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ABSTRACT

This report deals with progress made on the Grant NSG-3048 during the
twelve month period beginning October 1, 1981 and ending September 30, 1982.
The NASA Technical Officer for this period was Dr. Kurt Seldner of Lewis
Research Center. The director of the research at the University of Notre
Dame was Dr. Michael K. Sain, who has been assisted by Mr. Stephen Yurkovich,
a fellow in the Department of Electrical Engineering, by Mr. Joe P. Hill,
and by Mr. Thomas A. Klingler, research assistants, in the Department of
Electrical Engineering. Mr. Hill received the degree of Master of Science
during this period, for his June 1982 thesis entitled "Solution of Non-
linear Optimal Cor.trol Problems Using the Algebraic Tensor: An Example'.
Mr. Klingler expects to complete rasearch investigations for the Master
of Science degree very shortly. Mr. Yurkovich may ccmplete requirements

for the degree of Doctor of Philosophy in 1983.

Researches during the preceding calendar year have centered on basic
topics in the modeling and feedback control of nonlinear dynamical systems.
0f special interest have been the following topics: (1) the development
of models of tensor type for a digital simulation of the QCSE gas turbine
engine; (2) the extension, to nonlinear multivariable control system de-
sign, of the cc.cepts of total synthesis which trace their roots back to
certain early investigations under this grant; (3) the role of series de-
scriptions as they relate to questions of scheduling in the control of
gas curbine 2ngines; (4) the development of computer-aided design soft-
were for tensor modeling calculations; (5) further enhancement of the

softwares for linear total synthesis, mentioned above; and (6) calcula-

ii

R & T R A N R e,



tion cf the first known examples using tensors for nonlinear feedback con-

trol.

A number of major milestones have occurred during this year of study.
Most crucial has been the steady progress of the computer software needed
to perform tensor modeling and simulation. Tue advance of this code is
now making it possible to begin a more systematic examination of tensor
model identification and order reduction. Increasing availability of
this capability has made it easier to determine certain of the key trade-
offs involved with use of tensor models, as for example their increased
dynamical quality versus their useful region. In what may be the most
significant theoretical development of the year's activity, work is under-
way to evaluate the effects of redefining the groups upon which, and into
which, nonlinear maps act. For interesting cases, the groups can be re-
defined in such a mananer that the nonlinear maps become linear. Among
the results already following from this discovery are the definition of
a variety of uew nonlinear sensitivity functions, of the comparison type.
The same idea, in a different application, has permitted the definition
of a nonlinear feedback synthesis problem. Finally, a complete calcula-
tion has been carried out for the feedback tensors in a nonlinear control
example. This calculation has been of the utmost importance in setting
goals for the type of software which will be needed for general feedback
control, with tensors. Preliminary steps to plan such software have

been set in motion.

iidi




ACKNOWLEDGMENTS

The funded research on this grant has been aided by the wvoluntary,
unfunded efforts of a number of individuals. We would like to thank Mr.
Joseph A. 0'Sullivan and Mr. Leo McWilliams in this regard. Mr., O'Sullivan,
who participated as a senior, has continued on as a graduate research
assistant. Mr. McWilliams is a graduate student in electrical engine-

ering and 1is doing research with the help of the Minorities Consortium.

Special thanks are due to Dr, R. Michael Schafer, who has been most
helpful in regard to issues concerning the PDP-1l computer, and to Mr.

Joe P, Hill, whose M.S. Thesis forms the core of this report.

We also acknowledge encouragement and support extended to the pro-

ject by the Department of Electrical Engineering.

Finally, we are pleased to thank Mrs. T. Youngs, who has prepared

the typescripts.

iv



TABLE OF CONTENTS
Page

ABSTRACT 14
ACKNOWLEDGMENTS iv

I. INTRODUCTION . s s v v v v tnvsaesarssarsonossoesossnssssossessassess 1
1.1. Overview of Report...................:................ 1

1.2. Remarks on Multilinear Feedback....ieeiiveeeeeenrnnns 4

II. SELECTED ALGEBRAIC BACKGROUND..:.vsovsvuetensnsssosssssosseass 10
2.1, Multilinear Mappings.....iseieetervesssncersssnnssseses 10
2.2. Tensor Product of Linear Mappings...... A ¢
2.3. Symmetric Tensor ProducCt......evevesecsssscsssessnanes 28
2.4, DerilvaliveS...i.iiesievienssriorsrssosnssanssneses veeenea. 40

2.5. Discussion........... e ee s s eeeeneecsenersceaseieees 48

ITI. A NONLINEAR CONTROL PROBLEM.......ei0vevenns - 10
3.1. System Description.....veveeseerncnness D 1 X
3.2, Derivation of Controller Expressions....... ceceans eses 061
3.3. The LQ Problem. e eirieereeernanoesenonsans Ceeea oo 718

3.4, DisSCUSSION. .ttt trverrenneeresenasanennnns N cevea 82

IV. APPLICATION TO SPECIFIC EXAMPLE...... +ivivvrrnncssoncesaass 83
4.1. Problem Requirements and Formulation.......vceeveeeee.. 83
4.2, Calculation of Controller TErmMS....ceevvsenensenas oo 89

4,3, Discussion....... ettt et Ceeee vesessases 97

V. CONCLUSIONS. ... vttt entinnensnarnas tet st aseseses e esnnnnn .« 99

R Y T RS SRR Y L SOOI SN AR



VI.

Page

REFERENCESI......‘.llﬂl.l.l.lll.lll...‘....ll..'l'l'...'llll 102

APPENDICES
A. GRANT BIBLIOGRAPHY, INCEPTION TO PRESENT...eevveve. eesve 104
B. "An Application of Tensor Ideas to Nonlinear Modeling

of a Turbofan Jet Engine'....evviieiurerennonocennnanns . 112
C. '"Nonlinear Multivariable Design by Total Syrthesis'"..... 123

D. '"Controller Scheduling: A Possible Algebraic View-
point" . ittt innaans Cererseneraanees Cerererae s 133

E. "A 7 1puter-Aided Design Package for Nonlinear Model
Appiscations”.iiiireennennns teseetieesanas st esenees 143

F. Reference List ou ".otal Synthesis Problem.....ceeveevon. 153

G. Software Description for Section IV....ceevveeeeneeesee. 156

vi




I, INTRODUCTION

In this report, we discuss progress which has been made on NASA Grant
NSG-3048, entitled "Alternatives for Jet Engine Control", during the twelve

month period beginning on October 1, 1981 and ending on September 30, 1982,

1.1. Overview of Report

The report is organized broadly into a main body, consisting of six
sections,and seven appendices. The principal portion of the main body
involves Sections II, III, and IV, which deal with the explicit tensor
calculations involved in a substantial example of nonlinear feedback con-
trol, based upon tensor system models developed in an earlier vear of work
under this grant. These sections are supported by Section 1.2, which
gives certain literature background, by Section VI, which contains the
references, and by Appendix G, which illustrates, in an introductory way,

typical calculations which become involved.

Insofar as we know, this substantial example is the first of its
type to be completed. More comment on the insights which follow from
the main body of the report are provided in Section V, where additional

discussion is directed to the appendices.

Appendix E, "A Computer-Aided Design Package for Nonlinear Model
Applications", is a report on the crucial software developwents which
have been, and coniirue to be, the backbome of studies in tensor modeling
and simulation. Steady progress ;n this regard is now making possible
further work in tensor model identificacion and order reduction. A com-
plete description of this software is planned for the next grant period.

Appendix B, "An Application of Tensor Ideas to Nonlinear Modeling of a



Turbofan Jet Engine", illustrates the potential of this developing software

for work with engine simulations, such as the QCSEE.

Appendix D, '"Controller Scheduling: A Possible Algebraic Viewpoint",
continues the investigation of algeb:: ic frameworks which may capture the
essence of the pracvical work in control schedules. It is believed that
these itudies may hold one of the keys to reducing gaps between the theory
of nonlinear control systems and its application. In particular, it is
planned to use ideas which grow out of this work as a guide to resolving
the tracZeoffs between increased dynamical quality in nonlinear models and

their region of validity. More study is needed in this area.

Se tions C and F deal with material on the Total Synthesis Problem
of multivariable control. In the linear case, this pioblem traces a part
of its early roots back to studies supported by this grant. It is a
problem of feedback synthesis, which has now developed quite a biblio-
graphy. Appendix F gives a list of that bibliography, as of the date of
the First American Control Conference last year. Item 18 in Appendix F
refers to the software associated with this effort, which is ongoing.
Though not yet ready for distribution, the software has resulted in
several requests for copies, and it is hoped that limited distribution
might not be an event too far in the future. Appendix C, "Nonlinear
Multivariable Design by Total Synthesis', is a part of the effort to
extend to the nonlinear case. Of particular interest in Appendix C is
the modification of group structure and scalar multiplication structure
on the vector spaces of inputs and outputs for certain nonlinear systems.

It is an amazing fact that, in interesting, nontrivial case, such modi-




fications can result in the system becoming linear. The idea is akin to
the choice of a special coordinate system which fits the geometry of a
physical problem. We have this idea under intense study, and it seems
to hold promise in problems ¢. order reduction and identification. If
the work proceeds as planned, more results in this regard should become

available in next year's report.

Appendix A contains a chronological bibliography of work undertaken

in relation to the grant.

With these introductory remarks, we turn next to the main body of

the report,



1.2 Remarks on Multilinear Feedback

One subject of this report is the application of concepts from tensor
algebra to the generation of optimal feedback controllers for nonlinear
dynamical systems. The primary motivation for a study of this topic came
from the results presented in [1], where thr local theoretical problem
was essentially solved. The importance of this work should be emphasized.
Although there were works that were previously existin. *that used multi-
linear algebra to study series solutions for a response of a nonlinear
system, this was the first application of the ideas in tensor algebra to
an optimal control problem. Thus, we find that the topics of multilinear
algebra and optimization had been extensively studied, but independently

cf one another,

The research project has received numerous benefits from this par-
ticular study. First, we have completed a rather tho-wugh example study
of the methods in [1]. We believe that this example study is the only
one of its kind in the literature to date. The details of the example are
given in Section IV. Second, we have carried out the study without the
explicit use of the methods of dual spaces and symmetric tensor algebra.
The purpose of doing so is to gain insight concerning the exact role of
these two ideas in the nonlinear feedback problem. This was a revealing
exrerience; and much insight has been gained. Third, we have an initial
step in constructing software for such feedback calculations. The im-

portance of such softwares can scarcely be overestimated.

The methods of optimal control have, in certain cases, interesting
relationships with the methods of stability theory. Because of this, we

have reason to believe that these results may assist in model region design.
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The treatment of optimal control problems in the history of the 1lit-
erature has been quite extensive, with much emphasis placed on the so
called Linear Quadratic or LQ problem, Broadly speaking, zn LQ control
formulation consists of a finite-dimensional linear discrete - or con-
tinuous-time dynamic system which is to be controlled in such a way as to
minimize the value of a performance criterion which is the integral, or

sum, of quadratic functions of the system state and control variables

plus a quadratic function of the state at some terminal time, tl. This
concept provides the following system description:
*(t) = A(t) =(t) + B(t) u(t) , (1.1)
t
3 = Mx(t) + f b Lxyu,t) de, (1.2)
t
T T
L{x,u,t) = x~ Q(t)x + u~ R(t)u . (1.3a)
_ T
M(x(tl)) = x (tl)M x(tl) . (1.3b)

Here, we assume that M 1s symmetric and positive definite, R(t) is
gsymmetric and positive definite, and Q(t) is symmetric and positive
semidefinite. So, given the linear system in (1.1) and the cost functional
1in1 (1.2) satisfying the symmetry and definiteness requirements, we wish

to £ind the optimal control, that is, the control which will drive the
system so as to minimize the cost functional. We do not go into detail
concerning conditions for existence and uniqueness. Basically, the solu-
tion of the state regulation problem leads to an optimal feedback system
with the property that the components of the state wvector x=(t) are

kept near zero without excessive expenditure of control energy, which is,

in essence, the minimization of the cost functional. Thus, given an
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initial perturbation which is usually in the form of the initial state
vector x(0), we find that an optimal control should drive the state
vectors to zero while simultaneously minimizing the selected performmice
index. The notion of desiring the state vector near zero arises from

the fact that the state variable 1s defined as an error term [1] which
measures deviation from trhe global trajectory. The fact that this per-
turbation is required to be sufficiently small allows for the traditional
Taylor's series expansion form. It is well known from the literature
that we may construct this optimal control as

u(t) = Kl(t) x(t) , (1.4)

where

R, (6) = - B ORRORION (1.5)

“ae matrix V(t) is the solution to the well known matrix Riccati Equa-
tion

V(t) = -V(t) A(E) - AT(r) V(t) + V(&) B(t) R-(e) BT(t) V(&) - Qt)  (1.6)
which can be readily solved on the digital computer by integrating nu-
merically backwards in time from the boundary condition

V(tl) =M. (1.7)

The problem that we wish to consider in this report is more complex,
although we will be able to treat the LQ problem as a special case.
Namely, we wish to assume that we are given a nonlinear system rather
than a linear system and examine the methods necessary to generate higher
order controller terms. This control problem is commonly descrik2d in

the literature as being approximately optimal, or sub-optimal. When




coneidering the synthesis of a control function for a typical nonlinear
system, we will find that an infinite number of terms.would be necessary
in order to formulate a true optimal controller, that is, we must trun-
cate to a finite number of terms and obtain a performance index that is
non-minimal. The amount of work that has been done in the geueration of
supoptimal control algorithms is quite extensive. Therefore, in order
to present an account of the research that has been done, we must be
succinct and mention only a few of these works. One of the first attempts
to formulate a descripticn of the optimal control problem as applied to
nonlinear systems is found in [2], where extensive usz is made of the
methods of Lyapunov and Chetaev. Here, a formal recursive procedure is
developed to construct a suboptimal control as a function of a power
serlies in the states. The work of Lukes [3] extended the concepts intro-
duced by Al'brekht and provided useful results pertaining to the exis-
tence and uniqueness of an optimal feedback controller. In [4], we find
useful applications of the Hamilton-Jacobi-Bellman approach to a number
of illustrative examples, as well as a comparison of various techniques
that can be used to generate higher order controllers. Additional re-
sults and examples of this method were provided in [5] with particular
emphasis on the convergence of the procedure. Also, a method for esti-
mating the degradation in performance caused by the truncation of terms
in the controller series was presented., We also note the results pre-
sented in [6], where linear, second order, and third order controller
expressions were produced using the methods presented in {7]. The im-

proved response obtained whenever higher order controller terms are




considered provides sufficient motivation to seek another method by which
these terms may be obtained. This method, of course, is the tensor alge-
bra. A few of the ideas surrounding the general topic of algebraic system
theory have previously been applied to problems in optimality, system mod-
eling, and multivarilable feedback loop closures. The latter point was ex-
tensively studied in [8], where emphasis was placed on the exterior or skew-
symmetric algebra. The most pertinent work was of'course [1] which, as was
previc.sly mentioned, provided much of the motivation for this report. An-
other application of the 1deas of tensor algebra to systéms problems was in
[9], which relied hwavily on the series expansion concept expressed via the
tensor product and applied to the basic system description. Particular em-
phasis was placed on the subject of nonlinear system modeling, with examp-
les of both homogeneous and nonhomogeneous modeling. These methods proved
to be quite effective, ylelding much improvement over the standard linear
approximations that are typically used in a nonlinear system for modeling
purposes. So basically, there would seem to be strong motivation for the
use of modern algebra in nonlinear systems and control problems. Much of
what we actually do as systems engineers evolves from modern algebraic con-
cepts [10]. Since the typical engineer has had little or no exposure to
the concepts of modern algebra, we will outline these concepts as they are
related to the solution of our problem. As was noted in [8], modern alge-
bra frequently provides sufficient algebraic framework within which to ob-
tain solutions to systems prohlems with considerably less effort as com-
pared to other conventional methods. We will find that the tensor alge-

bra viewpoint provides a useful means of expanding a nonlinear system in



terms of vectors and amatrices, which are expressed via the tensor product.

In Section 1I we provide some useful mathematical background, with
particular emphasis on the topic of tensor algebra. We examine the pro-
pertles of multilincar mappings and also provide a brief introduction to
the symmetric tensor algebra structure, which will be useful when dif-
ferentiating the tensor product. In Section IIT we present certain sys-
tems concepts, which are basically in the form of series expansions, and
then derive the necessary results for the generation of the optimal coun-
trol terms. The problem formulation for the LQ optimization can be rec-
ognized as a special case of the equations where higher order terms are
included. Finally, Section IV provides the application of the results

derived {n the previous chapter to a formulated example problem.




II. SELECTED ALGEBRAIC BACKGROUND

The basic purpose of this section is to provide the reader with the
necessary concepts from the subject of tensor algebra, which is the main
vehicle that is used to analyze the control problem. It is realized that
most readers have not had previous dealings with the somewhat theoretical
concept of tensor algebra; therefore the treatment of this subject will
not assume any previous knowledge of the topic. The main feature of the
algebraic tensor involves the way that it gives ground on dimensionality

in order to gain the powerful advantage of linearity.

We begin this sectiongyith the basic concepts of multilinear mappings
and the properties that allow us to express these multilinear mappings
in terms of linear mappings and tensor products. Next, we examine the
tensor product of linear mappings and develop the associated Kronecker
product and a few of its properties, which will be useful in later der-
ivations. The next section deals with the symmetric tensor algebra,
which will be of great importance whenever we consider the possibilities
of differentiating the tensor piaduct, a toplc that is considered in the
final portion of this section. Specifically, we examine the partial
derivative problem as related to the tensor product of various copiles
of the state variable x and the control function u. This problem is

inherently related to the minimization operation that will be studied

in Section III.

2.1 Multilinear Mappinis [1,10,11]

Since many of the ideas surrounding tensor algebra are based on the

10
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theory of bilinear and multilinear mappings, we begin with a general def-
inition of these mappings. Generally speaking, a multilinear function is
a function of vectors that is linear with respect to each vector variable
when the others are held constant. This means that

lp(x:l-,...,c:nx:L + Byi,...,xm) = mp(xl,...,xi,...,xm) +

Bw(xl,...,yi,...,xm) R (2.1)

where Vi and U are vector spaces over a field R; X0 ¥y € Vi; o,B € R;
and § : Vl x V2 X .. X Vm + U. The multilinear mapping ¢ has an image
which is not, in general, a subspace of U. A simple counterexample is

offered in order to illustrate this point.

We let V. =V, be two dimensional spaces with the basis {el,ez}

1 2
and U be a four dimensional space with the basis {fl’fz’fS’f4}' Let
X = X8 + x,e, and y = ¥i181 + Y,e, belong to Vl and V2. We now

define a bilinear mapping by
= & F-]
VO6Y) = Xy By XYty T Yy Tyt RY,f,

Any vector in U

[
1
i~
0
rh

is in the image of Yy if and only if it satisfies

rank

If we pick u, = 2f, + 2f, + £, + and u, = £, + £ then obviously

1 2 3 4 2 1 3’
both of these vectors are in the image of ¥. However, subtracting these
two vectors gives

ul - u2 = El + 2f2 + f4

¥ e
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1 2

i
—

rank
0 1

so that the image is not closed under addition. Since the closure law

has been violated, we can conclude that Im ¢ does not form a linear
subspace of U. The smallest subspace of U which contains the image

of ¢ 1s called the subspace generated by the image of ¢ and is de~
noted by <Im ¢> . This subspace is shown by the dotted contour in Figure
2.1, which depicts the situation for the bilinear case. This minimal sub-
space becomes a space of tensors when the bilinear map ¢ i1is a tensor

product.

A particular subset (m=2) of the set of multilinear mappings is the
set of bilinear mappings. A function of two variables is said to be bi-
linear if it is linear with respect to each of the two variables when the
other is fixed. An example of a bilinear function is given by

f(x,y) = 3xy .
This function is linear in each of x and y when the other is fixed
as can be readily shown:
£(x,ay, + By,) = 3x(ay; + By,)
= a3xy, + B3xy,
= af (x,y;) + 8E(x,y,) 3

and

f(axl + sz,y) 3(0Lxl + sz)y
= a3xly + 63x2y

= af (x,y) + Bf(x,,¥)

N4 e
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We may note that this satisfies the notion that a bilinear mapping is a
multilinear mapping with m=2 if both
plox; + By »Y,) = a¥(xy,y,) + BU(y,,y,) (2.2)

and
P(xy,0x, + By,) = ab(x;,x,) + BU(xy,y,) (2.3)

hold for all «x , &, B as noted in the definition of a general multi-

1?7 Yy

linear mapping. A bilinear map is sometimes called 2-linear,.

For a given set of vector spaces V ’Vm’ and U, all multi-

l,ooo

linear mappings from Vl x V2 X oa. X Vm to U constitute the set

M(Vl,...,Vm:U). The set M(V ..,Vm:U) is a vector space with addition

1
defined by
(¢ + 6)(v1,...,vm) = ¢(vl,...,vm) + e(vl,...,vm) R

where the addition on the left side is in M(Vl,...,Vm:U) and addition
on the right side 1is in U. Scalar multiplication is defined by

(a¢)(vl,---,vm) = a(¢(vl,---,vm)) )

where again (a¢) represents scalar multiplication in M(Vl,...,Vm:U)
and a(¢(vl,...,vm)) 1s scalar multiplication in U. Both of these

principles are shown formally in [11]. Also, it is shown that

m
dim M(Vl,...,Vm:U) = n I n, o
i=1

where
dim U = n and dim Vi =ny .
Having defined the notion of exactly what comprises a multilinear

mapping, we are now in a position to consider the idea of a tensor pro-

13
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duct. The basic purpose of a tensor product is to convert multilinear
mappings (in particular, bilinear mappings) into linear mappings. Basic-
ally, this is done because multilinear functions are very complicated ob-
jects and are intrinsically more difficult to handle than linear map-
pings. We now proceed in defining the notion of a temnsor product. We
consider an arbitrary multilinear mapping

/I Vl X V2 X o0 X Vm + U

which belongs to M(Vl,...,Vm:U). It can be shown that there exists an-

other multilinear mapping v € M(V Vm:P), essentially unique, such

l’ooo,

that there exists a linear mapping u : P = U, which provides
p=uev.

The tensor product is said to be composed of P and this multilinear

mapping v. We now present the formal definition of the tensor product

[10].

Y

A pair (P,v) d1s a temsor product of the vector spaces Vl,.. o

if the following two conditions are satisfied:

(1) v e M(Vl,...,Vm:P) and <Im v> = P;

(2) 41if U is any vector space over R, and ¢ ¢ M(Vl,...,Vm:U) is
arbitrary, then there exists a p ¢ L(P:U) (that is, it is a lin-
ear map from vector space P to vector space U) such that
Y=o v,

The property (1) means that all of the vectors generated by v form a

subspace of P which i1s equal to P. Property (2) is called the uni-

versal factorization property, and is expressed by the commutative dia-

gram in Figure 2.2. It can be shown that the properties (1) and (2)

14
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Figure 2.1 The Bilinear Mapping ¥

Figure 2.2 The Tensor Product Idea

15
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above are equivalent to the following single condition:
(3) for each multilinear map ¢ € M(Vl,...,Vm:U) there is a unique
linear map u € L(P:U) such that
Y=oV,
By the way of shorthand notation, we will define the tensor product @

as the multilinear mapping v such that

v(vl,vz,...,vm) =v, ® vy ®@ ... ® Vo (2.4)

Therefore, it follows that the space P may be expressed by Vl ® V2 ®
eae © Vm' Rewriting Figure 2.2, we obtain the usual form of the commuta-
tive diagram shown in Figure 2.3. It is shown in [11l] that for arbi-
trary vector spaces Vl""’vm a tensor product (P,v) always exists.

Also, 1t can be shown that the tensor product 1s unique up to an isomor-

phism.

We now wish to consider the properties of the space Vl @ V2 ® ...
] Vm. Namely, the basis and dimension of this space will be examined.
As was mentioned previously, the bilinear case is nothing more than a

special case of the multilinear case; so we will first consider construc-

ting a set of basis vectors for the space V., @ V,, We assume that V

1 2 1
and V2 are both spaces of finite dimension, and that dim Vl = n and
dim V2 = p, We also assume that {el,ez,...,en} is a set of basis vec-
tors for Vl and that {fl,fz,...,fp} is a set of basis vectors for V2J

It is shown in [1] that the tensor products

e, © fj s where i =1,2,...,nand j = 1,2,...,p , (2.5)

form a system of linearly independent vectors in the space Vl @ V2,

16
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A -V, eV, 9 ..
~,
v u
U

Figure 2.3 Introduction of the Temsor Product Symbol

17
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which has dimension n °* p, and therefore constitute a basis for the
space, In this proof, it is noted that

dim (V1 ® V2) = dim Vl » dim V2 . (2.6)

If these results zre extended to an arbitrary multilinear mapping, then

we may construct a set of basis vectors as follows., Given that dim V

k
=0, and that {ekik}, ik = 1,2,...,nk is a basis for Vk’ k=1,2,...,
m, then the space V1 ® V2 @ ... @ Vm has a basis which counsists of
elil ® e212 ® o0 @ eki and

m m
dim (Vl @ V2 ® ... @ Vm) = 121 dim Vi . 2.7)

An example will no doubt clarify the use of multiple indices in this

case. Consider the case where m=3, n, = dim Vl = 2, n, = dim V2 = 2,

and ng = dim V3 = 3, The dimension of Vl ® V2 ® V3 is 2«2 ¢+ 3 =12,

so there are accordingly 12 basis vectors, which may be listed as follows:

le)) @ ey; ®eggs 09y 8ey) @ey), @yy Doy @egq, 00y @eyy @y,

e ® e @ e ® e @ e

11 ® €2 ® ©3p> €17 @ €yy @ 85, €15 @ €)1 @ €395 &gy

€19 @ €31 © €335 €1y @ ey, @ ey, €1, @ @)y @ egy, 2y @ €y @ egq) .

21 32°
For future results and numerical analyses, we shall place much em-

phasis on the exact ordering of the basis vectors that can be said to

describe a space. 1In particular, we shall assume that the basis vectors

are to be ordered lexicographically. In order to present formally this

ordering, we will introduce a few elementary concepts from permutation
group theory [12]. First, let il,...,im be a set of positive integers
that satisfy conditions

1'5 i

1 S 13 1= 12 SN ... 3 1S im <n. (2.8)

18
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We shall denote all sequences of these integers by Gﬁ. If an integer
1 belongs to the set Gz, this integer has m digits, each of which
belongs to a (n+l)-ary number system excluding zere. If we define
IG:I as the number of elements in the set G:, clearly IG2| = n".
The following example is offered to illustrate this concept. Arbitarily,
3

we choose m=3 and n = 2. According to our definition, IGg} = 2=8,

and the elements may be listed as

Gg = {111, 112, 121, 122, 211, 212, 221, 222} .
This illustrates the concept that the set G2 actually consists of se-
quences of integers, m integers in each sequence. The range of each
digit in the sequence is from 1 to n. It can be said that the set G:
is ordered lexicographically in the example above, that is, 1f the ele-
ments are considered to be an m digit integrr, the sequence of ele-
ments should start with the smallest number of the base ~ 1) system
and strictly monotonically increase to the largest number s is the
convention that we will adopt to order our basis vectors. As a final
example on the calculation and ordering of basis vectors, we extend
these ideas to multiple tensor products of X and U, which are spaces
of states and controls. We desire the basis for the space

X®eXoU

where dim X = 3 with basis {xl,xz,xs} and dim U = 2 with basis
{ul,uz}. The basis is

X, ® X, ®@u X, @ X, ®@u

@
{x., © x u., Xx. ®x. ®u,, X. @ x, ®@u 1 2 9 %g 3 1°

1 1 1" "1 1 2”71 2 1

xl ® x3 ® u2, x2 @ xl ® ul, x2 @ xl ® u2, x2 @ x2 @ ul, x2 @ x2 @ u2,

X, ® X5 ® Uy, X @ X, ®u,, X, ® X, ® u, X ® x. ® u

2 ® %3 2 ® %3 8 Uy X3 9%y ¥, 8%

3% Uy Xy @, B0

1,

19
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®x2

® .
x ® Uy, X3 ® Xy O Uy, Xg P X uz}

3 3 3 3 3
This is a total of 18 basis vectors. Note that they are listed lexico-
graphically. In general, given the repetition p for X and q for

U, the dimensZon of

\ LR
\'4 \%4
P q

is

Pl . [
lcnl le | » (2.9)

where dim X = n and dim U = m., In this example, note that

o
it
=

so,

dim (X ® X @ U) = lcil . lcél = 3% @) =18 .

This is obviously just an extension of the case examined in (2.7), but
introduces the concept of two different vector spaces which will appear
in later problem formulations, since we will always be concerned with

spaces of states and controls.

2.2 Tensor Product of Linear Mappings [10]

In this section, we wish to examine the tensor pfoduct of two lin-
ear mappings. These linear mappings will be defined as follows:

AtV >T,,

B : Vz > U2 .

20
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Then, a bilinear map ¢ : V1 X V2 -* Ul ® U2 can be defined with the action

w(vl,vz) = (Avl) ® (sz)

for v, € Vl‘ v, € V2. It 1s relatively easy to verify that ¢ is bi-
linear. If we recail the basic definition of bilinearity given in Section
2.1, for o,B8 € R; w,x € Vl; and y,z € V2,
V(vy, ay + Bz) = (Av)) @ (B(ay + Bz))

= (Avl) ® (Bay + BBz)

= (Avl) ® (aBy + B8Bz) .

Next, we use the fact that the tensor product itself is a bilinear map-
ping, so as to obtaln
W(vy, ay + Rz) = (Avl) ® (aBy) + (Av,) © (8Bz)
= a(Avl) ® (By) + B(Avl) @ (Bz)

= aw(vl)y> + B‘J)(Vlaz)

Also, the other half of the proof can be similarly shown, as follows:

Y (aw + Bx, v2) = (A(aw + B2 ) ®© (sz)

]

(cAw + BAx) @ (sz)

n

a(Aw) © (sz) + g(Ax) ®© (BVZ)

aw(w,vz) + Bw(x,vz)

We may express these relationships in the commutative diagram shown in

Figure 2.4. It is shown in [1], using the contraction property of ten-

sors, tnat the mapping A 1is indeed a linear mapping, and is equal to

the tensor product of the two linear mappings A and B. That is,
A=A@8B,

where A and B are as defined previously. This tensor product A ® B

21
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is a unique linear map because of the property (3) of the tensor product,
which notes the existence of a unique linear map fo each bilinear map,
given the commutative diagram structure of Figure 2,4, An example will
clarify these relationships. We shall arbitrarily define the linear maps
A and B by actions on their basis vectors, and represent these linear
maps in the usual matrix form. We assume the following sets of basis

vectors exist for Vl’ Ul’ V2, and U2:

for V {e

108} 3
for U, , {fl,fz} ;

for U, , {hl,hz} .

We next define

A e

]
1
a2}
+
w
Hh

1 1l 2
A e, = 2f1 + f2 s
so that
-1 2
[Al= .
3 1
Next, we define
Beg=h
Bg,=h -h
so that
1 1
(Bl= .
0 -1
We now consider basis vectors for V1 ® V2 and Ul ® U2' Given

the above set of basis vectors for Vl’ Ul’ VZ’ and U2, we may use

22
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®
v, XV, =~ VvV, oV,
~N
A
[
U e U,

Figure 2.4 The Tensor Product of Two Linear Mappings
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the previous ideas on bases for the tensor product to construct the fol-
lowing bases: for Vl ® V2’

(o) © 815 ) © 8y &) © 8y ¢y O 8yl 3
and for Ul o U2'

{f, ®h,, f, & h

1 Shp £y ohy, £y 0h

1 f2 o hz} .

The reader will note that the ordering convention that was previously
adopted for the banis elements (that is, lexicographic ordering) is em-
ployed here. We can next construct X = A @ B by looking at the action
on the domaln basis elements.
A(el ® gl) s (A S B)(el ® gl) = (Ael) ® (Bgl)
- (—fl + 3E2) ® (hl)

a (--fl ® hl) + (31?2 ® hl) ,

e, © 8,) = (Ao B)(e ® 8,) = (Aej) © (Bg,)
= (-f; + 3£ © (b - hy)

© (*fl ® hl) + (fl ® h2) + (3f2 o hl) - (3f2 ® h2) )

)\(e2 ® gl) =2 (A @ B)(e2 ® gl) & (Aez) ® (Bgl)
w1 (2fl + fz) S (hl)

o (Zfl ® hl) o+ (f2 ) hl) .

A(ey & 85) = (A ®B)(e, ®g,)) = (Ae,) © (Bg,)
™ 2 F -
- (2fl N hl) - (2fl Q@ hz) + (f2 ® hl) - (f2 ® h2) .
This implies that the linear mapping XA = A ® B may be representad by

the matrix

S
o~
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-1 -1 2 2
0 1 0 =2

(MN=13 31 1l
0 -3 0 -1 |
This matrix can also be obtained by the following convention.

[(Matrix of A)ll (Matrix of B) (Matrix of A)12 (Matrix of B)]
(Matrix of A)21 (Matrix of B) (Matrix of A)22 (Matrix of B)

This is usually called the Kronecker product of two matrices [13]. With

the above convention, it is possible to verify the result for A ® B, as

follows.

- 1
1 1 1 1

-1 2
0 -1] 0 -1

A®B =

1 1] 1 1]

3 1
0 -1 0 -1]

S p—
-1 -1 2 2

1o 1 0 -2
3 31 1
0 -3 0 -1

The Kronecker product will be of much use when deriving the expres-
sions for the optimal controller in Section IV. In general, it is not nec-
essary that square matrices be used in computing this product. Given
(pxq) and (rxs) matrices, the Kronecker product of these two matrices
is defined to be a (pr x gqs) matrix. This can be easily seen as a
generalization of the above 2x2 case. We also note additional properties

of the Kronecker product [14].

(1) The Kronecker Product is associative, that is, (A€ B) ® C = A ©®
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(B ®C), where A, B, and C are matrices of not necessarily
equal size;
(2) (AB) @ (CD) = (A ® C)(B @ D). This is the factorization property
of the Kronecker product.
(3) A (B+C) =(AeB) + (A®C). The Kronecker product distributes

over addition of equal size matrices.

All of the above properties can be easily verified by using generalized
matrices and simplifying the result. Note,however, it is not generally

true that A ® B =B @ A,

A special case of the Kronecker product occurs when one of the ma-
trices in the Kronecker product is equal tc the identity matrix, denoted

by 1 where k specifies the size of the identity matrix. If we assume

k,
that A is nxn and B is m x m, then we may define the Kronecker
sum, A ® B, as [13]:

A®@B=A®l1l +1 @B. (2.10)
m n

As an example, we consider

3 4 1 2 -6

A= , B=]o 1 1

-1 2 3 -4 0

Then,
A®lm=[34] 10 0 3 0 o0 4 0 0
1 2lefo 1 0] =10 3 0 o0 4 of;

00 1 O 0 3 0 0 4
1 0 0 2 0 0
0 -1 00 2 0
0 0 -1 0 0 2

TR e - Tt - S
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1 eB=1{1 0 1 2 -6 1 2 -6 0 0 0]
n 0 1Jefo 1 1l=]o 1 1 0 o 0.
3 <4 0 3 -4 00 0 O
0 0 0 1 2 -6
0 0 0 0 1 1
0 0 0 3 -4 0]
Therefore,

(4 2 -6 4 0 0]

0 4 10 &4 0

13 =4 3 0 o0 &

A®B=17 9 03 2 -6|°
0 -1 00 3 1
(0 0 -1 3 -4 2]

A special case of the Kronecker summation in (2.10) occurs when A = B,
that is,

AeA=A01 +1 ©A.
n n

We shall find applications of the Kronecker summation idea when we
consider the derivation of the necessary controller expressions in the
next section. In order to illustrate partially how the Kronecker summa-
tion is relevant to system theory problems, we consider the following
situation [10]. Let us assume a linear dynamical system

X = Ax

where A : X+ X is a linear map and x € X, where X is a vector space
of finite dimension. Recalling the universal factorization property of
the tensor product, which allows us to express a bilinear mapping in terms
of the tensor product and a unique linear mapping, we have the situation
as depicted in Figure 2.5. The previous results have shown that we can
consider the linear mapping to analyze the system, since it is known to

be unique. Since we have already observed that the temnsor product is it-

self a bilinear function,

27
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(x®@x) =%x0x+x0%X

(Ax) @ x + x © (Ax)

(A @ lx) X @ x + (lx ® A) x @ x

]

[(A e 1x) + (lx @ A)] x @ x

(AoA) x©x .

Here, the equality x = 1xx was employed, where 1x is the identity map-
ping of the same dimension as X. One should note the significance of the
Kronecker sum term, A © A. We shall extend this concept as was applied
to a linear system to a nonlinear system in terms of the state variable x
and control function u. Since the basic principles involve series ex-
pancicus, we will expect to require higher order terms in the summation.
The simple example presented above will then be seen as a special case of

the complete s¢vstem description which allows for nonlinearities.

2.7 Symmetric Yensor Product

In this section, we present a brief look at the symmetric tensor al-
gebra. In order to understand fully this concept in terms of vector spaces,
it is necessary to first present a few of the ideas concerning quotient
spaces [10]}. Basically, the quotient idea allows us to separate a set
info two parts: that which is of interest, and that which is not. 1In
order to pursue this concept further, we recall the principal ideas of an

equivalence relation on some set S. Let E be a binary relation on

wn
M

that is, E dis a subset of S x S. We will denote E by the symbol

b

which is an equivalence relation on S 1f the following properties hold.
(i) reflexive, i.e., s = s for all s € §,

(ii) symmetric, i.e., ] = S, implies s, = s for all

2 1° S1»

28
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S,y € S,
(i4i) transitive, i.e., if s; H s, and s, z S4 then this implies
Sl = 33, for sl, 52, s3 € S.
An equivalence relation £ divides S into a set of equivalence classes,

S/(2) with each class containing elements that are equivalent to each
other. Information to be discarded is that which woulé otherwise distin-
guish elements in an equivalence class. If we assume that E 1is an
equivalence relation on S, then S/E (read "S modulo E") i: the set of
equlvalence classes. We define the projection operator, = as

m:S > S/E
with action

m(s) = s'

where s € § and s'

is an equivalence class in S/E to which s 1is
assigned. 1If we let f : 8+ T be a function with the property

2 1 £ =
s; E s, implies ‘(sl) f(SZ) '

then there is a unique function g : S/E + T, where T is a set, such that
gomw=f .

These relationships may be expressed via the following commutative dia-

gram, which is shown in Figure 2.6. This is the 'key triangle' that is

presented in [15]. The main idea in this presentation is that g is

unique for each f. The existence and uniqueness of this function g

is shown in [15]. In the algebraic literature, S/E is referred to as

a quotient set.

The next step in this sequence is the extension of these concepts

29
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Figure 2.5 Kronecker Summation Motivation

S - S/E
f g

Y

Sy, T

Figure 2.6 The Quotient Set Concept
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on sets to include vector spaces. Suppose V 1s an F-vector space,
and ¥V 1s a subspace of V. It is possible to define an equivalence

relation as follows: for eV and we W,

Vit V2
vy = v, if v, =V, +w .
The quotient set of the above discussion is replaced by the quotient
space V/W, which is also an F-vector space. If we define X as an
F-vector space and define the linear map
Q: V+X,
the projection 7 now becomes a mapping P : V - V/W. These relationships
may be expressed in the commutative diagram shown in Fignure 2.7. The
unique linear mapping
Q:V/W-+X
exists if and only if W < ker Q. From Figure 2.7, it is also evident
that
Q=Q-°P.
We now can extend these concepts surrounding quotient spaces to the
subject of symmetric tensors. Namely, we consider the following situa-
tion. We recall that the tensor product space U @ U has the following

set of basis vectors, given that a set of basis vectors for U is

{bl, bz,...,bm}:

R SR AR SIS T
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b2 ) bm ,
b2 ] bm ’
’ 2
(this is a total of m
b @b . basis vectors)
m m
We next define a linear mapping
T :Ue ,..09U>U® ... @U. (2.11a)
s 7\ /
V'
P %

This mapping is commonly referred to as the evmmetrizer [16] and is de-

fined by

1
T =;-!—Z, o (2.11b)

where o denotes a permutation of variables and the sum is made over all
possible permutations, with the result being divided by the number of
permutations. Basically, permutations of indices arise from the inter-

change of position of these indices.

First of all, Qe let Q@ be a finite set of arbitrary elements. We
defire a permutation on § as a one-~to-one mapping of Qm onto @, [12]
where Qm consists of m positive integers {1,2,...,m}. We let Q =
{kl’kz”"’km} be a set of elements ki and we let the permutation op-
erator ¢ be defined as

1 2 ceeeas M

Q
4

o(l) o(2) eevv.. o(m)
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Here, the first row specifies the domain of the permutation operator ¢
and the second row represents an image of o¢. As an example,

1 2 3

2 1 3
is one such permutation of 9 = {1,2,3} onto itself. Quite obviously,
there are ml! permutations for Qm' For the above example, we may list
all of the members of the image set as

{123, 132, 213, 231, 312, 321} .

As expected, there are 3! = 6 members in the set. Returning to the sym-
metrizer operator, we examine the case where dim U =2 and p = 3. The
symmetrizer mapping is

LI velveU+UeUeU.

The action on the basis elements of U @ U® U 1is

ns(b1 @ b! ® bl) = % (6(bl ® b1 ® bl)) = bl @ bl ) bl ,
ns(bl ® bl ® b2) = ns(bl ® b2 ® bl) = ns(b2 ® bl ® bl) =
% (b; @ b; ® b, + b, @ bl'® by+b; @b, @b, +b; @b, @b, +
b2 @ bl ® bl + b2 ® bl ® bl) =
% (bl ® bl ® b2 + bl @ b2 @ bl + b2 ® bl ® bl) ,
ns(bl @ b2 ® bz) = ns(b2 @ bl @ bz) = Trs(b2 @ b2 @ bl) =
% (bl ® b2 ® b2 + bl ®‘b2 e b2 + b2 ® bl e b2 + b2 ®b, @ b, +

bz ® b2 ® bl + b2 ® b2 ® bl)

1
3 (by @by @b, +b, @b, ®b, +b,

-1 -
“s (b2 ® b2 ® b2) =% (6(b2 ® b2 ® bz)) = b2 ® b2 ® b2 .

®b, ® bl) s

For the purposes of this discussion, we will want to consider the

case where p = 2, We have
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T (b, @ bl) = bl ® b1 R

+b2®bl) ,

1
m (b, @b) =5 (b, @b
m (b, @b) =3 (b b,
Trs(b2 @ bz) = b2 @ b2 .
Next, we define the projection = as follows:

7 :U®U=>U®I/ker LI

The projection operator has the following action on the basis vectors in

U e U:
'rr(bl e bl) = bl v bl ,
1r(bl ® b2) = bl v b2 ,
m(b, ® b)) = by VD, ,
1r(b2 @ b2) = b2 v b2 ,
where
bi = w(bi) .

‘

The wedge operator V used here is the symmetric tensor product, which shall
be defined shbrtly. If we express the relationships between m and L

in the form of a commutative diagram, we have the situation depicted in
Figure 2.8. Because of our earlier results we may conclude that there

exists a unique linear map B : U @ U/ke: Ty + U ® U with the property

If we still assume that the basis elements of the spaces being considered
here are listed in lexicographic order, then we may obtain the matrix

representations for L and m as
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Figure 2.8 Operation of the Symmetrizer
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and
[1 C 0 0
[f] =10 1 1 0].

0 0 0 1

Bere we note that the use of the brackets around a linear operator implies
its matrix representation. Since we choose the hasis elements for the
factor space U @ U/ker T, as images of basis elements under L then

it is possible to determine the matrix representation for B8 as

1 0 0

0 % 0 .
[B] = l .

0 E‘ 0

0 0 1]

It can be easily verified that

[v,] = [8][n]

as required.

A few comments are in order concerning symmetric powers of a vector
space [16]. If E 4is an arbitrary vector space, then a vector space
vaé\EVEv .. VE, (2.12a)
Vv
P

together with a symmetric p-linear mapping



QRIGINAL PAGE IS
Of PCOR QUALITY

ViEx..xE+VE (2.12b)
P

is called a pth symmetric power of E 1f the following conditions are
satisfied:
(1) the vectors V (xl,...,xp) generate VPE;
(2) if ¢ 1s any symmetric p-linear mapping of E x ... X E into an

arbitrary vector space F, then there exists a linear map f :

vPE » F such that Yy =f o v,
The property (1) means that all of the vectors generated by Vv form a
subspace of vPE which is equal to vPE. Property (2) is the universal
factorization property, and is expressed by the commutative diagram shown
in Figure 2.9. One notes the surprising similarities between the defin-
ition of the tenso: algebra that was presented in Section 2.1 and the
symmetric censor algebra presented here. As was done previously, condi-
tions (1) and (2) can be shown to be equivalent to the following single
condition:
(3) if ¢ dis any symmetric mapping of E x ,.. x E into F, then

there exists a unique linear mapping f : vVPE + F such that Y=

f ov,
It can be shown that the factor space U @ U/ker Ty in Figure 2.8 is
isiomorphic to the second symmetric power of U, that is to the space
U vV U. Redrawing Figure 2.8 with this change, we have the commutative

diagram shown in Figure 2.10.

We can next define the symmetric tensor product of two vectors &

and t, with s e U and t € U as
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Ep v »VPE
Y f
F
Figure 2.9 The Symmetric Tensor Product
T
vevu -3 U V U
T B

Figure 2.10 Wedge Product Isomorphism
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s vVt=mn(s®t).

i}

As an example, we will assume that dim U = 2, since we have previously

calculated [w] for this case:

10 0 offs;e]] [y ' \
svt=1|0 1 1 O sltz = Slt2 + sztl
0 0 0 1 sztl 32t2
[%2"2]

The reader will note that we have expressed the tensor product via the outer
or dyadic product rearranged as a 4-vector. The reasoning behind this step
will be explored in the following section. Returning to Figure 2.10, we

find that we may replace a tensor product

up é u @ u

L ®
A

u, (2.13)

e
4
p

with the linear operator 8 acting on the symmetric tensor product, that

is,
up = BGP N
where
u = m(u)
and
§p=\uVuV.. Vou .
/
\"4
P

As was previously mentioned, thils reduction to the symmetric tensor alge-
bra will be employed whenever we consider the concept of taking deriva-
tives of the tensor product, a topic which is considered in the following

section.
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2.4 Derivatives

In this section, we wish to examine a few of the concepts that will be

needed when we derive the results for the various controller terms in Sect-
ion III.In particular, we will consider the concept of taking a partial
derivative of a tensor product, which will be needed to solve the funda-
mental equation of optimality that we are using - the Hamilton-Jacobi~-

Bellman equation.

Our approach in this section is as follows. First, we present the gen-
eral definitions of total and partial derivatives and show how these defi-
nitions can be applied to a very simple case. These ideas are then extended
to the case in which we are particularly interested, which involves the use
of the chain rule for abstract derivatives while considering several copies
of the veccor spaces X and U. By the way of introduction, we may formal-
ly define the total derivative as follows [17]. If we let V and W be
normed linear spaces with U open in V, & mapping f : U~ W is differ-

entiable at p € U if there exists T ¢ L(V,W) so that for p + x € U,

x € V, and for ||+|| an appropriate norm on V and W,

m |[£(p+x) - £(p) - T() || -
x+0 BE

0. (2.14)

If such a T exists, then T is unique and called the total derivative

of £ at p, denoted by
DE(p)x = Tx . (2.15)

Also, suppose we let V = Vl X o, X Vn’ X = (xl,...,xn) e V and Ui

open in Vi and consider fi : Ui -+ W with action xi - f(pl""’pi—l’

X, If fi is differentiable at p; € U we call its

l’ pi+l"",Pn)- i’
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derivative the ith partial derivative of f at p, and denote it by
Dif(p), pP € Ul X ses X Un. Since we will be concerned primarily with the
problem of taking derivatives of the tensor product, we first examine a
simple case and note the general concepts involving derivatives. We
define the mapping f as follows
f:XxU+XeU
with action £f£(xX,u) = x ® u, where
xe€Xand ueU.
Provided that the mapping f 1is differentiable, the total derivative of
f 1s a linear mapping belonging to L(X X U, X @ U) and is defined as
(17]

- — 1 - - I
Df (x,u) (Ax,Au) = lim-?[f(x + tAx, u + tAu) - f£i(x,u)] , (2.16)
t->0

where Au € U and Ax € X are the incremental variables while uedU

and x ¢ X are the expansion points. For this particular £ mapping

as defined above,

DE(%,1) (Ax,Au) = lim S[(X + tAx) ® (a + thu) - (% @ )]
g0 ©

= 1im-i[§ @ u+ X @ tAu + tAx ® U + tAX ® tAu - X © G]
t
0 -
=x ® Au -+ Ax ® u . (2.17)

Next, we shall be concerned with the idea of partial derivatives. First
of all, we can define two partial derivatives for this particular case -
a partial derivative with respect to x and also with respect to wu.

We will denote these by Dx and Du’ respectively.

D_£(x,5) (Ax) = lim T[£(k + tbx, W) - £(5,0)]
00 b T
= 1im-E[(x + tAx) ® u - x @ u]
£+0
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=1im%-[§@ﬁ+tAx®G—§eG]
t+0
= Ax ®@ u (2.18)

Similarly, the partial derivative with respect to u is computed as

D £(%,3) (ax,bu) = lim =[£(X,0 + thu) - £(%,u)]
u t_>0t
= lim S[% @ (4 + thu) - % © U
t
00 5 o
= lim-z[x @u+x® thu - x © u]
£+0

x @ Au . (2.19)

If we examine the total and partial derivative expressions, it is possible
to observe the following concepts. Immediately, it is obvious that the
total derivative is nothing more than the sum of all of the possible par-
tial derivatives. This is shown formally in [18] for the general case.
Secondly, we can make the following ogservations:

Df (x,u) (0, Au)

[

Duf(E,G)(Au) (2.20)

and

Df (x,u) (Ax,0) Dxf(E,G)(Ax) | (2.21)

The results that we have presented so far are adequate to study only
the simple mapping f(x,u) = x ® u., We must next consider the concepts
necessary in order to take derivatives when there exist multiple copies
of the spaces X and U, that is, mappings of the form

f : x x U .‘)'\X @ LI e XjQ\U & .« o0 ® U/

v \V4 .
P q

In order to examine the general case as stated above, we will need to
consider certain concepts involving the chain rule in abstract differen-

tiation [17]. We assume that Ul is open in V

and g : U2 -+ W for Vl’ V2,

1’ U2 is open in Vz,

W Banach spaces. Let p ¢ Ul

f Ul > UZ’
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be such that f 1s differentiable at p and g is differentiable at

f(p). Then g o f : U, + W is differentiable at p and

1
D(g o £)(p) = Dg(f(p)) o DL(p) . (2.22)

We will assume that h = g o £, This chain rule for abstract derivatives
is used in [19] to derive the result that is needed concerning partial

derivatives of the tensor product. We will assume that X and U are

vector spaces such that h : X x U~ (X ® X) @ U with action h(x,u)

X ® x @ u, The mapping h has a derivative at some point p = (x,u)

m

X
(=

X x U, where ¥ e€X and u e U. Also, we define the mapping f : X

+> (X ® X) x U with action f£f(x.u) (x @ x,u) and the mapping g : (X @
X) xU~»> (X®X) ©U with action

g(x® x,u) =x®x@u.,
Pictorially, we have the commutative diagram displayed in Figure 2,11.

We also assume that £ i1s differentiable at p and g 1s differentiable

at f(p). Then,

»
@
(=3
+
ni
©
1
[
=1

th(E,G)(Ax) = Ax ® X

[
wi
®
L
@
E»

Duh(E,G)(Au)

We will especially be interested in the partial derivative with re-
spect to the control input, u. If we next allow the mapping h to
assume the following gemeralized form, we can extend these ideas pre-~
sented above to include this case. First, we assume that

h:XxU>Xe .,..@Xe@eU®,.,, 98U

\____V,___/ \-__“V_'__/ ,

P q

with action
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X xU h

o X @ XU

v

(XoX) xU

Figure 2.11 Chain Rule Concept
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h(x,u) =\x @ ... © x}@\u ® ... © -J/. Q ALITY
\4 \'
P q

We can compute the required partial derivative as

Duh(i,ﬁ)(Au) =X@...9%0 (AJu®u®,,.8u+u@lu®ue®,.,., ®u
p q-1 q-2

+ ... +0@U®... 8 u® Au)
A4

q~-1

= ¥ @ p(@%) au) . (2.23)
This is the result that we will need in Section III1 to solve the necessary
minimizatlion problem. Here, as was previously noted, we have assumad
that x and u are expansion points and Ax and Au are the necessary
incremental variables. 1In order to simplify the notational aspects, we
will drop the '"bar" notation when we derive the controller results and

simply assume that our point of expansion is (x,u).

Since we have presented some introductory results concerning the
ideas surrounding the symmetric tenser product, we now consider the par-
tial derivative operation operating on the symmetric product. We con-
sider the following situation:

D, ILG® @ uD)I(aw)

where L 1s a linear map operating on the tensor product xf @ v, If
we apply the chain rule for abstract differentiation plus the fact that
the derivative of a linear map is the linear map itself, the partial
derivative operator may interchange with the linear map, L, which

provides
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L Du[xp @ uq](Au) ¢ Iy

=L x* ® D(u?) (auw) . (2.24)

We next substitute
where it is recalled that B8 is a linear mapping and
wl=uvuv..vu,.
\V4
q

Equation (2.24) then becomes
LI (P @ p(gu?) (Au)]

= L[xP @ aD(u%) (au)]

= L[x® ® B(AU VU V +v. V U+ TV AE VUV eun VU,+ ous
q-1 q-2
FOV ... VoV AR . (2.25)
q-1

Next, we will illustrate the specificruses of the symmetric tensor
algebra structure. It can be shown that all of the terms inside the par-
entheses in equation (2.25) above are equal. Consider the case where
q = 2 as an example. Equation (2.25) becomes

LixP @ g(Au v u + u v Aw)] . (2.26)
We have previously shown how to compute the symmetric or wedge product
of two vectors. Using this technique with dim U = 2, we obtain

Aulul

and
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u Vv Au - ulAuz -+ uzAul .
buzAuz ]
Clearly,
AuVU=auvVau,
Therefore, equation (2.25) now becomes
aLlxP o 8371 v aW)] (2.27)

as there are q identical terms that are added in (2.25). If we recall

that

U= m(u)
and

AU = m(Au)

then (2.27) becomes

qLIx® ® B(u(u) v m(uw) V ... Vv w(u) v m(Au))

v
q~1
= qL[xp @Bmr(u®@u®...® u @ Au) ] (2.28)
a1
= qL[xP © (e ue ... U0 Au) ] (2.29)
q-1
= qLlx® o 1 (8T e aw)] . (2.30)

In obtaining equation (2.29), we note the composition

was used, as was shown in Figure 2.10. Also, we used a property of the
projection in order to obtain (2.28), namely

n(al) v w(az) V... Vv n(an) = 1r(a1 ®a, s ... 9 an)



b i

ORIGINAL PAGE IS
OF POOR QUALITY

for 8yyeveya € U.

Basically, we projected into the symmetric tensor algebra in order
to symmetrize the derivative result, which allowed us to equate all of
the terms jn the summation in equation (2.25). After this operation has
been accomplished, we effectively return to the (nonsymmetric) tensor al-
gebra with the Au term in one fixed position. 1In the following section
when we begin the derivation for the optimal controller terms, we will
show that the terms that we wish to differentiate partially are of the
form presented in (2.24). We will be interested in showing that certain
coefficient terms will go to zero for all values of Au, which is why

these terms must be "factored" out of the expression that is of interest.

2.5 Discussion

In this section, we have presented the mathemstical preliminaries
that are necessary to comprehend the remainder of this work. Each of the
concepts presented so far will be of comsiderable importance whenever we
consider the optimal regulation problem in the following sections. Since
we will be presented with a minimization problem, we will be particularly
concerned with the procedures of partial differentiation with respect to
a vector variable. Not surprisingly, the terms that we will be required
to differentiate will be expressed via the tensor product, hence, the
reason for presenting the material contained in Section 2.4, which is

where many of the ideas in the chapter were brought together.

Thus far, our treatment of the subject matter has been highly theo-

retical and consistently algebraic in nature, with no reference at all to

48




systems cuncepts. These concepts are presented in the following section,
and will appear very similar to some of the classical system theory with
which the reader is undoubtedly familiar. The difference, of course, is
the use of the multilinear algebra in order to describe a system, a topic

that 1s presented in the first portion of the following section.
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III. A NONLINEAR CONTROL PROBLEM

The principal idea of this section is to demonstrate how the concepts
presented in the previous section,on the subject of tenmsor algebra, can be
applied to actual control problems involving nonlinear systems. The under-
lying theme to most of the results presented here is the series expansion
of a function about a given point. We begin the section with our basic as-
sumptions concerning the fundamental systew description. Having defined
these preliminaries, we present series expansion ideas as pertaining to
the eventual solution concepts - that 1s, in terms of matrices operating
on basis vectors. A method of calculating the qu system matrices via
Taylor's series ideas is also presented. The next section focuses on the
exact procedures that are necessary to derive the needed results, which are
the controller gain matrices. By construction, this controller is optimal
in nature, satisfying the Hamilton - Jacobi - Bellman (HJB) equation of op-
timality. In order to perform the necessary minimization, we shall use the
concepts presented in Section IIconcerning the partial differentiation of
the tensor product with respect to the control variable u. The recursive
nature of the problem is explored, giving rise to solutions for the con-
troller terms as well as to terms in the optimal value furction. The last
portion of the sgection provides a partial verification of the derived re-

sults as the Linear-Quadratic or LQ problem is verified for the low order

terms solution.
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3.1 System Description [1]

In order to proceed with the system representation in terms of tensor

expansions, it is necessary to begin with the basic definition of the mth

tensor power of a variable. We define
P _ ;
u’ s u@ue... @ u . (3.1)
A4
p copies

The class of nonlinear systems that we will consider are those which can
be desc~ibed by an ordinary differential equation of the usual form

x(t) = £(x,u,t) , t € [to,tl] . (3.2)

n ., m
Here, we assume that x(+) € R is the vector of states and u(*) € R
is the vector of controls. The systems to be considered here may be

represented in the following generalized form:

x(6) = J A (&) ®P() eul(e) , prg21. (3.3)
p,q P4

The qu terms are linear maps, defined as
A ®HP e @ +1r", (3.4)
Pq

where

m,p A —m m
(R) —& ®ocu®R/a

Vo

p copies

We next define the performance index, J, as
t
1 1 1
J = E-M(x(tl)) +-§ J L{x(t), u(t), t)dt , (3.5)
t
0
where M(x(tl)) and L(x(t), u(t), t) are positive convex functionals,
and L(x,u,t) is assumed to be continuous with respect to t. Also,
if t

1% it is required that the system is asymptotically stable in

51




ORIGINAL PAGE 13
OF POOR QUALITY

a sufficiently small neighborhood of the origin. This is the infinite
time regulation problem, which can be considered as a special case of
the finite time regulation problem that we will consider. Continuing,'

we agsume that the penalty term
is given by

} k '
M(xf) = E M, X k=22. (3.6)

The Mk terms are defined as the linear mappings

M EHE » R . (3.7)
We let L(x(t), u(t), t) be given by
L) = L Q (@ W ed , j+kz2 (3.8)
i,k
where
Q. () : @ e @ R . (3.9)

It is now necessary to define the set of admissible control functions
as those control functions which can be represented in the usual form

of a power series in x, that is

uGet) = ] K (©) x) . i=1,2,3,... (3.10)
3
where
R, (e) : &I - g% . (3.11)

The Kj(t) terms follow the previous convention of being linear maps.

Given the preliminaries presented in this section so far, we are

prepared to state the basic (ptimal control problem, for which a solution
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will be constructed in the next section. We desire to find a suitable con-
trol function u(t) such that for all initial conditions g belonging
to some open neighborhood of the origin of Rn, the functional J (per-
formance index) is minimized. If such a control function is denoted by

u*(t) and u(t) is any other control function, we require that

J(xo,u*) < J(xo,u) .

This is to be satisfied for all XO in an open neighborhood of the origin.
It is shown in [1] that there exists an open neighborhood of the origin
such that for all initial conditions in this open neighborhood there exists
a u(t) that can be represented in the form of a power series as ex-
pressed in (3.10). Moreover, this solution i1s unique if the solution to
the LQ problem is unique., The starting point in the development of this
control function will be the Hamilton - Jacobi - Bellman equation, or HJB
equation. It is shown in [20] that the HJB equation 1s a necessary con~
dition for optimality. Before presenting these results, however, it is
first necessary to note a few additional principles surrounding the op-
timal control problem. We define the so called cptimal value function

V(x(t),t) as follows:

V(x,t) = min J(x(t),u(s),t) , tpstst; , se [t,tl] , (3.12)
uefl

such that
x = f(x,u,t)
is satisfied, with initial condition vector
x(to) =X,

This function is called the optimal value function because it is equal to
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the minimum value of the performaace index J on the interval [to,tl].
Also, the set § contains control functions that are expressed as in
(3.10), that is,

a(e) = DR ®(®) L 1 =123, . .
E

It can be shown that the optimal value function V(x,t) solves the

following functional equation [20]:

"—é-

min [

uefl

V(x,t) + L(x,u,t)] =0 . (3.13)

This is the fun;tional form of the HJE equation. It also can be shown [1]

that the optimal value function has the following properties:

1) 1If x(to) =Xy = 0, then V(x,t) is identically zero and u(t) = 0;

2) therz is some open neighborhood of the origim in which V(x,t) can
be represented as a power series in the state variable, x. The first

term in this series is the quadratic term, so we have

VGeot) = V(0 x5, k= 2,3, (3.14)
K

3) the boundary condition V(xf,tl) = M(xf) must be satisfied.

Property 1) listed above is really not surprising if we consider the ini-
tial conditions as some perturbation from the origin and the state x(t)

as being an error term. If this perturbation were not present, there would
be no need for any correction mechanism and the control function would

be identically zero. Property 2) is very important because it assumes

that the optimal value function V(x,t) is available as a power series

in the state variable, x, which is similar to those assumptions made for

the control function and also for the performance integrand L(x,u,t).
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The underlying érinciple surrounding the series expansion of the
various functions involves the summation of linear mapping terms oper-
ating on their respective argument vectors. For example, we assumed
P o 9

X = y A x u

p;q Pq
as the given system description. We need to examine the construction
of the argument vectors xP @ u? which will in turn provide information
concerning the sizes of the matrices that represent the linear maps qu

For the purposes of this example, we assume that dim U = dim X = 2. As

an example argument vector, we consider the temsor product

XxX® u,
where
u = [u1 UZ]T
and
X = [xl XZ]T.

In order to form the set of basis vectors for X ® U, we consider the

outer or dyadic product qu.

qu = Ix fu, u ] =[=x,u X.u
1 1 2 11 12

X X, u X, u

2
If this 2 x 2 array is considered to be a 4-dimensional object (that
is, a 4-vector) with its elements ordered lexicographically, then it
may be listed as the column vector

T

X, u, X,.u x2u2] .

(= 172, *a%

1M1
Alternatively, we can appeal to the bases discussions of the previous

section.
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If similar calculations are made for the remaining sets of basis vec-
toers, we can formulate our system description in terms of matrices and
vectors. Again, we are assuming, for the purpose of this illustration,

that dim U = dim X = 2, as well as a lexicographic ordering of the basis

vectors,
}.c [ ] [ ] x [ ] [ ] u ' . L] L] * x u
1f_ 1, 1. 11y,
xz . L xz [ L[] uz . . * L] xluz
X, U
Ao 801 A 21
XU
S . [ %272
e L] . * x 2 L] L . L ] u 2
Lok o]+, (3.15)
1 ] L L] L] xlxz . L] . L2 u1u2
xle uzﬁl
x22 u22
A0 . 802 .

Similarly, we can express the series expansions for V(x,t), L(x,u,t),

u(t), and M(xf) as

- 2 — —
V(X,t) = [- . . c] xl -+ [- . . . . - . a} rx13 + . ,
2
VZ Alxz V3 xl xz
*21 x1%2%)
x 2
2] )
-x23 | (3.16)
L(X u t) = [o . ° n] Px 2— + [o ° . -] r-u T -+
s Uy 1 1
0 *1%2 Q2 Uiy
szl uzul
X 2 . u 2
L2 | 72|
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(3.18)

(3.19)

We should emphasize once again that the representations of these linear

maps as just illustrated are inherently dependent upon the particular

ordering convention that is employed for the basis elements.

We will

consistently employ the lexicographic ordering convention in all discus-

sions.

It also would be useful to relate the matrices that we have

defined here to the "usual' matrices found in the classical optimal

control problem.

In the traditional approach, a quadratic L(x,u,t)

would be described as

L(x,u,t)

xTQx + uTRu + xTCu .

In order to show the relationship, say, between the
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the Q20 vector that appeared in (3.17), we assume that dim U = dim X
= 2, and that Q is represented by
Q=1d1; 2
921 922

Then,

X

xQx = [x; x, ] [a;; 95,77[*;

X

921 922 || *2

2 2
= lag; %7+ qp, %) X, + 4y Xy X F qyy X)7]

= [ Ay 9,7 9,1 [ % ?
931 912 921 922 1
X%
X%
2
2
= Qyp X

We can similarly determine the components of the other Qij terms as
needed from their corresponding matrices in the classical optimal control

problem.

Thus far, we have defined the qu system matrices, but have not
specified how these matrices may be obtained from a given nonlinear
system. Basically, there are two methods by which these matrices may
be obtained. The first is simply obtaining them by inspection. Unfor-
tunately, this method can only be applied where the variables x and u
do not appear as arguments for other functions. The following exaﬁple
illustrates this ﬁethod. We assume that we are given thé system
2

+ 2x,u, - 5% + x,u

= 3x; + bu, 2% 1 1Y% »

)




L) 2
x2 = -ul + xl —.2ul + 7u,” + u.u, .

We can calculate the system matrices by inspection.

-
3 0 X 0 4 u 0 1 2 0 x.u
) 1, 1, 11,
1 of |x, -1 of |y, 0 0 0 off=xu,
A0 Ao1 A1 Xou1
5 0 0 o} [x.2] 00 0 0O 2
1], 1
0 0 0 O xlx2 -2 1 0 7 ulu2
A0 X% Ago uyly
x2 uz
! L2 L2 ]

For systems where the vafiables x and u appear as arguments
for other functions, we must use the other approach, which involves a
Taylor's series expansion of a function in two vector variables. The
theory behind this concept is discussed quite extensively in [1] and
[16] and involves the traditional Taylor's series approach but developed
in terms of vector-valued tensors and the contraction operator. Another
approach that defines the series expansion form in terms of tensor pro-
ducts may be found in [9]. The details of these methods are not really
relevant to our results here, but the ideas surrounding the definition
of the various system matrices are quite important. For the purposes of
this example, we note that we are still assuming that dim U = dim X = 2,
The qu system matrices can be computed via the partial derivative op-

eration, as follows:
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afl afl afl afl
AlO - axl axz , Aol - Bul Ju
3f2 af2 afz 353
9x X du du
1 2 1 2
- - (xo,uo) - - (xo,uo)
2 2 2 2. 7]
“Effl ] fl ] f1 3 fl
A - axlaul Bxlauz axzaul szauz ,
H 32f 32f 82f Szf
2 2 2 2
Bxlaul axlau2 3x23u1 axzau2 (. X
- 41 (x50,
.2 2 2 2.1
9 fl ] fl ) fl 3 fl
_ 1 2 9x%.,9%, 09xX,9X 2
A20 =3 axl 172 2 71 8x2 .
2 2 2 2
3 f2 3 f2 ] f2 P f2
Bxlz 8%, 9%, 9x,3%; 3x22
- 1 (xn,u0)
0’0
[ .2 2 2 2. 7
) fl 9 fl 9 fl ] fl
_ 1 2 9du_du, Ju,du 2
Byp = 5| oy 172 “%2°%1 au ,
2 2 2 2
) f2 3 f2 9 f2 3 f2
aulz 8u18u2 3u28ul 8u22
- (xo’uo)

The other values of the Ap system matrices that are needed (depending
on the problem degree) can be calculated similarly. The point (xo,uo)

is assumed to be the expansion point. An interesting feature regarding
the above way of calculating the system matrices is how the sequence of
indices increases lexicographically from left to right in each row. This

feature is, of course, basis dependent.

One of the concepts surrounding the HJB equation is the idea of
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minimization. This minimization will take place after appropriate sub-
stitutions for V(x,t) and L(x,u,t) are made. Since we are presented
with a function of two variables, the control u and state variable x,
we will perform the minimization operation by taking the necessary partial
derivatives and setting the result to zero. As we shall see, this will
involve the concepts of Section 2.4 where we examined the possibility of
taking partial derivatives of tensor products of two variables. We also
note that the particular type of control functions that we desire are the
so called analytic feedback controllers [l]. This requirement is quite
important in obtaining the final solution. Toward this end, we begin the

derivation of the controller expressions in the next portion of this

section.

3.2 Derivation of Controller Expressions

In this section, we show how to derive expressions for the controller
as a function of the system description and the performance index terms.
The solution will be constructed in a recursive manner by solving the HJB
equation for the unknown coefficient matrices

v (8 , k=2,3,...
and

Kj(t) , j=1,2,3,...

such that the boundary condition
V(X(tl),tl) = M(x(t;))
is met. Beginning with the HJB equation

min [E%-V(x,t) + L(x,u,t)] =0 ,
uef
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we first examine how to compute the time derivative of the optimal value
function, V(x,t), where we recall from (3.16) that V(x,t) can be ex-

pressed in s::ies expansion form as

2, o .3
V(x,t) = sz + V3x Fovee e
Therefore,
d 2 3
rry Vix,t) = sz + V (x®ex+x@x)+ V3x + V (x @ x©x
+XO@X@X+XxO®XO®X)+ ... (3.21)

because of the bilinearity of the tensor product and using the ordinary
product rule. In general, we note the movement of the % then from left

to right in th: summation and express the general result as

. k
-a%V(x,t) ZV(c) J x@x®..x®k0x® .., 0x
k=2 j=1 v

-1 k=]
copies copies

[-<] . k

+ ) V() x . (3.22)
k=2

We now examine the substitution for the X terms, namely

X = Z qu x @ o , p+tqz1l.
P4

Making this substitution, and including the expansion ter-- for L(x,u,t),
we arrive at the expression in the HJB equation that is tv be minimized

with respect to the vector variable u, namely

%? V(x,t) + L(x,u,t) =
X Vk(t) Z cee @ x @ ( f A %P e uq) ® ® x, + z V () x
k= A% pq \———v————-—/
j=1 k-3
copies copiles
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+ ] q *x eud, (3.23)
m,n
where mtn 2 2 and p+q 2 1. Recalling the various properties of the

Kronecker product outlined inSection II we may proceed with the simpli-

fication. Equation (3.23) then becomes

e k . . .
¥ v, (t) ) (J,XJ"1 @A ® lxk—3)<x3'l o (x° @ ul) e x5 )
k=2 =’ pyq Pa A
e k m n
+ 1 Vv x + ) Q x eu , (3.24)
k=2 m,n

where we define the multiple Kronecker product of the identity matrix

lxk—j as

15327 o 1L e...01 .

X Lx

—
k-j copies
It would be very advantageous to be able to alter the ordering of

the terms in the &vove expression and group the xj-l, xk~3, and x*

p+k-l[l6]. However, in order to accomplish

terms to obtain a term x
this, it will be necessary to introduce a new operator. We define the
permutation matrix in a slightly mecdified manner from the definition in
[21], but with similar results. Let
¥ Peouh) P Toulex, (3.25)
Pq
where

r<p.

If we make this substitution in equation (3.24), we have

< y(x,t) + Lix,u,t) = E v, (t) E e =l e a o1 FIygkd
H ¢ ? 9 -
dt k=2 k j=1 p,q X Pq X Lq
e ul) + T v (£) x5+ y o xTeu", (3.26)
& k mn '
k=2 m,n

e CRTT ¥ P G ) T )
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where we define the index 2 as

Also, we note that qu (r=0) 1is trivially tle identity matrix, of dimen-

sion equal to the dimension of

Xe.,. @ X/G ve .., U
Vv "2 ,
L q
which 1s equal to
n2 » m?

for dim X =n and dim U = m.

An example will be useful in observing the action of this permutation

matrix. For the purposes of this example, we shall assume that

k=2,

p=1,
and

q=1.

" Then, we have, from (3.26)
1 2 2 )
V2 [(All ® 1X) 821 x° ® u+ (lx ® All) (" @ u)]

~ 1 2
=V, [(aye1) sy, + (A, ea)lx 2u.

In general, the S;q operators are linear mappings, and are represented
in matrix form by a np . m3 square matrix, where dim X =n and dim U
= m. These matrices have a single "1" in each column and basically re-

order the listing of the elements in a particular basis vector. For ex-

auple, Sil can be represented as
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0010
(5,1 :
0100
00 0 1

For higher order 'p and q, there is an ambiguity that must be resolved

1
before we can continue. As an example, we consilder the operator 821,

with action

1

2 -
21 (x" @u) =xQ@ue=x.

S

In matrix form, we have:

|
1
j
1
}

1000000 0| [xxu X U, X

00100000 xlxlul xlulxl

17172 1712

01000000 X X u X u X

' 17271 17271

00010000 X X"u X u-x

17272 |= 122

00001000 xzx u1 xzulxl

00000010 x xlu X ulx

212 212

00000100 x?xzul xzuzxl
_p 0000O00O l_ _¥2x2u2_ _xzuzxz_

The ambiguity arises in the above example in the construction of rows 2
and 5, as well as rows 4 and 7. We shall adopt the convention thacr the
X vector componenty will remain in the same order whenever the tensor
product is reoraered. Thus, in row 2 of the above matrix, we choose the
product xlxznl to equate to xlulxz, rather than the product xleul.
This convention will be consistently employed throughout the remainder

of the work.

Now that we have clarified the necessary issues, w2 are ready
to proceed with the solution. We recall th#* the first step in solving

the optimal regulation problem will be to c.«*#.-ate
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D [E% V(x,t) + L(x,u,t)] (Au) =0 . (3.27)

It is necessary to consider what happens whenever equation (3.26) is par-
tially differentiated with respect to the control variable u. So that

we may differentiate term~by-term, we shall first list a few of the ini-
tial terms in (3.26):

Ly, t) + Lexu,t) = Vx> + V {(A, ® A )x> + [(A. ® 1)ST + (1 @A )]
dt 2 2°10 10 0l x’ 711 X 01

1 2 1
x®u+ [(A; @ 1)8, + (L ®a)]x" @u+ [(A, ® 1)), + (L @4
3

02)]
3
+ V3{A10 & AlO ) Alo)x +
2
® AOl)]x @ u +

2 3 .
XxX@u + [(AZO ® lx) + (lx ® Azo)]x R V3x
1 2

® lx)S21 + (lx
2

2.2
[(ag) @ 1,708, + (1, @ Ay

2,.2 1 3
[(A11 ) 1x )33l + (1x ® A,. ® 1X)S31 + (1x ® All)]x @u+ ...+ ...

11

+ Q02 u2 + on xz + Q11 x@u-+ ... . (3.28)

In listing these terms, we have used the Kronecker summation that was pre-
viously defined in Section II that is,

A®B é Al +1 ©B,
m A

where A is % x & and B is m x m, This sum is well-defined because
A ® lm is an fm X &m matrix as well as lz ® B. By using this defini-
tion, we can write, for Cn x n,
Ael 1 +1 @Bel +1 1 ©C¢C
m n 2 n L m
= [ ® [+ ® e
(A lm + lz B) ln + lz lm C
= (A®B) el + (1 1) eCC
n L n
= A®B®C.
This is usually called the multiple Kronecker summation [1] and can be

viewed as an extension of the normal Kronecker sum.

If we recall the process of partially differentiating linear map-
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pings operating on tensor products that was outlined in Section 2.4, we
can differentiate (3.28) term by term:

D, {Vz[(AO e 1 ) sl 4 (1x ® AOl)] x ® u} (Au)

11
= [(a;, 1) 311 + (1 @ Ay)] x @ tu,

D, [Qll x ® u] (Au) = Qll x @ Au ,

and

2
D, [Qy, "1 (4w

= q,, D(u*) (4w)

= 2 Qo2 (u @ Au) .

If similar calculations are carried out for the remaining terms in (3.28),

we may list the result as follows:

u [E% V(x.t) + L{x,u,t)] (Au) = {2 Q2 s (K @ 1 ) + Qll

v, [, © 1) s1 + (1 A )]} x e au+ {2Q), T, (R, ® 1)

+ 3 Q03 (K ® K e 1 ) + 2 le [1 ® m (Kl ® lu)] + Q21 +

L1
V2 [(All @1 ) 521 + (1x ® All)] + 2 /2 [(A02 ® lx) 515 + (l ® A 2)]
1
[1x ® T (K1 @ lu)] +V3 [(A0 ® 1 ) 821+ (1x ® AOl ® 1 ) 821
2

In order to clarify the origins of the terms listed in equation (3.29),
refer to Figures 3.1 and 3.2, which show the original terms of equation

(3.28) and their values after differentiation.

The HJB equation thus far has been sclved for the optimal control,
which can be expressed as a function of x and t. We may write

u*(x,t) = ) K% (t) <, 3=1,2,3,... , (3.30)
k|

where u#*(x,t) is the opﬁimal control. If this substitution is made,
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the resulting equation is (3.29). We will suppress the asterisk notation
and simply note the optimal gain matrices as Kj(t). A few comments are
in order concerning the multiple tensor product of the control vector
when the substitution (3.30) is made. We will first consider the product

u®u,

[l
®
[
It

T 0 x') k() =)

G4k
L %50 e x0T

Likewise, the general form is therefore

jl+j2+...+j

uf = ) (K, (£) @K, (t) ® ... @ K, (£)) x P, (3.31)
j ’j 9""j Jl J2 Jp
1°°2 P

By using these techniques and substitutions, it is possible to obtain

equation (3.29).

The factored form of equation (3.29) presents a possible method of
solution. We desire that this entire expression be identically zero

for all values of Au. We can express the tensor products x @ Au and

2 ,
x° @ Au in matrix form as

Xl Au |, Xo Au .,

For the case where dim U = dim X = 2,

7&1 0-1
v = 0 x1
l— s
xz 0
0
[° F2
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and

Therefore, for an identically zero result, one of the requirements is
that

1 -
{2 Q, Tg (Kl @ 1)+ Qq *+ Y, [(AOl e ;Lx)sll + (1 e AOl)]} Xy = 0.(3.32)

Since the above quantity that multiplies X1 is a row vector with four
components, the general form is
[ 7 =
[Al A2 A3 A4] Xy 0 [0 0],
0 E3]
X, 0
0 %2
or
Al A3 X ] 0
3
A2 A4 X, 0

which implies that
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since Ai is independent of x. This means that our requirement reduces

to

1 -
2 Q02 Tg (Kl ® 1u) + Q11 + V2 [(AOl @ 1x)s11 + (1x @ AOl)] =0 . (3.33)

It is possible to extend this reasoning to include terms of higher

order. We can express the tensor product xz ® Au in matrix form as
Xo Au .
This means that we must require
{29y, g Ky @ 1) +3 Qs Ts Ky @Ky @1) +2Q, [Iom, (K e1)]+
1
Qp * VY [y @18y + Qg e apl+
1
2 V2 [(A02 @ lx)S12 + (lx ® AOZ)] [1x @

R @ 1)1 +

s
2

1

2, .2 1 =
V3 [(AOl ® 1x )S21 + (1x ® A, ® 1x)s21 + (1x ® AOl)] Xy = 0 . (3.34)

01
The above quantity that multiplies Xy is a row vector with eight com-~

ponents, which can be represented as

[Bl B2 B3 B4 B5 B6 B7 B8] 'kl 0 17 =([0 0]

0 xl2

XX, 0

0 XX,

X%y 0

0 X,Xq

x22 0

p x224

Equivalently, we may write
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Bl B3 B5 B7 xl ) 0
]
32 B4 B6 B8 xlxz 0
x2%q1
2
| ¥2

which implies a sufficient condition of

B, =0 , for 1i=1,2,...,8 .

In order to show that the ahove condition is also necessary, we would
need to answer questions regarding symmetry and the image of a bilinear

function. Although the 3, components above are independent of x, we

i

cannot argue that it is necessary that they be zero because X @ X can-
not be made arbitrary. Therefore, we will proceed on the basis of a suf-

ficiency condition, as proving that the condition 1s necessary is beyond the

scope of this work. Since one solution is for Bi = 0, we have

2 Q02 g (K2 ® lu) + 3 Q03 Ty (Kl ® Kl @ 1u) + 2 le [1x-® g (K1 ® 1u)] +
1 1
Q21 + V2 [(All @ 1X)S21 + (1x ® All)] + 2 VZ[(AOZ ® 1x)s12 + (1x ® Aoz)]

p 2..2
[1x @ mg ‘Kl ® 1u)] + V3 [(A01 ® 1x )S21 + (lx ® AOl
2

(lx @ A01)] =0 . (3.35)

1
® 1X)S21 +

It is possible to make similar arguments for the remainder of the coef-
ficient terms that multiply X" ® Au, m = 3,4,..., 1if the temnsor product
is expressed in matrix form as was done for m=1,2 here. For higher order

cases, it is only possible at the present time to show tne sufficiency

condition.

Thus far, we have only considered the partial derivative equation of

the optimal control u*(x,t). We also must require that [20]
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4

s V(x,t) + L(x,u*(x,t),t) =0 (3.36)

along the optimal trajectory. If we collect terms that multiply like
tensor powers of x in equation (3.36), we obtain the following ex-

pression:

1
1
| 9 v 2. 2 )
) +
Qup (I ® Kp) + Qpubx® + (Vg + Vo{[(ay, @ 1.7)8), + (1, @ 4y, @ 1)S),
2

2 1
® AOl)](lx ® Kl) + (Alo ® Alo ® Alo)} + vz{[(AOl ® 1x)sll + (1x ® A01)]

1 ) ' 1
(1, @ K) + [(a); ® 1)5), + (1, @ Aj)Td @ Ky) + [(Ay, @ 187, + (1, @ Ay))]

. Oy
{V2 + VZ{(AIO & Alo) +[(AOl ? )8

1ISY) b (L @ Ag) 1L, @ KDY+ Qp,(K) @ Kp) +

1

(1,

(1, 8K eK) +[(a,,@l)+ (1 @ B,0011 + Qp, [ () @ Ky)) + (K, @ K1+
Qi (1x ® Kz) + Qg4 (K, ®K; @ RKy)) +Q, (1, @K, @ k) +Qy (1x2 ® Kl)

F Qb X+ =0 . (3.37)
Figures 3.3 and 3.4 provide a summary of the origins of the terms that
comprise equation (3.37). We observe that there are no coefficient terms
that multiply the first power of x, hence we begin with the second ten-
sor power. The reader will note that we have collected all of the coef-
fient terms that multiply like tensor powers of x. In order for the ex~
pression (3.37) to be identically zero, it is a sufficient condition that
all of the coefficient terms that multiply like tensor powers of x must
vanish. The condition has not been shown to be a necessary one because

of the fact that the product
does not span the space

XeX.

Again, the proof of this being a necessary condition will not be cousid-
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ered here due to the scope of the work. This is basically the same quest-
ion that was found to exist when we collected terms that multiplied xm

® Au, m 2 2, At the memant, it is believed that the use of the symmetric
tensor algebra will address adequately this issue. Proceeding , then,

on the sufficiency criterion, this requirement provides the following

conditions:

. o 1
Vo ¥+ Vpllag g & )+ [(Ay @ 18T, + (1, @ A )11, @K} +

Q02 (K1 @ Kl) + Qll (1x ® Kl) + Q20 = 0 (3.38)
and

v, + V(@ 185 + (1 04, e 108t + P ea il e k) +
(o © Apg @A)} + 7, [(A, @ 1)ST, + (1o A )1 eK) +
[(ag, @ 1OSy; + (G, @ A1 DTAL @ K + [(Ag, © LIS]) + (1, @ A))]
(1, @Ky @ KD + [(A), @ 1) + (1 @A )] Qo [(K; @ Ky) + (K, @ K))] +
Q4 (1x @ Kz) + Q4 (Kl ®K, @ Kl) +Qq, (1x ®K, @ Kl) +Qyy (1i ® Kl)
+ Qg =0 . (3.39)
By considering the previous conditions shown in (3.33) and (3.35)
together with the above requirements, it is possible to observe the re-
cursive nature of the problem. The objective is, of course, to solve
for the optimal controller gains_ Kj(t), j=1,2,3,.... We can solve
(3.33) for Kl(t) in terms of V2(t), and substitute this expression
into equation (3.38), yielding a differential equation that can be solved
for V2(t) with boundary condition VZ(tl) = M2’ since Vz(t) will
be the only unknown. After Vz(t) has been obtained, we can easily ob-
tain the expression for Kl(t). A similar procedure can be employed . for

the paired terms of V3(t) and Kz(t), namely, solve equation (3.35) for

Kz(t) in terms of V3(t) and substitute this expression into (3.39),
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yielding a differential equation that can be solved for Vs(t) with boun-
dary conditions V3(t1) = MB' The controller term Kz(t) can then eas-
ily be obtained. This procedure can continue until a sufficient number of
controller terms are obtained. For the purposes of the example problem
that will be considered in the followingsection, we shall assume that we
are only interested in calculating Kl(t) and K2(t) although the proce-
dure could be extended to yield higher order terms if necessary. The re-
cursive nature of this problem is evident whenever we consider the various
term dependeﬁcies. It can be concluded from the algorithm that the term

vk+l(t> can be determined by knowing only the terms

K, (t), Ky(t),..., K, (£) and Vo (), Vq(t),...,V, (£)

and the system description, which means that the controller term Kk(t)

can be obtained by knowing only

Ky (£), Ry(e),en Ky o (8) and V,(6), V4(t),...,V ., (E)

This result was presented in [1]. In the next section of this chapter we
show that the LQ problem which has been extensively studied in optimal
regulation theory is equivalent to the first set of solutions obtained
with the methcds presented here, that is, the set of equations tha: pro-

vide V2(t) and Kl<t)’

3.3 The LQ Problem

In this section, we wish to show that the LQ problem is obtained
from our results as a special case, namely the case that results from
the truncation of the system description to linear terms and the perfor-

mance index to quadratic terms. This result will verify the equation that
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was derived in the previous section, which is the equation that expresses

the relationship between Kl(t) and Vz(t) (3.33).

The normai formulation of the LQ problem has a linear system descrip-
tion
x(t) = A(t) x(t) + B(t) u(t)

and a quadratic L(x,u,t) in the performance index

t

. L1
J =5 Mx(E)) + 5 ft L(x,u,t)dt ,

0

where

L(x;u,t) = xTQx + u'Ru + thu, M(Xf) = xT(tl)Mx(tl) .
The reader will note the inclusion of the cross term xTCu. Although not
usually considered in the classical literature, our methods will treat
this term as being quadratic as well. It can be shown by using the clas-
sical approach to optimization problems that the unique optimal control
u(t) can be expressed as

u(t) = Kl(t) x(t) ,

where

K, (£) = - Rt @Y v + % ey . (3.40)

The matrix V(t) is known to satisfy the differentizl equation

V+V(A—-5BRICT)+(A i—'—CRlBT)V—
V3BR -1 BT V+0 --% CR -1 T = 0, V(t ) =M. (3.41)

If we were to assume that C = 0, which is typical for most practical
problems, we obtain the usual matrix form of the Riccati equation, which
is

V+VA+ A:V - VBR_lBTV +Q=0. (3.42)
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Our objective in this section will be to demonstrate that the equa-
tions produced by the expressions previously derived yield the identical
equations produced by the LQ problem as considered here, namely equations
(3.33) and (3.38). We begin with our expression relating Kl and V2,
which is

1 -
V,[ay @ 1)s); + (4, ® Ag )1+ Qp +20Q, T (K e 1) =0. (3.43)

We shall assume that, for dim U = dim X = 2,

o o|P1 P12
01 |y g
| "21 22
and
E11 Eyp
K, =
| Ba1 Epp
If
[r. T
N o G
_rz r3
this implies that
Qpy = [ry Ty Ty Ty
Likewise, if 1
c Cqnl
c o |11 f12
€21 ©22
this implies that
Qqp = leqy eqp Cp1 ool -
Also, if
V., V
v=| 21 22
Va2 Va4
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v V22 V24] .

2 = V21 V2
It is easily verified that the expression (3.43) produces the following
set of equations, assuming that the V matrix is symmetric, which fol-

, T
lows from the quadratic nature of the solution x"Vx. We have

2rl Ell + 2r2 EZl + 2 bll V21 + 2 bZl sz + ¢, = o,
2rl E12 + 2r2 E22 + 2 bll V22 + 2 b21 V24 + ¢y = 0,
2r2 Ell + 2r3 E2l + 2 b12 V21 + 2 b22 V22 + c, = 0,
2r2 E12 + 2r3 E22 + 2 b12 V22 + 2 b22 V24 + ¢, = o .

If the equations produced by the classical solution (3.40) are compared

with these, one would find that the equations are identical.

The other part of the LQ problem involves the verification of the
Riccati equation (3.41) beginning with equation (3.38), which is
: 1
v, F V2{(A10 @ Alo) + [(AOl ® 1x)511 + (1X ® AOl)](lx ® Kl)} +
Qg Ky @ Kp) +Qpy (I @ Kp) +Qyq =0,

where

e

10

and

e

Ag1

B .

As was previously discussed, the relationship between the Q02’ Qll’ and
Q’O vectors and the classical weighting matrices R, C, and Q in-
volves the assumption of an ordering convention on the various basis

elements. Since we are assuming that the basis elements are to be or-

dered lexicographically, the Qij vectors can easily be obtained from
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these classical weighting matrices.

It can be observed that the expressions (3.41) and (3.38) are very
similar. The proof that identical equations are produced is not dif-
ficult but is very tedious when done with the generalized matrices.
Therefore, for the time being, we will assume that these two expressiops
provide identical equations. When the example problem is considered in
the following section, we will verify that the derived expression (3.38)

produces results identical to the classical Riccati equation.

3.4 Discussion

In this section, we have derived the necessary equations in order to
calculate the first and szacond order controller gains and have presented
the method by which controller gains of any desired order could be calcu-
lated. Because of the various term dependencies, we showed the recursive
nature of the solution, namely the alternating solution of the terms in
tne expansion for the optimal value function and the terms in the con-
troller gain expansion. The LQ problem was partially demonstrated to be
a special case of the derived algorithm, namely the solution for Vz(t)
and Kl(t) for generalized matrices from the dimension 2 case. At this
point, an example is needed to solidify the concepts presented so far

and demonstrate the method of solution of the recursive expressions.
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IV. APPLICATION TO SPECIFIC EXAMPLE

In this section, we present one of the major contributicns of this
work ~ application of the concepts presented thus far to an example prob-
lem with a complete set of calculations. The particular example that
will be considered was analyzed extensively in [9] with particular em-
phasis on system modeling and model following with a variety of excita-
tion functions. Because the models generated were proven to closely ap-
proximate the true solution, these models will be well-suited for our
purposes. We will present the ideas and techniques for constructing a
nonlinear control for this particular example based on the expressions
derived in the previous sections. Basically, we will calculate both a
first order and a second order control and present an analysis of the

resulting equations for each case.

4.1 Problem Requirements and Formulation

Before we begin the process of specifying an example and choosing
appropriate weighting matrices that appear in the cost functional, it
will be advisable to consider the requirements that we wish to meet in
formulating £ meaningful example problem. We will list some of the
criteria which we have considered in this choice.

(1) The eigenvalues of A;, should be in the left half plane

(that is, they should gave real parts less than zero); the
idea here is that gas turbine engine models are typically

stable.

(2) The choice (x(t),u(t)) = 0 4is a solution to the differ-
ential equation.

(3) The Q20 and . M2 terms are not zero simultaneously.
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(4) the composite matrix

Q

———p———

1 T
2 C

b il

is positive definite.

In order to clarify the controllability issues, we must first assume

that the time interval is some finite time ¢t ‘The optimal feedback sys-

1
tem will turn out to be time varying as long as the control interval is
finite. This will turn out to be the case even when the system and cost
functionals are time-invariant, which shall be assumed for the example
system. The engineering construction of these time-varying functions can
easily be done on the digital computer using standard integration techni-
ques. It can be shown [1,22] that if we let tl -+ o, then we obtain a
time-invariant controller for a time-invariant system. Basically, contrgl—
lability is required here in order to ensure that the cost is finite.

Using a finite interval, there are several examples noted in [22] where

an optimal control is obtained for an uncontrollable system. The require-
on and M2 terms are not zero simultanec.isly excludes

the trivial case that would produce the optimal control u(t) = 0, al-

ment that the

though these terms could be zero individually.

Now that the example requirements have been formulated, we are ready
to choose an example system and demonstrate how the geain matrices may be
calculated for the first and second order cases. The particular example

that we will chooss was effectively studied and analyzed in [9] with par-
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ticular emphasis on nonhomogeneous model following. We consider the sys-

tem
2u1
fl (x,u) = il = u, cosh (xlxz) - e sinh (2xl) - 3 sinh (x2) s
U142 Y1 2
f2 (x,u) = kz = @ sinh (xl) - e Tup cosh (xl ) + sinh (xz) ,

and a performance index

t
I = -;- M (x(t))) +% Ll Lix,u,t) de

0

where we choose the following values for the weighting terms Qij and Mj:

Qo =1(2002],
Qo = [5005],
Q=1[6006],
M, =[100 2],
My =[00000000].

We note that the Qij terms were chosen such that the requirement (4)
is satisfied, which i1s necessary for a meaningful example problem. Also,
we are assuming that the penalty term

M(X(tl)) = M(xf)

1s required to be a convex nonnegative function which means that M(Xf)

is specified in terms of even powers of Xg [(1].
Since the qu operators are not directly available, we must use
the concepts presented in Section 3.1 where these operators were ob-

served to be related tec various partial derivative matrices, namely

) -

Sfl Bfl
le 8x2
A0
3f2 3f2
| % k= 0,0
“u = (0,0)
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-2 -3
1 1
and
- .
Bul Buz
By ~
sz sz
[PU1 aflx = (0,0)
u = (0,0)

[ 0
1 o
We can easily observe that the requirements (1) and (2) have been satis-

fied; the origin in X x U defines a solution, since

fi (0,0) =0,

for i = 1,2, and AlO has eigenvalues with negative real parts, which
assures local stability when u 1is zero. The remainder of the system
matrices can be similarly calculated as was done for AlO and AOl’ as
follows: - _
2 2 2 2
afl afl afl afl
N axlaul axlauz axzaul axzauz
11 2 2 2 2
8f2 af2 8f2 af2
Bxp8uy XU, ARBYy 0 k= (0,0)
- u= (0,0)
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2 2 2
afl Bfl afl afl
1] 3x 2 8x18x2 szaxl %
A== 1 2
20 2 2 2 2
afz 3f2 dfz af2
axl2 3x13x2 ax28x1 8x2 )
b -
0 0 0
= ’
0 0 0
and _
2 2 2
afl Bfl Bfl afl
1| 3u 2 3u18u2 Buzaul Su
AOZ-—‘; 1 2
- 2 2 2 -
afz af2 afz 8t2
oy 2 Bulau2 auzaul u 2 )
0 0 0
-1 0 0
These methods provide only the nominal or analytical values of the
qu systom matrices and may be unsatisfactory due to the truncation of
som¢ .. the higher order terms. A more accurate method employs the

least-squares minimization technique using the Singular Value Decompo-

sition, which is extensively discussed in [9].

Basically, the results

obtained for the system matrices via least squares minimization provided

much more accurate responses than those obtained with the standard linear

approximation and provided a very close match to the "true" solution.

In order to test and verify this model, various input signals were em-

ployed with different frequencies and amplitudes.

In all of these cases,

it was found that the model performed remarkably well, and should be well-
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éuited for the generation of the various controller gains which we will
accomplish in the next section. For the particular example that we have
chosen, it is discussed in [9] that a degree-2 model (that is, a model

that 1s generated by the methods of ldentification and contains only the
and A

system matrices A is adequate to effec-

10° %01° %200 4110 02’
tively describe the system as noted above. The identification and ver-
ification of a degree-3 model involved more effort and programming time
and was found to only slightly outperform the degree-2 models, and then
only for a fraction of the test points. Using the least squares identi-
fication methods, the following matrices were obtained as the degree-2

model for the example system:

[-2.001  -3.009]

o>
It

10 1.006 1.011

- 0.002 0.997]

A = ,
01 |-1.000 0.000_
[-4.150  -0.074  -0.048  -0.176]
A s ’
| -0.007 0.083 0.008 0.102 |
[ 0.239  -0.0725 -0.0725 =-0.720]
A0 = ’
-0.323  -0.064  -0.064 0.359 |
0.105 0.0135  0.0135  0.012]
A2 =
| -0, 982 0.0075  0.0075 =-0.013_
We observe that the A and A operators closely approximate the

10 0l

nominal values obtained by partial differentiation. By using these

.
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values, we can begin to calculate the required terms in the expansion

for the nonlinear controller,

4.2 Calculation of Controller Terms

In this section, we show how to calculate the terms of the nonlinear
controller expansiqn. For the sake of simplicity, we.will only demon-
strate the methods to obtain the gain matrices Kl(t) and Kz(t), along
with the optimal value expansion terms Vz(t) and V3(t). As previously
mentioned, equations for the calculation of higher order terms could be
developed using the same methods that provided the equations for Kl(t)
and Kz(t) if these terms were desired. The first step in the procedure
is the solution of equation (3.33) for Kl in terms of VZ' We have

2 Qpp Ty (Ry ® 1) +Qyy + ¥, [(8g © 1IST; + (1, © 451 =0 .
If we make the necessary substitutions, that is, assume that

Qg = [500 5],

0 1/2 1/2 0

S 0 1/2 1/2 0
0 0 o0 1
n A
C{F11 B
K, = ,
By1 Epp

Q; = 60061,
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517 ’
010 0
00 0 1

and use the previously noted values for the AOl system matrix, we find

that we can express the components of Kl by the following expression:

Eyy —.0004 .2 of [v,, .6
E ~.0004 0 20 v 0
121 . 221 ) (4.1)
Ey, ~.1994 0 ol |v,, 0
| |0 -.199% 0 | -.6]

In obtaining this equation, we have assumed that sz = V23, which ¢or-
responds to assuming that the V matrix from classical optimal control
theory is symmetric. A quick comparison to the equation (3.40) reveals

that our results are indeed correct.

The next step in the algorithm is the substitution of equation (4.1)
into the equation that was obtained by collecting terms that multiply xz
when the HJB equation is evaluated along the optimal trajectory. This
result is equation (3.38), which is

\}2 +V, {(A10 ® Ajg) + [(A; @ 1}{)5:;l + (1 e A01)} (1, ® KD} +
Qo2 (Kl ® Kl) + Qll (lx ® Kl) + on =0 .
If we make this substitution for Kl and use our assumed values for
the system and performance index matrices, we can obtain the following

set of coupled differential equations which can be solved for V, using

2

numerical methods.

B . . i L oo
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V,y =4.044 Vo + 3.212 Vo, + 1988 V2 =.0008 V1 Vpo + .2 Vgp + .2 2 0,
Vy =3.6072 Vy; = L.0LL V,, + 1.606 V,, + .1988 V,; V,, -
L0004 V5, =.0004 Vyy Vo, + .2 Vyy Vp, = 0,
624 ~7.2144 V,, + 2.022 Uy, + .1988 V5, =.0008 V,) V,, +
, 2V, 4220, (4.2)

As a check nn the validity of these equations, we will compare the equa-
tions listed in (4.2) to those obtained by the Riccati equation, which

was described in (3.41) as

V4V (A —-% BRYT ) + (A --% B R

verRTIBl v+ Q —-%

1Ty

cricl=0.

After suustituting the appropriate values for the known quantities, we

obtain the fcllowing set of differential equations for V(t).
: 2 2

Uy, ~4.044 Vy, 4 3.212 V,, + .1988 Vi =.0008 V,, V,, + .2 V5 + .2 =0,
v,, ~3.6072 V,y -1.011 V,, + 1,606 V,, + .1988 V,; V), ~.0004 ng -
L0004 V) Vp, + .2 V) V,, =0, (4.3)
624 ~7.2144 Vy, + 2,022 V,, + .1988 V5, ~.0008 V,) V), + .2 v, +
2=0.

These differential equations are to be solved with the boundary conditions

Vyp (8p) =1,

Yap (E)) =0,

and
V24 (tl) =2 .

Since the differential equations presented in (4.2) agree with the classi-
cal Riccati solutions in (4.3), we may conclude that our results are in-

deed correct.

-2
91

ol i el za G e

IS

T



The solution of the first order control problem involves two basic
steps. In the first step, t.e set of equations (4.3) are solved for Vz(t)
and subsequently Kl(t) by using numerical integration from the final
valuve of V2(t). The second part of the procedure involves calculations
for the control matrix Kl(t), which then follows from the known matrix
values of Vz(t), on the interval of solution. For this first step of
the calculations, two approaches mav be taken, either a solution in terms
of tensor quantities, or a solution taking advantage of the well known
procedures for Riccati equations. Since we have previously shown that
our first order results are identical to those produced by the classical
Riccati equation, it is used in the first order analysis program, which
is called FIRORDA [23,24]. This program is lirted in Appendix G of this
report. Numerical values for Kl and V2 appear also in this appendix,
dencted by KA and VA,

In order to test briefly the behavior of the software for the first
order feedback, the values of the weighting matrices that comprise the
performance index were changed to five items theilr assumed values, and
these results compared to those produced with the example values assumed
for these matrices. As the values for these matrices were increased, we
found that the solution V2(t) of the Riccati equation became more of a
time varying gain, with greater initial values than those provided by the
example problem case. This comparison can be made by referring to Figures
4.1 and 4.2. In obtaining these arrays, we have somewhat arbitrarily
assumed an interval of t =0 to t =5 seconds, with an integration
stepsize of 0.1 seconds. These results generally agree with the results

presented in [22]. Note in these two figures that V2 is denoted by VA.
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0 13131 ¢ 16595 ¢ 16590 092464
o1 « 18193 166 v1466 52432
o 1828 + 16639 016639 0242
o3 + 18389 14672 14672 9240
o4 ¢ 18513 16847 146847 053545
2V ¢ 13643 17017 +17017 92727
o6 L8765 17219 17219 « 53005
o7 v 18867 17436 17436 53381
+8 + 18935 17643 ¢ 175643 + 53839
? 189462 +17812 +17812 A3
16947 L7910 17915 04887

SUNEITL PRI P PR b R A b i s bl g

ol + 188946 17932 17932 1 S83Z3Y
o2 018829 ¢ 17854 178354 SG709
v 4 187467 17462 17462 GGV 76
5 1865 17226 17226 $9GBG1
6 1906 ¢ 17049 +17049 936
o7 + 19428 17009 v 17009 9331
«8 s 19965 e1718% 17185 «S510Y
9 v 2066 17642 17642 95154
21477 + 18417 + 18417 15561
o1 e 22321 ¢ 19504 193504 e I6H27
v 2 ¢ 23198 0 20845 ¢ 20845 58307
3 23921 22324 22328 60661
. 4 244328 v 23792 ¢ 23792 636V
2:8 + 2465 v 25043 235043 WO7123
206 24558 L2508 2588 e 707206
a7 e 2408 ' 26129 26129 o 7410
2 . 8 3 :.?.\,;621) ¢ 256[.50 ] 25&88 . ./6(- Gl
s VPG 24561 24561 7865
3 $ 22781 22890 e 22898 79187
Jel v 23038 21013 21013 78308
S.2 ' 24045 s 19367 2 193467 76363
3.3 ¢ 26352 18335 ¢ 18535 o 73812
3.4 + 27802 12126 12126 + 71541
3.5 ¢ 34482 e 23687 21687 70679
Job 4092 s 26597 v 26597 72498
347 46546 « 33968 ¢ 33968 78336
ged3 e O2991 ¢ A43GE + 4358 +88%44
3.9 0886 94037 04837 1,032
4 634464 1 HH767 66767 1.,2739
4.1 166087 + 7800 1 + 78051 1.,5447
4,2 e H6284 +8706% 87083 1.8574
4.3 63042 192107 22107 22,1824
4,4 s H2058 221414 21414 2,4857
403 329745 33734 33734 2.734%
4.6 e 474485 + 68783 + 63783 2.873
4.7 v ATGAG A7976 A7978 2.8652
4.3 5106 25071 1235071 22,6929
4.9 168063 « 063532 e 06353 2,3791
5 1 0 0 2

Figure 4.1 Vz(t) for Ezample Performance index
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A similar procedure is used for the second order analysis of the ex-
ample problem as was used for the first order analysis. Namely, since the
values for Kl(t) and Vz(t) are known from the first order analysis
problem, equation (3.34) can be solved for Kz(t) in terms of V3(t).
Thils equation is
1
2 Q02 LN (K2 ® 1u) + V2 [(All ® 1x)s2l + (1x -] All)] +

1
2 V2 [(A02 ® 1x)s12 + (1x ® Aoz)][lx @ m (Kl ® 1u)] +

2,.2 1 2 _
V3 [(AOl e 1X)S21 -+ (1X ® A 1 ® 1}{)&:21 + (1x @A )] =0. (4.4)

0 01

We note that we have assumed Q03 = Q = 0 for the purpose of

12° %
the example problem, that is, higher order than quadratic terms in the
expansion for L(x,u,t) are zero. Since equation (4.4) cannot be solved

directly for Kz(t) in terms of V3(t), we must multiply the first

term in the expansion.

It should be pointed out that the manner in which K2 is inter-~
twined into (4.4) is one of the most interesting features of the deriva-
tion in this report, which avoids as much as feasible the use of sym-

metric algebra and dual spaces. In future work, we hope to return to

this point.

Another interesting feature of (4.4) can be seen in more than one
place, but perhaps especially in the coefficient of V3 on the third
line. ©Notice that this coefficient consists of three terms, each in

essence a rearrangement of AOl and two copies of 1x' Symmetric al-

gebra would simplify such sums.

Returning to the first term in (4.4), we have
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Multiplying these expressions, we have

2 QO2 L (K2 ® lu) = [2r1Fll

2r2Fl2

= [Fyq Fiy Fiq Fpy Foy Fop Fpg Fyyl

2r . F

1

13

+ 2r . F

2r F
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+ 2r . F

3723

P, 0 Fp, O
o F, 0 F,
Fpy Q@ Fpy O
|0 Fy O Fyy
11 F12 Fi3 Frs
21 Tap Fp3 Fyy
+ 2r2F21, 2r2v1l
oFp3s 2r2Fl3 + 2r . F
oFrg  283Fy,]
[ 21 2r2 0
0 0 2r
o 0 0
0o 0 0
2r 2r3 0
0O 0 2r
o 0 o0
o o0 O

21’

2r ¥y,

-
0 14 0
13 9 i
0 24 0
23 0 Fyq
rlF12 + 2r2F22 ,
+ 2r F24 ,
0 0 0 0
0 0 0] 0
2r 2r 0 0
9 .
0 0 2r1 24,
0 0 0 0
0 0 0 0
2r 2r 0 0
0 0 2r2 2r1
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where K, denotes the values of K, rearranged into an 8-vector and G

2 2
is the 8x8 matrix above. Using this notation, we can solve for K2 in
terms of V3 "in equation (4.3) as
X o .1 1
K2 = - {Vz[(All ) lx)b21 + (1x ® All)] + 2 Vz[(A02 ® 1x)312 +

2..2
(lx ® AOZ)][lx ® nS(Kl @ 1u)] + V3 [(A01 @ 1x )S21 +

2 1

. 1 -
(1, ® App @ 185, + (1" ® Aol)]} G (4.5)

The second order solution can be obtained by substituting from equation
(4.5) into the equation

Vo + Vo (A, @ 1282 + (1_eA. ®1)st + (1L2e4a )](2 6K
3 3 01 x ‘721 b3 x’"21 X 01 X

01 1)

. 1
+ (AlO ® Alo ) Alo)} + V2 {[(AOl ® 1x)s11 + (1x ® AOl)](lx ® K2) +

2 1
® Kl) + [(AO2 ® 1X)S12 + (lx ® A

[y, © LSy, + (L 0 41, 02!
(1x ® Kl ® Kl) + [(A20 ® 1x) + (1x ® AZO]} + Q02 [(Kl ® Kz) +
(K2 @ Kl)] + Qg (1x ® K2) =0,
which is equation (3.39) with the third and higher order terms in the ex-
pansion for L(x,u,t) equated tec zero. The method of solution of the

second order control problem is slightly more complicated than the first

order solution, but employs the same basic steps.

4.3 Discussion

In this section, we have examined in terms of an explicit example
the computational requirements associated with the computation of higher
order nonlinear feedback control terms based upoun the use of tensor de-
scriptions. Preliminary experience with such computations has been en-
couraging. Appendix G contains a listing of SECORDA, the program for K

2
and V3, whose values appear there also, as K2A and V3A.
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A major purpose of this example study has been to assess the merits
of using the symmetric tensor algebra and the concepts of dual spaces in
the calculation of nonlinear feedback tensor gains. To this end, we
have employed such ideas as infrequently as possible. The results have
been revealing. For the most part, one can bypass the ideas in question
and substitute matrix algebra notions such as tra.spose., Interestingly
enough, however, there are perhaps two or three instances, one in (4.4),
where one is strongly inclined to consider the insertion of more techni-

cality.

With this observation in mind, we are meking a study of the compu-
tational requirements involved in [1], where symmetry and duals a: both

used, in order to determine traweoffs with the current study.
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V. CONCLUSIONS

In the three sections preceding, we have carefully examined the compu-
tational implications of [l], for the case of an example system which had
received a rather thorwugh study in a prior grant year. Here we have to
point out that [1l] makes use of technical tensor machinery involving mixed
tensors on spaces and their duals, the theory of contractions, and the
formal use of symmetric tensor algebra. The formal purpose of this study
has been to assess the computational implications of such nonlinear feed-
back control theory, and in particular to examine the possibility of sup-
pressing the explicit use of dual spaces and contractions. One benefit,
for example, of such a suppression would be an avoidance of the distinc-
tion between tensors and vector-valued tensors. It has been numerically
clear for a long time, as explained in earlier reports, that the implicit
use of symmetry was going to be a certainty. A question, however, was
whether the explicit use of symmetry in the algebraic derivations would

really be necessary.

Having been as careful as we could to carry out the derivation of
this report while using such concepts as little as possible, we have made
some important conclusions. First, we had to dip into formal symmetric
notation for a brief segment of our derivation, in connection with cer-
tain differentiations. Whether this was an absolute necessity or not
tends to be outweighed by the fact that a great deal ur effort would
be required in order to circumvent it. We conclude that the formal use
of symmetry should be purcued. While this does result in another level

of equivalence relations, the terminology and symbolism can be iaduced
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without a new order of magnitude of difficulty. It tends to be more a
question of replacing one tensor language with another tensor language.
Second, we have encountered steps in the equations where duality may be a
great help in unraveling a complicated twist of symbols. At this point,
we assess this ability as important, so that we are initiating a careful
look at the way in which these computations would change if we made use
of contractions. Should this work out with the expected benefits, it may
serve as a very motivating engineering example of the practical importance
of duality. While the role of duality in general optimization theory has
been known for many years, there are many common instances in which it can
be finessed by standard matrix terminology. Such an example could be,

therefore, very compelling.

In addition to the work presented in the body of this report, the ap-
pendices contain a number of items which we also believe to be milestones.
Appendices B and E deal with ongoing progress in the computer software
required for tensor modeling and simulation. This developing package is
the outgrowth of years of work and for the first time makes it possible to
do examples on a reasonable time scale. In particular, plans are under-
way to use this new capability to enhance tl» efforts on tensor model
identification and order reduction. We expect to make a more complete
report on this package within the next six months. Appendix C introduces
a new mathematical viewpoint on the nonlinear feedback control synthesis
problem. Basically, the idea is to redefine the vector space structures
for the inputs and outputs of nonlinear systems. For important cases,

this can be done in such a way that the nonlinear system becomes a linear
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system with respect to the new spaces. We have this idea under study, and
have already.shown that it greatly expands the possibilities for defining
comparison sensitivity functions on nonlinear cases. We envision the use
of such sensitivity functions to aid in characterizing the quality of
order reductions and model identifications. In Appendix D we continue

our investigation into the role of tensors in controller scheduling., We
expect that the procedures of scheduling may contain one of the keys in
resolving the tradeoff questions involving nonlinear model dynamical
quality versus useful region., Finally, in Appendix F, we present a recent
compilation of refercr.ces on design by total synthesis, a sequence of
studies which trace some of their roots back to the first years of this

grant,
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AN APPLICATION OF TENSOR IDEAS TO

NONLINEAR MODELING OF A TURBOFAN JET ENGINE¥

Thomas A. Klingler, Stephen Yutkovich, and Michael K, Sain
Department of Electrical Engineering
liniversity of Notre Dame
Notre Dame, IN 46556

ABSTRACT

The design of nonlinear csatrol systems for gas turbine engines frequently invulves a combi-
nation of feedforward scheduling and local, dynamic feedback regulation on the desired final
cvesponses. Scheduling the feedback dynamics, or adding dynamical tuning to the feedforward
schedules, creates a class of nonlinear d/namical controllers which is often classical in na-
ture, as for example the first few terms in a series expansion. Tensor algubra provides a
universal setting within which to parameterize such re¢presentations. Moreover, if such mod-
els are available for the engine itself, then there exist feedback control theories based up-
on them. In this paper, a model of tensor type is computed and tested locally on a digital
simulation of the QCSE gas turbine engine.

INTRODUCTION

The use of local, linear dynamical models in control of gas turbine engi.2s has received a
great deal of actention in the last ten years, While the lion's share of control action for
such engines tends to be the result of feedforward schedules, the local feedback applied to
reach desired response points along these schediles is of great importance. In particular,
careful choice of the local controller dynamics can achieve quick, smooth settling, without
undesirable overshoots in crucial variables, as for example temperatures in the vicinity of
turbines.

Such local dynamics are frequently scheduled also, as a function of a smoothly changing phys-
ical variable, such as a speed. When this 1s accomplished, the local control dynamics be~-
come nonlinear in nature; and key examples can be viewed in terms of vector fields created

by polynomic functions of state and control, or, more generally, in terms of power series.
Tensor algebra provides a universal parameterization within which to represent such schemes.
Moreover, there exist feedback theories designed to accommodate plant models based upon such
representations.

Accordingly, there is interest in application studies of tensor models. In this paper, we
provide one such study, on a QCSE engine simulator.

For background, we covsider briefly some tensor ideas and issuas associated with nonlinear
modeling., A short description of the QCSE engine itself is given, and then the application
is discussed in detail.

TENSOR IDEAS
We begin our discussion with a brief description of the tools to be emploved in the nonlinear
model formulation. Let V and W be real vector spaces and let (®FV,8F) be a tensor pro-
duct for r copies 08 V, where each integer r s two or greater. For convenience we de-
fine olv = v and 9” = R. Then by the unique factorization property of the temsor product
[1], for every r-linear mapping

W:Vr*w (l)

there exists a unique linear mapping

*This vork was supported by the National Aeronautics and Space Administration under Grant
NSG 3048.
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such that % = A ¢ 8° for the r-linear mapping @° : V' = @'V, If L(V';W) denotes the
real vector space of r~linear mappings from V¥ co W, and L(@'V,W) denoctes the real
vector space of linear mappings from oV to W, the implicution Ls chat

L@V, W) = L(V©;wW) &}
i3 a vector space isomorphisnm.

These notions may be tied to the discussion of abatract derivatives and the calculus on norm-
ed vector spaces. As an i{ntroduction, equip V and W with norms and let 2 be open in

V. Suppose that the mapping £ : Z -~ W {is differentiable at a point p {in 2, in the
wsual dense (see, for example, [2,3)). We denote the derivati eof £ : 2 ~W at p by

(DE)(p) :+ V =~ W, (4)
and note that
Df : 2 - L(V,W); (s)

that is, the derivacive mapping (4) (s a linear mapping, an element of L(V,W). The notion
extends for higher derivatives, defined in a recursive fashion as

@O () = (O ) (p) (6
provided the (r-l)at derivative is differeitiable, since
D*£(p) ¢ L(V,L(V.W)),
D£(p) ¢ LCV,L(V,L(V.¥))), %
and 30 on., It can be shown that there exist isomorphisms
Lv3;uw) > LOV,LOV,W),
L) ~ LOVLLOY,L(V,HD)), ®

so that Drf(p) can be regarded as an r-linear mapping v . W, up to isomorphism. We
suppress this isomorphism and think of DF€(p) as just such a mapping.

It is now straightforward to establish 3 connection with che tensor ideas expressed above.
The r-linear mapping (1), for our purposes given by DF¥f(p) : VvE - W, can be comporiu from

a linear mapping 9V - W and che universal r-linear tensor product mapping ®F : VF ~ @Ffy,
This connection, facilitated by the Lsomorphisms (3) and (8), 1is explored i{n the section fol-
lowing for the case of dynamical system representation.

MODEL STRUCTURE

Suppose that the dynamical system which we wish to model 1is described by the nonlinear ordi-
nary differential equacion

X = f(x,u) (9)

for £ : X xU ~ X, where X and U are normed real vector spaces_of states and controls,
respaectively. Using the notation of the preceding section, let (x,u) be a fixed point in

Z open in X x U, and suppose that £ : X x U +~ X is of sufficicnt smoothness on 2. Then,
formally,

(G x arw - Lo ofeED e, (10
k=0

where (x.u)(k) v ({x,u),(x,u),...,(x,u)) k times. Ve nocte that the series in (10) could
be represented by a finite number of terms together with a remainder term in a standard ap~-
plication of Taylor's formula. Indeed, for practical applications, such as the present pa-
per, a truncation approximation of (10) is considered. Unfortunately, limitstions of space
forbid discussions concerning such issues as exiscence of solutions to (9) or questions re-~
lated to the convergence of (10).

RS \ R
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We now make use of the fact that (Dkf)(i.ﬁ) in (10) 1s a k-linear mapping, vhich suggescs
a means of applying tensor product ideas, Let (9%(X x U),8%) be a tensor product for k
coples of X » U, Then we may maka the unique factorization

pRecE,D) = 1 (R,B) o 9%, (1)
vhere Ly (%,0) : 0%(X x U) =~ X 418 a linear mapping. Now let the notation (x.u)k denote
the k-!o&d tensor product of (x,u) wich itself, Then upon subscitution of (1l1) fnto (10)
we have

EGre, i) = [ oL Gk (12)
k=0

It i{s shown in (4] that the individual terms of (12) may be rewritten as, for example.

1 = = 2 == - - ==
T Lz(x.u)(x.u) - Lzo(x.u)xex + Lll(x.u)xﬂu + Loz(x.u)uau. a»n
1r this way the formal expansion (10) becomes
- -
(Gebx,aru) = J T L”(;.am‘ oo, (14)
i=Q §=0

which forms the structure for the nonlinear model.

As alluded to earlier, in practice the series (1l4) may be truncated in an approximation of
(9). The task {n the model building scheme, then, is to i{dentify the parameters contained
in matrix represcacations of the Lg.(x,u), once ordered bases for the spaces {n question
are chosen. For more discusaion of the dotails involved in such an sxercise, the reader mav
wish co consult {5,6].

QCSE ENGINE

The intenc of this scction is cto supply a brief introduction to NASA's QCSEE ("Quixie')w=-
Quiet, Clean, Shorthaul Experimental Engine---prior to discussing an applicicion of the mud-
eling methodology described above. The QCSE engine i{s an advanced turbofan dasigned specif-
{cally for powercd-11ft, short-haul aircraft, and combines sevaeral fnnovative concepts to
achieve optimal efficiency with quiet, clean operation [7,8]. The aight physical quantities
chosen as stace variablas for the system include two fan speeds, four pressures, and two
temperatures. A digital cuntroller {s incorporaced into the overall design (9], and che
control inputs are the main burnev fuel flow, the fan pitch angle, and the fan nozzle area.

For cthe modaling exe cises of this study, & detatled dfgital simulation developed for the
QCSE engine [10) is employed. The primary input variable to be manipulated in the digival
program {s the percentage power demand, PWRX, for tescing performance over the entire enve-
lope of oparation. Values of {ndividual internal variables are extracted and inserted at
various locutions within the program.

APPLICATION

Attention in the following discussion will center around the formulation of a reduced order
four-scate, three-contvol ana.ytical model. The engine states chosen are the combustor dis-
charge pressuraz (P4i35), the core nozzle cotal pressure (PSGS), and the rotor dynamics in the
form of fan speed (NL), and compressor speed (NH). All three engine control inputs are em~
ploved, namely, the main burner fuel flow (WFM), the aexhaust nozzle area (Al8) and the fan
pitch angle (BETAF).

Appropriate angine operation for the model tdentificacion involves opening the loop by de-
activicing the controller and independently inserting the individual control inputs. In chis
strategy, nonlinearities of the plant exist- -which might otherwise be less noticeable had
the controller been sresent i{n the loop. A furrher explanation of chis strategy as well as
an alternate one are presented . (ll]., An important point te note {s that, in the open

ioop situacion, the choice of ifaput control signals is critical. This (s due co the fact
that the engine tcself has certain physical limits, which in turn have been incorporated into
the simulator. 1In reality, sxceeding these limits could cause severe damage to the engine,
an example of which ts turbine melt down.

To aid in the selection of input signals, a family of parametric plots have bean constructed
using QCSEE gteady state daca from idle (62.5% PWRX) to maximum power (100% PWRX). Figure 1
containg an example of one such steady scate plot. From these plots a set of acceptable in-
put signals can be selected., Acceptable state perturbations can be selected in a similar
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faghion. Another importanc feature of these steady state plots {s chat they suggest regions
of nonlinearity. From Figure 1 it appears that in the locality of 92% powar demand the eng-
ine i3 nonlinear due to the abrupt changes in exhaust nozzle area and fan pitch angle. Wich
this in mind, we shall escablish 927 as the operating point of the present scudy. Model form-
ulations at other operating points at ~ currently under investigacion,

The following is an overview of the identification procedure. The QCSEE simulator is rum,
closed loop, with a 922 power demand for ten seconds to sattle all transients. This pro-
duces the equilibrium value (x,u), where x ia a four-tuple and u 4is a three~tuple.

The initial conditions thus generated form the point of expansion for che series truncation
approximation in the model formulation. Within the digital simulation program the controller
18 disconnected by seccting the control derivatives to zero. From the steady scute plots a
point (2,8) 1is chosen on the engine operacing line ac 93% power demand. The state vari-
ables are pevturbed x from their equilibrium values where

x =& =X

Furthermore, the control variables are manipulated so that a cosinusoidal input of amplitude
a 18 inserted, where a {s a chree-tuple given by the expression

awd-u,

The observed states and inputs are sampled over a six seccnd interval; 100 samples are even-
ly spaced at .06 seconds, and the difference between these values ond the corresponding
equilibrium values, together with the ordered monomials from the tensor product terms (see
{5]) comprise one of two blocks of data necessary for the identificacion., The second bloc
of data consists of the state derivative values which are extracted directly from the simu-
lator at the given sample rate. Through use of these data blocks, the parameters contained
in mserix representatious of the Li,(x.u) can be identified viz a least squares minimisza-
tion technique, 4

Using the above procedure, two models have been identified: a sccond-degree nonliuear model,
and a first-degree linear modal., The linear model has been identified for uve in comparison
astudies. The second-degree approximation keeps second degree tznsor products which are as-
sociated wicth quadracic terms, Accordingly, such a nonlinear riodel is expected to outper-
form cha linear model in a region about the point of expansion.

A simple error comparison criterion 1s used in testing the performance of the nonlinear mod-
e versus that of the linear model. Let c¥ denote the absolute maximum error in the non-
linear model solution, as compared to the true simulation solution, over the time range of
simulacion for the {ith scate variable. Similarly, we define c& for the linear model error.
Then &y is the comparison ey - cf. Thus, if ¢4 1is negative, the nonlinear model has
exhibited a smaller maximum absolute error in the ith astate, and in that sense has outper-
formed the linear model. Table 1 contains a list of the state variables, their correspond-
ing QCSEE variable name, their unit of measure, as well as their corresponding state nota-~
tion x4. Samples of the error comparison for various initial conditic~3, input amplitudes
and frequencies are presented in Table 2, All input frequencies are in Herctz.

The error criterion in Table 2 clearly indicates that the nonlinear model outperforms the
linear model in a region about the equilibrium point; however, there exists a better method
for revealing model performance, namely, trajectory comparison. Consequently, a representa-
tive number of comparative solution plots have been included in Figures 2-10. Figure 2 of-
fers a simulaction of pressure P8GS for a step response, whereas Figures 3-4 f{lluscrate P8GS
and NL respectively for the frequency set % = (.25, 0,, .5). A simulation of P4GS is

showa in Figure 5 for an excursion away from the typical engine line of operation, and like~
wice Figure 6 depicts NH. Figures 7-8 {llustrate the speeds NL and NH for a 1% amplitude
control signal, and finally P4GS and NL are seen in Figures 9~10 with inftial conditions of
approximacely 17.

COMPUTING ENVIRONMENT

The software package, developed using the extensive capabilicies of the IBM and DEC Command
Procedure Languages and the strengths of FORTRAN and SPEAKEZY, is divided into two segments
and tailored to utilize eifectively existent computer hardware. The interactive nonlinear
mudel generation ssgment is implemented on a Time Sharing Option (TSO) of the IBM 370-168
computer system, where the memory dependent, and highly computational routines of the pack-
age can benefit from use of the virtual memory and floating point hardware.

Once a nonlinear model is identified on the IBM 370-168, it is transferred to a DEC PDP 11/

A0, where, in an interative environment, it can be analyzed and compared to a linear model
and the true solution. This is accomplished through use of the nonlinear simulation segment
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of the package. In this manner, the routines can use both the graphics capabilicies of a
Tektronix 4025 video terminal, and a Versatec electrostatic printer/plotter for the display
of data and comparative trajectories.

CONCLUSIONS

This paper has presented an application illustration of tensor modeling to a digital simula-
tion of the QCSE engine. For plant modeling prior to feedback control, or for representing
scheduled concrollers over an operating line, the tensor algebra offers a universal parame-
terization which is helpful in conceptualization cnd identificacion. The case studied in
this paper offers support to these conclusions. Further work is in progress.
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TABLE 1 Variable Ledger for Figures 2-10

O : True Engine hesponse 4 : Linear Model Response * : Nonlinear Molel Response

x, ¢ P4GS (psi) X,: NL (rpm) uy WFM (1b_/hr) uqt BETAF (degrees)
Xyt P8GS (psil) x,t NH (rpm) uyt AlS (Tnz)
! TABLE 2  Comparison Studies
Initial State Conditions Input Amplitudes Input Freq. Error
X ) %4 4 B % % 1 %2 Py & €2 €3 ¢
0.000 0.000 0.000 0.000 | 18.9¢ 0.000 -~0.111 [0.0 0.0 0.0 |~1.040 ~0.018 -10.40 ~14,00
0.000 0.000 0.000 Q.000{ 18.9z 0.000 -0.111[0.3 0.0 0.5 |~0.668 -0.012 - 7.04 ~ 8.49
0.000 0.000 0.000 0.000| 74.29 -21.20 -0.239 |1.9 0.9 1.2 | -0.259 -0.004 - 4.62 - 8.11
0.010 0.001 0.010 0.100{ 17.00 -2,000 -0.05Q {0.0 0.0 0.0 |=-0.947 ~0.017 - 7.48 ~11.50
0.010 0.001 o0.010 '.100) 18.92 0.000 -0.111)0.0 0.0 0.0 | ~1.070 ~Q.019 -10.60 ~14.20
0.01¢ 0.001 0.010 G.100 19.00 -2,000 -0,159 (1.0 0.8 0.5 | «0,198 ~0.003 - 2.49 - 3,16
0,010 0.00L 0,V10 0.500 18.92 0.000 ~0.111 {0.3 0.0 0.5 {~0.642 -0.012 ~ 6.85 - 8.22
0.910 0.001 -0.010 0.500 | 40.00 -5.000 -0,150 [ 1.5 L.(6 1.3 {«0,354 -0.006 -~ 1.96 = 6.69
0.010 ~0.001 0.010 ~0.750 | ~18.80 0.000 0.115]2.f 9.4 1 5 §-0.307 -0.005 - 1.71 « 4.89
-0.010 -0.001 -0.010 ~0.750 | -37.46 0.000 0.2283 } 4.5 6.9 .3 |~0,202 ~0.006 -~ 1.59 ~ 3.42
~0.010 0.00) -0.2%0 9.750 74.29 ~21.20 «0.239 | 1.9 1.1 L.3|-0.293 -0.00% - 5.89 - 6.55
0.075 0.001 20.00 10.00|-18.80 0.000 0.000 [ 1.9 0.0 0.0 | =0.343 =0,007 - 3.36 - 3.43
0.110 0.601 -20.00 12.00 55.78 =14.03 -0,198 | 1.8 1.1 1.4 | -0.447 ~0.008 =~ 4.98 = 5.51
0.120 0.002 50.00 10.00 37.35 -6.830 ~0.539 { 2.1 1.0 1.3 |~-0.435 -0.008 - 5.06 ~ 4.91
0.100 0.002 75.00 5.00 54.00 -12,00 6,206 1,5 1.0 1.3 |~0.401 -0.007 - 9.80 - 8.80
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NONLINEAR MULTIVARIABLE DESIGN BY TOTAL SYNTHESIS

Michael K. Sain
Electrical Engineering Department
University of Notre Dame
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Abstract

In a recet * publization (1], Bristol has pre-
sented an application theorist's view of process
control design as it really exists and has chal-~
lenged others to do likewise for areas within their
own purview. This paper continues just such an ef-
fort [2,3,4]) by the authors within the domain of
nonlinear multivariabie control of gas turbine eng-
ines. Under examination is the fundamental notion
that linear controller descriptions, obtained from
local actions of nonlinear objects, may be recom~
bined to produce global nonlinear control actiom,
with sufficient integrity to effect closed loop de-
sign. Total Synthesis refers to a top-down strac-
egy of Nominal Design and Feedback Synthesis. This
paper extends the study of the Nominal Design Prob-
lem (NDP) to nonlinear cases, and presents a new
case study of robust feedback synthesis for gas
turbine control design.

Introduction

The idea of describinyg families of curves by
their tangents has a rich history in mathematics,
in science, and in engineering. Consider, by way
of example, the ubiquitous differential equation.
More generally, the notions of manifold, tangent
gpaces, and geometry are very much a part of modern
multivariable systems research.

Not surprisingly, the same notions permeate a
great deal ~f control design in various applicatioms.
Intuitively, one linearizes a nonlinear dynamical
system at a sequence of points along lines of oper-
ation considered desirable by the plant manufacturer.
A suitably rich sequence of points can lead to a
correspondingly valuable sequence of linear multi-
varlable systems describing local gains and trans-
ient behavior of the plant along these operating
lines. From such a sequence of gystems one may
construct a sequence of controllers which effect
destrable local motions along the lines. Smooth
global control is then a function of appropriately
scheduled feedforward and feedback requests, as well
as scheduling of local controller gains and dynam-
ics which determine the approach to such requests.

Bristol [l] believes that experience and in-
tuition are the crucial requisites for efficacious
design, and that the best of design-flavored con-
trol theories can serve only as an introduction to
the path followed by engineers with experience. Ac-
cordingly, Bristol also suggests that one should
seek theories which extend one's intuition and
which do not presuppose its replacement.

Joseph L. Peczkowski
Energy Controls Division
The Bendix Corporation
South Bend, Indiana 46620

The local control theory employed by the au-
thors in this paper was proposed (5] in 1979 by
Peczkowski, Sain, and Leake, with just such a view
in mind. Conceptually, the method is founded upon
the idea of a Nominal Design Problem (NDP), which
is independent of controller structure and which
is .ntended as the first step in a top-down design
procedure. A thorough discussion is given in [6].
This paper treats an extension of NDP to the non-
linear case. Completion of step one in NDP is fol-
lowed by a second step, called the Fcedback Synthe-
sis Problem (FSP) [6]. A case study oi this step
may be found in [7], which also contains a full
list of references. 4n alliance of NDP with FSP
is called a Total Synthesis Problem (TSP). The
case study following in this paper is part of a
continuing assault of FSP for the nonlinear case,
from the view of design practice in gas turiine
engine control.

The section following prot .des mathematical
preliminaries which precede ¢ .iscussion of NI for
the nonlinear plant. Beyord that, nonlinear ncr~i-
nal design is defined and characterized, after
which the paper progresses to design of local com-
trollers for a turbojet case, and the scheduling o:!
these local controls into a global comntrol.

Mathematical Prelimjnaries

In this section, we consider a bijection b :
S+ T fromaset S onto aset T, with T ad-
mitting the structure of an F~vector space. As a
result of the fact that b 1s bijective, each
vector t in T can be represented uniquely in
the manner b(s) for an s 1in §; and each ele-
ment s in S can be represented uniquely by

b-l(t) fora t in T. Here, we have denoted che

inverse of b in the usual way, b‘l : T =+ 8S.

The commutative group structure (T, +, 0) on
our F-vector space T can be used, together with
b, to induce a commutative group structure (S, ~
e) on the set S. The first step in this construc-
tion is to define the binary operation J : S x §
+ S, We do this as follows. Let (sl,sz) £ S xS;
then -1
s; a s, =b ( b(sl) + b(sz)) ,

where the binary operation + in the right member
is that on T x T to T. Associativity of the new
operation can be demonstracted. Indeed,

T
(sl Ssy) C sy=b (b o b (bsl + bsz) + bs3)




-1
b ((bsy + bs,) + bs3)

- -1
b (b + (bs, + bsa))

- b7hbs, * b e b'l(bs2 + bs,))
=8 a (s2 n] 53) .

The unit e can be chosen to be b-l(O). as is
apparent from the calculation

s 01 20) = b L(bs + b o b7H(0))
= b L(bs + 0)
a5 ,

For commutativity of the operation, we exhibit tiie
steps

sy 0 s, = b_l(b(sl) + b(sz))
= 571 (b(s,) + bls;))
= s, 0 sy -

Finally, for an element s in S, W define an
additive inverse & in S to be b “(-b(s)), and
verify it by

s & =bt(bs+b o b l(-bls)))

- b7t

= e ,
as desired. Accordingly, (S, O, b—l(O)) is a
commutative group.

Next, we can use the scalar multiplication op-
eration F x T -~ T on the F~vector space T to
induce a scalar multiplization F x 8§ + S. To do

this, we define the scalav multiple fs of s by
f to be

£s = b L (fb(s))
for a pair (f,s) in F x X. Notice that
-1
f(s1 3 52) =} (fb(sl C 52))

=b7lEp o b7 bs, bs,))

b'l(fbsl + £bs,)

-1 -1 -1
b" (b o b fbs) + b o b fbs,)

u

-1
b (b(fsl) + b(fsz))

(fsl) C (fsz)

Moreover, we can also see that

-1
(fl + fz)s = b ((fl + fz)b(S))

bTH(Eb(s) + £,b(s))

b7h (b o b7lebs + b o b™LE,bs)

i

s e o g S s o o o T W

= b7L(b(£,5) + b(E,8))
= (£8) 0 (£,9) .«

Next, observe the proparty

(£,£,)s = b-l((flfz)bs)

b-l(fl(fzbs))
1

b-l(fl(b o b71E,be))

-1
b (€ b(£,8))

fl(fzs) .
Finally,
15 = b7l (1b(s))
-1
=b “(b(s))
=5 .

Thus, (S, O, b-l(O)) has been developed in~
to an F-vector space S. We summarize this fact
as a theorem.

Theorem 1.
Let b : S+ T be abijection onto the F~vec~

tor space (T, +, 0). Then (S, O, b-1(0)) 1is al-
so an F-vector space, with addition

s, 05, = b7 (b(s)) +b(s,) ,

with additive inverse
" (=b(s))
for a vector s, and with scalar multiplication
£s = b7L(Eb(s)) .
Remark

Frequently, S may be given as an F-vector
space on a commutative group (S, +, 0). Though
the set S 1s common to these structures, the bi-
nary operatlions + and {J are distinct, =23 well
as the units 0 and b~1(0) and the scalar mui-
tipliczations.

Relative to the induced space, the bijection
and its inverse assume desirable properties.

Corollary 2.
Regarded as a function
bt (s, 0, b7H(0)) + (T, +, 0) ,

the bijection b is a morphism of F-vector spaces,
as 1s its inverse
b (1, +, 0) » (5, 3, b7i)

Proof: We have only to examine the defiring con-
structions
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b(s; Os)) = b s b‘lcb(sl) + b(s,))
had b(sl) + b(sz) H
b(fs) = b ° b™l(Eb(s))
= fb(s) ;

moreover, for each t, in T, we have a unique

i
si in § such that ti
also

- b(si); and so we have

e, + £y b'l(b(sl) +b(s,))

2

-1
b "o b(s:L a 52)

) 8] S,

-1 -1 .
e oo e,
b L(ge) = b7L(Eb(s))

= fg

1

= £h (L) .

Remark

If R 1is a ring with identity, then all the
discussions above generalize to R-modules.

Next, denote by SR the set of all functioms
from a set R to the F-vector space (S, (J, e).
Under pointwise conventions,

(8, J 8y) (r) = (g (r)) a (8y(r))
(fg)(r) = fg(r) ,

SR becomes an F-vector space also [8], as does TR
under the corresponding operations induced from T.

The following section defines the NDP for non-
linear plants, and uses the properties above to
characterize its structure.

Nonlinear NDP

The concept of a nonlinear NDP was outlined in
(3] by the authors for functions on commutative
groups. Here we extend the idea. Let R, U, and
Y denote F-vector spaces of requests to the sys-
tem, controls to the plant, and responses from the
plant. It is useful to visualize these, for exam~
ple, as function spaces, predicated perhaps on time
sets. Let p : U~ Y denote the plant, If the
feedback action of the controller is well defined,
then there will be a function m : R ~ U gener-
ating control actions from requests and « function
t : R~7Y describing plant responses to requests.
These three functions must then be related by the
equation

t=pom,

which is presented as a commutative diagram in Fig-
ure 1. The nonlinear Nominal Design Problem is to
tind pairs (m,t) in “(wR, YRY such that the dia-
gram of Figure 1 commutes. As usual, we point out

2 A
U > Y

Figure 1. Nonlinear MNDP.

that NDP 1s not a model matching problem, in which
t would also be given and in which only m in
Figure 1 would appear on a dashed line.

Now consider a pair (mi'ti) of solutions to

NDP. Characterization of the set ((mu,cu)} of

all solutions to NDP is severely hindered by the
fact that

pe (m1 + mz) #(po ml) + (p e mz) .

With che ideas of the section preceding, however,
this difficulty can be addressed.

Let (Y, +, 0) denote the F-vector space of
plant responses, and let (R, +, 0) denote the
given F-vector space of requests. If p 1is a bi-
jection, we can develop on U the F-vector space
structure (U, 0, p“l(O)) of Theorem 1. Relrtive
to this structure, p and p~l : Y - U become
isomorphisms of F-vector spaces. Moregover, (U,
g, e R) and (TR, +, 0) become F-vector spaces,

U
with

-1
e .(r) = p 7(0)
o’

for all r in R; and O(r) =0 1in T for all
r 1in _R. We can then define the F-linear map F :
uR « TR & 1R by setting the action

F(m,t) = p om - ¢ .
This leads to the following result.
Theorem 3.

Let p : U~+Y be a hijection onto the F-vec-
tor space (Y, +, 0). Then a pair (m,t) 1is a
solution to the nonlinear Nominal Design Problem if
and only if

(m,t) € Ker F .

Proof: The assertion is immediate. It may be
worthwhile, however, to point out the F-vector pro-
duct group structure on UR x TR defined by the
operation
* = -
(ml,tl) (mg,tz) (ml - My, & + tz)

Lt



Remark

If one wished, he or she could assume vector
space structure on U, and define a sgecinl bi—
nary operation 0 on T X T by p(p~ (: y + p~i
().

Remark

An Inverse nonlinear NDP, denoted INDF, can
be defined from the equation

Remark

Suppnse that p were only surjective. It
follows that p 4induces natural equivalence clas-
ses on U; and & projection 7 : U~ U/Z can be
defined. Then one has che universal factorization

P®"PoT

for a unique E : U/2 ~ Y, which is a bijection.
The structure (U/Z, 0, p~*(0)) can be developed,
and NDP pursued again. Only equivalence classes
of controls are determined.

The existence of plant inverses is of the
first importance btoth in theory and in applicction
design. In the next section, we examine briefly
the turbojet engine model which will be used for
our case study.

Nonlinear Turbojet Model

A nonlinear model of a simple turbojet engine
is shown in Figure 2. It is representative, on a
small scale, of the kind of nonlinear plant with
which designers of turbine engings and turbine
contrnls deal currently in practice. 1In essence,
it is a computer eimulation, typically constructed
by engine manufacturers and provided to control
manufacturers. The nonlinear turbojet model con-
sists of three integrators, nine nculinear func-
tions, including five bi-variant functlons, nine
multipliers and dividers, and nine summing junc-
tions. The model describes nonlinear dynamical and
steady state relationships between three inputs:
fuel flow, Wf, exhaust nozzle area, Aj, and

turbine vane position, B, and six outputs: eng-
ine speed, N, turbine temperature, T4, engine
thrust, FN, tallpipe pressure, P5, and two
other outputs. We propose to think of the nonlin-
ear simulation model as a nonlinear function p
from a2 real vector space of control functions of
time to a real vector space of plant response func-
tions of time.

Locally, with appropriate technical assump-
tions, the nonlinear plant function can be approxi-
mated by a linear map P : U +~ Y, in the neighbor-
hood of a pair (u,y) in the relation defined by
p. When the plant function p 1is a linear map P,
the transformation

P-l(P(ul) + P(uz)) =y + Uy

for the usual vector space structure (U, +, Q).
Locally, then, the operation Z : U x U+ U can

’?’ Ahq

l.l7'yr

be replaced by + : U x U - U,
Suppose next that the plant has an internal
representacion

% = f(x,u) , y = g(x,u)

with appropriate smoothness conditions associated
wich the functions f : X x U+ X and g: X x U
+ Y. Let x be such that

£(X,u) = 0 ,
and define
dy =y - g(x,u) , du=u-u,

Then p may be assumed to have a lozal representa-
tion given by an impulse response operator

¢ s+ p

or by its transform, say P(s), 4in the usual way.

The idea is to use these P(s) to determine
corresponding local descriptions of the parts of
the controller, and then to schedule these parts
together into a global whole.

Remark

In addition to the case study which follows,
an accompanying paper [9] discusses some additional
conceptual issues associated with such schedules.

For the following case study, three outputs
have been selected for control: engine speed, N,
turbine temperatire, T4, and engiane thrust, FN.
The nonlinear engine model was identified locally
at five conditions corresponding to 70%, 80%, 90%,
100%, and 110% speed levels., The engine input is
given by

u = (wf’ Aj: B) ,

and the selected engine response vector is
y = (N, T4, FN) .
By way of illustration, at 100% speed coaditionms,

the plant transfer function P(s) and its inverse
were found to be:

5.4(.01s+1) 56.1(.01s+1) -2704(.01s+1)]
.13(1,5s+1) -2.7(.50s+1)(.01s+1) T46(.31s+1)
o(s) 2.4(.29s+1) 68.3(.42s+1)(.01s+1) 951(.01s+1)
s} =
(.50s+1)(.01s+1)
.18(.23s¢#1)(.01s+]) 1.7(.01s+1}(.007s+1) -.083(.01s+1?
-.005(-.2s5+1) -.08(.01s+1) L015(.01s+1
- -.0001(.7ds+1)(.91s+1)  .0017(.01s+1)(.013s+1)  .00015(.01s+1
S . -
£.009s+1)
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Figure 2., Nonlinear Turbojet Model.

Multivariable Design

A nonlinear multivariable design method, based
on Total Synthesis ideas, is described and illus-
trated. Features of the design method include:

1. an input-output viewpoint;

2. design for desired response performance; con-
trol performance, and sensitivity;

3. a relatively general system structure;

4. a systematic way to synthesize the nonlinear
controller.

Starting point for the design procedure is a
aonlinear plant model or simulation such as the
turbojet engine model shown in Figure 2. Firse,
it is necessary to establish the desired steady
state operating conditions of the plant and deter-
mine available plant inputs and plant outputs.
Identification of the nonlinear plant along select-
ed operating lines then can provide local plant
dynamics and a set of plant transfer function ma-
trices P(s) relating inputs and outputs.

Possibilities for control of plant outputs
using available inputs can be checked by choosing
subsets of square matrices of the plant transfer
function macrix and determining the exiscence and
condition of the corresponding plant !nverse ma-
trines. Existence of the plant inverse with good
condition is necessary and vital to obtain reliable,
independent control of selected gutputs with avail-
able inputs [10-15]}.

Linear Design

A general linear system structvre which com-
bines TSP ideas with the idea of Comparison Sensi-
tivity was presented and discussed in [4] and is
shown in Figure 3. This system structure provides
coordinated feedforward inputs u. and loop com=
mand reg:ists y

re
—p r
Y T Yre G Leu +u P y >
H
[ L -
T S
Figure 3, Robust Comtroller Structure.

The feed-

forward elements coordinate request commands yr;

to a e¢losed loop control gystem,

the closed loop assures steady state tracking and
robustness of the outputs, y. The desired over-
all system response is designated by T. The
chosen response of the loop is denoted by TL.

Important controller elements of the struc-
ture are G, H, and M, which must be designed
in an acceptalble way so as to produce T and TL

within specifications. It turns out that three
key equations govern local design:

M= PiT (1)
-1-1
¢ =rlstn (1n)

-1
H = TL (l—SL) (I11)

Equation (1) is called the synthesis equation. It

is used to display all admissible responses (T,M)
and (TL.ML). Equations (II) and (III) are design

equations for the forward dynamics G and the
feedback dynamics H, respectively. Note that all
control dynamics are defined by selection of M, T,
TL and the comparison sensitivity SL' The sen~

sitivity S, is defined (16,4] by (1 + PGH) .

These equations provide a basis to design linear
control systems directly by specifying local re-
sporise and sensitivity performance.

Nonlinear Design

As observed in the Introduction, the idea of
describing families of curves by their tangents has
a rich history in mathematics, in science, and in
engineering. The method of phase plane portraits
was already well developed more than two decades
ago {17]. In more modern terms, we say today that
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stace space descripcions, by ordinary differential
equations, coincide with vector fields on manifolds
[18]. Solutions on the manifold are curves tan=~
gent to the vectors of the field.

What about nonlinear design? The fundamental
notion used in this paper is that linear descrip-
tions, obtained from local actions of nonlinear ob-
jects, may be combined to produce nonlinear action,
with sufficient integrity to effect closed loop
control. For example, if a set of local desigus
has given rise to a family {G(s)} of forward dy-
namics in the loop, then the goal is to link mem-
bers of the family together so as to produce a
nonlinear function g, that is (G} + g. Now
aach G may be regarded as giving a local approx-
imation to a part of the vector field. Under re-
asonable conditions of smoothness, and with enough
members in the family, a careful linking could in-
deed lead to useful g, over reglons of interest.

To extend this notion, one can consider
choosing, along an operating line, sets of de~
sired system responses (M,T}, loop respomses (M ,
T.},» and sensitivities {S,}. From these perfos-"
mknce choices, sets of conkroller matrices (M},
{6}, {H}, and (HT} can be generated via equa-
tions (I), (II), and (III). All of the linear
gets may be linked and scheduled as a function of
plant condition to form nonlinear control elements.
Thus {T} - ¢, (M} - m, {G} - g, {(H} - h, (HT} =+
hoet.

Desired steady state operating schedules,
treasient control means and protection limits are
also needed to provide other practical and func-
tional features for a nonlinear turbojet engine
control system., These features transform the
linear system structure in Figure 3 to the non-
linear system structure shown below, in Figure 4.

TAAN-

QUTFyT
—’1 g,ﬁ:"n s £sf

PROSIC.
o . M

Nonlinear Control System.

Figure 4.

The structure embodies key relationships of the
Total Synthesis viewpoint and provides other basic
features needed for full range, nonlinear control.
It 1s used in the design examples which follow.

Design Examples

In this section we illustrate the foregoing
synthesis ideas by designing a control system for
the nonlinear turbojet engine described in Figure
2. Recall that the turbojet has three inputs:
fuel flow, wf, nozzle area, Aj’ and turbine vane

angle B; therefore, three outputs: engine speed,
N, turbine temperacture, T4, and engine thrust, FN
were selected for control. We want to execute de-
signs to achicve specific, beneficial output re-
sponse strategies and show the effect that sensi-

tivity specifications have in resisting plant
parameter variations. Results are illustrated by
time responge traces Jor small step commands and
by full range acceleration and deceleration trans-
ients.

Performance Specifications

Design a multivariable control system for full
range acceleration and deceleration capability a-
long the steady state schedules so that complete
transients are completed in less than three sec-
onds. Small signal responses of the system are
degired to produce: 1) fast thrust response; 2)
smooth, gentle temperature response; and 3) con-
venient speed response. All should take place
without overshoot and without steady state error.

These requirements translate into the follow-
ing kinds of rerponse and gensitivity specifica-
tions:

1. Traeck output schedules with zero steady state
error,

2. Accelerate or decelerate from 70% to 1007 speed
levels in less than 3 seconds.

3, Local System Responses (T) - Decoupled

Speed - .5 second lag @ 70% speed
- .2 second lag @ 1007 speed

Temp. - .5 gsecond lag - constant

Thrust - .2 second lag - constant.

4, Local Closed Loop Response (TL) - Decouple:!

.2 second lag constant for all outputs.
5. Local Semsitivity (SL)

a) Unity feedback: SL = (!-TL);
b) Ten times better than unity feedback

The following response and sensitivity matrices at
100% speed condition were obtained:

1 1 1

T = dlag (5530 THaFT TZsD)
- B L L

T = diag (‘25+1’ T7sF1’ 290

.28 .28 .28 )

SL- diag (‘25_,_1» .28+1' .2s+1

(H=1)

.02s .02s .02s )
.02g+1’ .02s+1’ .02s+1

SL- diag C(

The forward control dynamics G(s) at-100%
speed condition with unity feedback are:

.90(.23s+1) 8.5(.01s+1) -.42(.015+1)

-.025(-.2s+1) -.40(.01s+1) .075(.01s+1)

8(s) = -.0005(.74s+1) .0085(.013s+1) ,0008(.015+1)
s{.01s+1)

Contr. .ler elements M, G, H and HT were
calculated at five engine speed conditions. These
sets were scheduled as a function of engine speed
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to form nonlinear control system elements m, 8, h

and h ¢ t. For example, the form of the nonlinear
controller g so constructed is shown in Figure 5

below.

s
& -
I -
T
3, ¥
LA U e I LT
2 o) QA
2 ¥
i O ' hH

HD B+

ol
Ly

Figure 5. Nonlinear g.

Simulation Results

Small step transients of the nominal engine
with sensitivity feedback system are shown in Fig-
ure 6., The output responses verify desired small
signal performance: thrust response is fast (.2
second lag); temperature response 1s smoqth (.5
second lag), and speed response varies from .5 sec-
ond lag at 70% to .2 second lag at 100% speed con~
dition. Correspouding input responses are shown
in Figure 7.

Full range acceleration and deceleration tran~
sients of the nominal engine with sensitivity feed-
back system are shown in Figure 8. The outputs
track the requests without overshoot and the trans-
ient time is less than three seconds. Correspond-
ing input responses are shown in Figure 9, All
inputs are within desired limits.

To show the effect of sensitivity specifica-
tion on plant parameter variaticns, the time cons-
tants of the engine affecting speed, temperature

Sk i, )
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[ 1B 20
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Figure 6. Outputs.
Nominal Engine; Sensitivity F/B.
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Figure 7, Inputs.

Nominal Engine; Sensitivity F/B.

and tall pipe pressure rasponse were all doubled.
This produced a nonnominal engine.

Small step responses of a nominal and non-
nominal engine with unity feedback control are pic-
tured in Figure 10. Deviations from desired output
responses are caused by the engine parameter vari-
atlons.

Imposing a sensitivity specification which is
effectively ten times better than the unity feed-
back design produced feedback dynamics H = diag
((.2s+1)/(.02s+1)). Step responses for the sensi-
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Figure 9. Inputs.

Nominal Engine; Sensitivity F/B.

tivity feedback design with both the nominal and
nonnominal engines are shown in Figure l1. Devia-
tions due to eagine parameter variations are vir=~
tually eliminated.

Full range acceleration and deceleration tran-
slents of the sensitivity feedback controller with
both nominal and nonnominal engines are shown in
Figure 12. The sensitivity design feedback con-~
troller maintains full range output transients es-
sentially at nominal conditions, successfully hand-
ling plant parameter variations.
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Figure 10. Outputs; Unity F/B,
Nominal and Nonnominal Engines.
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Figure 11. Outputs; Sensicivity F/B.

Nominal and Nomnominal Engines.

Summary Remarks

A nonlinear control synthesis method based on
TSP viewpoint was discussed and illustrated. A
three input/three output turbojet engine example
demonstrated a feasibility to achieve desired sys-
tem response and sensitivity specifications.

A concept of the nonlinear Nominal Design Prob-
lem (NDP) was presented and discussed, extending
and building on earlier Total Synthesis Problem
(TSP) theory and ideas. Additive structure was ob-
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Figure 12. Outputs; Sensitivity F/B.
Nominal and Nonnominal Engines.

tained by a process of io‘icing a special binary
oparation on the control input space. Though not

a new mathematical idea (18}, this concept seems to
fit constructively into current design developments
in nonlinear control,

Ressavch to develop nonlinear control synthe-
sis mechods i{s needed. It is felt that tha i{nput~-
output TSP viewpoint offetrs possibilities to devel-
ap useful, systematic and straightforward methods
for nonlinear multivariable concrol synthesis.
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Abstract

In the applications, one common way to design
a control system for a nonlinear plant is to local-
ize its behavior along lines of operation specitied
by the plent manufacturer, to develop linear multi-
variavle controls for these localizations, and to
gchedule those controls with key plant variables
which vary smoothly along operating lines. An im-
portant part of practical design lore, the art of
controller scheduling has received little modern
attention from the conceptual point of view. This
paper describes four basic types of scheduling ques-
tions and outlines some of the theoretical Zlssgues
associated with them., Schedules are considered in
terms of state equations; however, some relations
with the input/output description are discussed,
together with an amlysis of the effects on the
overall configuration of approximations made to
the individual subsystems.

Introduction

Bristol (1,2] has likened the process of con-
trol design to the use of idioms in a language.

At least three types of id.uoms can be identified.
First, there are idioms which have been with man-
kind for such a length of time that they seem uni-
versal to the human psyche. In some sense, feed-
back itself is an example of such an idiom, inas-
much as it may be traced at least back to ancient
Arabian water clocks. Second, there are idioms
which are the characteristic of certain authors.
Several classic examples are the Nichols chart,
the Bode plot, the Evans loci, and the Nyquistc
plot. And third, there are idioms which are typi-
cal of certain types of control applicatioms. An
example i{s that of gas turbine control systems [3].

Becuuse of the idioms of type three, any ap-
plication of control design has idiomatic features.
In a sense, the task of the control designer is to
blend the idioms of the application with universal
idioms, with idioms of classical and modern authors,
and with his or her own idioms, so as %o produce a
melodinus and effective composition.

It goes without saying that some idioms do not
play well togecher. In some areas of application,
this may account fer the famous theory/application
gap.

One universal _Jicm Is to attack the overall
system design by breaking it down into manageable
nieces. An important case of this type of thinking
arises in the design of certain classes of nonlinear
systems. Examples in point may be found in the
area of gas turbine control. For discussion of
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scme of the ideas involved, as well as additional
references, see the companion paper [4]. In brief,
the nonlinear engine is linearized locally along
lines of operation agreed upon by the manufacturer
and the control contractor. These linear multi-
variable localizations are used to develop a family
of local controllers, which avre then sewn together
by scheduling control gains and dynamics with some
engine variable, as for example speed, which varies
smoothly aloug operating lines.

As pointed out by Bristol {1]), the idioms have
to blend together. In the case of scheduling, the
methods used for design of the local, linear mul-
tivariable controllers have to be amenable to a
common thread of smooth scheduling, else a global
whole is not obtained, but only a sum of parts.

The goal of this paper is to examine in an in-
troductory way certain of the conceptual questions
agssoclated with scheduling. In particular, we
would like to determine something about the struc-
tures of common scheduled systems, their approxi-
mations, and how they are affected by interconnec-
tions one with the other.

What follows should be regarded as exploratory
in nature. Though we will do some things in con-
siderable detail, it nonetheless remains true that
we will be answering only a portion of the questions
which we raise.

Simple Example
Consider the elementary dynamical system
x = -ax + bu . (1)

The transfer function associated with (1) is of
course

perwnlil (2)

Rewritten in terms of gain and tume constant, (2)
becomes

k
T T (3)

where
k=bfla , T=1/a. (4)

Suppose that we wanted to schedule the gain k as
a function of the input u, say



2
k(u) = ul + Blu + 'YlU . (5)

Then the scheduled system would look like

L w -ax + ga,u + aBlu2 + aylu3 . (6)

1

Alternatively, we might schedule the time constant
t as such a function, for example

t(u) = a, + Bzu + yzuz . o

in which case we would have
2
am= 1/(ct.2 + Bzu + You )

= a:l - Bzaazu + e (8)

“-

so that

X = -u;lx + Bzagzux + bu+ ... (9)

on out to a denumerably infinite number of terms.
Next suppose that we wanted to schedule the gain
k or the time constant Tt as a function not of
u but of x, in the manner

k(x) = a, + Byx + y3x2 , (10)

3
2 .
t(x) = a, + Bax + YX . (11)

Then the scheduled systems would be

X = -ax + acu + aB3xu + ay s u, (12)

X = —azlx + Baazz x2 +Ea+ ..., (13)

again with a denumerably infinite number of terms.

Generally speaking, the polynomic scheduling
concept tend” to convert the system (1) into a sys-
tem of tue form

k= ] 1 r xtd . (14)
i=0 j=0 i

Indeed, if the original system (1) were of the more
general form

@« @

k= § ] a_xu’, (15)
k=0 m=0 km

and if the parameters wsTe scheduled in an analog-
ous way, such as

LI P.q
a = Z ) xtut (16)
km p=G q=0 akmpq

then (15) becomes

@ L L

fe 11 1T g

k=0 m=0 p=0 q=0

k+pum+q . an

which can be formally rearranged in the same form
as (15). In broad terms, then, (15) is closed
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under formal power series scheduling.

Because of this closure feature, we find in-
terest in systems of this type. The next section
giver a brief, multivariable motivation.

Multivariable Motivation

When a nonlinear plant has been linearized in
the neighborhood of a poin* on the desired operat~
ing line, the resulting, local, linear multivari-
able control problem must be resolved by some
chosen procedure. Moreover, assoclated with this
chosen method will be various related and compat-
ible theoretical viewpoints. It is not the pur-
pose of this paper to argue the merits of one or
more of these theories. Instead, we wish to select
a way of thinking which is comprehensive enough to
embrace the thoughts of numerous approaches to such
conceptualization. In this way, the scheduling
classes which we introduce will, hopefully, be
broad and representative of those which arise in a
variety of schemes. Of course, not every class
would be natural to every theory; and not every
possible scheduling class can be encompassed by
any one viewpoint. The idea, nonetheless, is to
generate, as it were, some of the characteristic
features encountered in scheduling,

For the above mentioned, illustrative, pur-
poses, then, we select the Total Synthesis Problem
(TSP) structure proposed by Peczkowski, Sain, and
Leake [5] in 197%. 1In the TSP idea, both the com-
mand/output-response, represented say by a matrix
[T(s)], and the comnmand/control-response, repre-
sented say by a matrix [M(s)], are to be simul-
taneously synthesized subject to the constraint
imposed by a plant, which could be represented by
a matrix [P(s)]. Fundamental to TSP is the Nomi-
nal Design Equation (NDE)

(T(s)] = [P(s)][M(s)] ,

which must be satisfied no matter what controller
structure might be selected. For a full discus-
sion of NDE, see [6]. Once NDE is solved, one can
make use of any of the multitudinous struccural
synthesis methods of modern theory or modern prac-
tice to develop a feedback controller. Feedback
synthesis generates a number of interesting ques-
tions of theory. For examples of these and for
additional references, see [7]). It also generates
very important questions of practice. Examples of
these have been given in [8,9,10]. 1In (8], the
structure of Figure 1 was employed on a turbojet

Figure 1. Sample Controller Structure.



example. Subsequently, [9] and [10] considered
particularizations of {8], especially insofar as
L and K are concerned.

The structure [8] of Figure 1, however, is
adequate for purposes of subsequent discussion.
Let families (L,K,G,H} have been determined by a
technique of the reader's choice, in correspondence
to a family {P} developed along desired operating
lines of the plant, From a more global point of
view, the plant may be regarded as a general, not
necessarily linear, function p : U > Y for appro-
priate control and response spaces U and Y. We
are interested in considering four cases of sched-
uling:

(I) L are. K as a function of r;

(I1) L and K as a function of their output;
(III) G and H as a function of Lr;
(IV) G and H as a function of vy.

Notice that, in I and II, we may as well choose
either L or K, because the issues are the same.

Abstract Derivatives

As indicated in the Simple Example Section
above, the idea of polynomic scheduling, of gains
or time constants, suggests a state description in
terms of series. Because we wish to use operator
theoretic methods to some extent, it is convenient
here to make a few introductory remarks about der-
ivatives in such a context.

Let V and W be normed real vector spaces,
with Z open in V. A function £ : Z -+ W s
differentiable at a point p in 2 1if there ex-
ists a continuous linear map F : V - W such that,
for (p+h) in Z and h in V,

lin  [leGe+h) - £(p) = Fl| _
lnf[~0 [ToTT :

If F exists, then it 1s unique and is called the
derivative of f at p, and is denoted by

(Df)(p) : VW,

In case f 1s differentiable on Z, then we have
a construction

Df : Zz »~ L(V,W) ,

where L(V,W) denotes the real vector space cf R-
linear maps V ~ W. Higher order derivatives are
defined in a2 recursive fashion,

(°E) (p) = (OO N () ,

with r a positive integer, provided that the in-
dicated limit exists. For more discussiou of
these notions, the reader may wish to consult (11,
12,13].

An important connection exists between the
calculus on normed vector spaces and the tensor
algebra. Indeed,

J.36
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D2E(p) € LIV,L(V,W) ,

D3E(p) € LIV, LV,L(V,W)))

whenever the limits exist. Let us denote by

L(Vl,Vz,...,Vn,W)

the real vector space of n~linear functions

Vl ® V2 X 40 X Vn + W,

an n-linear function being one which is linear in
its remaining argument whenever (n-1) of its
arguments are fixed. It can be shown that there
exist isomorphisms

L(Vv

W) - L(leL(szw)) )

1V
L(V,,Vp0 Vg W)+ LOV LY, L0,,0))

so that (Drf)(p) can be regarded as an r-linear
map VT + W, up to isomorphism. We suppress this
isomorphism and think of (DFf)(p) as just such a
map.

It 1s now stralghtforward to establish a con-
nection with the tensor algebra, and we do so in
the section following. The importance of the con-
nection lies in its parametric possibilities:
Every r-linear map can be composed from a linear
map and a universal r-linear construction called
tensor product. In a sense, the linear map em-
bodies the parameters which are available for
scheduling; and we pursue this view in a latet
section.

Tensor Algebra

In this section, we develop some of the struc-
tures with which we can subsequently discuss sched-
uling questions I-IV, Let V be a real vector
space. For each integer r which is two or great-
er, let

(8"v, o)

be a temsor product for r copies of V. The no-
tion extends to 1 and O by the definitions

@lv =V sov =R .

The sequence arV, r=20,1,2,..., can be developed
into a biproduct, and the images of @'V under in-
sertion can be given the same notation. Then the
tensorial powers @ can be developed into an as~
soclative algebra by defining the internal direct
sum

o™

oV =

He~18

n=0




and by equipping @V with the bilinear mapping
(«,8) + a8 for a, B, aB € ® V whose result is
defined by

af = z a
n,m

)
n Bm ’

where a = g an, g = E Bm for an € o'V and Bm
¢ ™. With this multiplication, @V becomes the
graded tensor algebra over V with elements Wy

%,...), "
Vv, 1 = 0,1,..., and with unit element (1,0,...).
We emphasize the fact that multiplication in the
tensor algebra 1is not a tensor product.

Now let @V and ©@W be tensor algebras as
defined above, over V and W respectively. For
every pair n,m 2 1, let ®:(V,W) be a tensor

product of 8™ and emw,

n which are sequences of the tensors a, €

that is,

e:(v,W) - (&™) 8 @™ ,

We set @g(v,W) = 6"V and Gg(V,W) = 3N, Ina

manner similar to that preceding,

eg(v,m , n=0,1,2,..., m=0,1,2,...

can also be developed into a biproduct; and the
images of each of these spaces under natural inser-
tion into the hiproduct can again be given the same
symbolic representation. Again, then, we construct
the internmal direct sum

o«

eV, W) = [ er(v,w)
n,m20
with
eV, W) = I [ ] er(v,w]
k=0 ntm=k

functioning as the induced gradation on @(V,g).
Now consider two spaces @m(V,w) and @s(V,w).

There exists a unique bilinear mapping
n t n+r
B (VW) x @ (V,W) ~ @m+s(V,W)
with action
we @8 ,a ®8)=( ®a)e (8 &8),

r
where a_ ¢ enV, a_ € v, Bm € emw, Bs € @SW. The
pair (@:::(V,W),u) is a tenmsor product, or

+
@ﬂl'

g (Vo) = 87 (V,W) @ o (V,W)

and

(an @ ar) 0l <sm e 65) ® (an @ Bm) 32 (“r ® Bs> *
We have subscripted the product symbol @ in this
equation in order to emphasize the fact that the

defining product @, on the left is between an
(n+r)-tensor and an (m+s)-tensor, while the defined

i i
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product ®, on the right is between an (n+m)~ten-

sor and an (r+s)-tensor.

An algebra structure may be placed on @(V,W)
by definingna mu%ciplication ogerac%on. To this
end, let a) € em(V,W) and Bs € es(V,W) so that

the tensors

are elements of o(V,W),
such tensors is given by

Then the product of two

n r
af = 2 (Gm @ ss) ’
n,m
r,s

where the symbol @ 1s the same as @, above.

2
Notice that the multiplication rule implies

® ® = @ ®
(@, ®B8)(_©B8)=( @8) 6, (x @38)
=@ 2a)e (B ©8)
= (anar) @ (Bmﬁs) .
This relation shows that the algebra e(V,W) 1is
the canonical tensor product of the subalgebras
eV and €W, or
e(V,W) = @V) @ (eW) .

The results in this section are adjustments
of those which may be fouund ian [14]. Our motiva-
tion is, of course, the expansion of functions
£:XxU~+X, for X a real vector space of

states and U a real vector space of controls.

Formal State Descriptions

Consider a nonlinear state descru.ption of the
general form

x = f(x,u)
for

f i1 XxU~+X
with X and U

norm. Let (x,u)
pose that

real vector spaces, equipped with
be a point in X x U, and sup-
DTf : 2+ L(X x U,...,X x U,X)

r=20,1,2,...,
in Z.

is available for

£ with Z open in
X x U and (x,u)

Then, formally,
f(x+x,u0+u = J i—, OF8) (%,3) (x,u) (k),
k=0

where (x,u)(k) = ((x,u),(t,u),...,(x,u)), the
right member having (x,u) k times. It should
be recognized that this series could be replaced by
a finite number of terms together with a remainder.
However, the above representation is adequate for
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brief il.ustrative purposes, Space does not permit
a discuzsion of whether, or how, the series accept~-
ably describes the function. Along the same lines,
we pass ovar the related question of how it affects
the vector field associated with the differential
equation, and therefore ics solutions. Instead, we
remind the reader that (DKE)(x,u) is a k-linear
function on (X x U) to X; and this suggests
that we can use tensor algebra to parameterize it.
Indeed, denote by (x,u)X the k~fold temsor pro-
duct »f (x,u) with itself, Then the k-linear

funetion (Dkf)(x 1) can be factored uniquely in
the manner

LG o o,
where

(@k(x x U), @k)

is a tensor product for k copies of X x U, or
what is sometimes called a kth tensorial power for
X x U, In this case, the kth parameter map oper-
ates in the manner

Lk(;c,ﬁ) : ek(x xU) »X .

We have, therefore, trat

o

f(k + x, u+u) = Z Lk(x Q) o @ (x, u)( )

©

Z T L a0 G, wk
Next consider the rearrangement of a term of
type

Ly (58 G,

Consider, for example, the case k = 2, namely

w? = (xu) © (x,u) .

Such a form does not relate directly to the struc-
ture of the section prezceding, which would involve
terms of type xJ @ u”. However, there is a nat-

ural way to convert to that structure. Define pro-

jections

7 s+ XxU+0U0 ; m_ :XxU~X;
u X

and injections
1 : UelU-+s ; 1 : U®X~+8S ;
uu ux
i : XeU~-»s ; 1 : X®@X~+8 ;
xu =

for
S=(UelU)x (UeX)x (XeU)x (XeX).

Then we can write

138
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(x,u) @ (x,u) = ixx(ﬂx(x,u) ® 7 (x,u))
+ 1xu(wx(x,u) ® m (x,u))
+ 1ux(ﬂu(x,u) @ nx(x,u))

+ iuu(nu(x,u) @ ﬂu(x,u))

If we identify images of the injections with their
domains, as for example

iuu(U el)=~UoU,

then we can write
(%,u) ® (%,u) * x @2x+xu+uex+udu.
According to the conventions of @(X,U), however,

discussed in the section preceding, we agree to
write

uex = Tux,xu X Qu
for an appropriate isomorphism T . In that
ux, xu
way, we can proceed to
- = 2 - - 2
Lz(x,u)(x.u) = Lz(x,u) %
+ Lz(i,ﬁ) x @ u
+ Lz(x‘u)Tux,xu Xx9u

* L&D o,

which we re-notate to (with factorials included)
==, 2 - = -- 2
Lzo(x,u; %"+ Lll(x,u) x ® u+ Loz(x,u) u” .

In this way, the formal expansion becomes

fGrxTrw e ] ZL 3

i=0 j=0

(x u) x ® u

from which point we can examine the scheduling
questions previously raised.

Internal Scheduling

In the section on Multivariable Motivation, we
brought attention to four cases of scheduling. With
the aid of the ideas foregoing, we would now like
to comment on each of these. We shall see that the
scheduling idea of our Simple Example Sectiom,
while motivating in nature, is not rich enough to
embody the complete idea in question. In particu-
lar, we nave primary interest in_the scheduling of
parameters as a function of (x u; and mot (x,u).
Though such issues would have encumbered the Simple
Example, we have estublished now enough background
to make the consideration.

Case I

It is sufficient to consider K as a function
of r. Notice that r 1is effectively u for this



]

case. Accordingly, we have L as a mapping

1}
Ly U= L(e§(x.v).X) ,
and we may write
£Gx atw = ] T Ly, @® wted .
1=0 §=0

The constraint imposed by Case I is thus a domain
restriction on Lij' in the form that the action
of L1j depends only upon U and not upon x. If
we make the formal expansion
- i ~k
L,(w= ] L s,
13 Lo iik

in a manner analogous to the steps taken dbove for
f:XxU-+X, then
w @ «©
g arwe ] ] L et ated) .
i=0 j=0 k=0

Assuming distribution, we find thut the structure
of interest is engendered by
~k 1 i
Lijk u” (x” @ u’) .,

This raises the forms

Feoxtoed ,
which can be referred, by isomorphism, to the pre-
viously described tensor algebra by

e e,

Case II

We shall assume, for simplicity, that y 1is
equal to x. Again, it is sufficient to consider
just one, say K, of the two mappings. In a man-
ner similar to Case I, it can be shown that

- - @ © - -k i j
f(x + x, u+u) = x (x e u') ,

L
120 4=0 k=g 13k

with the corresponding underlying construction

o oyl

Remark

Although it has not been stated as one of our
cases, the generalization of Cases I and II clearly
leads to

Fexoite .
Case III

This case is quite a bit more complicated than
the previous two cases. For simplicity, take L
to be the identity and K to be zero., In consid-
eration of G, we note that its input, say u, 1is
a sum of r with a function of the plant output,
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Suppose, for purposes of G, that H 1is an iden-
tity and that plant output is its state. What we
can do is to examine the series combination of P
and G, with state

z .- (xG.xP) € XG x xP .

If we take u as the input to G, then

z = £(z,u)
with £ : XG x XP x U =+ XG X xp and with
usye~-mT_ 2
*p
for ﬂxP : XG x XP > XP an appropriate projection.

Again, we have the basic expansion

fGrz, atw e § ] L,GD e,

im0 ymg

and we wish to schedule with

r=u+mnw_2z,

*p

We can reduce this situation to one which 1is close
to that of Case II. Write

Lij(z,u) = Lij(z' r - nxPz)
n - -
= L
1327
n, -
- Z Z L z @r .
k=0 m=Q
Then the basic issues involve

Pezfeteyd

The remaining part of this case has to do with H.

A saimilar approach can be applied, if we assume G
to de an identity. Here

z = (x5,%y)

and

the results vary essentially only in the meaning of
z.

Remark

Assumptions on L, K, G, and H are for con~-
venience only. They can be removed easily by ex-
panding =z and the definition of input.

Case IV

Notice that the question of H scheduled on
y 1s the same as H scheduled on 1its input; and
this reduces to Case I. Moreover, the question of
G scheduled on y 1is essentially that of G




scheduled on a projection of the sum state (xG.xH,
x?). which in turn 1s a question of the composite

loop system scheduled on its state, which in turn
reduces to a version of Case Ii.

These are a few of the basic concepts which
arise in nonlinear scheduling of state equations.
We have introduced a viewpoint which seems broad
enough to permit discussion. We have not used this
fraomework to gsolve any new problems, however, but
only examined its possibilities for providing
frames of reference.

Once internal scheduling has been carried out
in an acceptable way, one comes next to the re-
lated input/output functions. This is also a large
subject, and we give only a sample survey of the is-
sues in the next section.

The Input/Qutput Connection

In this section we briefly highlight some gen-
eral regsults from the litervature relating the in-
ternal and external constructions for nonlinear dy-
namical systems. Such results suggest just a few
of the approaches to the mathematical bridge nece-
gsary for the scheduling discussions of the present
paper.

We consider a nonlinear control system

% = £(x,u)
y = h(x) ,

where f : X x U > X, h: X +Y, for X, U and Y
the state, input and output spaces, respectively.
With appropriately defined conditions, there is
associated with such a system an input-output map
from U to Y. Moreover, if we assume a suffi-~
cient degree of smoothness for f and h, this
input-output map may taie on a functional expansion
representation commonly known as a Volterra series,
first considered by Vol:erra [15] as early as 1890,
and studied later in dipth by Weiner.

An important subclass of such systems is that
of bilinear gystems, which in recent years has it-
gself motivated the study of Volterra series. 1In
[16]) the construction of, and realization from,
Volterra series representations for tilinear sys-
tems is outlined, where it is shown that a neces-
sary and sufficient condition for the existence of
bilinear realizations corresponds to that of fac-
torizability of the kernels which characterize the
Volterra series expansion. In light of Krener's
result {17] for the bilinearization of a rather
general class of nonlinear systems, such realiza-
tion studies rake on considerable utility. This
latter result i{s based on a linearization technique
used by Brockett (18], introduced first by Carleman
[19] in 1932, and used later for similar applications
by Bellman and Richardson [20] in 1963. We note
here that it is a straigntforward exercise to de-
velop this technique analogously in terms of the
tensor algebra and corresponding products.

Brockett [21] has expanded these ideas to a
more general class of systems for which

% = gl(x) ) uig?(x)
{ 2

y = h(x) ,
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where 811 By ¢ X+X and h : X+ Y are analy~

tic, and the u, are components of the vector u

i
€ U, Such systems are termed linear analytic and
ave closed under composition and feedback. It is
shown in [21] that the solutions can be expanded in
a Volterra series provided that there is nc finite
uescape time, Furthermore, necessary and sufficlent
conditions fur n Volterra series to be realizable

as a linear analytic system are given. For a fin-
ite Volterra seriles representation, this will be

the case if and only if the kernels are separable.

In [22], Gilbert develops similar results for
the general system and for the linear analytic sys-
tem. The approach is an alternative to the Carleman
technique, and uses Frechet power series in the
functional expansion. Convergence results of
Brockett [21] are utilized for truncated Volterra
series.

Yet another approach to these results is in-
troduced in [23) where standard tools from calculus
and ialysis are employed in studying the existence
and uniqueness of Volterra series representations
for nonlinear systems. In their existence proof
for the Volterra expansion of the class of linear
analytic systems, Lesiak and Krener exhibit a pro-
cedure for constructing the kernels of the expan-
sion. This construction may be applied to more
general systems, where the input enters nonlinear-
ly, by first approximacting the system by a bilin-
ear system, using the result in {17]. In the work
of Crouch [24], the rich mathematical structures
of Lie groups and differencial manifcolds are ex-
plored in relation to the realizations of finite
Volterra series for linear analytic systems. A co-
ordinate free development is presented as an exten-
sion to the results of [21] and (23].

Truvacation

The preceding remarks have made use of series
representations for internal models and have dis-
cussed relations between internal and input/output
models., It is, however, unlikeiv that one would
schedule an entire series in practice, unless that
series were simply an alternate form for a function
which could be parameterized in finite terms. Thus,
although the series format permits a rapid intro-
duction to certain of the underlying structures in-
volved in scheduling, we wish to mention some is-
suas which arise when the series are truncated, or
when they had a finite number of terms from the
outset.

A principal feature of truncation in an in-
ternal or state model is the resulting approxima-
tion which occurs in the input/output model. On
appropriate normed real vector spaces U and Y
of controls and responses, respectively, one might
express the input/output function by

p:U=—+Y

and, formally at least, its series expansion by

p(u + u) = y %T ka(a)u(k)
k=0

The algebra of input/output mappings, under compo-



sition and pointwise addition, is of ringlike na-
ture, failing only nne discributive law. Minor
complications arise, moreover, because U ¥ Y,

It is important to realize that similar remarks
can be made when the series representation is
truncated, as for example in the manner

m -
plu + u) M ) i? ka(u)u(k) .
k=0

Call the right member of this equation
pm(ﬁ,u) .

Then we have fundamental questions to be addressed
insofar as connections are concerned.

Example 1 (Parallel)
Let pi : J+»Y, 1= 1,2, Then under what
conditions does

1

, 2 1 2
Pr+pT) Pyt py?

Example 2 (Series)
Let pl : U~+Y and p2 ¢+ Y=+ 2. Then un~
der what conditions does
2 1, .2 1,
G I S
0f course, the feedback case can also be addressed.
Such questions have been addressed in [25,26,27].
Though we have no space remaining here for further
detail, an important point is that the questions
can be addressed within the framework brought for~
ward in this paper., This offers possibility, then,
for determining features of scheduling which in-
volve interconnections in the controller of G, H,
L, and K.

Conclusions

Scheduling of local, linear multivariable con-
trollers into global, noulinear multivariable con-
trollers is a very present tool in a variety of
modern control applications. A case in point is
gas turbine eagine control., See, for example, the
companion paper [4].

Despite the entreachment of scheduling in
practice, the theoretical view of such approaches
is relatively undeveloped. There are many reasons
for this, including the fact that theory is pre-
disposed to give general conditions across many
classes of possible application and finds it quira
challenging, for the most part, to be general about
particular applications. Nonetheless, it seems
that much could be gained by a theory/design dialog
on the issue of scheduling.

Toward such dialog, we propose in this paper
a viewpoint which may be broad enough and deep
enough to support such a dialog. The central fea-
ture in the viewpoint is the parameterization pos-
sibility which is inherent in tensor algebra. For
a reasonably general control configuration, we
have used the tensor framework to examine four
typical scheduling structures. Though much remains
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to be done in such a dialog, we have found these
ideas useful in thinking about the joint theory/
application issues which are involved.
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Abstract. An iwportant aspect of multivariable control system design in-
volves the formulation of reliable mathematical models. Gas turbine eangine
control systems, with their inherent nonlinearities, provide common practic-
al examples of the need for nonlinear models. 1In this paper we discuss a
computer-aided design package for generation of such nonlinear models, using
an approach involving notions of power serles and algeoraic tensors. Two
independent computing systems are employed incteractively in the overall pro-
cess of model formulation, identification, and validation. The package is
sufficiencly generalized to accommodate any particular nonlinear modeling
problem when formulated within the framework of the algebraic tensor scheme.

Keywords. Computer-aided system design; multivarilable control systems; mod-
elling; tensor algebra; nonlinear systems; algebraic system theory.

INTRODUCTION

Models have always been an important aspect
of applicacions engineering in the area of
multivariable control system design. See
for example the work of Kreindler and
Rothchild (1976). Practical and induscrial
examples of the use of models are provided
by gas turbine engine control systems, which
commonly use models to generatc control and
response trajectories for various power de=-
mands. These models, when scheduled over
the operating envelope, can reduce the com-
pensation normally required of the control-
ler, and thus provide the feedback loop with
an opportunity to achieve better accuracy in
the presence of noige and parametric uncer-
taincies.

The scheduling of feedforward models and
feedback compensation typically produces
nonlinearities, even if the local models are
linear. Accordingly, there is basic inter-
est in fundamental approaches which incor-
porate nonlinearity at the outset. Such ap-
proaches should (1) reduce to the earlier
linear schemes for variables with small ex-
cursions, (2) be amenable to scheduling, and
(3) offer opportunities for determination of
parameters from simulation data.

One such approach, investigated by Yurkovich
and Sain (1980) and Klingler, Yurkovich, and
Sain (1982), uses the notions of power ser-
ies and algebraic temsors (Sain, 1976) to
generate a class of nonlinear models. The
important feature of the algebraic temsor 1s
that it provides an organized way of de-

*

This work was supported by the National
Aeronautics and Space Administration under
Grant NSG 3048.
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seribing the power series expansion formula,
lending itself with relative ease to pro-
gramming on a digital computer. Furthermore,
its use allows for the implementation of
linear parameter identification techniques.

This paper reports on the develorment of an
interactive computer-aidsd design package
for the formulation, identification, and
validation of one particular model structure
which uses the above-mentioned tensor appro-
ach. The software package, developed using
the extensive capabilities of the IBM and
DEC Command Procedure Languages with the
screngths of FORTRAN and SPEAKEASY, is di-
vided into two segments and tailored to
utilize existing computer hardware effec-
tively, as well as to provide the fastest
rossible user turnaround time. The inter-
active nonlinesar model generation segment

is implemented on a Time Sharing Option
(TSO) of the IBM 370-168 computer system,
where the memory dependent and highly com-
pucational routines of the package can bene-~
fit from use of the virtual memory and float-
ing point hardware. Once a structured non-
linear model is identified, it is then
transfered to the DEC PDP 11/60, where in an
interactive environment 1t can be analyzad
and compared to a linear model as well as
the true system. In this manner, the user
has at his disposal both the graphics capa-
bilities of the video terminal and an elec-
troscatic printer/plocter for the immediate
display of data and comparative trajectories.

The remainder of che paper is outlined as
follows. First, we briefly discuss notions
from analysis and algebra which fnrm the
foundation for the tensor approach used in
the model formulation. A detailed discus-
sion of the interactive design package is



then given, followed by a brief discussion
of the computational aspects regarding
floating point operations in che model sim-
ulation phase. We close with an example
problem from a turbofan jet engine simula-
tion,

NONLINEAR MODEL FORMULATION

Prior to proceeding to the description of
the computer-aided design procedure in the
modeling scheme, we outline here some of
the prerequisite mathematical issues in a
coordinate~free development. Since the
wreatment is brief, the reader may wish to
consult Dieudonne (1960) and Greub (1967)
for complete expositions of the topics dis=-
cussed herein.

Tensor Ideas

We begin with a discussion of abstract der-
ivatives and the calculus of normed vector
spaces, Let V gnd W be normed vector
spaces and let Z be open in V. Suppose
chat £ : 2 - W 1is differentiable at a
fixed point p 1in 2. Then the derivative
of £ :2Z W at p 1s a mapping

(DEX(p) : VW (1)
where
Df : 2 » L(V,W) ; (2)

that is, the derivative mapping in Eq. (1)
is an element of the real vector space of
linear mappings from V to W. Higher or-
der derivatives are defined recursively as

(¥ E)(p) = (DO 1)) ) , 3

for the positive integer r, provided that
the (r-1)st derivative is differentiable.
Moreover, higher order derivatives are them-
selves linear wmappings according to

D%E(p) € L(V,L(V,W)) ,

DYE(p) € LOV,L(V,L(V,M)) , (&)

If L(Vr;W) denotes the real vector space
of r-linear mappings from VI to W, it
can be shown that there exist isomorphisms

LV + LOV,LOV, W)

LW~ L LV, L)), ()

so that the rth derivative of f at p can
be regarded as a mapping from V* to W,

We suppress this isomorphism and consider
DEi(p) as an element of L(VE;W),

We now use this multilinearity of the deriv-
ative mapoing to make a connecrion with no-
tions from algebraic tensors. Let (oFV,3F)
be a tensor product for r copies of V.
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Recall that by the unique factorization pro=-
perty of the tensor product, for every map-
ping ¢ : Vi =W in L(VF;W) there exists
a mapping A : @'V =W in L(ofV,W) such
that ¢ = A ° ®f for oF : VE = @'V in
L(VF;@'V), Furthermore, the iwplication of
the unique factorization property is that

Co o«

L(a"V,W) + L(VE;W) (63

i8 a vector space isomorphism, Thus, via
the isomorphisms of Eqs. (5) and (6), the
r~linear mapping DFf(p) : V' =+ W can be
composed from a linear mapping ©fV +~ W and
the universal r-linear tensor product map-
ping oF : V' =+ ofy,

State Degceription

The ideas discussed above are now used to
formulace the model structure for a given
nonlinear system. We consider systems whose
states and inputs are elements of the normed
real vector gpaces X and U, respectively,
and which may be described by the nonlinear
ordinary differential equation

% = £(x,u) 7N

for £ : X x U~ X. Let (E,G) be a fixed
point in Z open in ¥ x U, and suppose
that f : X x U+ X 1is of sufficient smouvth-
ness on 2. Formally,

Gt = | o 00 GO0,
k=0 ©° 8
where (x,u) (k) - ((xru))(xru)!"-r(xyu)i X

times. Due to space limitations we cannot
address existence or convergence questionsg
relative to %q. (8). We note, however, that
this series could be replaced by a finite
number of terms together with a remainder
term in a standard application of Taylor's
formula.

According to tha preceding discussions we
now make the uninue factorization

ofe(x, ) = L GO o o, 9)

where (x,8) @k(x x U) - X 1is linear,
Denote the k-~fold tengor product of (x,u)
with itself by (x,u)" so that, with Eq.
(9), we have

EGx,B) = ] o L G w¥. 0
k=0 **

Sain and Yurkovich (1982) have shown that
the individual terms in the series of Eq.
(10) may be rewritten as, for example in the
case of k = 2,

5= Lz(i,ﬁ)(x,u)z = L,. X @ x +

2! 20

L., x9u+1L.,u?2u, (11)

11 02

where we have suppressed the notation of

(x,u) on the right side of Eq. (' ', 1In
this way Eq. (8) becomes
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- -
£ (X+X, Utu) = F X Lij xi -] uJ '
=0 =0 (12)
forming tha structure for the nonlinear mod-
al,

Application

In practical applications a truucation ap=-
proximation of the gertes in Eq. (l2) is
conaidered. In torms of computing, then,
the task in the modol building scheme {y¢ %o
fdentilfy the paramecers contained in matrix
representations of the Lg,. Ordered bases
in X, U, X9X, XoU, uAd 30 on, are
chosen a priord to bo uged '+ -onscructing
a linear least squares iler ‘@ .cion prob-
lem. The ordering algort: ... «.urkovich,
1981) which facilicazes this procedura,
uged in the {nteractive software package de-
scriboed horaein, {s easily implomented on a
digital computor.

In praceice, a differential equation descri-
ption of the nonlinear system may or may not
be available. In ofthor case, cthe bastc
strategy involves initial condition and con-
trol signal design so thac, through data
sampling and derivative estimation, a modcl
of the vriginal svstem of Eq. (7) may ba
identified. The nonlinear model {a required
not only to outperform a standard linsar
modal locally about an axpansion point, but
to astablish a larger region of model val-
idity as well.

CATNAP

The intent of this section is to present a
detailed discussion of the Computar-Aided
Tensor Nonlinear Modeling Applications Pack-
aga (CATNAP) currencly used as a davelopment
tool {n the formulation, {dentification, and
validation of nonlinear models of the typa
mantionad above. Theo structure of CATNAP

i{s based upon ideas from distributed pruoces-
sing and local anecworking (Tanenbaum, 1981)
in which computations are spread over mul-
tiple machines. More spacifically CATNAP

{a dividad {nto etwo segmants, each of which
{s {mplumonted on an Lndepenlient computing
system. Theso sogments are entitcled GENER-
ATE and SIMULATE. GENERATE (s {mplemented
on a4 Time Sharing Oncion (IBM, 1975) of the
I[BM 170-108 mainframe computer and {3 usad
to tformulate and {dentify models, whoreas
SIMULATE {s {mplemanted on the DEC PDP 11,60
computer system and 18 used to study model
validity and performance. Furchermore, both
of these segments are highlv inceractive and
contatln straightforward inpuc prompts as
well as {nformative arror messages.

GELERATE

The GENERATE sogment of CATNAP {4 primarily
made up of thrae routinas governed bv a
higher lavel supervisor. Figure 1 contains
a block diagram depicting the struccure of
GENERATE.
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GENERATE Supervisory., This suparvisory

level 1{s writtan using the command procudure
language CLIST (IBM, 1976) and performs the
following main functions {n sequenca:

(1) prompta che usor for the nama
of the desired loader routine
to brs axacuted:

(2) passes control to the loader
routineg dofined {n (1);

(3) paszsos control to IDENTIFY;
and,

(4)  upon user request, passes con=
trol to TRANSFER.

In adcoition to these main functions, cor-
tain aasintenance roley such as file crea-
tion, allocation and deletion are handlad
by this supervisor,

GENERATE

~ ]

¥

a’//////

loader IDENTIFY TRANSFER
/’ \\ /
\\n . /
/
TEMPFILE MODEL To
PDP 11

Fig. 1. Block diagram for the CATNAP
sogmant GENERATE.

Loader Routine. Associated with each non-
linear g¢vatem to be modeled, there exisca a
loadar routine which performs the modal
formulacion task. Thesu routines are
scored in a library and are typizally wric-
ten {n double precisicn FORTRAN.

Tho purpose of any loader routine (s to ax-
¢ito the given nonlinaar svstam via initial
condition and control input perturbations
and to sample the stactes, {nputs and deriv-
ativa estimates ovar h seloected points in
time. The system i{s then represented bv the
aatrix equation

¢ . VX
£ 07 Mgty Bao by Bor byo oo Ny
nxh

xp pxh

o




The first n+m rows of the matrix Xp are
formed from the sampled values of x and
u; the remaining p-(n+m) rows are formed
according to the ordering algorithm prev-
iously mentioned, which minimizes the num-
ber of computations. X 14 formed by load-
ing derivative estimates for Xj,%,...,%y
at the h time points. The number p de-
pends on n and m, and the degree of the
truncation approximation. All this data is
then stored in TEMPFILE for later use.

Using this approach, CATNAP can accommodate
any particular nonlinear modeling problem
since the problem spenifics are transparent
to the remainder of che package. The only
requirement is that TEMPFILE contains the
appropriate data.

IDENTIFY. After the completion of any
chosen loader routine, the program IDENTIFY
is exesuted. IDENTIFY reads the interim
data from TEMPFILE and forms a least squares
minimization problem which is solved for the
partitioned macrix containing the desired

Ly; parameters. These Ly parameters are
recorded at the terminal as well as entered
inco the MODEL data file.

It should be noted here that IDENTIFY is
written in the high level language SPEAKEASY,
which is based on the concepts of arrays and
matrices and processes these as entities.
This results in the elimination of the many
loops necessary in other programming lan-
guages. See the work of Cohen and Pieper
(1979)., The main reason for employing
SPEAKEASY here is that the highly efficient
routine SIMEQUAT can be easily used to solve
the least squares problem via singular value
decomposition, thus reducing the apparent
complexity of the problem to a minimum.

TRANSFER., Upon a yes response to a super-
visory prompt, the program TRANSFER is sub-
mitted batch to the IBM 370-168. TRANSFER
is merely a Job Control Language (JCL) deck
which sends a copy of the file MODEL, con-
taining the Ly, parameters, to the DEC
PDP 11/60 compuling system by the way of a
Remote Job Entry port, and stores it in the
nonlinear model library. An excellent ac=-
count of JCL can be found in Brown (1977).

STMULATE

Shifting our concern away from the discus-
sicn of GENERATE, we now focus our atten-
tion on the SIMULATE segment of CATNAP.
Basically, two routines plus a supervisor
comprise the structure of SIMULATE. Figure
2 offers an illustration of this struccure
to supplement the following presentation.

SIMULATE Supervisory. Written in the form
of arn Indirect Command File (DEC, 1979),
this supervisor allows the user to:

(1) create new simulator routines;

(2) execute existing simulator
routines; and,
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(3) execute VERSATEC which pro-
duces hardcopy plots.

As earlier, this supervisor performs & num~
ber of file maintenance duties in addition
to the above functions.

SIMULATE
From {mu-
370 8 l’:‘;o i HARDCOPY

R

non= linear

linear “ SPOOL
model model

N ——

Fig. 2. Block diagram for the CAINAP
segment SIMULATE.

Simulator Routine. A FORTRAN simulator
routine usually exists for each nonlinear
modeling problem studied; however, only one
subroutine in that program is altered among
versions, and that is the application sub-
routine TRUES. The remainder of the pro-
gram stays unchanged. TRUES contains the
true system representation of the nonlinear
system being modeled, and is used exten-
sively in comparison studies. Because of
the number of TRUES subroutines that exist,
a library has been created to store the
various simulator routines.

The execution of a particular simulacor
routine can be divided into three steps:
(1) problem configuration; (2) systems in-
tegration; and (3) solution display.

The first of these steps requires the user
to decide which of the available systems,
true solution, linear model and/or nonlinear
model, should be included in the session
configuration. When a model is chosen, the
user is asked to enter the name of the de~
sired model. That model is then read into
the simulator from the appropriate library.
The linear models used in CATNAP are gen-
erally identified by standard techniques
and are available for use in comparison
studies.

Next, the user is prompted for various in-
tegration parameters such as stepsize and
upper time limit as well as initial condi-




tions, input amplitudes and frequencies.

The configured gystems are then integrated
and the solutions are sampled at 100 points,
evenly spaced in time.

Finally, to assist in the data analysis, a
number of options are available to the user.
They include:

(1) printing the solutions on
the Versatec;

(2) displaying the comparative
trajectories on the Tektronix
graphics terminal;

(3) writing the trajectory solu~-
tions to SPOOL for hardcopy
plotting at a later time; and,

(4) solving the configuration for
another set of initial condi-
tions and control inputs.

The use of these options provides a powerful
yet flexible capability for the study of
model performance and validity. Further-
more, when all three systemg 2re included

in the configuration, an additionmal error
criterion is generated and used in testing
the performance of the nonlinear model ver-
sus that of the linear model.

Let a¥ denote the absolute maximum arror
in the nonlinear model solution, as compared
to the true simulation solution, over the
time range of simulation for the ith state
variable. Similarly, we define s% for the
linear model error. Them ¢y 1s the com-
parison ¢y - ¢, Thus, 1f e; 1s negative,
the nonlinear model has exhibited a smaller
maximum absolute error in the 1ith state, and
in that sense has outperformed the linear
model.

VERSATEC. The routine VERSATEC, w~ritten in
FORTRAN, reads the trajectory solutions from
SPOOL and records at the Versatec printer/
plotter, a data sheet corresponding to each
plot set which follows. The comparative
trajectories themselves zre then plotted.

MODEL STIMULATION

In this section we comment on the efficiency
of the model structure discussed above by
studying the number of floating peint oper-
ations (FLOPs) necessary in typical simu-
lations. It is common practice in computer
architecture to design processors which re-
quire no extra time for floating point ad-
ditions calculated simultaneously with mul-~
tiplications. Thus, we concern ourselves
primarily with the latter, and by FLOPs we
will mean multiplies. Since the largest
burden of the computer in the simulation
process is the actual numerical integration
of model differential equations, we will
analyze only that portion of the simulation.

The system to be considered takes the form
of Eq. (13), or
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=1Lz,

where x 13 the n-vector of states, L the
parameter matrix, and z the p-vector of
ordered monomial terms derived from the
various symmetric products of x and u,
the m-vector of inputs (Yurkovich and Sain,
1980). The least number of multiplications
required to construct 2z 1is merely p-ntm,
or the total number of terms which ‘nvolve
products. This number is given by

d
p-aim) = & ("Ehy 4

i=2

m+i-l)
i

i~1 )
a+(i=j)=-1, mj-1
+ [jzl CTay Y

wherz d 1s the model degree.

Assuming the use of a fourth-order integra-
tion routine, the number of FLOPs necessary
to formulate and integrate the system as em-
bodied by the model, across one integration
time step, is 4{(n)(p). As an illustration
consider a four-state, three~input model.
Suppose, for simplicity, that 100 integra-
tion time steps is the equivalent of one
gecond in real time. This translates
roughly to 0.25 million FLOPs per second

for a degree-3 model (an approximation which
retains terms up to and including the third
degree). While there are many other obvious
considerations involved in real time simu-
lation, this number is well within the
bounds dictated by state~of-the-art compu-
tation speeds of ten million FLOPs per
second.

EXAMPLE

In the example to follow attention will cen-—
ter around NASA's QCSEE ('Quixie")---Quiet,
Clean, Shorthaul Experimental Engine. Wise
(1974) provides an excellent overview of the
QCSE eugine program. QCSEE is designed
specifically for powerec-lift, short-haul
aircrafet, and incorporates several new con-
cepts not all currently used on turbofans

to achieve operational efficilency in a
quiet, clean manner.

QCSEE APPLICATION

For this nonlinear modeling problem, a com=-
plex eight-gtate, three~control digital
simulation of the QCSE engine is employed
(Mihaloew, 1981). Using this digital deck
as the system representation, a loader rou-
tine, QCSELOAD, is constructed to formulate
a reduced order four~state, three-control
analytical model. The engine states chosen
are the combustor discharge pressure (P4GS),
the core nozzle pressure (P8GS), the fan
speed (NL), and the compressor speed (NH).
The control inputs used are the fuel flow

lThis represents a typical model as inves-
tigated by Klingler, Yurkovich, and Sain
(1982).
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(WFM), the exhaust nozzle area (ALB) and the
fan pitch angle (BETAF). In a similar way,
the simulator routine QIXSIM is built using
QCSEE as the true system in the subroutine
TRUES.

For the results presented herein, two models
have been formulated using QCSELOAD at 92%
power demand: a second-degree nonlinear
model, and a first-degree linear model.

Both formulations are made using 1% steady
state perturbations in the state and control
variables. Furthermore, the control inputs
are manipulated so that cosinusoidal signals
are inserted. The observed states and in-
puts are sampled over a six second interval,
and the difference between these values and
the corresponding equilibrium values, to-
gether with the ordered temsor product terms
and state derivative values comprise the
data necessary for the identification. The
model parameters are easily computed from
IDENTIFY and then sent to the PDP 11/60 via
TRANSFER.

Using the capabilities of QIXSIM and VERSA-
TEC, several validation studies have been
completed to date, all yielding satisfactory
results. Figures 3~7 contain a representa-
tive plot set from VERSATEC illustrating the
model performance for a particular input
set, as well as the graphical capabilities
of CATNAP, Table 1 contains a variable lad-
ger for Figures 3-7.

CONCLUSION

The importance of nonlinear modeling in mul-
tivariable control systems could hardly be
overemphasized. And the applications side
of the prcblem has benefited greatly with
the advent of expanded and more versatile
computing environments.

Rarely does it happen, though, that one com-
puting system can accommodate all require-~
ments placed on it, particularly when pla-
gued by multiple users demanding unlimited
access. It often happens, however, chat the
capabilities of several computing systems
are at ones disposal, each with various fea-
tures to offer. In this case schemes em-
ploving the notions of distributed proces-
sing and local networking become extremely
useful,

We have presented ome such scheme in the
form of an interactive computer-aided de-
sign package for a specific nonlinear model-
ing problem. The software package facili-
tates the analysis of complex problems, with
relative ease to the user, from the initial
model formulation and identifi:ation stage
through to the model testing and validation
studies. Series ideas and algebraic tensors
are the main vehicles in the model formula-
tion. The importance of the temsor approach
lies in its parametric possibilities, and
ongoing research is currently underway to
exploit further the richness of such struc~

tures.
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TABLE 1 Variable Ledger for Figures 3-7

0 : True Engine Respounse

4 : Linear Model Response

* : Nonlinear Model Response
X P4GS (psi) | up WFM (lbmlgr)
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Fig. 3. Sample data sheet for the QCSEE example

1.60

2
~

=1

m AN
VARV

‘5 0.80
(
= >

1. 1,17 1.3 1.50 1.67 1.93

‘0,00 0.17 0.33 0.50 0.57 .93 0 )
TIME (SEC) |

Fig. 4. Comparative solutions: Fig. 3, state 1. K

Y/ AT,




ORIGINAL pagE
OF POOR QuAL(Ty

AWAW
//\\/\W\\J/

.00 a.17 0.33 0.50 0.67 0.83 1.00 .17 1,33 1,50 1.87 1.83
T IME (SEC)

12

o;

xt0™
! 0.08

0.04

-0.00

-9.0‘{

-0.08

S0.12

Fig. 5. Comparative solutions: Fig. 3, state 2.

8.00 12.00 16.00

4.00

¢.a0

<
<
=
&

-12.00

o 16.00

.00 0.17 0,33 0.50 .57 3.83 1.00 .17 .13 1.50 1,57 1,93
TIME (SET)

Fig. 6. Comparative solutions: Fig. 3, stace 3.

151




ORIGINAL PAGE
i s
OF POOR QuALITY

18.00

§.00 10.00 l"l.OO

2.60

—
| <
///

P-I'J.DG

0.83 1.00
TIME ISEC}

Fig. 7. Comparative solutions: Fig. 3, state 4.

152




APPENDIX F

Reference List on Total Synthesis Problem

153




2.

3.

5.

7.

10.

11.

12.

ORIGINAL PAGE 1S ORIGINAgus 2y 1982
OF POOR QUALITY OF POOR quot ;’g

Reference List on Total Synthesis Problem

J.L. Peczkowski and M.K. Sain, "Linear Multivariable Synthesis with
Transfer Functgpns". in Alternatives for Linear Multivariable Control,
M.K. Sain, J.L. Peczkowski, and J.L. Melsa, Eds. Chicago: National
Engineering Consortium, 1978, pp. 71-87.

J.L. Peczkowski, M.K. Sain, and R.J. Leake, "Multivariable Synthesis

with Inverses", Proceedings Joint Automatic Control Conference, pp.
375-380, 1979.

J.L. Peczkaowski, "Multivariable Synthesis with Transfer Functions",
Proceedings Propulsion Controls Symposium, pp. 111-128, May 1979,

R.J. Leake, J.L. Peczkowski, and M.K. Sain, "Step Trackable Linear
Multivariable Plants", International Journal of Control, Volume 30,
Number 6, pp. 1013-1022, December 1979.

M.K. Sain, A. Ma, and D. Perkins, "Sensitivity Issues in Decoupled
Control System Design', Proceedings Southeastern Symposium on System

J.L. Peczkowski and M.K. Sain, "Control Design with Transfer Functions,
an Application Illustration", Proceedings Midwest Symposium on Cir-
¢uits and Systems, pp. 47-52, August 1980.

M.K. Sain and A. Ma, "Multivariable Synthesis with Reduced Comparison
Sensitivity", Proceedings Joint Automatic Control Conference, Paper
wr-88, August 1980,

J.L. Peczkowskl and S.A. Stopher, "Nonlinear Multivariable Synthesis
with Transfer Functions", Proceedings Joint Automatic Control Con-
ference, Paper WA-8D, August 198(G.

M.K. Sain, R.M. Schafer, and K.P. Dudek, "An Application of Total
Synthesis to Robust Conupled Design'", Proceedings Allerton Conference
on Communication, Control, and Computing, pp. 386-395, October 1980.

J.L. Peczkowski and M.K. Sain, "Scheduled Nonlinear Control Design
for a Turbojet Engine", Proceedings IEEE International Symposium on
Circuits and Systems, pp. 248-251, April 198l1.

M.K. Sain and J.L. Peczkowski, "An Approach to Robust Nonlinear Con-
trol Design", Proceedings Joint Automatic Control Conference, Paper
FA-3D, June 1981. ‘

R.R. Gejji, "On the Total Synthesis Problem of Linear Multivariable
Control", Ph.D. Thesis, Department of Electrical Engineering, Uni-
versity of Notre Dame, May 1980.

154




13.

14,

15.

16.

17.

18.

CRIGINAL PAGE
IS
OF POGR QUALITY

M.K. Sain, B.F. Wyman, R.R. Gejji, P.J. Antsaklis, and J.L, Peczkowski,
"The Total Synthesis Problem of Linear Multivariable Control, Part I:
Nominal Design", Proceedings Jolnt Automatic Control Conference, Paper
WP-4A, June 1?81.

B.F. Wyman and M.K. Sain, "The Zero Module and Essential Inverse Sys-
tem", IEEE Transactions on Circuits and Systems, Volume CAS-27, Number
2, pp. 112-126, February 1981.

P.J. Antsaklis and M.K. Sain, "Unity Feedback Compensation of Unstable
Plants", Proceedings IEEE Conference on Decision and Control, pp. 305-
308, 1981.

M.K. Sain, P.J. Antsaklis, B.F. Wyman, R.R. Gejji, and J.L. Peczkowski,
"The Total Synthesis Problem of Linear Multivariable Control, Part II:
Unity Feedback and the Design Morphism", Proceedings 20th IEEE Confer-
ence on Decision and Control, pp. 875-884, 1981,

/

J.L. Feczkowski and M.K. Sain, "Nonlinear Multivariable Design by Total
Synthesis", Proceedings American Control Conference, 1982.

M.K. Sain and R.M. Schafer, "A Computer-Assisted Approach to Total Feed-
back Synthesis", Proceedings American Control Conference, 1982,




APPENDIX G

SOFTWARE DESCRIPTION FOR SECTION IV

In this appendix, we provide the necessary documentation of the
software that was used for both the first and second order controller
problems. The computer programs are written in the high~level language
SPEAKEZY [23] for use on the IBM 370/168 at the University of Notre Dame.
The first program is FIRORDA, which provides the first order analysis of
the example problem. This procedure, as was demonstrated, is identical
to the solution of the Riccati equation in matrix form and substitution
of the optimal control into the system equations. The program first in-
tegrates the Riccati equation using the modified Euler method described
in [28]. This provides the solution for the optimal value term Vz(t)
and subsequently the first term in the controller expansion Kl(t). A
fourth-order Runge~Kutta integration routine then solves for the state
variable x(t) after appropriate substitutions have been made for the
controller term. The final part of the program provides for the reduc-
tion of the array size (if necessary) and the plotting of both the regu-

lated state variables and also the control variables.

The second order analysis of the example problem required two pro-
grams. The first program, called COMATRCS, provided for the calculation
of the coefficient matrices that appeared in equations (4.4) and (4.5).

In particular, the program calculated those coefficient matrices that re-
main constant over the integration interval. These matrices may be listed

as follows:
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L p
0 A
F PooR Ufs r’f
cML = (A,, @1 )S1 + (1. @ A,.,)

11 x’"21 x 11’

1
CM2 = (Aoz @ lx)slz + (1x @ Aoz) )
2..2 1 2

CM3 = (AOl ® lx )S21 + (lx ® AOl ® 1x)821 + (lx @ AOl) ,

CM4 = AlO & AlO & AlO ’

CM5

-

1
(AOl ® 1x)s11 + (1x @ AOl)

CM6 = (A

@ 1x) + (lx @ Azo) .

20
The program that actually does the second order analysis is called SECORDA.
This routine integrates to get V3(t), again using the modified Euler
method, and subsequently calculates Kz(t). Using the results from the
FIRORDA program, the second order controller may be generated. The sys-
tem is then integrated to yield the state variables by using a fourth
order Runge-Kutta integration routine. The results are then plotted in
the final section of the program. In the solution of equation (4.4) for
Kz(t) in terms of V3(t), we define

wl=1 er (K @1),
which needs to be updated as Kl(t) varies. Also needed are the Kronecker

product matrices

p=1%ex ,

E2 = 1x ® K2 ,

E3 = 1x @ Kl ® Kl s
E4 = Kl ® Kz s

E5 = K2 e Kl .

Like the VM1 term, these matrices also must be updated at each integra-

tion step.
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The final section of this appendix lists the time-varying control
gains and the optimal valve expression terms. In each case, the uupres-
sions are listed as functions of time, which appears in the first column.
The array KA lists Kl(t); the array K2A lists Kz(t); the array
VA lists Vz(t); and the array V3A 1lists V3(t). In all cases, we
have assumed an integration interval of 0 to 5 seconds and a stepsize of

0.05 seconds.
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