venn diagram for a two-level system

Fig. 1 Multilevel substructuring.
hierarchy of design variables.
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Fig. 3 A portal framework. Fig. 6 History of objective function (mass) for
the entire structure and cumulative
constraint for beam 1 in two-level
optimization starting from an infeasible
design, and the objective function (mass)
for the entire structure starting from a

feasible design.
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Fig. 7 History of selected system level design
variables, (a) infeasible design start.
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Fig. 5 History of objective function (mass) and

one of the flange buckling constraints
in the benchmark, one-level optimization, Fig. 7 History of selected system level design

starting from infeasible design. variables, (b) feasible design start.
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Fig. 8 History of one of the system level
constraints-~horizontal displacement
due to force P. (a) infeasible design
start. - (b) feasible design start.
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Fig. 9 History of local design variables for
beam 1, (a) infeasible design start.
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Fig. 9 History of local design variables for
beam 1, (b) feasible design start.
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Fig. 10 History of the cumulative constraint
used as objective function in optimi-
zation of beam 1, (a) infeasible design
start.

- (b) feasible design start.
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Fig. 11 History of one of the local constraints
(flange buckling in beam 1), (a)
infeasible design start. - (b) feasible
design start.
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Fig. 12 Detailed history of the constraint from
fig. 11(a) over the iterations of the
beam level optimization during cycle
No. 8.
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design start. - (b) feasible design
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