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1. Introduction s

This constitutes the semi-annual status report for the period

July 1, 1982 - Dec. 21, 1982, on the research being performed by the

School of Aeronautics and Astronautics, Purdue University, for the NASA

Dryden Flight Research Facility, Ames Research Center, under Grant NAG4-a .

i
The objective of this research effort has been the development of a uni-

fied control synthesis methodi)logy for complex and/or non-conventional

flight vehicles, and to understand, enhance, and develop prediction techn-

niques for the handling characteristics of such vehicles.

2. Publications, Personnel and Discussion

Two papers were presented at the 1982 AIAA Atmospheric Flight Mecha-

nics, and Guidance and Control Conferences in San Diego in August, 1982,

on results obtained under this grant. These papers were

1. "Application of An Optimal Cooperative Control Technique for
Augmentation Synthesis of a Control Configured Aircraft," by
Mario Innocenti and David.K. Schmidt, presented at the Guidance
and Control Conference AIAA Paper No. 82-1520.

2. "A Modern Approach to Pilot/Vehicle Analysis and the Neal-Smith
Criteria," by Barton J. Bacon and David K. Schmidt, presented
at the Atmospheric Flight Mechanics Conf., AIAA Paper No. 82-
1357.

In addition, the material documented in NASA CR 163112, entitled

Pilot-Orientation ,Multivariable Control S ynthesis by Output Feedback was

submitted over a year ago for possible publication in the AIAA Journal

of Guidance, Control and Dynamics. The reviewers comments have been

received during this reporting period, with their recommendation that the

paper be accepted for publication after the material in paper 1) above is

added to the manuscript.	 This is currently being accomplished and we are

eager to have these results appear in a journal article.
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Also, paper 2) above was submitted as well for journal publication.

The reviewers have recommended that this paper appear after only minor

revision in the Journal of Guidance, Control and Dynamics. This has

been accomplished, and we look forward to its appearance.

Finally, a paper has just been completed, and will be presented at

the 1983 IEEE National Aerospace and Electronics Conference (NAECON),

Dayton, OH, May 1983. This paper is entitled

"Integrated Pilot-Optimal Augmentation Synthesis for Complex
Flight Systems: Experimental Validation," by Mario Innocenti
and David K. Schmidt.

This last paper documents the experimental validation of the analytical

predictions of the handling characteristics of several sets of augmented

vehicle dynamics. Copies of tho manuscripts for all the papers cited

above have been previously forwarded to the Technical Monitor.

With the graduation of Mario Innocenti in December, 1983, extensive u

development of the cooperative control synthesis theory is complete, and

future activities will most likely focus on application of the methodo-

logy to a variety of areas.

The research on pilot model identification and on extending the

Neal-Smith approach is progressing well. Mr. Pin-Jar Yuan is developing

several approaches to pilot model identification, extending the work in

this area that has been reported on in several previous papers. The

status on this work is completely documented in the Appendix to this

report.

The investigation of the potential of extending the optimal-control

approach to Neal/Smith analysis for the approach and landing task is the

final area of research currently being pursued. This work is being per-

formed by Mr. Bart Bacon, the co-author of our paper on the method, and
k

Y
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Mr. Dan Garrett, a new student now supported on this grant. Mr. Garrett

is an M.S. student and is planning to graduate in December, 1983. This

topic area will constitute his M.S. thesis.
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Abstract

The objective of this research is to develop a -useful

and meaningful technique for identification of pilot dynam-

ics and objectives# using both time domain and frequency

domain methods. Simulation data generated with a human in

the loop will be used. We introduce this with a simple

examples a single input pursuit task, and it can be extended
a

to general piloted vehicle tasks from single input tracking

task	 to multi —input complex task,for examples 	 landing

approach.

r
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,.	 Backaraund

i.1,	 Introduction

In the late 60 1 s, the optimal control model (OCM) of

the pilot was developed ► which is based on the hypothesis

that a human operator (pilot) chooses his control input to

minimize some cost function subject to his known physical

limitation. The OCM of the human operator has yielded

results for the manual control of a variety of plants that

agree with experimental findings provided that the correct

cost fu.tiction is assumed (Ref. 1^,

Later, Hess (Ref. 2) showed that there exists a strong

correlation between the subjective pilot evaluation (e.g.

Cooper--Harper rating) of the vehicle and the magnitude of

the OCM quadratic cost function. 	 Recent investigations

L

s (Ref. 3) have provided more substance to the idea that such

a correlation exists over a wider variety of piloted vehicle

tasks. The above correlation between the pilot rating and

k 

the OCM objective function has been used by Schmidt (Ref.

4,5) in the attempt to develop a unified theory of vehicle

handling qualities and optimal flight control synthesis.

1. 2,	 Model structure

The analysis relieZ Gn the well —known (Ref. 1) optimal

control theoretic technique for modeling the human pilot

manual 'control function. The hypothesis upon which it is

based is that the well trained, well motivated pilot chooses



•	 "' a -	
or?I()INAt G01°^pC?	 BRQAki^ŷ

his control inputs (e.g. stick force) to meet the p^(lot^s

mission objective# which can be described as minimizingg a

meet the pilot's mission objective, which can be described

as minimizing a suitable cost function in the task * subject

to his human,limitati,ons. The cost function is further

assumed to be expressible in terms of a quadratic form as

following.	 '

	

J = F I lim t f . yTQy + uT
Ru ) dt 1	 (111)

I t —?oo	 4	 I

where

y = vector of pilot's observed variables
u = vector of pilot's control inputs
Q#R = pilot selected w11pightings

and the pilot model is sketched briefly in Figure 1-1, The

human pilot chooses his "best" control decision (for example

stick force) based on the information displayed to him

(pilot observations) and the performance objective refer-

ence. So the suitable selection of cost function is very

	

important in representing the human pilot. And in this pilot	 s

model, we include the human, limitation such as information—

acquision,	 time delay, observation and control output

noises, and neuromuscular dynamics etc..

The pilot perceives measurable variables y delayed a

f i )clad time  -r , and contaminated by white observation noise

v  . 5o his measurement vector yP is

yP (t ) = yCt—T) + vy<t--r)	 (1.2)
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The pilot neuromotor dynamics can be represented approxi -

mately by an adjustable first ordef ,- lag 4 TnsI	 >, generat ed

naturally in the modeling by including the control rate as

the "input" to be chosen to minimize the cost function (see

equ, O .i>).'The augmented state equations then become

%M = A0 X(t> + B0 µ<t> + w0 4t>	 41,3>

with

,^ I x
u !

I A B I

p0 	 1 0 0 1

r. 1
H0 	 1 1 1

w04t>	 WM 1	 (1.4)

It can be shown in this case that the optimal control µ t=u>

'is the linear feedback law

µ4^,> = G ^Ct>	 t1,5)

where G = [ G  , G  ], or equivalently

r u<t> + u(t> = L RCt> = u c M	 C1.6>

where Tn - 1 L = Tn Gx , and AM is the estimate of
u

state x(t). The feedback gain 0 is

where K0 satisfies the p iccati equation

x"



t

ORIGINAL PAGE IS
OF POOR QUALITY

AT K + KO AO + 00 - KO BO R_ 1 DT, KO 0	 (110

in which

A	 I C:TOC: 0 1
0	 10	 0 1

The state estimator consists of a Kalman filter and

predictor, and the, effect of the motor noise vUCt) is

included. We def= ine as before the augmented state x(t) =col

Cx(t) p u(t)] which satisfies

%<t> = A l %(t) + B 1 uc <t> + w 1 Ct>	 <1.9>

v Ct>
in which w, (t> = col C wM, T ], B 1 	col C 0	 3

	

n	 n
and

I	 f

A B I

A l 	 1 0 =1 I

I	 fi	 I
i	

n

I	 1

	

W 1 = 1 0 V 1	 C1. 10>

I	 u I

I	 2 1

1	 ^n I

The Kalman filter generates the delayed estimated state

,P.(t'-T) from:

a(t —T) = Al Ar(t—T> + £ iCTV_ 1 C yPit

C 19(t--T) 7 + B I U c <t—,r>

where Cr 1 = CiC,03, and the error covariance matrix E
1 satis-

fies
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A l E l + E 1Ai + W 1 - E iCTVyIc E l	 0	 (1,12>

The predictor then generates $^M according to;

-R<t> - ^ M + e 
A l 
T 

M0-0 - I'<t-T> ]

<t> = A j' '<t> + B 1uo <t>	 <1.13>

Thus, the human operator model remains linear, Based on

man-machine experimental results, each white observation

noise vy 
i 
and white motor noise vu were Found to have a

covariance proportional to the mean squared values of EC y

7 and EC uc ] respectively,i,e.,

Vy -H i tt EC y f 7i =i, 2, ... mi
Vu 

_ pair E C u2 3	 <1 . iO

Therefore, with Vy is normalized with respect to EC y	 7
i

with pi -.01 0 it has a positive frequency power density

	

level of --20 db. When V is normalized with respect to El u^ 	 r

	

with p  =.403, it is approximately -25 db. Both of these 	 E

values have been found to model a variety of simple tracking
r

yg

tasks for a sveral different plants (controlled element
f

dynamics).

^r
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Past approaches

In the optimal control model of the pilots therefore,

there are some pilot —related model parameters that need to
t"

be Selected) i, e. s weighting of the cost function a and Re
F time delay T , measurement noise vy and motor noise vu etc,.

k

There have been some frequency domain methods'of exper-

imentally identifying these parameters developed primarily

foi° a compensatory task. In this task only the error signal

is displayed to the human controller and therefore only the

weighting of error measurement is required. Combined with

other model parameterss time delay , Measurement noise and

motor noise, all have been identified (Ref. 1, 6, % 150 17).



t

	

'	 - g -

ORIGINAL PAGE Ig

^, Q o p o s e d t e;c h n i a u e 	 OF POOR QUALITY

Now we want to identify the optimal control model

parameters for pilot performing more complex taskse and

select the weightings of error+ error rate, and any other

displayed variables appropriate in the task. We may identify

the model parameters using both frequency domain and time

domain techniques. The former method is a classical

approacho and the later is a new one developed by D. K,

Schmidt, with emphasis on determining the cost function

weightings (Ref.14). We introduce these two methtAds as fol -

lows.

3. 1. 	 Time domain identification

From section 1, we assume

u=GXR+

where: G  , GU are the op ^. i ma 1

weighting of cost functi on J,

x, and v  is the motor noise.

G 
U 
U - G U V U 

MI)

control gain 'related to the

R is the estimate of the state

Let e = x- R , then

U = GXx - GXEX + iGUU - GUUU C3.2)

It is assumed that the whole system is stationary and satis-

fies the ergodic hypothesis. Taking data on uou,and x from

simulation over an appropriate time period, one can obtain

I G 

I T I = C Mi - M2 ]
-1 N.

I Gu I	 u
C3.3>

where
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IE<xxT> IE<xuT> I
M 1
 — I E(uxT> E(uuT)

ECxeT) ECxvT>

M2	 1 E<ueT > ECuvT>

^F

1	 T	 1

N. = I ECxu > 1	 0.4>
1

I ECuuT> i

Here we note that the est i mat ± on error ex and motor noise vu

are unmeasurable. However we can still proceed with

knowledge of the pilot model structure combined with a rea -

sonable assumption on pilot time delay and the covariance of

measurement noise and motor noises.

l

In fact, we can obtain the following relations:

E(xvu) -> 0

ECueX> 'V 0	 C3.5>

and approximately we have

ECuvu>	
1/2 Vu = .005n E(u2>C3.6)
n	 n

Here we assume Vu has a normalized value of —20db. Etx e >

can be determined using the properties of the augmented

state Kalman filter and a least mean square predictor. That

is, since E( A ex)=0,

E4xeT = EC ex eT >	 (3.7)

found. We can then find that <Ref. 7>, recalling that t

]=col Cx,u]
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T	 A1T AT	 T A i t A T t

	

r exec) = e E i e 	 + fe W ie dt	 (3.8)
0

	_ 	 T _

+ f0eAteA1TE1CTV_1C1E1eA1TeATtdt
4

Here, the Ai'E1'W1 have been defined in equ. (1.10)-(1.12>,

and are also functions of Tn (=G1) , and
u

	

I	 I

A - I pL 	 Bi 1	 (3.9>

	

T	 T
	1 	 n	 n I

We can now use an iterative method in the identifica-

tion procedure. Try an approximate,T n to calculate E( exeT >

used to fit the gain vector C G  , G  ], then iterate the

procedure until the approximated T  approaches its fitted

value.

The final step is to find the meaningful values of Q

and R. which corresponds to the experimentally determined

optimal gains CGx,Gu ] (see equ. (1.7) and (1.3)>. In gen-

eral the inverse solution is not unique. So in our identif-

ication procedure we can arbitrarily choose the weighting on

control rate (R) equal to 1, and then use a Quasi-Newton

method (see appendix) to identify the other weightings in Q

to minimize the modeling error function:

A

	

N Gx. -Gx.	 G -G

	

J = E (-- 1	 1)2 + t 
u u

)2	 (3.10)	1 	 i=1 °G	 °G	x. 	 ui

where GX and G  are estimated mean values, from several of
I

N

r

M i	 a
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simulation runs; a 	 , a  are the experimental standardx i 	u

deviations corresponding to each gain; 6x ,0 U are the gainsi

from exercising the mode, corresponding to some value of Q.

Naturally, this method emphasizes the weightings in the

cost function, because we select the time delay,measurement

noise, motor noise empirically. We can also select these

parameters from the results of the next method, and then

comp:,re the results in both approaches. 	 (j

3.2. Frequency domain identification

First we derive in the frequency domain some charac-

teristic equations from the theoretical pilot optimal con-

trol model. From equ. 01.11>-C1.13>, we can obtain

3

u 
	 eCs> = L <s> = HCs> C Y(s)+V(s> 3	 03.11)

where

Le = CL, 43

T (sI-A 1 )t	 _
H(s)	 a-sTLe t tsi-A) f 	 dt (sI-A)

0

+ sI-A + B 1 L.e 3
-1
 E 1 Ciyy 1	t3.12>

t

with

A = Al - E 1CiV C i	 {3.13)

and A as in equ. C3 . 9>. Therefore we can consider the pilot

j	 model block as Fig. 3-1.

Considering now the pursuit task with single input, in 	 i

k
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which the subject observes the input command as well as the

system outputo ( and also their rates implicitly). For exam-

Flee we take the error e(t), error rate e(t) r input command

IM and command rate i(t) as our observations (measure-

ments). Then one can consider a closed —loop systems as

shown in Fig. 3-2. Referring to the block diagram of Fig.

3-2, we have

E(s) = I(s) — M(s)

.M(s) = -U(s). F(s)	 ..(3.14)-

and

t

U =	 1' E
ins+1

(I+N3)

where NJ-N2  N3 , N4 and

noises. Herz obmiting

(E+N 1 ) H 1 + (sE+N2) H2 ++

H3 + (sI+N4) H4 + Nu3 (3.15)

NU are the measurement noise and motor

the symbol <s), we can derive

I	 1

1	 H (s)	 rNs^O
i

Yc 	
vuf47
	 1 u«f

I	 1

Figure 3-1 Equal pilot OCM model bloN,,,* diagram
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FCH3+sH4)

	

I C1.- rns+1	
- 
T +1 CH1N1+H2Nf2+H3N3+H^N4+Nua

E -
	

F{H 1 +sH2>
J, +	 -rns+1

(3.16)

H +sH +H +sH
I C i" ES+1] + -ns+T	 1 CHIN1+H2N2+H3N3+H4N4+Nu]

U =	 FCH1 +SH2)
1. +	 Tns+1

(3. 17)

Now assume that the system input i(t), measu ►̂ ement

noise n 1 ,n2 ,n30 n4 , and motor noise nu are uncogrelated with

one another. Then we have the following power spectrum rela-

Lions:

H1+sH2+H3+sH4

T s+1
^iu (w) =	 FCH1+sH2) m 11 Cw)	 03.18)

1 + T s+1
n

FCH3+sHa>

1	 T s+i
0
ieCo) -	 FCH1+sH2) 40..(x)	 03.19)

1 + T s+1n

IH 1 +sH2+H3+sH4 1 2	I	
1	

12
1	 T s+1	 1	 1	 T s+1	 I

^uuCw) - I	 FCH1+sH2)1 ^ii (0) + I	 F(H1+sH2)1

l
i +	 Tns+1	

li +
	 Tns+1

11H 1 1 20n n Cw) + I H21 20n n (w) +(	 1. i	 2 2

I	 120	 Cw)+I	 12	
I

	(W+0+0	 (0)1	 (3.20)1 
H 
31 n3n3	 1 

H 
41 0 n4n4	 nunu	

I

Now we define the equivalent describing function Y  Q w) as
eq

x'

J



^k

l^

t

ORIGINAL PAGE 13
1 ^.	 OF POOR QUALITY

m <w>
Ype (JO) ^ ^i	 (3,21)

4
Combining equ. (3.18) and (3,19)p we have

H1+sH2+H3+sHA
0. Cw> 	 T s+iiu	 _	 n

	Y peq r^) = 0 ie Cw) —	 FCH3+sH4>	
03,22?

1	
T s+1n

which is the same result as Hess' (Ref. 8), with observation

of Error only in compensatory task (i.e., H 3=H4=0 ).

We may also define the controller remnant—correlated

power spectrum 4►uu as the part of the pilot input power
r

spectrum i nduced by the remnant (measurement noise and motor

noise>,i.e..

H1+sH2+H3+sH412

T s+1
^uUrCcv> = ^uuCcv) -- I	 F(H1+sH2> I ^i i Cts>

	

1 1 +	 r s+1	 1
2

II	 Tns+1	 1 
11H 120	 Co>F 01 1+sH2 )1	 1 11

Ii + 
	 nlni

I	 Tns+1

+ 1 H21 20 n (w)
+ 1 H31 n 

n
20	 (w)

2 2	 3 3

+ I H41 20n n (0)+0n n Cw)j	 43.23>
4 4	 u u	 I

Equ. C3.22> and C3.23> are the characteristic equations for

a single input ;pursuit task. Using the same procedure, it

can be extended to other complex tasks.

In our certain selection of input command (see section
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4), the input pourer spectrum m ii (w) is zero at other than

input frequencies. 3o analyzing the simulation data ► we can

calculate the eouivalent describing function only at the

{^.; ut f'requencieso and obtain the controller 	 remnant-

correlated	 power	 spectrum	 at	 other	 than	 input

frequent ies# i. e..

Oiu(wk>

	

Ype (3o
k
) - ^ie(wk)	

wk=input frequencies
q

	

0 u (w l ) _ 0uu(01>	 01$input frequencies 	 (3.24)
r

For computing the power spectrum, we calculator the sig-

nals correlation first, and then fast fourier transform it

to obtain the power spectrum.

1

We can identify these model

cal modeling to match with the

ting these parameters , we can

important effects which can be

tion, such as the variance of pu,

par-amet _?rs using theoreti--

simulation result. For fit-

also include some other

obtained during the simula-

rsuit error E( e2 ) and the

variance of controller E( u 2 ). Finally we also use Quasi-

Newton identification procedure to minimize the modeling

error defined below:	 '

	

N 1 G. -G	 N2 P . --p .J - 1 
E( 

i i )2 + i E (_ 	 >2

2 - N1 i=1 4G.	 N2 i = 1 aP.

	

i	 i

	

N3 R --R	 N4

+ 1 E( 
i i ) 2 + i E( z i >2	

(3.25)

	

N3 i=1 
orRi	 N4 i=1 aS

where
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N i =no. of valid measuMment in the i th group
G =magnitude of the i	 describing function point
t be matched, Jb
P =phase shift of the ith describing function point
t A be mat ched, deg
R =cont,Rller remnant-correlated power spectrum..
o^ thet^ frequency point to be matched, db.
S i == i	 var i,arce score to be matched
a =standard deviation of experimental data
"^"': indicates model prediction
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Next we introduce the experimental procedure and tho

principle of sinusoidal input selection with a simple pur-

suit task example. During simulation, we generate the data
f

we need for identification.	 A compensatory task is also

done to compare with other results,

4. 1,	 Introduction

The experiment with the pilot in the loop is done in

the Flight Simulation Lab., with the use of the minicomputer

,CRT, and control stick etc„ In our case, we display the,

input command i(t) and the system output m(t) on the CRT

screen, the human pilot observes the display and determines

his command into the control stick, in his attempt to null

the error between input command i(t) and system output m(t).

Finally the analog signal from the control stick is con-
.,

verted to digital and is input to the dynamic system being
i

simulated numerically by the minicomputer. This closed-loop
F

system with human in the loop is shown in Fig. 4-'i, which

may be compared to the OCM model already shown in Fig. 3-2.

The task to be treated here is the pursuit tracking task

with a single input. The CRT and control stick in the lab

are shown in Fig. 4-2. Fig. 4-3 shows the CRT display for-

Mato in which the distance between line A and line C is the

input command i(t), the lines B and C represent system out-

put s( t), and line C is the zero reference line. During our

experiment, we simulate two simple systems 
s 

and
s
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Figure 4-2 Simulation equipment; CRT and control stick
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4.	 Selection of the snusoidal input

In the .simulation# we use a sinusoidal random-appearing

input# mechanized as the sum oO sine waves i. e. #

N
i(t)	 E A  sin(wk t+tk )	 <4,1>

k=1

Here the wk are chosen to be nbn--commensurable <no Frequency

is an integral multiple of another)o and roughly evenly)

spaced on a logrithmic scale. In addition the w k are

selected so that in a finite experimental run length# all i

the constituent sine waves in i(t) will have completed an

integral number of cycles. Finally the w k are chosen to lie

within the range of interest of human response worksi.e.,

O 'l < wk t 24. rad
	

C4.2>

The autocorrelation of the sinusoidal input is

t	
N 

Ak
+11 

<T) = E 
2 

cos<wk .0	 <4.3>
k=1

and its covariance a2. is

'	 N 
A

a2 =	
k	

^ix	 E 2	
<4.4>

k=1

So when we use a sinusoidal input as a random-appearing

input, we should .appropriately select these amplitudes A  to

match the frequency distribution of power in the real random

input power spectrum being approximated.
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For example, we want to use a sinusoidal input to

replace, ar real random input command 8 c , which satisfies:

I	 I	 1

I ^c	 I1	 0	 1. 11 ac I	 1 0 1
1 ..	 I = 1 . 2.2:3 —3 1 1	 1+ 1 1 1 w	 (4.3)

1	 c I	 1 ec

Where w is a white noise	 N(0,13,5), Taking the Laplace

transform:

s 8c ts> + 3z 8c Cs> + 2.35 80 (s>	 wCs>	 t4.6>

or
ii
Ij
j ,	1

Wty > 
«. 

Cs*1,5>2

then	 j

I
2

►̂ 	 C to > ^ 1 ^	 1 ^--	 I ^	 C w > ^ ^---^---
1 3 .5,	 t 4 , 5 >

8C 8C	 I (jo+1 , 5>21 ww	 C02+2.25>2

To select the sinusoidal input to match the frequency

distribution of power with the real random signal# first we

define the fraction of power of rea l random signal 8ct0

(Ref. 13) between 0 < 0 as

	

1 Solo 8 Co>dw	 IT 	 8 tca>do

F8 8 (w)	 oo 
q 

C 	 0	 c	 C4,9>
c C	 IS ,^

8 .8 Co>dw	 °8C 8C
{?	 C C

And we also define the fraction of power of the sinusoidal

input i(t) as

	

nCw 
n 
Gw>	 ntw <w>

1 E A2 1 
n£ Aa

F i1 (0> = 2 
k=l	

k	
k=l	 k

	

1 E Ak 	iii2k=1 k

C4,10>
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0.

Certainly we select 4ii=v18 a	 Finally, we select the
c c

appropriate A  to match the fraction of power spectrum of

sinusoidal input with that of the real random input. It is

shown in Fig. 4--4. Table 4-1 shows the parameters selected.

During our system dynamic computation, we choose an

integration time,interval dt equal to .05 sec and,the number

of data samples equal to 1024( 2 10 >, for the sake of con-

venience for the fast Fourier transform. The period time T

during which data is taken is equal to 51 . 2 sec, which

satisfies the following relation

	

T = N At	 C4.10

and define
t

rad

	

wO = T^ - .122'7185	 sec	 t4.1 2> 	`1

We then choose some integers; nk which are non-commensurable

	

to .obtain the input frequencies, or 	
S

	w k - nk 04	<4.13>

and ok 's also are to be equally spaced over the logarithmic

scale and satisfies the requirement in equ. C4.2>.
i^

4.3. Simulation result

In our experiment, the sinusoidal input shown in Table

4-1 is used to represent a true random input. We simulate

`	 two simple plants and 2 in both a pursuit and a compensas
tory task. The results for the pursuit task are shown in

Fig. 4-3. 4-6 and Table 4-2 respectively. Fig. 4-7, 4-8 show'

L	 N
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t

•	 d	 '

k n Mk(rad/sec Ak k (deg)

1 2. .245437 .80 0.

2 5 .613592 .76 36.

3 9 1.104466 .62 72.

4 13 1.595340 .44 108.

5 19

29

2.331651 .347 144.

6 3.558835 .24 180.

7

8

43 5.276894 . .11 216.

67 8.222137 .08 252.

9 101 12.394565 .06	
I

288.

10 -141 17.303303 .06 -324.

t

Table 4-1 Sum of sinusoidal input command

k/s dynamics	 k /s2 dynamics
Iterm

mean value deviation	 mean value	 deviation

squere of

error .26 .06	 .61	 .13

square of ,

4. 06 .74	 5.08	 1.03 
error rate

square of

controller
3.051 .72	 26.78 .	 $.65

Table 4-2 Measured human performance`

s,
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Figure 4-5 Measured human pilot equivalent describing function

and controller remnant-correlated power spectrum
for k/s dynamics
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the results for the compensatory task, compared with other

results in the literature (Ref. 1, 21, 22).
t

From these later results we conclude that our experi-

mental technique and software are correct and that we may

proceed to more complex tasks.

4,J. Discussion of Experimental Data

A fixed time interval (.OS sec) and a second order

Runge—Kutta integration are used in the real time simula -

tion. The whole discrete closed--loop system is sampled at 20

c- uc le c=12 •x-_+ r-- 
A

, ): which is much l arger than our maximum
sec sec

input frequency C=17 e^ >. 5o no aliasing problem is

expected for this sampling rate, but at slower rates (say

less than 10 
cs"w^e) it must be considered.

i

	

	 Our simulation results shows that there is a little

difference between pursuit and compensatory tasks. The mag -

nitude of the pilot describing function is smoother over the
E

r whole frequency range in the pursuit task than in the com-

pensatory task. We also have phase lead in the range of low

frequencies in the pursuit task, but not in the compensatory

task, Also, a lower error variance occurs in the pursuit
f

task,	 since the subject has more observations, bot41 input

and system feedback, and therefore the task is "easi prr" than

the compensatory task.
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We want to identify the pilot dynamics and task objec-

tives (weightings) from simulation data similar to that

described, using both time domain and frequency domain

methods, and compare the results.

We propose using the Quasi--Newton identification pro -

cedure (see appendix) to identify these model parametersi

such as weighting of cost function, time delay, measurement

noise and motor noise etc..

Our proposed technique can be extended to other more

complex tasks, for example, landing approach. During that

task, we have more observed variables such as altitude,

attitude, angle attack and velocity etc,( and more controll -

ers such as thrust and elevator etc., than those we have in

our pursuit task here. Our proposed technique is still

available, but more weightibgs of the cost function trust be

selected, due to the increasing observed variables and con -

trollers.
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APPENDIX

A. Quasi-Newton identification procedure (Ref. 15 * 1b, 17)

A.1 Minimization scheme

The OD( scheme is generally implemented to minimize the

following scalar modeling error:

N
j	 E Wi ei	<A--1>

i=1

where e  is the difference between the i th measurod data

point and the corresponding model prediction, w  is a weght-

ing coefficient. Or in matrix norm:

J = eTWe	 <A-2>

with a=col C e 1 e2 ,...3, W=diag C w i 7.

For a trial set of model parameters p 1 , we have its

corresponding modeling error

J 1 = eWe 1 <A--3>

For a new set of parameters p2=p l +AP , we obtain a new

modeling error

J2 = <e 1 +60 T W <e 1 +Ae>	 <A-4>

= e1We1+2eTW6e+beTW6e

Using perturbation theory, we can get approximately linear

perturbed equations in the model parameters. Thus

be = Q Ap	 <A-5>

8e.
1where q<i,j> = 8p can be obtained by the method of perturba_ r
j
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tion. Now the modeling error can be expressed as

J2 M J 1+2e1W Q6p+ApT0TWQAp <A-E,)

Next we want to find the parameter vector change required Ap

for minimizing the J2 0 There

8J

p
1
J ^>minimum  0 = 20TWe 1 +20TWQAp (A-7)

Thus, the following change in the parameter vector yields

minimum modeling error, given the initial vector e l and the

assumption of linearity;

Qp — CQTWQ]^1QTWe i	<A-0

A.2 Sensitivity analysis

In addition to obtaining the best match to a given set

of data, we may also wish to determine some measure of the

reliability of the identified parameter values. A qualita-

tive indication of parameter estimation reliability can

often be obtained through sensitivity analysis relating

changes in the scalar matching error to perturbations in the

model parameters. In general, estimates of parameters that

have a high impact on the modeling error can be considered

more reliable than estimates of parameters having a smaller

{	 impact.

If model predictions are linear in the parameters, as

assumed in the foregoing treatment, we may analytically

derive the sensitivity of the scalar modeling error to per-

turbations in model parameters about the optimal (best
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matching) set. One may compute the sensitivity to a given

parameter with the remaining model parameters held fixed, oe

with remaining parameters reoptimized. The latter measure

provides a more accurate reliability measure because it

accounts for the potential tradeoffs that may exist among

parameters in terms of matching the data.

Let e0 be the modeling error when parameter set p is

optimized at p0 , then:

Ap = — CQTWQ7 -1QTWe0 = 0 (A-9)

Next let us assume that the incremental error arises from a

non-optimal choice of one single parameter p i . With the

remaining parameters fixed at their optimal values, the

resulting incremental error is

Ae = q i Ap i CA-10

where q i =i th col. of Q. We define the subscript "r" to

indicate vectors and matrices that remain when rows and

columns corresponding to the i th model parameter are

removed.	 The expressions of re—optimizing the remaining

model parameters can be obtained:

Apr CoTWO 3-1QTT,Wg i Ap i (o-11)

Comparison of the elements of the vector Ap r with p i reveals

the joint tradeoff between p i and the remaining model param -

eters.

1

A	 '

To compute the effect on the modeling error J of a

change in p i , with the remaining parameters re—optimized,
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we construct a new vector lip which is the composite of

p i and pr . This vector is defined as

ap = V Ap i <A-12>

where V is a column vector that has a value of unity for the

ith element and values for remaining elements as determined

from 6pr Then we can obtain the corresponding modeling

error for re-optimizing pr with the change of one single

parameter tip i

AJ = J--J0
 = 2e WQVAp i+v Q WQV C Ap i > 2

= VT0TWQV(6p i > 2 CA-12>

The term 2eTWQVAp i is zero, because eo is corresponding to

the optimized modeling error. Therefore the change in model-
,

ing error varies as the square of the change in the parame-

ter value. Hence we can obtain the sensitivity for each

parameter.
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