
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



f	 J4
	

0

NASA TECHNICAL MEMORANDUM
	

NASA TM-76997

( N ASA-T M -76997) MOLLIEIO-- , S- DI A GRAMS FOR	 N83-21058
C0MBk15TXU" GASES IN DATA Pl,. )C:ESSING
(National Aeronaut:i(-,s and Space
Administration) 26 p HC A03/MF A01 CSC:L 21B	 Unc,las

G3/25 09332

MOLLIER-I,S-DIAGRAMS FOR COMBUSTION GASES

IN DATA PROCESSING

Dr.-Ing. Friedemann Zacharias

1 F" v"'l'" " 47,j

MAR 19'8
REQUYED

Asa STI FAcwLc
ACCESS ofaw

Translation of "Mollier-I,S-Diagramme fur Verbrennungsgase
in Datenverarbeitung', Motortechnische Zeitschrift, Vol. 31,
No. 7, 1970, pp. 296-303.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546	 DECEMBER 1982



r por 	 QUALITY OF P

i

STANOARO TITS,• PAGI

^. O.hnMwH Adeosesse lift 1. RKIpIM/'r Gael" Mg.1.
7T^TT
R.̂

^
A
n

1YA ^lt'1 	 .TM- 76997
 

t. Title W4 So►«ll• S. *.pool Dole
MOLLILR-I,S-DIAGRAMS FOR COMBUSTION November 1982

S,	 Io► 1.n"1ne ofs.n1l .11.wGASES IN DATA PROCESSING

1.	 Awoke? .l ^. ► .^r.,,, , n^ o^.nl.al.^ R.,«t la.
Dr. -Ing. Priedemann Zacharias

W Welk Will Fr..

11. Gn1ra1 .r Goom N^.
NASw•	 354,2___`0. Performing Otg.nlsel{.n Nome «I AMbaN•

I& Type of Report end Period Cv.«.1SCITRAN
box 5456 Translafloo

1!. 
sIntional Aeronautics Cana Space Adfainistlratioo
Wasnington^ D.C.	 205Ai 1^. ^ral^•NIN Agony CAM

15. SnNlonvolvT Notes

Translation, of "Moll,ier-1,S-Diagramme fur Verbrennungsgase
in Datenverarbeitung", ,Motortechnische Zeitschritt, Vol. 31,
No.	 7,	 1970,	 pp.	 296-303.

It. A►.tr.p'

In order to have all the thermal and caloric states of com-
bustion gases accessible in a computer, closed mathematical
approximation equations were established for the real factors,
the enthalpy and the entropy of a real combustion gas. 	 The
equations approximate the various effects of molecular forces
real gas influence and dissociation - at temperatures of
2.00 -6,000 K, pressures of 0.001 - 1,000 bar, and in the ran
from stoichiometric composition to air.	 Finally, a system of
subprograms is listed in FORTRAN, by means of wh4kch thermodyn
calculations can be carried out in the same manner as with
Mollier I,S diagrams.

IF. KM r«M (M1wtw N AsIMM1e 0 es"llotaw 1tMo.owl

Unclassified -, Unlimited

It. seaNte Cluul. ( 01 *Is "Wo 3L I wwlte CL.MI. Id *A* psO	 11. ft 00 Its ti. ►Ais

' Unclassified Unclassified	 26

ii



a	 a

ORIGINAL PAGE IS

OF POOR QUALITY

MOLLIER I,S DIAGRAMS FOR COMBUSTION? GASES

IN DATA PROCESSING

Dr.-Ing. Friedemann Zacharias

In order to have all the thermal and caloric
states of combustion gases accessible in a computer,
closed mathematical approximation equations were
established for the real factors, the enthalpy and
the entropy of a real combustion gas. The equations
approximate the various effects of molecular forces -
real gas influence and dissociation - at temperatures
of 200 - 6,000 K, pressures of 0.001 - 1,000 bar,
and in the range from stoichiometric composition to
air. Finally, a system of subprograms is listed
in FORTRAN, by means of which thermodynamic
calculations can be carried out in the same manner
as with Mollier I,S diagrams.

After the publication of the first I,S diagrams for

gases in 1.932 [1], Prof. Pflaum of the Technical University

in Berlin made the thermodynamic fundamentals of combustion

engines his objective. In 1960, the second edition of the

Mollier 1,S diagrams for combustion gases [2] was also

published at his institute. This edition included the most

modern physical data for the individual gases included in

the combustion gases.

With the expanded use of programmed computer systems

in engineering work, it had become desirable to supplement

the graphic computing aid of the I,S diagrams for use with
electronic data processing.

In the years 1963 to 1965, research work was carried

out with the objective of representing, by means of equations,
the thermodynamic functions, which also formed the basis of
the I,S diagrams. The enthalpy, the entropy, anu the

f
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real factors of the thermal equation of state for combustion

gases were developed as closed formulas valid over the entire

range:

Temperature:	 200 - 6,000 K

Pressure:	 0.001 - 1,000 kp/cm 2 (absolute)

Air ratio:	 stoichiometric gas - air.

In a further step, a programming system was established for

computers to allow them to operate with these formulas in

the same manner as manual operations with I,S diagrams.

This decisively simplified, or even made possible for

the first time, computerized thermodynamic determinations

on combustion engines, as well as stepwise simulations of

real processes or optimization computations.

The Mollier I,S diagrams, though, remain essential

for a survey of the establishment of thermodynamic computer

procedures and for quick calculation of individual state

points and simpler processes.

The work :i, arranged as follows:

1. General establishment of combustion gas system and

assumptions.

2. In the temperature range from 200 to 1,500 K a modified

form of the Bettie-Bridgman equation of state [3] is

used to take into consideration the intermolecular

forces at high pressures and lower temperatures.

(The dew limits were not included in the expression.)

3. In the temperature range from 1,500 to 6,000 K, the

real gas properties were calculated from the chemical

reaction equilibrium for individual thermal states

(every 100 K in temperature, and at orders of

magnitude of pressure from 0.001 to 1,000 kp/cm2).

Twenty different partial reaction products were considered

in the combustion gas.

2
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4. Using rational integral and transcendental, polynomials,

approximation equations were obtained for the enthalpy,

entropy and the real factors, based on the derivations

in (2) and the state points according to (3).

5. A practical system of subprograms in FORTRAN is listed

for application of the equations determiner'. With this

system it is possible to compute changes in thermo-

dynamic states immediately.

Symbols Used

C 
	 specific; heat capacity at constant pressure

F	 general thermodynamic property

H	 enthalpy (:absolute)

M	 molecular weight

P	 absolute pressure

R,R o gas constant

S	 entropy (absolute)

T	 absolute temperature

V	 volume

Z	 real factor for the state equation Z = PV/RT

n	 mole fraction of an individual gas in combustion mixture

r	 air content in the combustion gas mixture

i, j running indices

empirical functions

air ratio, DIN 1940

1.	 General Assumptions and Prerequisites

The necessary number of independent parameters sufficient

for adequate description of a system of combustion gases can 	
k

be determined from Gibbs' phase rule:

f = b - p + 2	 (1)

b = number of independent components in the system

p = number of phases appearing w
f = number of degrees of freedom or the number of

parameters required to describe the system.

3
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In all combustion engines, the combustion gas appears

only in the gas phase; that is, p = 1. The combustion gases

under consideration here arise from oxidation of hydrocarbons

in air. The air has a fixed composition except for humidity.

Air humidity will not be considered here, though. Hydro-

carbons of different compositions are used in combustion

engines. In order to limit the range of computed points, it

is necessary to select a fixed carbon/hydrogen ratio for the

fuel. This ratio is taken here as C/H = 85.63/14.37. 	 This

is exactly true for mono-olefins and naphthenes. From a

comparison of various fuels for combustion engines, this

average value seems suitable for a general representation.

Such an assumed fuel, along with the air of fixed

composition, makes up the two components of the total

system; that is, b 2. Then for the number- of independent

parameters, one finds that f = 3; that is, three independent

parameters are required.

For combustion gases, the following parameters are

generally required as characteristic quantities and properties:

a) Characterization of the type of gas

Statement of the air/fuel mixture ratio;

e. g.:

.	 air ratio . . . air volume before combustion
stoic lometri.c air vo ume

or

F .	 Air/Fuel mass ratio

or	 volume of air in the combustion
r .	 air content . . . rzas after combustion

total combustion gas volume

b) Thermal parameters:
Absolute temperature T; absolute pressure P and volume V.

4 R



c)	 Caloric parameters:

Enthalpy H; entropy S;

at constant pressure, Cp.

ORIGINAL PAGE IS
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and specific heat capacity

Among the parameters in a), the air content, r,

is especially suitable for an analytical representation,

as SchUle suggested in the Z. VDI 60, p. 630, (1916) for

fire gases. This is because the thermodynamic properties

of combustion gases in the ideal gas state are linearly

dependent on this parameter, due to the mixing rule.

Aside from the generally common air content, r, the

temperature and pressure must also be selected as independent

variables. Then every combustion state with the assumed

fuel is unambiguously characterized by the following

parameters:

T	 absolute temperature

P	 absolute pressure

r	 air content

Accordingly, the other parameters listed in a), b) and c)

are dependent quantities.

The relations between the dependent and the independent

parameters are further represented by the thermal equation

of state

V=- (1)(T,P,r)	
(2)

and the caloric equation of state

H	 I - (T, P, r)	 (3)

The thermal equation of state represents the extra-molecular

processes, and the caloric equation the intra-molecular

processes. Both relations are empirical for real gases.

5
5
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Because of the wide range of the temperature and pressure

for this representation, the chemical reactions at high

temperature (dissociation) and the pressure-dependence of

the caloric properties must be taken into consideration by

the thermal eugation of state at low temperatures and high

pressures.

If the empirical relations are known according to

Equations (2) and (3), then the other thermodynamic

properties can be derived mathematically; for instances

s F )dH:T	 or	 C, - (M^6),

2.	 The Thermal Equation of State for Combustion Gases at

High Pressures and Low Temperatures

In order to consider t''Le effects of real gases,
eugations of state with several virial coefficients were used.

The best-known generally applicable real equations of state

are those of Beattie-Bridgman [3] and Benedict-Webb-Rubin.

The Beattie'-Bridgman equation of state is sufficient for

the simpler technological gases. In its virial form it

is as follows:

PV	 (	 AP	 c1

RT	 B RT	 T, V ,.
1 A°a	 B°c 1 1	 J B ,bc . 1

BvT) 4 VZ)) + `D (T1	 Z

B(T), C(T) and D(T) are the second, third, and fourth

virial coefficients. Z indicates the real factor, which

has a value of Z = 1 for an ideal gas. Keyes, Smith and

Gerry [4] changed the second virial coefficients of the

6
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Beattie-Bridgman state equation in order to consider equally

the behavior of polar and nonpolar gases. The original

Beattie-Bridgman equation is not suitable for representation

of polar gases. The altered second virial coefficient of

Keyes, Smith and Gerry is:

flcep 72

	

Rt- 	(5)

Stockmayer [5j tested this form of the v:L ,ial coefficient

on binary gas mixtures: H2O-CO2 , N2-NH3 , and N2 -H20. The

gases CO2 and N2 are not polar. H 2O and NH3 are polar.

Because of the polar water vapor content in the combustion

gas, the altered second virial coefficient, Equation (5),

should be used in the state equation, Equation (4). The

constants for the pure gas components appearing here are

known from measurements.

The constants for the mixture are determined here

according to the following equation

Kn,	 V V n; , n; • K;;
II

in which the summations are to be carried out over all

components of the mixture.

ni , nj	Volume proportions of pure gas components

Kij (i=j)	 Constants for the pure gas components

Kij (ivj)	 Mixture constants due to interactions between

two different types of gas molecules [6].

As yet there is no valid theory from which the

constants Kij for i V j can be calculated from the

constants for the pure components. But from various

measurements and computations for binary mixtures [5, 7]

7	 ,

(6)
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the following relations can be used as approximations

for the constants In the second virial coefficients of
equation (5):

A, (k-A,111
Bi;	 t 1 8)(k' a. B" ' 3)"	 (7)
©.,	 P, Q,.)'

After application of these relations to combustion gas

components in the range from pure air up to stoichiometric

combustion gases, it could be established that the

constants A, B and D in Equation (5) show an approximately
linear dependence on the air content, r, in the form:
Kin = Ka + K lr .

Because of insufficient reliability in the formation
of the interaction constants Kij with 1 V j in the
third and fourth virial coefficients, and because of the

relatively minor contributions of the latter virial coefficients

in the technological computations, only the first and second

virial coefficients are considered for the combustion gas

mixture.	 W.Lth the furt.ler approximation that 1/V may be

expressed as P/RT, one obtains the following initial

solution for the thermal equation of state:

RT	 (A,. +Air)
V	

P	
,, Bir),.	 RT	

exp Po . fir) T11	 (8)

Here the volume, V, is shown to be explicitly dependent

on the independent parameters T, P, and r.

With this equation of state, then it is also possible
to obtain the pressure-dependence of the enthalpy, H, and

8
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the entropyr S t by means of the followbig differential
equaLlons (9):	 ItH	 *V1

I 
I	 v I	 T I

4

44
q4

41
t

J	 ,kN,	 , .
%X XI

Temperature	 T

Figvire 1. SpeciftC icat cap4elLy C
P 

of tho real sLoich iollleLric
combusLion gas aL pressurcs Of 0.001 to 1000 kp/cm2

4 s

r

t, A\,	 tk-kv NXV K,

Temperature T

Flgvre 2. Enthalpy, It, of Lhc, real., stoichiomeLric
COVilbustion "gzas at' pressures from 0.001 to
1000 kp/clu-).
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3. Chemical Equilibrium Reactions in the Combustion Gas

Chemical reactions in the combustion gas must be taken

into consideration in the temperature range above 1500 K.

As the effect of the intermolecular forces decreases with

rising temperature in this temperature range, and the real

equation of state approaches the ideal one, the ideal

thermal state equation can be used as the basis in this

region. It is also apparent that the modified Beattie-
Bridgman state equation selected also transforms into

the ideal state equation at higher temperatures, even

at relatively high pressures. At high temperatures the

thermodynamic properties of a gas mixture are expressed by

intra-molecular processes. The gas stores energy in the

form of various states of motion, which. Lead to dissociation

of the molecule into atoms or groups of atoms (radicals).
An apparent equilibrium composition, dependent on T, P

and r, is established between the reciprocal dissociating

and bonding reactions.

The calculation of the gas composition and, from that,

the thermodynamic properties of the dissociating combustion

gas are presented in [8] and [9] with respect to application

of electronic data processing. The calculations performed

here are closely based on [9] and are extensively described

in [10]. The equilibrium composition must be determined for

every thermal state point. by means of a long iterative

computation from the mass action law, the atomic balances

(unchangeable number of the various types of atoms in

different combintations) and Dalton's Law (sum of the

partial pressures = 1).

In order to get a sufficient number of supporting

values for the following approximations, the gas composition

and all the thermodynamic properties of interest were com-

puted every 100 K from 1500 to 6000 K at all orders of

10
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magnitude of pressure between 0.001 and 1,000 kp/cm 2 , and

for the air contents 	 (air ratios) r (;.)0(1); b,2 (1,267);0,4 (1,713); 0,6 (2,603);

U (5,278); 1,0 M

This set of steps gave computations for about 2,000 state

points.

In the dissociating combustion gas, 20 different

reaction products were considered as potential gas compor.L. s:

H2O, CO2
1
 HCN, N20, NO2, E12 9 C2 , 029 N2 , N0, CO, CN,

OH, CH, NH, H, C, 0, N, and the noble gases of the air.

The required absolute thermodynamic .functions Cp/R,

P
(H - HO )/RT and S/R for the 20 individual gases in the

ideal gas state, and the reaction enthalpies, were taken

from [8] and [9], because they presented a critical selection

of the latest data up to 1959. The data for the triatomic

{	 gases were from McBride and Gordon [11]. All the data used

are tabulated in [10].

Of the results of computations from the reaction

equilibria, only the heat capacity, C  in kcal/kg K

and the enthalpy, H, in kcal/kg, are shown here in

Figure 1. and 2 for stoichiocrm,etric combustion gas (r = 0

or a = 1). The absolute temperature in K is the abscissa

for each figure. The seven curves presented in each figure

correspond to the absolute pressures 0.001; 0.01; 0.1; 1;

100; and 1000 kp/cm2.

In these diagrams, two distinct reaction steps are

recognizable from the wave-shaped course with rising temper-

atures. These are due to the prevailing decompositions

appearing in the various temperature ranges. The first

step is for decomposition of the triatomic molecules into

diatomic ones. The second step is for decomposition of

diatomic molecules into monatomic ones.

11
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4. Establishment of Approximation Equations

In order to be able to work with the thermodynamic

gas properties on programmed computer systems, these

properties must be presented as mathematical equations.

The following three functions are approximated:

1. Real factor Z RT . 
Z (T' F, r)

2. Enthalpy	 H H (T, P, r)

3. Entropy	 S - - S(T, P, r)

The entropy is to be provided for the minimal system

from the thermal state equation (2) and the caloric state

equation (3) in order to avoid derivative errors in

computing the entropy from differential calculus.

Corresponding to the various effects of molecular

processes on the thermodynamic properties, one can

decompose the three functions shown above into three

parts each: ideal behavior, correction according to the

real state equation (second virial coefficient) and

dissociation correction. Accordingly, the three functions

shown can be represented in the general form

F — Fideol 4' 
J FRealgas + F1 FQissoziafion	 (10)

Here the ideal gas properties, rideal' contain only

the temperature dependence of the specific heat capacity in

the undissociated ideal gas mixture. They are approximated

by rational integral polynomials. The Tschebyscheff

approximation procedure was used as the most practical

method of approximation.

12
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The correction term due to the selected second virial

coefficients in the state equation, A Freal gas' is
known analytically directly from the previous section, as

are effects on the enthalpy and entropy from the differential

equations (9).

The effect of dissociation, AF	 must bedissociation' 
considered in the high-temperature range. The wave-form

appearance of the dissociation contradicts an approximation 	 j

by simple rational integral polynomials. For this reason

it is advantageous to use transcendental types of functions

for the approximation. For this case, a mathematical model

was established by means of which the constants can be

determined from a formula made up arbitrarily of trans-

cendental and rational functions. On applying the principal

of minimizing the squared errors, one gets with mixed

transcendental-rational formulas non-linear determination

equations for the constants. Taese can be solved by a

Newtonian iteration. For this purpose, coarsely estimated

numerical values are input into the computation for the 	
J

constants which are initially unknown [10]. This approx-

imation procedure makes it possible to match the most

practical mathematicalformulas to the curve form to be

represented with enough free constants.

i
After detailed studies and back-calculations with

various types of functions for the curves of the real factors,

enthalpy and entropy, the correction term AF dissociation
was represented by the following formula;

J FDlssoxiation = n 1/0+eY ' )+02/(1+eY2)	
(11)

In Equation (11) the exponential functions y1 and y2
and the amplitude functions a 1 and a2 can be solved with

the aid of the curve to be approximated, specified point-wise;

and they can further be approximated by the best-matching 	 F:

function types according to the method cited.

13
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While yl and y2 
are usable equally for the state equation,

enthalpy and entropy, a l .and a2 must be matched separately

to the particular thermodynamic properties.

Applying the summation of Equation (10) to each of

the thermodynamic functions to be represented here, one

finally obtains as a result the approximation equations

according to Table 1, which always contain the sequence

	

F - Q real gas + Fideal 	 AF	
The

 The real

effect is superimposed in the ideal functions from the

low-temperature side, and the dissociation effects from

the high-temperature side. The approximation functions of

Table 1 are shown in Figures 3, 4, and 5 for stoichiometric

combustion gases.

The three thermodynamic functions are referred to

the kmol of undissociated combustion gases, and made

dimensionless with the ideal gas constant R o and the

absolute temperature. By multiplication with the corresponding

ideal gas constants, the thermodynamic data may be obtained

immediately in the dimensions desired. The ideal molecular

weight, Mo, of Table 1 must be used in relation to the

weight (kg).

22	
}	 '	 j	 }	 1	 t

Q001

01

21T,P^= yT
	 kp/cm'

N 1,0	 lot
1.0

} )	 1,4
°

d	
10

O	 sY	 t000
a-► 	 tU.

^H

Cd

1 0

00

P4	 0	 1000	 2000	 3000	 4000	 5000	 6000 K

Temperature T

i

Figure 3. Real factor for stoichiometric combustion gas
from Equation (1).
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1	 Real factor

2	 Enthalpy

3	 Entropy

4	 with j

5	 Temperature

6	 Pressure

7	 Air content

8	 Gas constant

9	 Air

10 Combustion gasundissociated

11 Gas constant for the ideal gas

12 Molecular weight of the ideal combustion gas:
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Table 3. THERMOBIBL

SUPPOUTINE ivATP
I(OL J, 111, 112, K1. LP, NS
COMMON I. P, V, H, S, R, NA
COMMON AB.AC,G,J,V I.LP,PI, IE IA
COMMON A2111r8)I71,C181,K)141.07161
COMMON VIC, 120, VI, V4
NA • 0
CALL ANF
TETA • T • .001
CALL PPI
If	 INAI	 1,10,1

10 CALL VA
If INA$ 1,110

It v • AD
1 PETURN

ENO

SUBROUTINI HITP
REAL J, 111, K2r K), LP, MS
COMMON I, Pr V, H. Sr A. NA
COMMON AO,AO.O,J.VI,LP.PI.TFTA
CCMMON 82171rB1171,C181rK)141,0)Ifl)
COMMON Y10, Y20, V3. V4
NA	 C
CALL ANF
IfIA '• / • .00t
CALL PPI
IF INAI
	 ".I

9 CALL CMISCH
CALL HA
IF	 INAI	 l,llrl

ll H	 AO

1 RETURNIND

SUBROUTINE SATP
REAL J. K1. X2. K7. LPr M5
COMMON Tr Pr V, lir S. R. NA
COMMON AB,AC,C,J.VI.LP,PI.IEIA
COMMON 82111,03171,CIBI,K3141.03181
COMMON Y10, Y20, V3r Y4
NA = C
CALL ANF
TETA - T • .COI
CALL PPI
IF	 INAI	 1,12.1

12 CALL CMISCH
CALL SA
IF	 INAI	 1,11,1

11 S	 AO
l RETURN

E NO

SUBROUTINE TAPV
RI AL J, K Ir X2, 113, LP,. MS
COMMON T• Pr V, H. S. Pr NA
CCMMON AB,AC,G r J,VL,LP,PIITETA
COMMON 62171r0T171,011),0141.011131
COMMON Y10, Y20, Y1, Y4
EXTERNAL VA
NA . 0
G	 V
CALL TIUMIVAI
RETURN
INC

SUBROUTINE IAPH
REAL J, KI, K2r 

r 1 LP, 
MS

COMMON Tr P, Vr Hr S. R• NA
COMMON AB,AC,G,J.V1,LP,P1,TFIA
CCI,MON 02171r05111,C(0I,K3I4I,O3(A)
CCMMCN YIC, Y20, Y2, Y4
EXTERNAL HA
NA	 0
G	 H
CALL TIUMINA)
RFTURN
ENO

SUBROUTINE TAPS
RFAL J. KI, K2r K, LP, MS
COMMON I. P, V. H. S, R. NA
COMMONAB.AC,G,J,VI,LP,PI,TEIA
CCMMO N 0217hell 71,C181,01 41,03181
COMMON YIC, V20 1 V1. Y4
EXTERNAL SA
NA - 0
G * S
CALL YIUMISAI
PETURN
ENO

SUBROUTINE PATV
REAL J, Kl, K2, K3, LP, MS
COMMON T, P, Vr H. 5, R. NA
COMMON AB. AC. GrJ,VI rLPrPI, IC IA
CCMMON B2171,E3171.C181.K114),03(81
CCMMON TIC. V20, Y1. V4

i	 EXTERNAL	 VA
NA - 0
IF	 IV)	 I, t. 7

7 G *	 I
C	

ALOGIV
ALL PlUMIYAI

IF	 INAI	 1,2,2
i	 1 NA • t

2 RETURN
ENO

subprogram system.

SUBROUTINE PATS
REAL J• Kl, K2, K3, LP, MS
COMMON 1 9 h V. H, S, R. NA
CCMPON AB,AC,G,J,VI,LP, ► I,IIIA
COMMON02111,6)(114( 114(81.1(11404131
COMMON VIO. Y20. IIr Y4
EXTERNAL $A
NA	 0
If	 ISI	 1, 1, )

1 G • ALOGISI
GALL PIU0I5A1
If	 INAI 1,2,2

1 NA • 1
2 RETURN	 '	 I

INC

SUBROUTINE	 IPAVH
REAL J. K1. X2r K), LP, MS
COMMON I. P. V, H, S, Rr NA
COMMON A5.04 C rJrVI.LP.PIrIFTA
COMMON 92171,B1111,C(01,K314),01t61
COMMON VIC, V20, V3, Y4
IXTERN AL HA
hA	 0
JH
CALL TP2UMIHAI
0fTURN
ENO

SUBROUTINE IPA 
VSREAL Jr Klr K2r K), LP, MS

CCMMCN Tr P, V, H,5, R, NA
COMMON AB,AO,C,J,VI,LP,PIr1FTA
CCMMON B 2171,83171,CIBI,K3141,03101
COMMON YIO, V20, Y1, V4
TA TCRNAL $A
NA • 0
J	 S
ULL TPZUMISAI
RETURN
ENO

FUNCTION UFIGEHi EI
COMMON T, Pr Vr H, $, R, NA
hA - .0
IF (E-1.1 1,20

2 IF	 LE - 1000.1	 7,4,4
7 R • 1E-1.1/I.C69B•EI

LFIGEM • R
CO TO 5

4 R•l.
OF TGEH•R
CO TO 5

1 NA - l
5 RETURN

ENO

SUBROUTINE VA
REAL J, K1, KZ. K7, LP, MS
COMMON T,Pr Vr Hr $r R. NA
COMMON A P, A Cr E,J rV1.Lr,P1. IE to
CCMMCN 82171, 81171rCl21.K1141.C1181
ICMMON VIC, Y20, 13, Y4
PO - 8314.18
CALL 0R
I1	 INAI	 1,	 1.I

10 A • 011 t,.PI••.o07Ir1Crlo1121.07171
1•LPI/Y2C/I. 1 1117121-YAI•PI/TETA
AO - A•RO.1/(P•K3141)

I RETURN
CND

SUBROUTINE HA
REAL Jr Kir 112, K3, LP, MS
COMMON Tr P, Vr Hr 5, R, NA
COMMON A6,AD,G,J,VI,LP,Pt,TEIA
CCMMON 62171,83171,C18I,K3141,03(0I
CCMMON VIC, Y20, Y7 1 V4
RO • 6714.18
CALL GR
IF	 INAI	 IrIC,I

10 P - HRNIB2,fETA,71/107141•P1••.0115/
IYIOr(01151-3.065,LP1/Y2004KII2J-2.
2•Y4•II.,Y311•P111IETA
AD - RO•T•6/K3141

I RFIUAN
INC

SUBROUTINE $A
REAL J, Kir K7, K2, LP, MS
COMMON1. P, Vr 11r S. R, NA
COMMON A$,A Cr G,JrV 1,LP.P1,TETA
CCMMON02171,67171,C101,K1141,03181
COMMON Y100 V70. Y3. Y4
PO• 8314.70
CALL GR
IF	 INAI	 1, 1r1

1 IF Lfl	 Zr 2. 4
4 IF	 IPt12, 2. `.
5 AC - ( 0116I-ALOGITI.HRNIB3.IETA,11-

IIC3(71•PI•,1-.0745711/110-LPC107to)
7.14.517/Pi••1-.056<811/Y2C-IY4•Pl.
311. • Y311/TETAI • RO /K 5141
CC IC I

7 AA - I
I RETURN

ENO
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SUBROUTINE' ONE
REAL J, KI, 0r 11 3, LP, MS
CCMMON 1, Pr V. No S, A. NA
CCMPON AB,AC.G,J,VI,L ► ., ► I, ► EIA
CCMMON 82111,I11/lrCI81,11)141,0II61
CCMMOIJ Y10, I20, Y1. 14
CIMINSION K1141, 'P141, 01181, 02161
Klll) • 2.11105f-f
111121 • 6.422171
11111) • 0,886lE•
X1141	 28.89158
x2111 -.9001111-4
K2121 • -.98167E-4
X2111 + -.6131f-2
K2141 • 0.06071
CALL KOM814, KI, K21
CO 10	 1 n 1 0 4

10 K3111	 0111
,1111 • 0.42C
01121	 0.114
c11'!1 • -0.0126
0114) • 23.9
01151 + Be.S
cllel • 1.55ee
01171 • 8.179
CI161	 0.
C2111 • -0.193
02121	 -0.119
C2111	 -0.005
C21U	 -11.0
02151	 ^14.15
C2161	 -0.0659
02111 • -2.126
12181 • -2.4)4
CALL KCM810r 01, C21
Cr	 It	 I • 1, 8

It Cllll - C11)
VI - I.-R
Ae • -0.9068 • 1-.2112 • V14 • 4. • V.11
RETURN
INC

SUBROUTINE KOMBIN, A t 01
PEAL J, KI, K2, K2, LP r MS
CCMMCN I, P, V, Hr St I, NA
CCMMON AB,AC.GrJrV1rLS+rPIr111A
COMMON 82171,81111. CI81rK7141r03181
COMMONVIC, V20, VI. Y4
CIMFN SIC N A181, 8181
00 IO 1 • 1. N

10 C111 • AEI) • fllll•R
IfTURN
INC

SUBROUTINE	 PPI
REAL J, K1, X7, K3, LP, MS
COMMON Ir P, V, Hr S. R. NA
CCMMON AO,AD,G,J.Vi,LP,PI,IEIA
CCMMON fl2111,03171,CI81,K7141,01181
CCPMON VIC, V20 ' 13, V4
IF	 IPI	 I.1,3.

7 P1 • P • LC1912 E-5
LP • ALOCIPII
CC TO 2

l AA • !
2 PETURN

I r r

56BROUTINE GR
REAL J, KI, K2, K1, LP, MS
CCMMON T, Pr V, H, S, R, NA
COMMON A6,AC,G.J,VI.LP.PI,TFIA
CCMMON 62171, 61471, CIe1,K3141.01181
CCMMON VIC, Y20, Y3.. Y4
11	 I1E1A1Ir 1, 11

10 f	 AL 001 'ET A/1.651
A • -.54• PI •• 1-.IC31-.14 • 0 • i.12-

1.29•PI••1-.12711
A • 15. • EXP/A • PI,1.577•.087 KP14

I(KPI-.)C64TETAI-6.901E
VI	 AB•PI6•1-.021210A
Y216.0912-2.4.3•IETA•PI••1^.0451
11C • t.,EXP1V11/TEIA
In l.•EXP1171/TEIA
V I • K3131/ITEIA•TEIAI
Y4	 EXP(VII•K3111/TEIA
CC t0 2

1 AA • 1
2 RETURN

INC

SUBROUTINE CMISCH
PEAL	 Jr KI, K2, KI, LP, MS
CCMPON 1, P. V, H. 5, R,. hA
CCMMON A61AD.G,J,VI,LP,PI,if IA
CCMMCN fl217l,e3I7I.CI8I.K3l4I,Q3(8I
CC14MON Y10, V20, V •.. Y4
CIMFNSION	 M1171, 142171, 51171, $217)., M5141
HIM	 3.514956
14112) * 0.131470
HI131 • 0.182
141141	 -.2073d

471i

HI151	 0.742S6IE-1
H1461	 -.916744E-2
HWI • 0.439096f-1
H2(I$	 .GO5C26
H2121	 -.383504
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H213) _ ^.18t2!4
M2141 = = .t9 4 Et 2P^)
H216)	 O.It4C41E-I
H216) * -.X4517[-2
112171. O.ICl(10E-1
CALL KCM817r Hi r M2)
CC IC	 1 , I, T

10 82111 = C111
Slit)= 2.912979
51121	 0.5811IM-1
MI) . 0.871149
$I1' 1 to -.451556
$1151 = 0•LC9lt4
$1(61	 -.129754E-1
SIM to 0.6CO234E-3
52111 • 0,55314C
52121 = -.4050C1
S2131 = 0.698181E-1
$2141 = -.287120E-2
52151 = -.69366)E-3
52161 • C.92C2r1F-4
52171 = -.299679E-4
CALL KCMB17. SI, 52)
Cr 1)	 1 - 1. 1

11 1311) - C111
MS(l) to -.PC5214
MS121	 -.4CC9P1
M$131 = 0.576989
MS(41 • C.C60056
F3(I)	 81111,MRMI 11 St R, 41

PfIURN
ENC

FUNCTION HRNIBl t X, NI
PEAL	 J. KI, K1 , X2, L P r MS
COMMON to P, V. H, 9. P. NA
COMMON A0,AC,G,J,VI,LP.PIr1ETA
COMMON 82171,e317),CIPI,KX141,C1(81
COMMON YIC, V20, V3, V4
CIMfNSION 01111
"PH - 0.
I • Not

1 1 = 1-1
HPN , HRN 1 X , 6111)
IF	 11-11	 2, 2, 1

2 RETURN
ENC

SLBRCUTINE TIUMITK)
REAL	 J, Kit K2. K2, LP, MS
COMMON 1, P t V, Hr 5, R, NA
COMMON	 AB,AC,G,J,VI,LPtPI,IEIA
CCMMON 8217),E? 171, C161. K3141,0318)
CCMMON YIC, 120, Y3, Y4
EXTERNAL IP
CALL CMISCH
CALL ANF
CALL PPI
If	 INAI	 102,1

12 T = ULL11249.r6000.01',TK1
NA • AHSINA)

I RETURN

ENO

SUOROUTINF PLUMIPKI
PEAL	 J, K1, K2, X3, LP, MS
CCMMCN	 I, P, V, H, 5, R, NA
CCMMON A0,AC,G,J,V1,LP,P1,TPTA
CCMMON 82171,E31I1,CI6I.K3141,C3(81
CCMMCN YIC, Y20. 13, Y4
EXTERNAL CP
PC - 8314.38
CALL CMISCH
CALL ANF
TETA - T • .001
IF	 (T-400.)	 41413

4 Y4-EXPIK3131/IlE•TA.TEIA11,K311)/IFTA
P - PO=1/I1V-IK3121-V41*84.i8IC8/
IK31411=K31411
If IPI 50.6

6 P1 •P•1.01972L-5
LP - ALCGIPI)
CC TO I

5 NA - 1
CC TO 1

3 LP - ULL113.,16.91,OP.PK )-IC.
IF	 INAI	 1,2,1

2 P1 = EXPILPI
P - P1=.980665ES

1 PFTURN
ENC

SLEPOUTINC	 TPIUM141
REAL J, KI, 92, KI, LP, MS
CCMMON T. P. V, H. Sr R. NA
CCMMCN AE,AO,G,J,VI,LP,PI,TEIA
CCMMON 82171,83171,CI8I.K3141.03(81
CCNMON YIC, V20, VI, Y4
EXTERNAL	 Fif
IF	 (Y1	 I, I, 1

3 C r ALOCIVI
CALL Ahf

CALL CMISCH
T • ULL1(249.,1CC..FIF,%)
If	 INA)	 4,2.2

4 T • ULLI(1CC..2000.,F1.F,M)

IF	 INAI	 5.2,2
5 T • ULL112000.16CCO-,FIF,111

IF	 IkA)	 1.2x7
1 N) r l
2 PEILRN

ING

FLNCIION CPIX, El
FOIL J. $1. K2, K3. LP. MS
CCMMCN 1. P. v: 4 N. S. Rr hA
CCMMCN	 le,AC.G,VI.LP,PI,ifIA
CCMMON 82171, !'I II,C181.K)141r0)181
CCMMCN YIC, - V70. V 1., V4
LP	 X..
P1	 EXPI10LPI
F . PI = .98Ctt5E5
CALL E
If	 INAI	 2.3.2

3 IF	 IACI	 I, I. 4
4 LP - ALOGIACI - G

CC TC 2
1 NA • I
2 RETURN

ENC

FUNCTION	 TPIX, El
PFAL	 J, KI, K2, K3, LP. MS
CCMMCN	 1, P, V. 11, 5, R, NA
COMMON AP , AC,G,J,VI,LP , PI,IFIA
CFMMON E217).F'(71,C(?I,K3141,C3101
CCM MLN YIC, Y20, V1, Y4
I • X
IEIA - I • tool
CALL F
If	 INAI	 1,20

2 T = A0-c
I RETURN

INC

FUNCTION	 FIFIX,F)
REAL J, KI, K2, K3r LP, MS
CCMMON Tr P, V, H, Sr A. NA
COMMON AB,AC,G,J,VI,LP.PI,IEIA
CCMMCN P2(71,E3171,C(61rK3141,03181
CCMMON VIC, V20, Y3, Y4
EXTERNAL OP, VA
PC = 8314.3E
T • K
IEIA	 1 •	 001
iF	 11-4CC.1	 5.5x1

5 Y4+EXPIK313)/ITEIArTETA11rK3(tl/TETA
P to POF1/11V-IK3121-Y41r04.1E3C0/
IK3(411A93(41)
IF (P)	 30,6

6 PI . PAl.Cl972E-5
LP - ALCGIPI)
GC `O 7

I ARC	 RCAT/IV4.9606t5E56K314)I
If (ARC$	 1,10

2 AA , 9.99,A!,CCIARGI
FP	 AA,.E4
LP • ULL2IAA,BH.0P,4A1—IC..
If	 INAI	 4,E,4

8 PI = EXP(LPI
P = PI0.98C665E5

7 CALL E
If	 INA)	 4.9,4

9 FIF - AO-J
CO TO 4

3 hA- I
4 RETURN

INC

FUNCTION ULLI(A, 0. F, F)
PEAL	 J. Kit . K2, K2, LP, MS
CCMMON To P, V, M, S, R, NA
CCMMON AE.AC,C.J, 1t LP,P1,7E1A
COMMON t2(71,03111.C(BI,K3141,C3(8)
CCMMCN YIC, t20, V3, Y4
NA - 0

hz	 200
FPS • O.CCS
NON	 A
x4N ► 0.
YON = FIXON, El
IF	 INAI	 14,15,14

15 X2N • B
Y2h r FIX2h, El
IF	 (NAI	 14,29,14

29 if	 IV2N1	 27x75, 2e
26 IF	 IYONI	 12,28,30
27 IF	 (YONI	 3Cr2Erli
12 N.2	 N2 - 1

IF	 IN11	 I3,11,1t
16 XIN = IXON , X2NIr...

YIN • FIXIN, El
IF	 INAI	 14,17,14

1.7 ON • V2N - YIN
EN • YIN-YON
CN	 ON-EN
ON , ION.EN H .5
GN • 2.4Y1N=CN
IF	 IGNI	 18,1,18

16 ARG + CN=CN - ON
IF IARGI	 13,19,19

19 HN • SOPTIARG)
EN • (HN-ONIJCN
IF IASSIENI-1.1)	 2,2.20

2C EN = -ICN.HN)/CN
GO TO 2

	

I (to 	 -YIN'/ON
2 A3N = Eh+1110-ICHI,XIN

	

YIN	 f1AIN, EI

	

IF	 (NAI	 14,21,14

	

21 IF	 IYINI	 It 22, 22

	

12 IF IMP	 4, Sr 5
	3 IF 	 IV2N1	 5, 4, 4

5 Y2h to YIN
X2N r KIN
CC IC 6

4 YON to YIN
YON to XIN

	

L IF	 IY341	 1, 23, 23

	

27 IF IVONI	 8, 9r 9
1 IFIVONI

	

9 VON	 YIN
)CN = XIN
G0 10 30

	

8 V2N	 YIN
	X21 	 KIN

	

l0 IF IABSIA3N-X4N1-f PSI	 I1. 24. 24
24 PAN to X3N

cc TC 32
11 ULLI to XIN

CC TO lA
25 ULLI to X2N

CO TO 14
26 ULLI to XON

Cc IC	 14
30 NA to -1

CO TO 14
13 NA to 1
14 PEIURN

INO

FUNCTION ULL2(Ar B, Fr 171
REAL J, 91, 92, K3r LP, MS
CCMMCN T. P, V, H, S, R, NA
COMMON AO,AC.C.J,VI,LP,PIrTFTA
CCMMON 82171,E3(1),C101.K3141,03161
CCMMON YIC, Y20, V3, Y4

	

NA	 0
hl = 20C

	

FPS	 .COS

	

XON	 A

	

X4N	 0.

	

YON	 FIXIN, El

	

IF	 INA)	 14,15,14

	

15 N2N	 0

	

V2N	 F1X2N, El

	

IF	 INAI	 14,29,14

	

29 IF IY2N1	 27,25,26

	

26 If	 (YON)	 12,28.3C

	

27 IF	 (YON)	 30,2E,12

	

12 hi - NI	 I

	

If	 IN21	 13,13.1t
It XIN to IXON.X2141+.5

YIN to FIXIN. El

	

IF	 INAI	 14,17,14
17 CN • V2N-YIN

	

IN	 YIN-YON

	

CN	 CN-EN
ON = IONOEN10.5
CN • 2.=YIN•CN

	

IF	 IGNI	 le, I, IE
10 ARC + ONACN-GN

	

IF	 )ARC)	 131 191 l9
15 fN = SCRTIARGI

EN = INN-CNI/CN

	

IF	 IABSIENI-1.11	 2, 2, 2C
20 IN = -ION,HNI/CN

CC TO 2
t EK • -YIN/ON

	2 F3N 	 EN=)XIN-xON14X1N
YIN • FIXIN, El

	

IF	 INAI	 14,21,14

	

21 IF	 IYINI	 3, 22, 22

	

22 if 	 IY2141	 4, •.r 5

	

3 IF	 IY2N1	 ., h, 4
5 Y2N - YIN

X2N to XIN
CG Tc 6

4 YON • YIN
XON • XIN

	

6 If	 IY31,11	 7, 73, 23

	

23 IF	 LYON)	 E, 9, 9

	

7 If IYINI	 9, 8, 8
9 YON YIN

xCh = XIN
CO TO 10

8 Y2N , YIN
X2N = X3N

	

IC IF IAOSIxIN-x4N1-EP51	 11. 24, 24
24 94N - XIN

GO TO 12
11 ULL2 • X3N

GO FC 14
25 ULL2 • 02N

CC TO 14
28 ULL2 • XON

CC TO 14

	

30 NA	 -1
CC TC 14

13 NA • l

14 RETURN
ENO
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Table 2. Organization of the THERMOBIBL subprogram system.

Serial Subprogram Independent Dependent Approximation Equation

No.	 name	 variable	 va-riLble used according toTable l
from-	 '

1 VATP V T,P,r indirectly from I

2 HATP 1i T,P,r indirectly from II
3 SATP S T,P,r

indirectly from III
4 TAPV T P'V'rP'H'r iterative)	 from IY
5 TAPH T

T P,S,r iteratively from II
6 TAPS

P T,V,•r iteratively from III.
7 PATV
g PATS P T,S,r iteratively from I

g TPAVH T and P V.H,r iteratively from III

10 TPAVS T and P V,S,r iteratively from I and IT 

iteratively from I and III
11 UFTGPH(a) r air	 ratio

By comparing the values from the approximation equations

with the base data previously obtained pointwise, one

gets the errors of the approximation. These are shown

in Figures 6 and 7 for the real factor, the enthalpy, and

the entropy. The errors are greater than in the usual

approximations of simpler functions, corresponding to the

complexity of the functions to be represented and the

difficulty of the three-fold dependence of T, P and r.

In selecting types of approximation functions and the number

of free constants in them, one must make a compromise

between the accuracy of the approximation and the computing

cost and storage capacity of the computer. 	 From the

diffuse course of the error curves, it is also apparent

that the equations established represent a certain optimum

between smoothness and the exact reproduction of the already

scattered basis data determined point-wise by iteration.
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Comparison of the thermodynamic data computed from

the equations of Table 1 with those from the Mollier I,S

diagrams of Pf laum [ 2] shrews only errors of less than 2%

in the entire range presented by [2]. The diagrams [2]

themselves have been compared with other modern thermal

diagrams in [12] with very good results.

5. Application of the Approximation Equations in Programmed

Computer Systems

By means of the approximation equations, Table 1,

a system of subprograms was established (THERMOBIBL). It

provides for computing the explicit variables V, H, and S

from T, P and r, as well as computation of the inverse

functions; e. g., T from P 3 S and r. Solution of the

inverse functions is possible only iteratively. In these

subprograms, one of the variables T, P, V, H, or S can be

calculated from any three of the others, as the scheme of

Table 2 shows. The air content, r, is always used as an

independent parameter, corresponding to the general usage

of the I,S diagram.

"Quadratic bracketing" according to Zurmuhl [13]

was used as the iteration procedure to solve the inverse

functions. The Newtonian iteration procedure failed because

of the wavy form of the approximation functions, Figures

3, 4, and 5.

The subprogram system which provides for computing

the dependences according to Table 2 with call of the

particular subprogram desired is summarized by the narne

"THERMOBIBL" and was written in FORTRAN (DOS basic FORTRAN IV).

It has been listed in Table 2 for immediate use. This program

system is a 4 further development of that published in [14].
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All the variables appearing here have units from the

international. MKSA system: T(K); P(N/m 2 ); V(m3 /k;g); H(J/kg);

S(J/kg K); r (dimensionless). The ideal gas constant used
is

Ro = 8314.38/28.898 + 0.06 r) in J/kg K

With respect to behavior of the equations at low

temperatures and high pressures, the state range, which

is represented by the iteratively obtained inverse functions

(Table 2, No. 4 - 10) is limited to the following boundaries:

T =	 250	 -	 6 9 000 K
P =	 0.001 - 300 kp/cm2	98.0665 - 29.4 • 106 N/m2

There is an additional pressure limit for TPAVH and TPAVS:

Maximum pressure 200 kp/cm2 in the range 250 - 400 K.

The following details are mentioned for setting up a

computer program using the THERMOBIBL subprogram system.

1. The following COMMON region must be specified in the
main program:

REAL	 J, K1, K2, K3, LP, MS
COMMON	 T, P, V, H, S, R, NA	 k

COMMON	 AB, AD, G, J, V1 9 Up PI, TETA
COMMON	 B2(7), B3(7), C(8) 9 K3(4), Q3(8)
COMMON	 YIQ, Y2Q, Y3 9 Y4

Here only the first seven quantities of the COMMON

are outside the subprogram of interest.
2. The variables established in the COMMON region have

the dimensions specified above and are REAL quantities

except for the INTEGER. quantity NA.
3. The entire subprogram system, THERMOBIBL, should always

be stored in the computer.
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4. There should be no new definition of the following

names in the main program, because they appear as

program names in the subprogram system: aside from

those listed in Table 2, the names VA, HA, SA, ANF,
KOMB, PPI, GR, CMISCH, HRN, TZUM, PZUM, DP, TP, FIF,

ULL1, ULL2.

5. Before the call of one of the subprograms listed in

Table 2 (e. g., CALL TPAVH) the input parameters
(independent parameters, e. g., V, H, r) must be

placed in the COMMON region. After running the

subprogram the corresponding dependent variable

(e, g., T and P) must be fetched from the COMMON

region.

6. After running one of the subprograms listed in Table 2
it is possible to test for the correct course of the

computation via the quantity NA:

a) NA = 0	 correct course of computation

b) NA == 1	 computation erroneous because the range

of presentation has been exceeded

By means of this control quantity it is possible to

branch or terminate the main program corresponding to

certain requirements without destroying the computation.

This subprogram system makes tt possible to compute

all the thermodynamic quantities with combustion gases rapidly

and accurately on a computer. The simple and general appli-

cability of the subprograms makes research and design work

easier for combustion machines.
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