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In order to have all the thermal and caloric states of com-
bustion gases accessible in a computer, closed mathematical
approximation equations were established for the real factors,
the enthalpy and the entropy of a real combustion gas. The
equations approximate the various effects of molecular forces
real gas influence and dissociation - at temperatures of

200 - 6,000 K, pressures of 0.001 - 1,000 bar, and in the ran
from stoichiometric composition to air. Finally, a system of
subprograms is listed in FORTRAN, by means of which thermodyn
calculations can be carried out in the same manner as with
Mollier I,S diagrams.
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MOLLIER I,S DIAGRAMS FOR COMBUSTIONM GASES
IN DATA PROCESSING

Dr.-Ing. Friedemann Zacharias

In order to have all the thermal and caloric
states of combustion gases accessible in a computer,
closed mathematical approximation equations were
established for the real factors, the enthalpy and
the entropy of a real combustion gas. The equations
approximate the various effects of molecular forces -
real gas influence and dissociation - at temperatures
of 200 - 6,000 K, pressures of 0.001 - 1,000 bar,
and in the range from stoichiometric composition to
air. Finally, a system of subprograms is listed
in FORTRAN, by means of which thermodynamic
calculations can be carried out in the same manner
as with Mollier I,S diagrams.

After the publicetion of the first I,S diagrams for
gases in 1932 [1], Prof. Pflaum of the Technical University
in Berlin made the thermodynamic fundamentals of combustion
engines his objective. In 1960, the second edition of the
Mollier I,S diagrams for combustion gases [2] was also
published at his institute. This edition included the most
modern physical data for the individual gases included in
the combustion gases.

With the expanded use of programmed computer systems
in engineering work, it had become desirable to supplement
the graphic computing aid of the I,S diagrams for use with
electronic data processing.

In the years 1963 to 1965, research work was carried
out with the objective of representing, by means of equations,
the thermodynamic functions, which also formed the basis of
the I,S diagrams. The enthalpy, the entropy, anG the

1
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real factors of the thermal equation of state for combustion
gases were developed as closed formulas valid over the entire
range:

Temperature: 200 - 6,000 K
Pressure: 0.001 - 1,000 kp/cm2 (absolute)
Air ratio: stoichiometric gas =- air.

In a further step, a programming system was established for
computers to allow them to operate with these formulas in
the same manner as manual operations with I,S diagrams.

This decisively simplified, or even made possible for
the first time, computerized thermodynamic determinations
on combustion engines, as well as stepwise simulations of
real processes or optimization computations.

The Mollier I,S diagrams, though, remain essential
for a survey of the establishment of thermodynamic computer
procedures and for quick calculation of individual state
points and simpler processes.

The work 1., arranged as follows:

1. General establishment of combustion gas system and
assumptions.

2. In the temperature range from 200 to 1,500 K a modified
form of the Bettie-Bridgman equation of state [3] is
used to take into consideration the intermolecular
forces at high pressures and lower temperatures.

(The dew limits were not included in the expression.)

3. In the temperature range from 1,500 to 6,000 K, the
real gas properties were calculated from the chemical
reaction equilibrium for individual thermal states
(every 100 K in temperature, and at orders of
magnitude of pressure from 0.001 to 1,000 kp/cmz).
Twenty different partial reaction products were considered
in the combustion gas.
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4. Using rational integral and transcendental polynomials,
approximation equations were obtained for the enthalpy,
entropy and the real factors, based on the derivations
in (2) and the state points according to (3).

5. A practical system of subprograms in FORTRAN is listed
for application of the equations determiner,. With this
system it is possible to compute changes in thermo-
dynamic states immediately.

Symbols Used

O
)

specific heat capacity at constant pressure
general thermodynamic property

enthalpy (absolute)

molecular weight

absolute pressure

E
o

gas constant

entropy (absolute)

absolute temperature

volume

real factor for the state equation Z = PV/RT

mole fraction of an individual gas in combustion mixture
air content in the combustion gas mixture

PR B N<H XXX T E

running indices

-
[

&, empirical functions
; air ratio, DIN 1940

1. General Assumptions and Prerequisites

The necessary number of independent parameters sufficient
for adequate description of a system of combustion gases can
be determined from Gibbs' phase rule:

f = b - p + 2 (1)
b = number of independent components in the system
p = number of phases appearing
f = number of degrees of freedom or the number of

parameters required to describe the system.
3
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In all combustion engines, the combustion gas appears
only in the gas phase; that is, p = 1. The combustion gases
under consideration here arise from oxidation of hydrocarbons
in air, The air has a fixed composition except for humidity.
Air humidity will not be considered here, though. Hydro-
carbons of different compositions are used in combustion
engines. In order to limit the range of computed points, it
is mecessary to select a fixed carbon/hydrogen ratio for the
fuel. This ratio is taken here as C/H =85.063/14,37, This
is exactly true for mono-olefins and naphthenes. From a
comparison of various fuels for combustion engines, this
average value seems suitable for a general representation.

Such an assumed fuel, along with the air of fixed
composition, makes up the two components of the total
system; that is, b = 2, Then for the number of independent
parameters, one finds that £ = 3; that is, three independent
parameters are required.

For combustion gases, the following parameters are
generally required as characteristic quantities and properties:

a) Characterization of the type of gas
Statement of the air/fuel mixture ratio;

e. g.:

4 . ., . air ratio . . . air volume before combustion
stoichiometric alr volume

or

F... Air /Fuel mass ratio

or

volume of air in the combustion
r .. . air content . . . gas after combustion

total combustion gas volume

b) Thermal parameters:
Absolute temperature T; absolute pressure P and volume V.

4
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c) Caloric parameters:

Enthalpy H; entropy S; and specific heat capacity

at constant pressure, Cp.
Among the parameters in a), the air content, r,

is especially suitable for an analytical representation, '

as Schiille suggested in the Z. VDI 60, p. 630, (1916) for

fire gases. This is because the thermodynamic properties

of combustion gases in the ideal gas state are linearly

dependent on this parameter, due to the mixing rule.

Aside from the generally common air content, r, the
temperature and pressure must also be selected as independent
variables. Then every combustion state with the assumed
fuel is unambiguously characterized by the following

parameters:

T absolute temperature
P absolute pressure

T air content

Accordingly, the other parameters listed in a), b) and c)
are dependent quartities.

The relations between the dependent and the independent
parameters are further represented by the thermal equation
of state

Ve th (TI F‘I I")

(2)
and the caloric equation of state

Hoy (T, Pr) (3)
The thermal equation of state represents the extra-molecular

processes, and the caloric equation the intra-molecular
processes. Both relations are empirical for real gases.
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Because of the wide range of the temperature and pressure
for this representation, the chemical reactions at high
temperature (dissociatipn) and the pressure-dependence of
the caloric properties must be taken into consideration by
the thermal euqation of state at low temperatures and high
pressures.

If the empirical relations are known according to
Equations (2) and (3), then the other thermodynamic
properties can be derived mathematically; for instance:

§- JdHT or Co  (dH/dT),

2. The Thermal Equation of State for Combustion Gases at
High Pressures and Low Temperatures

In order to consider tii¢ effects of real gases,
eugations of state with several virial coefficients were used.
The best-known generally applicable real equations of state
are those of Beattie-Bridgman [3] and Benedict-Webb-Rubin.
The Beattie-Bridgman equation of state is sufficient for
the simpler technological gases. 1In its virial form it
is as follows:

PV A ¢l

RT 1H 1B~ %1 oy ™

A _py Becl 1 (Bebei 1

TIRT TP T e e T (4)
Fv B(T)  C(T) , DM
SR WL T

B(T), C(T) and D(T) are the second, third, and fourth
virial coefficients. Z indicates the real factor, which
has a value of Z =1 for an ideal gas. Keyes, Smith and
Gerry [4] changed the second virial coefficients of the
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Beattie-Bridgman state equation in order to consider equally
the behavior of polar and nonpolar gases. The original
Beattiz-Bridgman equation is not suitable for representation
of polar gases. The altered second virial coefficient of
Keyes, Smith and Gerry is:

AoeD n

B(T) ‘:Bo”"‘"‘Rf"“ (5)

Stockmayer [5] tested this form of the virvial coefficient
on binary gas mixtures: HQO-GOZ, N2-NH3, and N2-H20. The
gases CO, and N, are not polar. H,0 and NH5 are polar.
Because of the polar water vapor content in the combustion
gas, the altered second virial coefficient, Equation (5),
should be used in the state equation, Equation (4). The
constants for the pure gas components appearing here are
known from measurements.

The constants for the mixture are determined here
according to the following equation

Km :‘_l‘ n.wn,~Ki,
|

(6)

in which the summations are to be carried out over all
components of the mixture.

N, nj Volume proportions of pure gas components
Kij(i=j) Constants for the pure gas components
Kij(i¥j) Mixture constants due to interactions between

two different types of gas molecules [6].

As yet there is no valid theory from which the
constants Kij for i # j can be calculated from the
constants for the pure components. But from various

measurements and computations for binary mixtures [5, 7]

NS
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the following relations can be used as approximations
for the constants in the second virial coefficients of
equation (5):

A~i (Au * Au}‘ 2
B. {18)(p.'2. B3
D.‘ (D; . D,,)' H (7)

After application of these relations to combustion gas
components in the range from pure air up to stoichiometric
combustion gases, it could be established that the
constants A, B and D in Equation (5) show an approximately
linear dependence on the air content, r, in the form:

Because of insufficient reliability in the formation
of the interaction constants K, with 1 # j in the
third and fourth virial coefficients, and because of the
relatively minor contributions of the latter virial coefficients
in the technological computations, only the first and second
virial coefficients are considered for the combustion gas
mixture. With the further approximation that IV may be
expressed as P/RT, one obtains the following initial

solution for the thermal equation of state:

RT (A‘\ * A

Y P B Bar) = RT " exp [(Do+ Du} T¥) (8)

Here the volume, V, is shown to be explicitly dependent
on the independent parameters T, P, and r.

With this equation of state, then it is also possible
to obtain the pressure-dependence of the enthalpy, H, and
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the entropy, S, by means of the following differential

equations (9): 3H W
{ Ip 3, vor ‘ & 3,\
. .\“S a‘ ‘\
vt (o
3m 13 §
P
e

PN L L Lo

heat capacity,

U Ly
"..{ 3 * ) E3 *
Qj ]
" ' + 7] .} -t ¢
(8] K\ 3 ooty
QA . o T e oy o
* v . L3 3 1
t% Yo e A e dde T sk e

Temperature T

Figure 1. Specific heat capacity CL of the real bLoithomeLric
combustion gas at pressures of G.001 to 1000 kp/cm
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Figure 2. Enthalpy, H, of the real, stolchlometric
combusLian gab at pressures from 0.001 to
1000 kp/cm?,
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3. Chemical Equilibrium Reactions in the Combusticm Gas

Chemical reactions in the combustion gas must be taken
into consideration in the temperature range above 1500 K.
As the effect of the intermolecular forces decreases with
rising temperature in this temperature range, and the real
equation of state approaches the ideal one, the ideal
thermal state equation can be used as the basis in this
region. It is also apparent that the modified Beattie-
Bridgman state equation selected also transforms into
the ideal state equation at higher temperatures, even
at relatively high pressures. At high temperatures the
thermodynamic properties of a gas mixture are expressed by
intra-molecular processes. The gas stores energy in the
form of various states of motion, whiclk lead to dissociation
of the molecule into atoms or groups of atoms (radicals).
An apparent equilibrium composition, dependent on T, P
and r, 1is established between the reciprocal dissociating
and bonding reactions.

The calculation of the gas composition and, from that,
the thermodynamic properties of the dissociating combustion
gas are presented in [8] and [9] with respect to application
of electronic data processing. The calculations performed
here are closely based on [9] and are extensively described
in [10]. The equilibrium composition must be determined for
every thermal state point by means of a long iterative
computation from the mass action law, the atomic balances
(unchangeable number of the various types of atoms in
different combintations) and Dalton's lLaw (sum of the
partial pressures = 1).

In order to get a sufficient numbzr of supporting
values for the following approximations, the gas composition
and all the thermodynamic properties of interest were com-
puted every 100 K from 1500 to 6000 K at all orders of

10
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magnitude of pressure between 0.001 and 1,000 kp/cmz, and
for the air contents (air ratios)r(y)0(1); 0,2(1,267);04 (1,713); 06 (2603);
0.8 15278); 1,0 {~)
This set of steps gave computations for about 2,000 state
points,

In the dissociating combustion gas, 20 different
reaction products were considered as potential gas comporni.ts:
HZO, 002, HCN, NZO, N02, [{2’ 02, 02, Nz, NO, CO’ CN,

OH, CH, NH, H, C, O, N, and the noble gases of the air.

The required absolute thermodynamic functions Cp/R,
(H - HO)/RT and S/R for the 20 individual gases in the
ideal gas state, and the reaction enthalpies, were taken
from [8] and [9], because they presented a critical selection
of the latest data up to 1959. The data for the triatomic
gases were from McBride and Gordon [11]. All the data used
are tabulated in [10].

Of the results of computations from the reaction
equilibria, only the heat capacity, Cy in kecal/kg K
and the enthalpy, H, in kecal/kg, are shown here in
Figure 1 and 2 for stoichiometric combustion gas (r = 0
or A = 1). The absolute temperature in K is the abscissa
for each figure. The seven curves presented in each figure
correspond to the absolute pressures 0.001; 0.01; 0.1; 1;
100; and 1000 kp/cmZ.

In these diagrams, two distinct reaction steps are
recognizable from the wave-shaped course with rising temper-
atures. These are due to the prevailing decompositions
appearing in the various temperature ranges. The first
step is for decomposition of the triatomic molecules into
diatomic ones. The second step is for decomposition of
diatomic molecules into monatonic ones.

11




4, Establishment of Approximation Equations

In order to be able to work with the thermodynamic
gas properties on programme: computer systems, these
properties must be presented as mathematical equations.
The following three functions are approximated:

PY

1. Real factor z- r 2T P

2, Entha lpy H=H(T, P, r

3. Entropy S ST, P, 1)

The entropy is to be provided for the minimal system
from the thermal state equation (2) and the caloric state
equation (3) in order to avoid derivative errors in
computing the entropy from differential calculus.

Corresponding to the various effects of molecular
processes on the thermodynamic properties, one can
decompose the three functions shown above into three
parts each: ideal behavior, correction according to the
real state equation (second virial coefficient) and
dissociation correction. Accordingly, the three functions
shown can be represented in the general form

F= Fidoql + .1 Freaigas -+ A Foissoziation (10)

Here the ideal gas properties, Fideal’ contain only
the temperature dependence of the specific heat capacity in
the undissociated ideal gas mixture. They are approximated
by rational integral polynomials. The Tschebyscheff
approximation procedure was used as the most practical
method of approximation.

12



ORIGINAL
OF Poog ::257'3
The correction term due to the selected second virial
coefficients in the state equation, AFreal gas’ ) ;
known analytically directly from the previous section, as )
are effects on the enthalpy and entropy from the differential

equations (9).

is

The effect of dissociation, AFdissociation’ must be
considered in the high-temperature range. The wave-form
appearance of the dissociation contradicts an approximation I
by simple rational integral polynomials. For this reason '
it is advantageous to use transcendental types of functions
for the approximation. For this case, a mathematical model
was established by means of which the constants can be
determined from a formula made up arbitrarily of trans-

cendental and rational functions. On applying the principal

of minimizing the squared errors, one gets with mixed
transcendental-rational formulas non-linear determination
equations for the constants. T.ese can be solved by a
Newtonian iteration. For this purpose, coarsely estimated
numerical values are input into the computation for the
constants which are initially unknown [10]. This approx-
imation procedure makes it possible to match the most
practical mathematicalformulas to the curve form to be
represented with enough free constants.

After detailed studies and back-calculations with
various types of functions for the curves of the real factors,
enthalpy and entropy, the correction term AF 3issociation
was represented by the following formula:

4 Fpissoziation = a1/(] +e"l )+ a2/(1 +ey2)

(11)

In Equation (11) the exponential functions y; and y,
and the amplitude functions a; and a, can be solved with
the aid of the curve to be approximated, specified point-wise;
and they can further be approximated by the best-matching
function types according to the method cited.

:
!
|
1
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While y, and y, are usable equally for the state equation,
enthalpy and entropy, al.and a, must be matched separately
to the particular thermodynamic properties.

Applying the summation of Equation (10) to each of
the thermodynamic functions to be represented here, one
finally obtains as a result the approximation equations
according to Table 1, which always contain the sequence
F=AFca1 gas + Fideal * AFgissociation” The real
effect is superimposed in the ideal functions from the
low-temperature side, and the dissociation effects from
the high-temperature side. The approximation functions of
Table 1 are shown in Figures 3, 4, and 5 for stoichiometric
combustion gases.

The three thermodynamic functions are referred to
the kmol of undissociated combustion gases, and made
dimensionless with the ideal gas constant R, and the
absolute temperature. By multiplication with the corresponding
ideal gas constants, the thermodynamic data may be obtained
immediately in the dimensions desired. The ideal molecular
weight, Mj, of Table 1 must be used in relation to the
weight (kg).

22
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Figure 3. Real factor for stoichiometric combustion gas
from Equation (1).
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Table 1: Approximation equations for the thermedynamic "‘w-:;’
properties of combustioh gases.
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Real factor
Enthalpy
Entropy
with
Temperature
Pressure
Air content
Gas constant
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Gas constant for the ideal gas

-
N

Molecular weight of the ideal combustion gas:
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Figure 4. Reduced enthalpy for stoichiometric combustion
gas according to Equation (2).
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Figure 5. Reduced entropy for stoichiometric combustion
gas according to Equation (3).
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END
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TETA = T ¢ .00t

CALL  PP{

1F INAY 19,1

CALL  CMISCH

felled

subprogram system.

SURROUTINE  PATS

HEAL Jy Kle K2¢ K3y LPe M§

COMMON Ty Py Vo He So Ry NA

COMPON  AByACoGoJ o VIoLP 4P, TFTA
CONMON 82071, 8302),CLA),KI{4),Q340)
COMRON Y10y Y20y Y}y Y&

EXTERNAL SA

KA = 0
1IF 1Sy b e )
G = ALOGES)

CALL  PRUN{SA)

1F (NA) 14242

-

[
=
™
=
b =4
=
z
-

SUBRDUT INE TPAVH

REAL Jy Kby K24 K3e LPy MS

COMMON T Py Vo He Sy Ry KA

COMMON  AByADGed VEoLP 4Pl TET
COMMON B2(T)yBYLTH,CURYIKIY( ﬁ)le(Bl
COMMON Y10, Y20y Y3, Y&

EXTERNAL HA

he = 0
ERJL!
CALL
RETURN
END

TPIUM{kAY

SUBROUTINE  TPAVS

REAL Sy Kby K24 K3y LPy MS
CCMMON Ty Py V4 Hy Sy Ry NA
COMNON  AB)AD Gy VEWLPyPI,TETA

SUBROUT INE  SATP

REAL 2y Klv K2y K3y LPy NS

COMMON  Y¢ Py Vo He 5S¢ Re NA
COMMON  ABsACIGeJo VI LP¢PI,TETA
COMMON B2( 7)o 831 T),CIBIoKII4),Q310}
COMMON  YiQs Y2Q, Yo Y4

NA = 0

CALL ANF

TEYA = T ¢ ,001

1el201
CALL CHMISCH
CALL  SA

IF INA)  Latisd

SUBROUT INF  TAPY

REAL Jy K}y K20 K3, LF' [

COMMON Ty Py Vy He Sy Ry NA

CCHMON Aﬂ.Ac.c.J.Vl.Lv.Pt TETA
COMMON R2(7),03(7),C48),KI41,Q3R)
COMMON  Y1G, Y20, Y3, Y4

EXTERNAL VA

CCMMON B2(T71,83(71,C18)K314),03(6)
COMMON  ¥1Q¢ Y20, YV, Y&

FXTERNAL 54

NA » 0
Js s
CALL  TPIUMLSA)
RETURN

NG

FUNCTION  UFTGEHLE)
COMMON Ty Py Vo Hy Sy Ry NA
N oa .0
TF tE=3a) 14202
IF (€ = 10004} 39444
R {E=1.)/0,C69B0E)}
LFTGEH = R
¢ 10 %
4 Rl

UFTGEHeR

o ya0 5
[ ILICI
5 REJURN

END

wn

SUBROUT INE VA
Jo K1y K2e K2y LPe MS

NA » O

.
caLL
RETURN
ENC

TIUMIVAY

SUBROUTINE  TAPH
REAL 3,y K1y K2y
COMNON Ty Py Vy Hy 59 Ry NA

CORMON  ABy AL God s VEoLPoPI,TFTA

K3,

Toe Poe Vo He S0 Re NA

CONMON ARy AL, oy VIZLPPI, TETA
COMMON P2IT1,BYLTH CIE)KIL4),03(8)
CONMON Y10, Y20, Y3, Y&

RO = 8314,%8

CALL GR

IF (NAY  1,10010

10 A = QM 1IOP1ee,007/¥1Ce{Q3(2) QYD)
1OLPI/Y2CeL. 4 IKIL2)wY&IOPL/TETA
AR = ASROST/(POK2(4))

RETURN

COMNON B2(T1,B3071,C18),K304),03(8)
CCHMON Y10, Y20, Y3, Y4

EXTERNAL  HA

NA = O
G N
cALL
RETURN
END

TZUMINAD

SUBROUTINE TAPS

REAL  Jy Kiy K20 K2¢ LPy M§
COMMON Ty Py Ve Ho So Ry NA
COMRON  ABoACoGode VEGLPoPS,TETA

(ND

SUBROUTINE  HA

REAL  J¢ K1y K2, K3, LP, NS

COMMON T4 Py Yy Hy Sy Ry NA

COMRMON  ABAD Gy VI4LPyPL,TETA
COMMON B2LThyBILTIoCUBI KI{4),Q318)
CCMMON Y10, Y2Q, Y3, Y4

RO = 814,28

CALL GR

1F INA)  1,1Cet

10 f = HANIB2 ) TETA, TI41Q34010nTee, 0115/
LY10e{QILGE=2.0¢50LPI/Y20% (K 2)-2,

COMMON B2(T1, 63 70,CH8),KILAI,Q3(8}
COMMON  Y1Q, Y¥2Q, Y3, Y4

EXTERNAL  SA

NA = O
G =S
CALL
RETURN
€NC

TIUMESA)

SUBRQUT INC  PATY

REM. Jy K1, K2, K2, LPy HM§

CONMON T, Py Vo Hy Sy Ry NA
COMMON  ABs AC, GeJoVIoLP P, 1614
CCMMON B2LT1, EY(T1.COBI KIT4),03(R)
CCMMON  YIC, Y2Q, Y¥, Y4

EXTERNAL VA
NA » O

1F vy e
G = ALDGIV)
CALL  PIUN(VA)

ie 2

2eY40 (1. evI))eR) FTETA
A0 = ROOTOB/KI(4)
REYURN

NG

SUBROUTINE  SA

REAL )y K1y K2, K2, LPy MS

COMMON  Ts Py Vo Hy So Ry NA

COMMON  ABoACIi Gy e VILPyPL,TETA
COMMON P20 70, 83071 CLA),KAL4),Q3(8)
COMMCN Y10y Y2Q, Y3, Y4

RO = B83t4.38

IFRTA!

2y 2¢ 4

iP182y 2, *
5 AC ~ (QUAIOALOGITIHRNIBILTETA, 1) ¢
14CI(TIoPIO0{~,036521)/YIQ-LP(Q3LB}
2¢14,5120P 0 «05648)1/Y20=-(Y4eP L0

(L eYINN/TETAIORG /K I &

IF (NA) 1,242
Na = |
RETURN

ctc 1c 1
? Nb =t
1 RETURN

ENT

10

i

-

10

w

~N -

10

-

END
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SUARQUTINE  ANF

REAL Je K1y K2y K1y LPo M§

COMMON T, Py Vo Hy So Re NA

CCMMON  ABsADGedoVIILP, Pl TETA

CCMMON A20TDo BXLTICEBI,KI(4),0N0)

CCMMON  Y1Qy Y20y V!' Y&

CINENSTION Kl(l!. Yh), QLIBN, Q2(8)

xiil) = 2. 701050~

= 6,421

« 0,8868E-

= 28,097%¢8

* =, 90071164

* =, 9884TE=4

3 =,6131F~2

s 0,06071

KONB{4&y K14 K2) ki
1= 1y 4 2

ML

o

b

~2.4%34
CMB(E, Q1)
18 1 =1, 8
C’(ll . Ci

¥l = tl.=R

A« =0.,9CBH ¢ (~,2772 0 Viess ¢ V])
RETURN

ENC

.
-
.
-
.
»
s ~0.192
x
.
-
K

[ o i e e o o ——
0k O AR Bt N3 DBt D AR I RS

2}

OADAONOBNNHONOANADORO
e B Y R N R e el il L - ]

SUBROUTINE  KOMBAN, Ay B)

REM  Jy Kiy K2¢ R2e LP o H§
COMMON Ty Py Vo He S¢ 1o NA
CCMMON A8 ACsGodoVIel&o Pl TETA
CONNON B2470,B2071+CLBYKR3{4),0Q3(6)
COMMON  Y1IQy Y20, Y24 Y4
CIMENSION ‘lﬂ'l sle)

CO 10 .= 1,

CLE) = ALT) ¢ ﬂ(l"R

RETURN

ENC

SUBRCUT INE PP

REAL J» K14 K29 K3y LPy NS

COMKON Ty Py Ve Hye So Re NA

COMNON LBy ADyGodoVigLBWPE,TETA
CCMMON A2(7),B207),CLBIKIC4),QNL8)
COPMON  YIQy Y2Qy Y2y Y4

1F 1P ety

Pl = POL.CIGT12E-5

LP = ALODGIPLY

€C 10 2 '
he =}
RETURN
e

SLBROUTINE  GR %
PEAL Jy Kle K2y K3y LPy NS .
CCMMON Ty Py Vy, He 5S¢ Ry NA

COMMON  ARs ARG d e VIGLPWPI,TFTA

CCPMON 82471, B2(THICIBIKIt4), Q0080

COMMON  Y1C, Y2Q, Y1, V4

IF (VETAY 1y 1y MC

£ =« ALOGLIETA/L,65)

A w =, 518Pjos(~,1C3I-014 ¢ Bol,. 12~

12600100 (=,1270)

A= 15,06XPUAORYL, 5730-033‘L?"
1EXP{=03CO9TETA)-4,507

Yl » ﬂﬂ‘?l"(‘-ﬂ?l?‘.l

¥2 5 18,0972-2.4301ETAOP[24(~,04%)

YIC » LLeEXPIYV)/TETA

Y2C = L ¢EXP{Y2)/TETA

Y1 = KI(IV/CTEVAOTETA) <
YA = EXP(YZIOKI(1I/TELA

cC 10 2

Ae = |

RETURN

ENC

[

SUBRCUTY INF
REAL

CHIsSCH
Je Kie K2y K2y LPy MS
CCHMPON Ty Py Yy He 5S¢ Ry MA
COHMON  AByADY Gy JoVEeLPPEGTFTA
COMMCH B20T1,83(7),CLEIeKIL4D,03(8!
CCMMON 710, Y2Q, Y2, Y4
CIMENSION HL1ET), B2LT0e SILTY, S207), NSL&)
Hit1) = 3.514%9%5¢6
HI(2) = 0.131422
HIL3) » 0.477182
HI{4) = ~.287167
H1{S) = Q.T742%561E~)
HI{6) & —,G1E1h4E~2
» 0.43989¢F~7
¢ =~.005C2¢
= ~.383504

HILT)
H2(1)
Ha2t2)

¢ e

AT L AR R
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0071345
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0e55214C
“e4850C1
0.698183E~1
=+ 281120€~2
woGAEHIE-T
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FUNCTION HRNIBE, Xy N)
AEAL  Jy Kly KV X3y LPy NS
COMNON Ty Py Vo Hy Se Ry MA
COMMON  AByAC Gy d, VILP P TETA
COMMON B217),B3171,CLEY KA [4),C2(8)
COMNON  Y1G, Y20, Y1, Y4
CIMENSION BILT)
HRN = 0,
L s he)

2 [=1
HRN = HRN ¢ X ¢ H1{I)
(F 11-1} 2y 24 4
RETURN
ENC

~

SUBRCUTINE TIUM(TK)

Jy Khy K24 K2y LPy MS
Ty #0 Ve He Se Ry NA
COMMON  AByACs Gy doVI4LP4PI,TETA
COHMON B2{T),B2(T7),CLE)K3L4),Q318)
CCMMON  Y1Gy Y2Qy Y3, Y&
EXTERNAL 1P
CALL  CMISCH
CALL  ANF
CALL PPl
I (NAY 141241

12 7 = ULL1(2494+6000., TPy TR}
NA = AHS{NA}

PETUAN

END

SUBROUTINF  PLUMIPKI

REAL 3y Rl K2y K2y LPy M5

CCHMMCN Ty Py Vo Hy S¢ Ry NA
CCMMON A AL ) God o VILP P, TETA
CCHMON 824710831 1),C018),K314),C2(8)
CCMPCN  YIC, YZQ, Y3, Y4

EXTERNAL P

RC = g214,138

CALL  CMISCH

CALL  ANF

!

hyhy
JETAOTETA)IOKIIL)/TETA
K3{2)-v4)eB4,783CR/

1F 4Py
6 Pl = pel.CI6T2E~5
LP = ALCGIPT}
¢ 10 1
5§ N&A =}

a1
ILP = ULLTADe16,98,0P PRI-1C,
TF INAY 14240
2 Pl = EXPILP}
P oa PIe,GROLLEES

1 RETURN
ENC
SUEROLTINE  TPIUMIM)
REAL Jy K1y K2y K2y LPy MS
COMMON  Ts Py Vs Ho §¢ Ry KA
CCNNON  AByADsGoJdoV1eLPoPI,TETA

CCMMON B2{71,83171,C(B)4K314),03(0)
CCMMON  Y1Q, Y2Q, Y2, Y4
EXTERNAL FiFf

1F (V) Iy 1y 2
36 = ALOCIVE
CALL  ANF
CALL CFISCH
T o= ULLIL245.47CC.oFIFsh)
1F  INA) 44242
4 1 = BLLI{TCC.126CC,oFIFon)

o

A2

—

H

6

rw 8 o~ @

19

(F INA} 84242
§ T » ULLI{2C0C.o6CCOLFIF W}

20

1A !
? RETLRN
NG
FUNCTION CPIXs E)
FEML  dy KLy K2p K2p WPy VS
COMMON Ty Py Vo He 5S¢ Re
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IF INAL fe2s?
LI

NA
COMMEN AR AD ) God o VIsLPoP T TETA
COMMGN R2(T1,B301),CIBY,KIL4),0048)
COMPOCA  YIGe Y200 Y2y Y4
LP = x=10,

Pl = EXPILP)

F s Pl o ,98CLE5ES

[P = ALOGIAL) - ©
c1c 2

YRR

PETURN

fhC

FUNCTION  TPIX, E)

FEBL  Jy K), K2y K2, LPy RS
COMMLR Ty Py Vi My So Ry NA
COMMON AR AC)Ged gy V1LP P 1FTA
COMPON P2UT) E2{T),CLR) KIL4),C3I8)
COMNGN  YIC, Y2Qy Y2, Y4
1. x

TEYA = ¥ & ,CO)

CALL

FUNCTION  FLFUXVED

REAL Jy K1y K2y K2, LPy MS
GCCHRON Ty Py Vo Hy S0 Ry KA
COMMAON BBy ACyGyJdsVIGLPPT,TETA
CCMMON B2UTI9B3L2),C08) K3141,03L8)
COMMUN  Y1Qy Y2Q0 Y24 Y4

EXTERNAL 0P, VA

RC = B8214.3E

j= X

TEYA = 1 ¢ ,0C)

1P 11=4CC.) 509y
Y4REXPIRI(IN/ITEVACTETANIOKILL)/TETA
Pos ROOT/U{v=(KI2)-Y4)084,T83CE/
IK204) 0882140}

1F (P) 20%,¢

Pl = Pe1.CIGT2€=-5

LP = ALCG(PI)

6 107

ARG = RCOT/{Ve,500LE5650K3{4))
IF (ARG 347242

AR w 9.550A°CCLARG)

ER = MAC.E4

LP = ULLZ2{AA,BB4OP,VA)~1C.

IF (NA) 4,644

Pl = EXPILP)

P = Ple,qapeetEs

(ALt E

FUNCTION ULLILA, By £y F)
REAL Jo Kl K20 K2y LRy MS
CCHMRON Ty Py Vo He S¢ Ry b2
CCMMNON ARy ACyGed v} gLPyPT TETA
COMRON B2(7)+83071,C08)4K314),CI(E)
COMMEN  Y1G, Y20, ¥2, Y&
NA = Q
N = 200
EPS & 0.CCH
XON = A
X4N = Qo
YON = F{XON, EI
IF INA) 14,1514
X2N = B
Y2N = FIX2N, £
IF {NA) 14,264 14
IF AYIND  2742%42¢
IF LYON) 12,2843C
IF (YONE 1C,28,12
AL = N2~
IFINZ) 12,1341¢
XIN = {XQGN ¢ ¥2N)e,S
YIN = F{XIN, E)
IF ANAY 14417014
= Y2N - YIN
= YIN-YON
CN = ON-EN
= (CNOENYS.S
= 2,8V INSCN
IF {GN) 1841018
ARG = CNeON — GN
IF (ARGY 1341916
HN » SQRY(ARG)
EN = (HN=-DNJ/CN

IF (ABSIEN)-1,1} 292420

EN = ~{CN4HN)/CN
GC Y0 2

-

-~
- AP tap N

~
D~

10
24

13
25
28
10

13
14

29
26

12
1¢

18
1%

20

s
[ERWE e

»~

n
O~

1c

1
25

28
30

13
14

EN # =YIN/DN

XIN = EROIXIN=XON)¢BIN
YIN = F{XINy E)

TE INAY  Jas20414
IF {YIN) 3

N) Te 220 22
' v Sy

Ge By &

= XN
TE LABSERIN=XANI=EPS) 11y 24, 24
Y4N = XIN
¢C 1C 32
ULLL = N3N
C 10 14
ULLL = X2N

FUMNCTION ULL2(A, By Fy E)

REML Jo KLy K2y K3y LPy PS

COMMON  Te Py ¥y He So Ry NA

COMMON  AB AC CodaVEsLPyPI TETA
CCPFON B2UT) BT CLE) eR3141,0318)
CCMMON  YIG, Y2Q, Y3, Y4

X4N = Q.
YON = F{XONy E)
IF INAY 14,15414
XN = 8
Y2N = FIX2Ny £)
IF  ANAD  14429,14
IF LY2N) 27425, 2¢
IF  (YON} 1242843C
IF {YON) 20428412
N o= N~ |
1F {INZ) 13s13018
XIN = (XONex2N}e,5
YIN = FIXINg £)
1F INAY 14,107,104

= Y2N-YIN

* YIN-YON
CN = CN-EN

» {ON¢EN)e S

= 2.8YINOCH
1F  (GN) 18, 1. 1€
ARG & DNOCN-GN
IF  1ARG) 124 15, 1§
Ph = SCRY (ARG}
EN = {HN~CNJ/CN
LF (ABSIEN)=-1. 1)
EN = ~(ON+HNY/CN
1o e
EN = -YIN/ON
NIN & ENS(XIN-XONI4XIN
YIN = F{X2IN, E}
1F (NA} 14y 21,14
IF (YIN) 2y 22y 22
1. tyen) 4y S0 ¢
IE (Y2n) Se by 4 :
Y2N = YIN M
XN = XIN
[ 10 )
YON = YIN
XN = XIN
IF {Y3IN)
If {YON}
If LYON}
YON = YIN
XCh = XIN
¢0 10 10
YeN = YIN
X2N = X3IN
LF (ARSI XIN~XANI=EPSH
X4N = XIN
60 Y0 12
ULL2 = XIN

iy 24 2C

Ty 22y 22

Ly 240 24

¢ 10 14 :
UtL2 = XON i
GC 1O 14

T

REAGD. $ 23 st e
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Table 2. Organization of the THERMOBIBL subprogram system,

Serial Subprogram Independent Dependent Approximation Equation

No. name variable variable used a%ggigi?g to

1 VATP \ froq¥’b’r indirectly from I

2 HATP H T,P,r indirectly from II

3 SATP S ;5: indirectly from III

4 TAPV 2 PH iteratively from I '

5 TAPH T pis:r iteratively from II

2 §2¥3 P T,V,T iteratively from III

5 PATS P T,S,Tr iteratively from I

9 TPAVH T and P V,H,r iteratively from III

10 TPAVS T and P V,S,T iteratively from I and II
) ratio iteratively from I and III

11 UFTGEH (A) T air -

By comparing the values from the approximation equations
with the base data previously obtained pointwise, one
gets the errors of the approximation. These are shown
in Figures 6 and 7 for the real factor, the enthalpy, and
the entropy. The errors are greater than in the usual
approximations of simpler functions, corresponding to the
complexity of the functions to be represented and the
difficulty of the three-fold dependence of T, P and r.
In selecting types of approximation functions and the number
of free constants in them, one must make a compromise
between the accuracy of the approximation and the computing
cost and storage capacity of the computer. From the
diffuse course of the error curves, it is also apparent
that the equations established represent a certain optimum
between smoothness and the exact reproduction of the already
scattered basis data determined point-wise by iteration.

20




ORIGINAL PAGE |s
OF POOR QUALITY

Comparison of the thermodynamic data computed from
the equations of Table 1 with those from the Mollier I,S
diagrams of Pflaum [2] shuws only errors of less than 2%
in the entire range presented by [2]. The diagrams [2]
themselves have been compared with other modern thermal
diagrams in [12] with very good results.

5. Application of the Approximation Equations in Programmed
Computer Systems

By means of the approximation equations, Table 1,
a system of subprograms was established (THERMOBIBL). It
provides for computing the explicit variables V, H, and S
from T, P and r, as well as computation of the inverse
functions; e. g., T from P, S and r. Solution of the
inverse functions is possible only iteratively. In these
subprograms, one of the variables T, P, V, H, or S can be
calculated from any three of the others, as the scheme of
Table 2 shows. The air content, r, is always used as an
independent parameter, corresponding to the general usage
of the I,S diagram,

"Quadratic bracketing" according to Zurmithl [13]
was used as the iteration procedure to solve the inverse
functions. The Newtonian iteration procedure failed because
of the wavy form of the approximation functions, Figures
3, 4, and 5.

The subprogram system which provides for computing
the dependences according to Table 2 with call of the
particular subprogram desired is summarized by the name
"THERMOBIBL" and was written in FORTRAN (DOS basic FORTRAN 1V).
It has been.listed in Table 2 for immediate use. This program
system is a further development of that published in [14].

21



All the variables appearing here have units from the
international MKSA system: T(K); P(N/mz); V(ms/kg); H(J/kg);
S(J/kg K); r (dimensionless). The ideal gas constant used
is:

R, = 8314.38/28.898 + 0.06 r) in J/kg K

With respect to behavior of the equations at low
temperatures and high pressures, the state range, which
is represented by the iteratively obtained inverse functions
(Table 2, No. 4 - 10) is limited to the following boundaries:

T
P

Ii

250 - 6,000 K
0.001 - 300 kp/cm® 98.0665 - 29.4 . 10° N/m?

il

There is an additional pressure limit for TPAVH and TPAVS:
Maximum pressure 200 kp/cm2 in the range 250 - 400 K.

The following details are mentioned for setting up a
computer program using the THERMOBIBL subprogram system.

1. The following COMMON region must be specified in the
main program:

REAL J, K1, K2, K3, LP, MS

COMMON T, P, V, H, S, R, NA
COMMON AB, AD, G, J, Vi, LP, PI, TETA
COMMON B2(7), B3(7), c(8), K3(4), Q3(8)
COMMON YlQ, Y2Q, V3, Y4 5

Here only the first seven quantities of the COMMON
are outside the subprogram of interest.

2. The variables established in the COMMON region have
the dimensions specified above and are REAL quantities
except for the INTEGER quantity NA.

3. The entire subprogram system, THERMOBIBL, should always
be stored in the computer.

22

v - -



ORIGINAL PAGE |g
OF POOR QuALITY

4. There should be no new definition of the following
names in the main program, because they appear as
program names in the subprogram system: aside from
those listed in Table 2, the names VA, HA, SA, ANF,
KOMB, PPI, GR, CMISCH, HRN, TZUM, PZUM, DP, TP, FIF,

ULLl, ULL2.

5. Before the call of éne of the subprograms listed in
Table 2 (e. g., CALL TPAVH) the input parameters
(independent parameters, e. g., V, H, r) must be

placed in the COMMON region. After running the
subprogram the corresponding dependent variable
(e, g., T and P) must be fetched from the COMMON
region.

6. After running one of the subprograms listed in Table 2
it is possible to test for the correct course of the
computation via the quantity NA:

a) NA=0 correct course of computation

b) NA =1 computation erroneous because the range
of presentation has been exceedad

By means of this control quantity it is possible to

branch or terminate the main program corresponding to

certain requirements without destroying flhe computation.

This subprogram system makes it possible to compute
all the thermodynamic quantities with combustion gases rapidly
and accurately on a computer. The simple and general appii-
cability of the subprograms makes research and design worlk
easier for combustion machines,
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