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Stability Thecry, Aevoaccustics, Shear Layers

Excited Waves in Sheay Layers

Sammary

The generation of instability waves in frec shear layers is. in-
vestigated. The model assumes an infinitesimally thin shear layer
shed from a semi-infinite plate which is exposed to sound exci-
tation. Por this model, it is shown that only forced instability
waves and a Kutta condition at the trailing edge are possible.
The shear layer excitation by a source further away from the
plate edge in the downstream direction is very weak while up-
stream from the plate edge the excitation is relatively effi-
cient. A special solution is given for the source at the plate
edge. Any type of source further away from the plate edge creates
a parabolic pressure field near the edge. For this latter, fairly
general case, a reference quantity is found for the magnitude of
the excited ingtability waves. The theory is then extended to

two streams on both sides of the shear layer having different
velocities and densities. Furthermore, the excitation of a shear
layer in a channel is calculated. The limitations to the theo-
¥y and some aspects related to experiments are discussed. In
particular, for a comparison with measurements, numerical com-
putations of the velocity field outside the shear layer have

been carried out.

Stabilitdtetheorie, Aeroakustik, Scherschichten

Angeregte Wellen in Scherschichten

Ubersicht

Die Erzeugung von Instabilitdtswellen ir freien Scherschichten
wird untersucht. Dabei wird eine unendlich diinne Scherschicht
betrachtet, die am Ende einer halbunendlichen Platte entsteht.
Diese Scherschicht wird akustisch angeregt. Fiir dieses Modell
wird gezeigt, daB nur erzwungene Instabilitdtswellen mdglich
sind und daB an der Plattenendkante die Kuttasche AbfluBbedin-
gung gilt. Die Anregung der Scherschicht durch eine Quelle strom-
ab der Plattenkante ist schwach, wdhrend die Anregung von strom-
auf relativ wirksam ist. Fiir die Anregung direkt an der Platten-
kante wird eine spezielle L8sung angegeben. Jede Art von Quellen
in gr8Berer Entfernung von der Plattenkante erzeugt ein parabo-
lisches Druckfeld in Kantenn#dhe. Zu diesem letzteren, recht all-
gemeinen Fall wird eine ReferenzgrdBe flir die Amplitude der In-
stabilitidtswellen angegeben. Die Theorie wird ausgeweitet auf
zwel Strdmungen auf beiden Seiten der Scherschicht mit verschie-
denen Geschwindigkeiten und Dichten. AuBerdem wird die Anregung
einer Scherschicht in einem Kanal berechnet. Die Grenzen der
Theorie sowie einige experimentelle Aspekte werden diskutiert.
Zum Vergleich mit Messungen wird das Geschwindigkeitsfeld auBer-
halb der Scherschicht numerisch berechnet.
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1. Introduction

Let us first consider a picture of the interaction process which
we are going to investigate., In Fig. 1 a photograph of the evo-
lution of a plane free shear layer can be seen. The shear layer
is forced by acoustic excitation into wave motion and vortex
roll-up. The lower half of the picture shows a flow from left to
right whereas the upper half shows a very slow entrainment £low
in the same direction. A smoke filament is injected into the
shear layer from the low-speed side. A splitter plate separating
the two streams erids at the left hand side of the picture. Around
the end of this splitter plate a fluctuating pressure field is
created by vibrating plates outside the flow.

splitter plate
smoke injection

= entrainment flow
—i—

F={ 1cm — mean flow

Fig. 1 Free shear layer evolution with acoustic forcing. For
more convenient reproduction, the colours have been inverted so
that the white sulfuric acid smoke filament is shown in black.
Mean flow velocity 6.4 m/s, entrainment velocity ~ 0.6 m/s, fre-
quency 63 Hz, forcing reference velocity Ap12/oV35T = 0.354 m/s
RMS (definition see section 2.1.), Strouhal number se = 0.0040.

Although impressive,pictures like Fig. 1 have been observed many
times in the past. In particular, the observation of the sensi-
tivity of flames to sound has been made by Leconte [1] as early
as 1858. Tyndall (2] has shown in 1867, that also jets without

.
PRECEDING PAGE BLANK NOT FILMED

Vi,

2N



4
Yer . P N &

combustion are sensitive to sound. Experimental observations like

these were already known to Lord Kelvin, von Helmholtz and Lord

Rayleigh when they laid the foundations to the stability theory

of flows. Lord Rayleigh,e.g,, refers to sound~sensitive smoke {
jets in his 1880 paper "On the stability, or instability, of '
certain £luid motions" [3]. Since that time, stability theory

has used a model assuming a parallel flow extended fram x = -o

to X = +» which is disturbed by a wave motion with constant

magnitude in streamwise direction and growing with time. This

approach is perfectly valid to answer the gquestion whether or ot

a flow is unstable. However, it is not appropriate to usa this

model if an instablility wave is driven by an oscillatory axcita-

tion which does not vary with time. In 1962, it has be#n sug-

gested by Gaster [4) and Watson [5], that in this latter case a

stability analysis with spatially growing waves is the only

reasonable approach. For free shear layers, the spatial stabili-

ty model has been verified by Michalke [6) and Freymuth [7], In

addition, it has become evident from Freymuth's experiments, that

the magnitude of the spatial instability waves is linecarly de-

pendent on the exterior forecing by, e.g., an acoustic field.

In spite of the numerous experiments with artificially forced
shear layers and jets which have been carried out in the mean-
time, the mechanism describing how the perturbations were intro=- 5
duced into the flow was not yet understood.*) About a decade
ago, however, a few theoretical papers appeared which included £
a semi-infinite plate into the stability analysis of a thin free Y
shear layer, The introduction of such a solid surface intc the

*) Also some theoretical papers on this issue have inherent i
problems, e.g., Tam's paper [8] discusses the excitation of a i
shear layer by an acoustic beam. His model assumes a beam width
of typically 20 + 60 times the momentum thickness of the shear
layer. On the other hand, the range of unstable waves in the
shear layer requires a relatively low exciltation frequency. This
would cause the beam width to be about 1/100 of the acoustic 5
wavelength. Unfortunately, it is not possible to form an acous=-
tic beam narrower than several acoustical wavelengths.

wif,
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analysis turned out to be of crueial iwmportancas in the under=~
standing of tho coupling hetwesn sound waves and inatabllity
waves. The First of theso papers [9), albeit mathematically cor-
yoet, led to soms confusion of tho physica, hater, a few other
theoretical papers were published (10, 11} which utilized (as
191) a Fourier transform procedure (i.¢,, tho Wicner-llopf tech=
nigue) ,whereas a simplor approach using symmetry/asynmetry
arguments [12, 13) turned out to bo more olegant but also less
versatile in its applicability, In the present investigation we
will oxtend and oxploit this lattor approach [12] so that theo-
ratical data apce availablo which can bo compared to experiments,
Any testing of the new theordes (10 ¢ 13] had not beon carxied
put previously because the previous theories were prosented in a
way which could not be verified easily by experimentalists.
ndeed, wo think that {t is doesirabla in this field to track

down by individual esporiments all basie assumptions and findings
of tho first simple theories beforo going on to more complaox ?
problems,Tho rowarding aspeet of this “old fashioned" type of

roseareh is, that simple analytic solutions are obtalned which

oan be checked with (moderately) sluple oxporiments.

P

Thore are differont motlvations for the present investigation:

(1) From the viewpoint of seientific curiosity it is interest-
ing how perturbations are introduced into a sheayr flow.
These perturbations causo instabllity waves which, in turn,
lead to turbulence. Thisg development can be saen in Fig. 1.
The interaction region is found close to the lip of the
splitter plate. The emerging instability waves avo ampli-
fiod rapidly in tho downstream direction., As usual in flow
vizualisatien pletures, the linaar growth regime cannot be
seen clearly, because the displacements of the shear layer
are still too small ko be visible. Since the amplification
rake of the instability waves Js rather high (about 500
times within the first 10 em of Fig. 1), the onset of non-
linearities characterized by the vortex roll-up occurs
rathor suddenly (see alse (6, 7)). '

e £

2w .



(11)

(Lii)

{iv)

(v)

A behaviour very similar to instability wave evolution
(oxderly struchures) has been found also in turbulent jets
[14, 15) exponr:s’ to acoustis excitation. On the other hand,
similay ordexly structures have been found also in "un-
excited jets" [16). Recently, however, it has been shown,
that at least in turbulent shear layers, orderly structures
become highly organized and dominant if an involuntarily
generated, mostly unhoticed and sometimes inandible acoustice
excitation doas exist [17, 18],

The investigations on acoustically oxclited turbulent jets
have led to findings of practical importance. It has been
found, that broad band jet noise can be amplified by a pure
tone acoustic excitation from inside the nozzle [19 t+ 21).
Bacause of its relevance to aircraft noise goneration this
obsarvation has triggered a number of further investiga-
tions [22 + 24]). It has been recognized, that the acoustie
excitation of stability waves plays a cruclal rble in this
mechanism [19, 21, 24],

Tha change in acoustic radiation of turbulent jets due to
acoustical excitation is accompanied by guite substantial
changes in the flow pattern. An anmplification of the jet
noisae conresponds to an enbanced mixing and an inecreased
pextubation level in the near fleld of the jet [21,28) ,
on the other hand, it has been shown, that the spreading
rate of a jet can also be reduced by acoustic control nf
the shear layer [25, 26).

Whereas the above-mentioned broad band jet noise amplifi-
cation is basically a nonlinear effect, another related
interaction has been found. It has been shown, that the
generation of instability waves at an edge can extract
energy from a sound field {27 + 30). This absorption
aeffact is (at least for small perturbations of a mean flow)
a linear effect. It can lead to quite dramatic sound ab-
sorptions, in particular at low fregquencies. To give an
example: Consider the sound transmission through a nozzle
and a jet at, say, a jet Mach number of M = 0.3 and a

10
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dimensionles frequency %5 = 0.1, For these paramatars*’
only 1 % of the sound poaer transmitted through the nozzle
exit will be transmitted into the far field!

This paper, however, will not provide ary detailed prediction on
any of the three latter effects. Nevertheless, the basic
underlying interaction mechanism between sound waves and free
shear layers will be dealt with and we will be able to predict,
é.g,, the perturbation magnitude introduced into thu ghear layer
shown in Fig. 1, In addition, a well~defined reference quantity
representing the acoustic excitation will be given s. *that future
experimental investigators will be able to replace arbitrarily
taken reference pressures, velocities, or even loudspeaker input
voltages by a more general and appropriate reference quantity.

This paper will only deal with theoretical aspects of the shear
layer excitaticv. There is evidence from our recent experiments
that the present theory is valid in the expected range.

2, One stream model

Fig. 2 shows the simplified configuration which will be
modelled mathematically. The geometry is basical | whe sume as
in Fig. 1. We will, however, assume that there is po low
above the shear layer (this condition will be released in
section 5). The acoustic field is assumed to be created by a
pulsating source outside the shear layer in the fluid at rest.

The following simplifying assumptions are introduced:

1. plane flow

2. parallel mean flow

3. linearized problem

4. all fluctuating quantities harmonic in time,i.e., xa"
5. inviscid flow

6. incompressible flow

7. infinitesimally thin shear layer

s gy

iwt

sywTET

*) R is the radius of the nozzle, w is 2 7 times the frequency
and a, is the sound speed.
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—— 1 shear layer
[+]

[reéidn "2"||

Fig. 2 Configuration of the analytic model.

The first five simplifications are common in the stability theory
of free jets. The assumption of an inviscid flow works quite well
at sufficiently high Reynolds number [6, 7). The sixth assumption
is equivalent to the restriction to small Mach numbers and small
Helmholtz numbers, where the Helmholtz number is defined as the
ratio of the typical length of the problem to the wavelength of
the sound waves. For our problem, the latter condition means,
that the interaction region ¢lose to the lip should be small
compared to the acoustic wavelength. It will turn out, that this
region has a dimension of the order Eo/f (where ﬁo is the mean

: flow velocity and £ the sound frequency). Consequently, we should

g have 5o/f« ao/f, where ao/f is the acoustic wavelength. This is

sosapre

oY

3o g ey
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equivalent to M = ﬁO/no « 1, i.e., again the condition of swall
Mach number. The seventh assumption, the restriction to an infi-
nitesimally thin shear layes will limit the validity range of
the theory to the caseé where the shear layer thickness is small
compared to the wavelength of the instability waves., In other
words, the Strouhal numbar fﬂ/ﬁo should be small. 0 is the
momentum thickness of tha shear layer,

After all thesa simplifications we end up with the linearized
Euler equation and the continuity equation in the following form:

o = n 90 12
(1) iwu+u-——-.x+v-5-)—,+p-ﬂax~o
= v 1 2
(2) -1mv+U-;.‘—£+-n--.;)-§-=o
au v -
() gty =e

where U is the mean £low velocity and u, v, p are fluctuating
quantities, all proportional to e~iuvt, )

the classical approach would be to fulfill the boundary condi-
tions at both sides of the shear layer, which means that both the
pressure p and the displacement h should be equal there. We
focus first on the pressure condition. Instead of taking p we
may as well choose 3p/3x. Above the shear layer (index "1") we
have U = o. Equation (1) then reads

1 9P

— g

(4) S T%

-iwu1 + 0,

Below the shear layer (index "2") we have U = ﬁo and

oy
o>

p
X

u
—2

O X

N

|

l ] o L]
p

(5) ~igu, + U

oy
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If we subtract eq. (5) from eq. (4) we obtain

U du 3 (P4~P
o M2 | i °(P17Py)
(6) 02 + iT % ' u1 =m'—"""‘"—"~ax '

For x > o we should have PP, = Ap,z = o,

This is a first equation connecting the u-velocities at both
sides of the shear layer.

Now we consider the condition of equal dispitacements. The dis-
placement h and the velocity v are connected in the following

way
(7) veset U
In the region above the shear layer we have with U = o

(8) vq r ~iwh;

and below the shear layer we obtain

PIES]
I

(9) vy = =iwh + Uy

We can insert h from eq. (8) and find

(>4

v
x !

-t

elo i
|

(10) v, =V, + 1

Eotd

which is the senond connecting equation between the velocities

at both sides of the shear layer at y = *o. However, equations
(6) and (10} are valid for two different velocity components. If
we want to find solutions for v and u we have to generate (i) two
equations for the two unknowns va and v, as well as (ii) again
two equations for the two unknowns u, and Uy

(1) A second equation .:‘:'or'v.l and v, can be produced in two dif-
ferent ways. In [12] it is shown how eq. (6) can be con-
verted into an equation for v using a source distribution
approach. We will follow, hcwever, another procedure (which
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is also given in [12)) which will provide more insight into
the physics: this latter approach we will call the pressure
gradient approach.

(1i) To create a second equation for u, and u, we have to convert
eq. (10) from an equation for v into an equation for u. This
will be done using a vorticity distribution approach.

2.1, Differential equation for v

The aim of this section is to create a second equation for v, and
vy out of a consideration of the pressure field and its gradients
at the shear layer, Then we will derive a differential equation

for V4 only and solve it,

We start out by taking the x-derivative of the first Euler

equation (1). Subsequently, we take the y-derivative of the

second Euler equation (2). Both derivatives are added and some

terms are eliminated using the continuity equation (3). We end

up with
2 30

11 Vp = =2p 5= ¢« =,

(11) p 3y

In our model, the mean velocity profile jumps from U = o for

positive y to U = 60 for negative y. This can be represented in

terms of a Heaviside step function H

(12) 0=10, - H_,

The derivative of a step function is a delta function and we
obtain from eq. (11) and (12)

20 = o . AV,
(13) vVop = 2on % G(Y)'
Eg. (13) is a nonhomogeneous Laplacean equation with a line
source of varying strength in the shear layer. It should be
stressed here, that the sources in the shear layer are pressure
sources and not sources of fluid; the latter would viclate the
continuity equation (3). Since there might be some confusion

' ORIGINAL PAGE iS
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about the structure of these pressure sources we will give, as
an example, the detailed pressure source structure of an ampli-~
fied instability wave in appendix B. It will be shown there that
eq. (13) can be integrated to produce the whole pressure field.
For thn further progress of our calculation, however, a detailed
knowledge of the pressure sources is not necessary.

At the surface of the semi-infinite plate we have v and 3v/9x
equal to zero. Consequently, the pressure source strength is
zero on the plate surface (see eq. (13)). The only other location
where v?p is nonzero is at the location of the exterior pulsat-
ing source (see Fig. 2}. The basic idea of this approach is,
that the pressure distribution in the whole field can be split
into two contributions:

(1) a pressure field which is symmetric with respect to the
shear layer and which is created by the pressure source
distribution in the shear layer itself.

(ii) a pressure field which is created by the exterior forcing,
e.g., a pulsating source. The pressure fluctuations of this
contribution are transmitted through the shear layer. The
pressure gradient of this contribution is continuous through
the shear layer and therefore it is antisymmetric close to
the shear layer.

As a result of this splitting process we have
Py = Pqg * Pyg; Py = Ppg * Pog

(14)< v

[}
L]

15 Vis * Vs Va2 B Vog * Vor

u

u1=u1 + U, et U

s 1£ tu

2 7 Y25 * Mg

The index s stands for Ehear layer and the index £ labels the
exterior forcing. The boundary conditions at both sides of the
shear layer have to be fulfilled by the summations of the
individual constituents, e.g., by vy and vy, as before. On the
other hand; we have some new informations: Since the induced
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field of the pressure sources in the shear layer is symmetrical
(it is created by sources of symmetrical directivity in a field
with symmetrical boundary conditions) we obtain:

p ap
(15) ~3%§ = - 356 at y = %0

and for the continuous pressure of the exteriour forecing

Py _ Ppg

3y Sy at y = to

(16)

These conditions for the pressure gradients in y-direction can
be inserted into the 2nd Euler equation (2), which gives

U av
o 28 .
(17) Vos i w X Vig
0. ov
o _2f _
(18)  vpp + 4 gF =2 = vy

Equations (17) and (18) can be added, using eq. {14)

v
o) 2 -
L R TR T T

This 1s the desired second equation for vy and Vye The velocity
Vig is not an unknown quantity, it is the velocity which is
created by the exterior forcing without the mean flow being
present, but in the presence of the semi-infinite plate.
Equation (10) can be inserted into eq. (19) to obtain a non-
homogenous differential equation

B 2

_ [Y%)? 3
T ax? Vg

"t
<

+
N
-

“l

The homogeneous solutions of this equation are found easily

21 ¢, = C1e)"1x, ¢, = cze*?-"
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(22)  ap = 2= (L + 1) Ay === (1-1)
Ug Up

C1 and C2 are arbitrary constants with the dimension of a velo-
city. ?ﬁ and qa are the well-known spatial stability waves for
an infinitesimally thin shear layer, extended from -« to +w=,
which we will call the Helmholtz solutions. The complete solution
can be obtained in a straightforward way

X X
(23) v, = = L eME L mTME ax 4 B gh2X | g™ha%y ax
1 ) 1£ g 1£
o G o G
1 2

This is the general solution for Vi Once v, has been found, Vo
can be determined with eq. (10). The lower boundaries G, and

G, willl produce terms of the Helmholtz solution type. The actual
value of G1 and G2 depends on the boundary conditions; this will
be discussed in detail for our configuration (shown in Fig. 2).
However, before we are going to do this, we have to consider the
structure of v1f, the fluctuating vertical velocity at x > o

and y = o which is created by the exterior excitation.

The general solution (23) for v, was obtained by splitting the
pressure field into two constituents Pgr the forcing field and
Py the field induced by the shear layer wave motion. The field
P is continuous through the shear layer. It can be seen, e.q.,
from equation (2), that the velocities cannot be continuous
through the shear layer, in other words: Vig + Voge Therefore,
the appropriate approach is to calculate the pressure field

first, which follows from V2p = o outside the source location and

the shear layer.After splitting it into the two constituents we
have (i) the excitation pressure field Pge with a singularity at
the location of the exciting source (x_, y,) (see Fig. 2) and
{ii) the shear layer pressure field Pg with a pressure source
distribution in the shear layer (x » o, y = o). As we know from
potential theory, analytic functions of z = x # iy are solutions

18
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of the Laplaccoan equation for the pressure, Thorvefore, wo can use
all kpown tools of conformal mapping to ealoulate, o©.g., the
pragsure fleld Ppe In the £luid at rest (0 = o in reylon "1" of
Mg, 2) thore L8 a aimple roelation between the velocitios and

the preasura, This can bo obtained from the two Bulor eguations
(1) and (2),

) ) R S
{24) R I A T Iy

Wo recoghise, that, in a £luid at rest, the pressure is pro=
portional to tho potential function ¢ which iz defined as

! AR
% e o a o
( w) ) i -\i,\' : v a—-y Y

Thig allows us to uge conventional potontial theory to caleulato,
say, v,p For a source aw a dipole in conjunctlon with a somi-
Infindte plate, This hag bean done in [12] and we will glve unly
tha rosults heve, For a pulsating two-dimengional gource, as
ghawn In Plg. 2 wo have

1.0, (x4 ) AR

s ) ¢ wm o Yt o oAr 9
N~ LI S WO O

{326) g P
(y=0)

with

L, Tp——
(27) RN yg

t

X and Yo Ore tho hordsontal and vortical digstances, roaspootivo=
Ly, af the source from the plabte edge and Q is the source
atrangth, say, in w*/fs, Clearly, Q is fluctuating as

(28) Q= g™t

Fayr large distancos ry YT X we hava sinply

\ ; 1.0 ./
(20) v e R 1/2

VX E; (h = xgfe)e
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I [12]) the induced fiold of a dipole im also given. We will not
give hore the full oguationa of the general case of an avhitrary
location of the dipolo. Thore is, however, a simple case whieh ia
worth mentioning. Assume that the dipola is far away from tha
odga, d,04, Yy *» %, and locatad abova the end of the plate so
that y, »> x, (seo Fig, 3).

\dipole
Yo
e _”__‘,,,.‘r""'""}
plate shear loyer

Mg, 3 Dipolo as oxeltation of the shoar
layor,

Pho dlroction of the dipole is W\ . In this case, wo have,
aceording to N2):

« 1, ..D . . - ;
{30) Vig “"::: W cog (B- w4),

where D is tho dipole stvength. As we see, Vg hacomaes a maximun
at WP = 45°%, The directien of maximum offiicieney 6%nx of the
dipole clearly changes with its position relative to the semi~
infinlte plate {soo also [12]). For a position close to tha shear
layax, wo will havo, as expectad,\}mnx = 90°. If wo usa a vibrat-
dng cyligdor to ereate a dipole, wa hava for the dipole strength
nauc-zﬁRf yhorc R is the cylindor rxadius. and U, s the velooity
ucuua-a"iML of tho cylindex. Similar coxprossions can ba glven

N
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for a vibrating ribbon in the £luid at rest [12].* The general

finding is that in almost all conceivable cases we create a field
close to the plate edge where Vig © 1//X. There are only a few
singular cases where we create a stagnation point at the plate
edge, like the "zero" position of the dipole in eq. (30). In
section 4 it will be shown, that this region close to the edge
where Vig 1// 1is in fact the relevant one for the whole inter-
action process.

As we will show now, Vig & 1/V§-corresponds to a parabolic
pressure field around the edge. This fact is of particular signi-
ficance for the choice of a suitable reference quantity for the
excitation in real experimental situations. Since it is often im-
possible to track down the whole pressure field in a practical
situation, we are looking for measurable quantities relevant to
the interaction process.

To model a parabolic pressure field around the semi~infinite
plate, we have to keep in mind, that analytic functions of z=xtiy
are solutions of Vzpf =0 and that we can use conformal mapping

to fulfill the boundary conditions at the semi-infinite plate. We
start with the consideration of a plane pressure fleld (see Fig.4)

Z,-plane Z,-plane

+ .
N microphones

Fig. 4 Plane pressure field, parabolic pressure field,

*) If the vibrating ribbon operates within the flow regime at
y <o, the generated pressure field is, however, completely dif-
ferent, due to the interaction with the flow.

21
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This pressure field in the za-plane (za = X, 1ya) has vertical
lines as lines of constant pressure (we suppress the time depen-
dence e %Y for convenience). This would be the pressure field
of a horizontal velocity fluctuation u constant throughout the
plane. In the za-plane we have p = A Xae If we apply the con-
formal mapping funition z), = za2 we have for a point

2, = %, + iy, =r.e % a conversion to the point 2, = Xty =

a
ig 2 - p 2g2i0
rpet =z, r e (see Fig. 4).

For the pressure we obtain:

= Ay m A . Vo N sl B
(31) p=A‘x =2 Re{za} = A * Rel zb) = A r, * cos =%,
For £ = o (above the semi-infinite plate) we have Py = AVEE'and
for 8 = 21 we have p, = -Avk_ (below the semi-infinite plate).
At the location 1 of the reference microphones we have

(32) Pq=Py = APy, = 2A/T,

With this equation we can eliminate A and find

Nlw

Ap

12 o

(33) p = ~—= * Y1, COS
2/ b

To obtain Vig we takeathe derivative %5 at y = o and x < o, which
1 =
is equivalent to - ' 3% at B = =,
Apqg

19 .
(34) 'E?E(amr)‘*,, -

&

Since our plate (see Fig. 2) should be extended from x = - to
X = o, and since we want to have our result in Cartesian coordi-

nates, we write

AP
3p - 12
B2 mo, vy o TR

Using eq. (24) we can relate this expression to Vig

1ap
(36)  |v,p= - = —12
Yk 4pu/l

22
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This is the dosired velation between a guantity sasily measurabla
such as the prossure difference ap,q at the plate taken at a
dimtance 1 from the lip. This quantity, Apng containg ho conw
tributiona fyrom tho shear layer. We feel; thorafore, that Ap12
iz the moat suitablo reference quantity for the excitation of
the shoar layer.

o -

Sinece wa have with og. (36) a distribution of the excitation
fiolg Vig which ig valid in almost all conceivable casesn, wo ean
proceed to solva eg. (23), tho differential equation for the
shoar layer motion. Aftor insorting Vig {eq. (36)) into eg. (R3)
wo havae

'x "
LAy s sy o To™ N LT \ax
(7 v, = ~emtd g 153£L*:,“ ax - Q\Ex&Ljfﬁ ﬁx].
4 ;‘Um\,l : “‘ LR G:;z\.\ :

The lower boundarios 81 and 62 will produce contributions to tho
solution of the Helwholte-=typoe. Sinco vy must he sere for X <o
thesa are truncated Holmboltg=golutlona atarting at x = o. ™
appendinx € wo prove that such solutlons cannot fulfill the con=
dition ol equal prossure at both sides of the shoar layer and
that there dg no combination of 8, and Ga Fulfilling this conw
dition, This calenlation in tho appondix is based on ealoulating
Vo from vy using the condition of equal deformation of the shoar
layers (eq. (10)). Subsoguontly the cornesponding Uy and wy
distributions arve ealenlatod using o source distribubion approach,
BFAnaliy, using the Flest Buloyv oguatlion (eq. (1)), Ip AN and
APy AN are compaved. Since dp,/as and IPg/ax are Lncompatible
under all conceivable situations, wo can conclude, that there
are no unforeed {froe) vibeations of the sheaw laver. This is,
by the way, one of the essontial reosults of the presont investi-
gqatlon.

Since we have Gy = Gy = 0, we are loft with a forced solution
nnly, for which wa have te provo that it fulfills the conditions
of aqual deformation and ogual pressure at hoth sides of tha
ghoar layer. This iz done dn soveral stops:

23
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(4) vy is calculated in an unambiguous way from eq. {37) with
Gy = Gy = 0. Subsequently, vy can be determined in an un~
anbiguous way uging eq. (10),

(11) by a geparate procedure (saction 2.2,) analytic solutions
for u, and u, are genarated. We end up with a differential
equation for u, very similar Lo eq. (37), The free copstants
there are determined by the compatibility with the vy and
vy solutions in the far field.

(111) Sincae wo found no direct approach tn relate the analytical-
ly obtaihed u, to vy and uy to v, in the near field, this
was done using a numerical procedurae. It is a by-product
of the caleulation of u, in the whole field (not only for
y = 0) which had to be carried out for a comparison betwaen
theory and expariment.

(iv) it is shewn, that the analytic solution for vy and u, leads
to zoro pressure difference att both sides of the sheax
layer ( x * o) and also to the oxpected pressure difference
of the excitation field at the somi~infinite plate (x < o).

As we see, all ambiguities and, hopefully, all doubts are re-
moved by this chain of procedures. The first step (1) is then
to evaluate eq. (37) with G1 = Gy = 0. After some sultable sub-
stitutions (seca [12]) for details) and introducing the error
function defined as

%
2
(38) erf z = & | ¢"5ds
G
0
we have
Aya 1 | oM e @2% B
{39) vy = —-:"'-{::-‘ T . erff,\1x - erf 1"!:{2.\{
pU, YL v':f? e
and with eq. (10)
AP, ~ A% Aax -
(40} vy = o »:*%% . ﬁﬁ e,’, erf «x1x + & orf /T;x
20T »”\",‘ Ao
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waing the abbroviations

(22) N moes (Lk 1)) A, mem (4= 1),
Yo Yo

It is useful to define dimonsionless quantitios as follows:
A dimensionlors wave number

@ eieay Lwg-,

a1 dimensionloss distaneo

(42) § oA
u

which will be used in the same way for y; and a dimensionless
volocity ¥
v Vit

APya

(43) v o

which dopends on quantitiecs which can be neasured easily. The
same form will be alsoe applied to u. After introduction of these
dimensionless quantities we have:

. iyt o™ o o el TE
{44) V, oo e o EEV AN = e 0 FY A X
I I V’ 1 7 LA |
Fane 3 ‘\'Q Firannd XER '?—m:
48 - LR tn?w- ,f:., - ,"" HQL‘MA b i N
() | 9y = LT e e el \/x*""\,

fig. 5 shows a plot of eqgs (44) and (45) where ¥, and 62 have
been split dnto their real and imaginary parts, raspectively.

*) pascd on dimensional conslderations, gimllar dimensionlass
quantities had been defined in [12]

v,
Vo -iwgh and & = x %,

25
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— N-‘I
B 41y .
3 X‘I‘l!hl
N~ N : 0
AN L
:>\V./I.l|.\\\\A\.\.\
L \. ] - o~ " Hpd
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Tables of numerical values of vy and P will be shown in appendix
D: Subsequently, we will investigate the behaviour for small and
large &, hecause this provides some additional insight into the
interaction progess,
For small X we take advantage of the expansion given in [31]) {

2 . | |
(46) exfz=3 . g% . 3 2" G :

P nso 1 * 3.0, (2n#1) !

wa obtain for small x

n ey w %105 g, T
which shows, that theare is no sinqularity of vy or v, anymore
near the trailing edge. In addition, it is shown by ea. (47},
that the flow leaves the trailing edge without a jump in the
slope. This is equivalent to the presence of a Kutta condition,

A question of particular interest is the far field behaviour of
equations (44) and (45)., By virtue of the far field expansion of
the function erf =z, given in [31)

2 ® ,
(48) /rze orfez 2 14 5 (=M 3'5',1“2""1’ ,
A m=1 (22%)

with erfe z= 1 ~ erf z we obtain for large z, where the
summation term wan Le neglaected:

P P
- i/r eM 1
49 v BT S e e
(49) 1(5{ + o) 4 r’i1 V%
(50) V., .- 27, e 1 - A
2z ) S VY

with X1 = L + 1. It ls evident, that the field has separated into
an amplified Helmholtz-type wave (1st term of egs. (49) and (50),

byt ras
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raspectively) and the contribution of the exterior excitation

Vige which is the second term in both equations. This latter con-

tribution is transmitted through the shear layer without any
change. If we call the first term in the equations Vi (where H
stands for Helmholtz solution), we may write equations (49) and
(50)

(51) v1 » = G v PR, N = v + G
(X-+) (Rrw)

It is interesting to see where this far field solution emerges

i.e., beyond which distance % amplified instability wave and

excitation can be split. In order to investigate this, we sub-

tract the asymptotic instability wave from the complete solution
? ?

~
in

2p T V2 T Vay

(52)  Vqp =yt Vg = Veg PV Vag -

The differences 01D and §2D are plotted in Fig. 6.

It is evident from Fig. 6 that the far field solution is valid
beyond % = 4 + 6, that is beyond about 2/3+1 wavelength of the
instability waves. This means, that the basic interaction takes
place within % wavelength of the instability waves. This latter
finding, that the wave field can be separated into a predictable
instabllity wave and the exterior excitation field (sound field)
is one of the essential findings of this paper and it supports
similar attempts made previously on a more heuristic basis [32).
This splitting is therefore admissible at distances greater than
about 1/2+%1 wavelengths of the instability waves. Finally, we
provide also a simple formula for the magnitude (modulus) of the
excited instability wave:

(53) v, 1= lo, | = 10 o &¥

H
4. Y3 C 3 s
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\\ / Asymptot W -
~Asymptote: vif * 3
/ A\ x
-0.40 ”
Fig. ¢ Difference bokwoen complote far Fleld volooity and
agymptotic dnstability wave,
29 :
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or, in dimensional gquantitios

N 2 T S R z o A

Ap, Aar %ﬁ

54) | v, Pwlv, | e ed X0 o U
1" 2“ ;\l!‘lj h\l PN
o 4%

RN R TR LA R ) N

Numerical values of vy and vy are glven in appendix D,

Sinco v=valeeity compononts arae difficult o wmeasure,we will;
in the subsequont soetiens, both caleulatoe uy and Uy at y = ‘o
{analytic solutiong) and will provide alse numanically computed
valuas off uy outsida the shoar layer in the potontlal field.

2.2, Difforontial aeguation for u

The procedure to obtain a differential equation for u is glightly
less aelegant than the one for v, We restrict ourselves, in
addition, to tha "parvabolic" oxcitation, for which we obtained
the spoelial solutions, ogs. (44) and (45) in Lhe preceding
saation. As we havo shown before (sce also section 4) the "para-
bolie" eoxcitation case i valld in almost all concaoivable
situations. In addition; when doaling with u=valocities, we do
not worry about caugality;: and if we encountor ambiguities, we
can romove these by linking the u-salutions to the unambiguously
known v-solutions. If we ereate, o.g., a4 parabolic pressure
distribution around the semi-infinite plate it is irrelevant,
thorafora, whather this has been ereated by a singularity distri-
bution at y = to or by a souice at a large distance. As a con-
sequenge thoereof, we do not split the field here into two con-
tributions from thae oxtorior source and tha sheay layey itsolf,
raspectively.

The first task in this section is to construct an equation for a
out of the equation for oqual displacement

U
. 42 AV
(10) Vo Vg ok demae
In [12] and in appondix € it is shown bow a v-velocity condition
can be created out of a u-veloclty condition using a source

30
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distribution appreach, Heroe wo will do the opposite, l.e., we
will gonerate o uw~vologity conditlion out of a v~velocity con-
dition using a vortiecliy distribution approach,

e & ««»MW'T Py i
vorticity Y
distribution
0

Y2

b

Flg. 7 Inductlion of a vorticity
distribution on a straight line

Wo consider the velocitics which are induced by a vorticlty
distribution on a straight line between b1 and b2 (see Fig. 7).
The inducad velogities v and v at a point 2y above a vortieity
distribution y{(£) on the x-axis avo:

r h2 w
o | YWY oy
R+ J Yk:g}‘wyir ag
(55) 4 by }
by
L. A yl6) v {x-8) ¢
vVEoaT J (x=£7 7wy, at.
\ by J

If tho point P1 approachos the x~axis (*YW + o), the u~component
becomes u = -y (£) /2. This fack can be verified if one analyzes
the disteibution y(g) into a sories of small stops of locally
gonstant y (&) and cvaluates eg. {(85). One finds that in the case
of o vorticity distribution on a straight line no induced

31
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u-component contributions can come from vorticity elements out-
side g (at +y1 + o). By inspection of Fig. 7 this is also obvious,
For a point P, approaching the x-axis from below (-y, + o) we
have u = +y(£)/2. With these considerations we obtain:

by (
= 21 [ ue)
v(y=+o) T I X~ ag
b,
56) .
( b, i
1 u(g)
Vig==o) ~ *¥ f x-¢ 0%
b

Inserting eq. (56) into eq. (10) and adjusting the limits b1 and
b, yields

4 40 = + o
u, (£) u, (£) Uy 5 (98
61 | s s - [ e a2 [ e
-0 - o el )

Since we expect exponentially growing instability waves in the
downstream direction we will run into difficulties with the
upper limit of the integrals in eq. (57). To avoid this we will
use a simple trick: we will subtract from the forced instability
solutions the amplified Helmholtz solution Uy which has asympto-
tically the same magnitude as the forced instability wave.
Conseguently, we write

g AT

+o + 0 + o

(Uy=u,.,) (u,-u,,) [§} (u,~u,.)
2 “2H 1 T1H o 3 1 “1H -
(58) '[ ——_-——_X"E; dg + J —XE dg + 1 o % J ~’_('5 dg = o,

- e - -

The evaluation of the third term in this equation uses
integration by parts

4+ o

{u -u ) (u -u ) .
oo & |t o, [y, |
32
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R LN |
oo S ! | f M ) ax
x=%) N X4

Tho £lrat (Antogratod) term on the wight hand slda becones xero
LE (L) x vomalnag finite, (11) the differance (u1-u1“) doas not
graw faster than § for large nogative and positve values of &,
That the latter condiblon is fulfilled will bo avidaent from the :
golutlon wo are going to ohtaln; so wo have

W " ] 3
tug=ugy! gyl o I FEl “ip!
( 6 0) j‘ “mszs-\::::mfm da [ AR I v:m:\f:—réamm d AR R r.:“T: ;' ——t_n—ngiaz;:z» d &
¥ -t -t

The Inkegrals in ag. {(60)anch poanos  tho sama denoplnator and
tha same houndavios. Wo have a condltlon at least ag yestrictive
A wa weito

Pes

{61) Wy = U KR\ PR BV + 1 23 o {u,=a,,) = 0
' 2 an 17 Y @ A% T

whare wo have roplaced & by N, Since we know that egq. (61) s
fulfilled by the lolmholty solution alonn wo ean welte

e R e e R SR T TR Y e S

EQ duy
) Y Y Pe—- o
(62) Uy byt i il B

St oie valdd for all x since ag. (10) wag valid for all x. This
18 the dosiyed second condlition for Ny and ug. If wo insort this
aguation Into ag. (6) we abtain a diffarentknl agquation for Wy

alono: e
- L2
ﬂu U, 4 d%u Alp,~py)
H 2] E 2 -——Q . -u?— & %ula - v-é'-ea ‘ 2
(63 ) “u 1 bl w C[x ( W } dx?w * pw dx

We can obtain tho pressura at both gldes of a semi=~infinite
plate (located at % < o) fixow eq, (33), after adjustment of

33
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AP R ks
—

p * - v
1 {ye+to) 2 ¥1
64 Ap. o
(64) . . . Plg .
{y»~0) 27T

Thig can be used to £ind the right hand side of eq. (63)

-~ . - 2
U, du, u,_ 2 da"a . Lap.
(65) 2\111‘21 ”?- a';{"-" - --‘9 mr:)‘-nl & --;J::- . ..._....‘.%

v ¢ dx ¥=X 2pwvl

for x»o the xight hand side of ag. (65) becomas zaro, because,
by definition, tho prassure difforance at both sidas of the

shoar layer should be zero. In complote analogy to tha procedure
to solve the differential equation for v in the proceding soction
we obtain:

X x
(66) u, =B Wi“\pw.‘ q‘:’xle f u—\"Lx dx = o'2% J o2 ax].
? 4;\\39\’1 V=X V=R
GZ! Gq

We should keeop in mind, as montioned before, that there exists
a contribution to the integrals only for x <o, Consequently, wa
have for x » o only contributions of the Helwholtz instability
wave type, created by the lower boundaries of the integrals Gl
and G, in eq. (66),

M ounambiguous way to find the magnitude of these Helwholtz~type
contwibuticons is to relate them to the asymptotic magnitude of
the v Instability wavas. These v instability waves also behave
like Helwholtz-type solutions for distances & 2 4 & 6. We
should find ocut, therofore, what the couplingobatween the u and
the v~components in the Helmholtz instability waves is. The
easlost way to do this s to start owt with the potential of

the induced velocity field of these waves:

e e i TR Ty TS Ee T

e e
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¢1 (y » o)

(67) A, 2 k=i
x~1y)
b2 (y < o) = Be 12

wa take the derivatives

(

H

Ay nixtly)
o B vy lkthe 1,2

, Ay n{x+iy)
A1'2AQ ‘&2

wmname TR ul

(68) < ¢
; A x=1
-11, HBett,2X7iy)

k]

Aovvaniiial V2

#

A

— s A (x-1y)
Y2 LU

1

Therefore we havae uy o= -iv1 and u, = iv2 at y = &, With the
solutions for v, {eq. (44)) and v, leq. (45}), we obtain (with
u nondimensionalized as in eq. (43)):

f _— - 3
§ g.‘i‘.‘. [eMx . 0.23\“:]
1 4 = T
i T \
(69) ¢ . .. frx»so
ﬁ') - iv‘:r; [ehx . e\2x]
) N 3 )
u pJQuél wx by by
with 8 ® e 0 R0 == 0 N = f 4+ 13 A, =i o=,
410 ' . b1 o2

Analytic solutions of this type had not been published before,
but thay were obtained already with different mathematical
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methods by W. M8hring (33) and M.S., Howe [34]). To find solutions
for x < 0 we have to proceed analogously to section 2.1, The

only difference is, that we now have additional Helmholtz-type
solutions in contrast to the situation for the component v. After

some algebra we end up with

i1x Aox
g, = -’g’l [e ! erfc/i % - e’ 2" erfc szi:l \
/v—- /lr—

M A2 for
(70) . . %<0
21X 5%
u, =—14 |:-—e—-l— erfc VY X + 8.2 erc vs\zx]
Viq Yip
A4 A

¥ has to be inserted into these equations with ite negative sign.
The abbreviations are identical to those used in eqgs (69), (44)
and (45). Since erfc is defined as erfc z = 1-erf z, it is ob~
vious that equations (69) and (70) merge into each other at

X = o. If oné expands eq. (70) for large negative x, one can
show that the wave structure of the instability waves vanishes
and the prevailinj terms are proportional to u « 1//=%. In
addition, it can be shown using the first Euler equation (1),
that eg. (70) prnduces the correct pressure difference at both

sides of the semi~infinite plate.

For large positive values we have from eq. (69)

APy /T ux
(71) lugl = Juy| = —== "+ e 7,

POl g3

. =
for x 2 Uo/f

which is the same result as eq. (54) for v at large x. The only
difference is, however,; that the excitation velocity has no com-
ponent in the u=direction for x > o.

There is yet another less obvious feature of the exact solu-
tion, eq. {71), near x =y = o. If one wants to verify eq. (71)
experimentally, one might take, e.g., data of the velocity u,
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in the region outside the shear layer and would extrapolate these
data into the shear layer. However, this would lead to erroneous
results near x = y = o (plate edge). The reason is, that the
gradient of a curve uz(y) for constant X would be infinite at

x = y = o, which hardly allows any sensible extrapolatiosn

towards y » o from data at y #§ o. The reason for this is the
following. In the potential flow region outside the shear layer
the vorticity should be zero, i.e., auzlay - avzlax,; 0. Since

v, « /x for small x, du,/dy must become infinite (but, certain-
1y, not u, itself). Thus, the exact solution for u, (eq. {(69))

is only of limited value if Lt comes to comparing it with experi-
mental data. This is the reason why the u, velocity field for
finite y has to be calculated numerically., After this will have
been done in the next section,and the induced uz-field is
available, the discussion in this paragraph will also become
moxre convincing.

3., Field calculations

For a comparison with experiments it is necessary to calculate
velocities also outside the shear layer. The quantity which can
be measured most easily and accurately is the velocity u, in
the flow redion y < o. A source distribution approach is used
to compute u, from V,s which is given for all x. Actual data
of vy i.e., its real and imaginary part can be found in
Appendix D and curves c¢an be seen in Figs., 5 and 6 in section
2.1, The source distribution approach we use here is identical
to that used in [12] or in Appendix C; there is also a formal
similarity to the vorticity approach used in section 2.2.

We consider first a source distribution g (£) on the x-axis
(see Fig. 8)
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source o ‘
distribution gy 9 vy,

P2

Flg, 8 Induction of a sourco distribution,

The inducod u-velocity component at a peint Py above a line
gourca distribution ¢qif) is

]

A ate) v (x = E)
(72) woE o f . o @)2 s
(]' ' 1 * } 1

2 dgi

For a point p, below the line source distribution we end up with
the sawe rosult. If the point Pl appreaches the x*axis.(+y1ﬂr9)
the v-component becomas +q(f)/2. For the case of a source distri-
bution on a straight line no induced v~componant contributions
can come from sources outside { at y, +o. So g({f) can be re-
placed hy 2v for y >o. Pox negative y we shitain negative induced
v-compononts from positlve source strengths g(&). Thus we have
for nogative y ‘

Wl { Vall) + (xg=E)

(x0=5) 24y, 7
9

(73) Uy ag .,

This is the typa of aquation which provides the relation between
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\D) and Wge T will be avaluated numerically, Formally, wa would
have to integrate from gy x e to gp ® tw, Howaver, we agaln en=
wounter difficulties with the upper limit; hgcauss Va growa
axpongntially, This aifficulty will be cireunvented in the same
way am we did Lt hefore. Wo subtract the exponentially growing
asgynptote Vai to obtain an integrable function. Tha dlfference
Vap ® Vg ™ Vay ia only proportional to 1/Vx for large pesitive

® and hecowaes zero axponentially at large negative x. After
having earvied out the integration we add the induced fleld of
the asymptote Vo, (see aq. (68)) to obtain the complete uz-dia-
tribution. This whele procedure has to be carried out ngparately
for the ranl and imaginary part of v, to obtain the ¥eal and

inaginary park of ire
The integration of u, is then split into three regimas:

{i) For large values of % the veal part Vanr of vy, beconas
zoro and the imaqinnxy part Voo of Vap ia pxapout&onnl
to 1/¥X (see Pig, G). Thus, for values between, say,
% e 6 and & » « we will use the asymptotlc form of vy,
insert 1t inte og, (73) and will canyy out the integration
in gloged form. This will take care of the contribution to
tha integeal (73) for lavge values of X (ov £).

{11) For smal)l positive X the real part Var of vy hag a para-
bolic behaviour with vy, = VR, Caused by this, the s)ope
of vyup is infinite for x = +o. Singe this can lead to
pumerigal problems we will also integrate the region be-
tween X = o and ¥ = 0.1 In closed forw.

{(1i1) Me resainder of thae integral from, say, X * «6 (whera
vy 0) ta X = o and from & = 0,1 to x * ¥6, whave the
asymptotic golution takes over, is calculated using a step
integration procedure with intervals of A% » o.1. The step
Intagration elements are trapowoidal pleces where the
upper and the lower limits have the same values ns the
function VQDR>(or Vaux" This provides a much béttew
accuracy than ordinary roctangular steps would do.
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For each of these integration elements (i) + (iii) we have to
produce analytical solutions. We start with the far field in~
fluence (i). For large values of % we have for v, . from eq.(50):

I_.

(74) Vapr *

4
(far f£ield)

<

For u,, x and §{ we use the nondimensionalized form to obtain

-

.\ 1 1 (%~E) z
(75) u B J i 8 —— m da.
2D 4n JE (R_E)Z_Yi

(far field) E1

We will not £ind this type of integral in the usual integral
tables. However, it can be simplified by comple: fraction de-
composition using the following relation

(76) :::) " [z_ + -_2—_172-]

with

ORIGINAL PAGE IS
OF POOR QUALITY

(77) 2= X+iy 3 zZ =% - iy,

Thus we have for (75)

- 1 1 Ak
(78)  Gppr = gy I [
8 ) /" (z-e) "B ! VE (Z-E)
(far tield) &, B

Integrals of this kind can be found, e.g., in [38]., The total
integral turns out, as it should, to be completely real. We
obtain after some algebra:
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r+i=2/F F cos B/2

(79) u S . ~ . cos 24 1n ~ - s )
2D 4 x+§1+2¢%rc050/2

2/E F sin ¥/2

+ sin % + arctan | T,

)= sin 5]

with r = VR T 97 and $ = arctan (9/%), and for

31 in the order of 6,

The second (ii) particular element of the integration is tackled
in a similar way. The expansion for v,p (the real part of vz)

yields for small %

(80) Vop = -VE,

Therefore, we have to integrate
E2

(81) fop = *+ o

2R o

(small §)

/z* {(%-E) z
(x_é’ 2 'l2

- e

for £, in the order of o.1. we proceed in a way very similar to
that shown above and end up after some intermediate calculations:

RN D ATE e

B = . i i e

/£ [ 1 %
(82) u 2 = - =+ CO8 % + 1N )
(ZR llﬂ )‘ 2 2 r+E,42/E,F cos V/2
small x
& 2/F,% sin¥/2 2/%5
+ sin 7 * arctan ———-—————) :
r-&,

with r and <} defined as before.

This result has most terms in common with eq.

suggests,; that the same computer subroutines can be used.
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The thivd (iii) element is the trapezoldal element mentioned
before (see Fig. 9)

| ' ORIGINAL PAGE 18
Tvzon OF POOR QUALITY

(or vpp)

Fig. 9 Trapezoidal velocity element as indueing source alement.

v = = % « source strength.

The local distribution of v,, (in the computation specified as

Vopg and VZDI)iS

(83) Vop = Vy tm (5 - £,)
with
V. =V V, =V
(84) mo= _,b ~a = b - a .
Qb - &y AE
The integral .
£p . o
(V_+mlg=£,)) + (x-£)
- 1 a a x
(85) Au B - ag,
2D it (Q‘E)2+§2

can be solved analytically using the integral table in [35). One

obtains after some intermediate calculations:
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{80) Mgy = = b o ylarctan 4%;3) =aretan (x§fm))~
i EE Y y' y
o AY i AT i1
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a

with

£
4

: 2 2 2 2 2.
(87) T LA 1T R IS B

)
Mg olomwent (144) will be used In all situatlons wheory Yan Lo
ot 2era or whore the asymptotic solutions (1) and {11) arve not
usod,

AU the ond of the computations, tho asymptotic solution wgy,
(using og. (68)) s added to obtain Uy o Uy b Uy The dotallas
of the computations are given fn appendix B aw well ags tablos
with vomputed vatuog of w,. Hero, we will show the wodulus o¥
W, beconse 16 ooan be mva&urod In o stealghtfovward way, In
Vzﬂxnlﬂ a computed diagram of fuyl as a function of y fov
vartous £ cai be seen. We have used a logavithinle plot on the
vortical axis of this figuro, Phis allows to ddontify: reglong
of the eurves which show oxponential bohaviour; they will oceuw
ag atralyhit Lined.

APty ingpoction of Flg, 10 we Find that the cuevea for hiy| at
x 1 ghow an-oxponontial docoy in the =y divection., With
ogquationg {(68) and {H1) WO an pradict tho Inducoed volooitlon af
tho amplifiod tnstability wavep we obtalin

> Ux *‘(‘!‘ly] ¥

(88) Iyl e et

%,

(x> 1.5)
Thin asymptotic bohaviour i also given in thoe dottod Linos dn

the upper hall of Ply. 9. da wo 8o, og. (88) provides roasons
able prodictiong alxoeady for x> 1.5, Pthis indicates cloaply; that
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downstream of, say, X = 1#1.5 the instability waves dominate the
induced U-field in the potential region outside the shear layer.
It can be assumed, that this feature is exhibited more clearly
in the u~component than in the v-component. This is due to the
fact that the excitation has no u~component for positive x and
small y (compare equation (69) for u and equations (49) and (50)
for v).

One might argue, that there is also an asymptotic equation for
[uzl at large negative x. In the region upstream of the plate

edge, it is reasonable to assume that the excitation field do-
minates. Since the excitation pressure field is known (see eq.
(33), note that x is inverted theére), the u-velocity field can
be calculated using the first Euler equation.

2u, 1p.
o % = 0.

PR

ol

(1) ~igu + U

This is, with p known, a nonhomogeneous differential equation
for u which can be solved in closed form and leads to a solution
containing error functions of complex argument. This can be ex-
panded for large x to6 provide a simple far field solution. We
can produce, however,; the same far field solution in a much
simpler way. It is a reasonable assumption, that the gradients
of the fluctuating u-flow become smaller with increasing distance
from the plate edge. If, e.g., u is « 1//=x,5u/dx will become

o 1/(-x3/2) which means that 3u/3x will decrease more rapidly
with increasing (negative) x. Consequently, for large negative x
the fluctuating flow will behave as if no mean flow were there.
After neglecting the second term in eq. (1) we obtain a simple
solution, i.e., the parabolic flow created in a fluid at rest

by the pressure distribution, eq. (33). We end up with

“

~ 1 1

(89) u = s ¢ 0OS (% arctan ¥ .
fa, W= (3 1D
(% <=1)

This asymptotic equation is also plotted (dotted lines) in the
lower half of Fig. 10. It works quite well for % smaller than -1.
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We are left with a situation which can be considered to be ideal
in computational £luid mechanics: The region where information
relies on pure computation is limited and is imbedded into

' asymptotic solutions. How well the computation works is also
shown by a comparison between numerically calculated values of
62 at ¥ = o and analytic values from eqg. (69).

In Table 1 these two sets of data are compared. The deviations
are minimal in spite of the fact that our integration stepwidth
is relatively coarse with AE = 0.1,

The most interesting regime of the }uzl-curves is found near
% » o and for small y (see Fig. 10). Indeed, as anticipated in
section 2.2., the gradient of the computed curve becomes very
steep there. If one extrapolated |u2] at x = o and y = o from
data taken at y ¢ o one would underestimate the actual value

there.

4, The relative importance of the edge region

In the preceding section, it had been mentioned, that under

almost all conceivable circumstances, a parabolic pressure field
is created close to the plate edge. The relevar<e of this region
to the shear layer excitation will be shown with a simple model

(see Fig. 11)
(b) _-pulsating source
| o
i . / !
plate (9-)/
‘ sz » @ y° ﬁ//’:
— 0, shear layer
| —
¢ —_——

Fig. 11 Shear layer excitation by a monopole source,
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It will be shown, what the shear layer velocity V4 Ls Ear down=
stream of the edge, if a pulsating (two-dimensional) monopole
source 1s located at different positions (a) clese to the shear
layer, (b) above the edge or (c¢) upstream of the cdge (sec
Fig.11). For the following calculation we will only consider
the amplified instability wave constituent and not the decaying
one, because this ls irrelevant at great distancos x >>ﬁo/m.WO
have from eq. (23)

Bl

(90) vy o= - A M I e_x1xv1fdx
U
° o
x »» U /w

with A, = 25 (1+1).
U
(o]

If the upper boundary of the integral in eqg. (23) is set equal
to infinity, like in eq. (90), the total influence of the exci-
tation is included. This expansion will provide the magnitude
of the instability wave downstream of the interaction region
with the monopole field., In section 2, we had already given the
induced field of a monopole field near a semi-infinite plate.
We have for Vig (see also [121);

X+T
(26) Vg = - f% 2 {r -x 3§ - ;¥ . ‘ g
1 o] o] '/;( (x_xo) +yo

2

2 2

with r = = x ° + YOZ and Q being the source strength @ = @ ¢ +°f,

o
The last term of eq. (26) can be split into two parts

X+

o .Ml T
o (x-x_)2-y_? 2 [;—z ' X-7 ]
o) o o Q
with
Llx _+x) e +x )
) = 7= - P I~ L A N o_9
{(92) zy = xo+iyo, 2y = X, iyO;‘T =1+ ¥, T 1 Yg
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n.ﬁm = - e

we are left with integrals of the type

L)

-A1%
(93) J e Pax . 1 o, erfe viiq ,
VR (x+1) VT

(o]

The solution of the integral in eg. (93) can be found in tables
for Laplace transfornms or in the Handbook of Mathematical Func-
tions [31, p. 302] by Abramovitz and Stegun. We end up with the
following analytic solution *)

vaztr =X, i P -
{94) vy = ¢ eMX ) I e7%0M ersc “zZ Ay ¢+
80 -2
o o

4+ L o"ZoM erfc /:i;r;]

The solution contains X only in the instability wave term e11x,

but the coefficient governing the magnitude of these waves is

fairly complex. We will, therefore, expand the solution for two
typical cases, i.e., an excitation by a monopole source further
away from the 1lip (E%E >» 1) and an excitation directly at the

lip of the semi-infinite plate.

For the eéxcitation at large distances, we have to expand the
complex error functions for large arguments. For an arbitrary
complex argument z we have for large z [31)

2 ‘6o
(95) e erfezs L1438 (=" L 3...(2m-1)]
T2 m =1

If we take only the first term of the series expansion eq. (95)

*) This solution differs by the coefficient 1/2 from the solution
given in [12), where this coefficient had been omitted erroneously.
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we find after some internediate calculatﬂﬁsPOOR QU

4(” x [jl - 5"~—— (1~2 ~—; - 2—~ {]

Qu
(96) YV, B S
L 4UQ ¥o v’n.\

This equation can be expressed also in terms of the distance r,
between source and plate edge and in terms of the angle ¥ (see
Fig. 11). We find

g

(% cos 29+ cosﬁ)]‘

(97) vy

w /n‘ A X 1
. :...vq-..—oe'l [‘]+-..—.-—.
Uy L MTy

If we are interested in the modulus of vy only, we have

wx =
SR LR Yy , 1
{98) Jvql= — . gin? - v o= a0 {14 {cos\} += cos 2)
1 211»5.7; 2 ﬁo "3 e 2ur 2
wr
for —= »1 and x »r/
UO

The f£irst part of this equation resemples very much the excita-
tion velocity in the neighbourhosd of the plate edge

. Q 3, 1
{99} Vig 2 = sin 8 * =
1£ 21r/i'-; 2 &

<
X Xy

One would obtain the following expression

wx

5 O

(100)  |v,| = Q@ _ sin % el Yo
2/ Uo /2

for (—— >» 1)
if one calculated the excitation by the parabolic field at
the plateé edge (eq, (99)) alone. Therefore; the expression in
brackets reflects the additional interaction with the source
field further downstream of the plate edge. The deviations from
the pure interaction at the plate edge become smallif'mro/ﬁo>~1.

L R e

vy ey
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The conclusion from this is, that the parabolic field at the
plate edge dominates if the source is further away from the
edge. Now consider the situation shown in Fig. 1. In which lo~
cation (a), (b) or (c) of the source the interaction will it be
the strongest? Equation (98) will give a clear answer: at (¢),
upstream of the shear layer|

In that context an interesting question is, how far an "exteriour
excitation" can come from the turbulent shear layer downstream
of the plate edge in a real flow situation. In our model, the
pressure sources of the shear layer motion lie in the y = o
plane, Therefore, in this model, no feedback from the downstream
perturbations is possible (sin g = 0)., However, in a real
situation V2p = o is still valid outside the shear layer, The
pressure gsources are in a region of small'h, Therefore a very
weak feedback of the downstream turbulent flow is possible. This
consideration is not that nalive as it seems at the £irst glance,
bacause the equation Vzp ==2p %% . %% is also valid in three
dimensions. The source term on the right hand side might look
slightly different in a nonlinear flow situation, but the con-
cept of having linearly superposable pressure sources in the
shear layer will not break down, because the pressure is a
linear guantity in all our equations, and deviations of this
linearity will occur only if the pressure perturbation is of the
same order as the ambient gas pressure. Anyway, eq., (98) shows
clearly, why shear layers are highly seéensitive to perturbations
(such as sound) coming from upstream and not very sensitive to
perturbations having their origin downstream of the edge in the
shear layer.

Those who know recent experiments on excited jets know that an
excitation close to the lip is very efficient. The preceding
calculations did not consider this case, because it was assumed,
that mro/ﬁO » 1. Clearly, this assumption does not include the
excitation directly at the plate edge, On the other hand,
equation- (94) can be also expanded for mro/ﬁo <¢ 1, which would
include the 1lip excitation case. To do this, we use the follow-
ing expansion of erfc z for small arguments of z {see [31]):
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eyl @ 2n 22n+1

‘ 2 -z
(101)  erfc z = 1 /1?8 nz‘o13...2nﬂ

’

For small z; as in our case, we use only the first term of this
expansion, It is no difficult problem, to extend the expansion
further, but it will not provide much more insight. During the
calculation it is also useful, o replace x, by -x, to avoid
ambiguity problems with complex roots. At the end, X, is used in
the previous sense again. After some intermediate calculations

we find

Qu eMX E-XQM cos(yo)‘” 2J :i sin 2]

(102) vy = o
2U,

with A, = £ (1+1) and valid formro/ﬁo<< 1 and u”‘/L'JO»-L
¢

For very small rom/ﬁo +0 we find a very simple result

(103) | vy B

This shows, that the source assumes its highest efficiency, if
it is close to the lip, just above the shear layer. If ve compare
equations (100) and (103) in their xelative efficiency, we find

a coefficient n

‘ sin% ﬁo
(104) n = ———-——-;-—-— . ——r'—- v
Vi o 2 WLy

This shows, however, that the excitation via the interaction

from upstream (sin % = 1) and at a distance not too far away

is not much worse than the excitation just at the lip.

There is some interesting physics hidden in eq. (102). Assume
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lyghql>+ o and &Y;ﬁ? sin % vo. Then we have a source just above
the shear layer at small, say, posltlve xQ. The source acts then
as o §=function with the strength Q/2 on the sghear layer, Q/2 is
jupt the £lux which penetrates through the sheay layer plane,
with this in mind we reconsider the general solution for the
ghear layer motion, eg. (23) *)

x x
{23) vy ow o= at1¥ [ o~ M¥ vygdx + - a2 f a™te¥ vigd
Ys ) Yo o

for Vg We hava here
(108)  vyp == g §lx=x,) aty = +0

with-og. (23) wo have the complete seluklon at once

(106) vy ® B2 {“X‘x ¢« o"M¥o - gl . e"xgxé]
20, -

2 R AT

1f both influences, the “local" §-function influence and anothexr
tarm of the parabolic type ave in competition, onhe seces, that
tha "local" influence can bocoma weak in compavison ko the para=-
bolie type influenceo. In particular, if the source is further
away from the plate edge; the parabolic influence at the edge
has piled up to such high magnitudes by the exponential amplifi-
eation so that a local influonce (see position (a) in Fig, 11)
wonld only contribute a term of the order

Qi Ay (x=x)
{107) Vi local * o ol o’ ,
Mo

Tor the pure “lecal" excitation with 1A1xcllvo wa have, on the
other hand, a simple analytic solution which might be utilized
if the free shoar layer is really excited just at the plate edge

*) with G, & G, = ©

BRI e
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Algo the u~distribution in the whole amblent field can be written
in closed form, It contains exponential integrals of complex
argument for the induced fleld of the instability waves truncated

at x = p (v1 = p for x <o) and of the induced field of the source,

The details can be seen in appendix ¢*) where just this calcula~-
tion is given in another context. For distances further down=
stkream, we have a ultya-simple equation for the magnitude of the
instability waves, where fv | = |v,| = lu1l = Ju,l. We £ind

wR

i
(109) fu,| = Qg, e ° at y = -o
[¢]

with the usual decay in r»y direction

wix=1yl)
{110) luy 51 = Qo o Up x s /e
] 2U° y :{a [o} .

Q is the volume flux {say, in m2/s) of the excitation source. In
a real situation with an arrangement like the one shown below -
(see Fig. 12) we suspect, that more than half of the volume flux
Q penetrates through the y = o plane, Therefore, the efficiency
might be even slightly higher than suggested by eq. (110).

*) For‘numerical computations in the potential f£ield outside the

shear layer, it is also recommended, to use the calculations in
[36).
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shear layer
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—— U,
s X :
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Fig. 12 real edge excitation configuration.

5, Two streams with diffarent densities

As we will see, there is no simple transformation to convert the
rasults of the case with a single stream (51 = o for y > o;

52 = ﬁo for y € 0y py = p,) to the case with two streams (51+o;
Uyfo; pytp,) . Nevertheless, it will turn out that the results

of this section will be still very similar to those of section 2.
However, the mathematics is much more tedious. Since it would
not provide any specific insight to show all details of the
calculations, we will provide here only the basic ideas and
steps.

We start, as in section 2, with the condition of equal displace-
ment h at both sides of the shear layer

_3h g oh
Vi ® 3¢ * U oa

(111) o of

‘ ) R B L1
Va T et U2 3%

By using h “e-imt and by eliminating h from equation (111) we
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his oguation holds for all x and le also valid for py  py.
ginea Lt 1s a worely kinematic condition. o crante a second
condition for vy and vy we rely agaln on a congideration of the
prossure field. Sinco tho density jump is assumed to occour in
the shoar layer as well ag the mean veloclty jump, we obtain
again V2p ® 0 outside the shear layer and with oxception of tha
location of tho axterxiour mourca. Therefore, we can again use
tha second Euler equation (2)

. vy 0Py
"y (==:Lmv,l Uy 5 e WV

(113) 7 p
Py (=Llavy + Ug 3}5) L) 3;3

Tha procedure to gplit tho pressure fleld into two constituents, *
the forcing terms (index "£") and the sheax layer terms (index
Wg') 1s still possible. Tha "£" progsure gradioent is continuous
through tha shean layer and the "s" prossure gradient da sym-
motrie with raspoct to the shear layer. We have

WV, o _ oV
Py (=dovye b UpmsgS) mopy (=huvye + Up=ggs)

114)
( - V!s

ny (-Lmvw 3 U1 25)

) = ‘nz( JNV25 + 02 7%

wharao Vyom Vg b V1s; Vo R Vot Vyeo Bquation (93) can be con-
dangad into

U, av U, v G, av
91 o 2 2 “Vag
(1145) ™ vy + & — ) * vy o+ i S " 2lvge b #TT )
56

v -

FeTREen




ORIGINAL PAGE IS
OF POOR QUALITY

since it is more convenient to calculate the forcing pressure
field (which is still parabolic around the semi-infinite plate),
we prafer to axpress the right hand side of eq. (115) in terms
of the prewsure £ierld, We have from the second Euler equation

U, av p
L g Wae 4 PPy
(116) Vop + A = = = T 5y

where the pressure gradient in y~direction is taken at y = o.
We will abbreviate in the following calculations

p { n
oo o_o2i "Pag Ty, )
AR R o Al 5. B =g
Consequently, we can grite eq. (94)
U, v g, av
1_._1. ...2.,.—2.:'
(118) mv1 + 1 - 9% ) + vy + 4 0 5w P

with the right hand side being known and proportional to 1/v/X.
Equations (118) and (112) can be used to provide a single non-
homogeneous differential equation for vy

- a2 2, -
230 dv i} d%v 1oU .
: L2 et 2 (1452 leppr—2 SR
(119) (1+R) v+ = (1+aB) o mz(1+o B)dx2 pt— < |°

The homogeneous solutions (Helmholtz solutions) are

(120) <P1 = Cze’\1x ; 302 = Cze)\zx

with

(121) Ay g = - 12 E(Haﬁ);m—a) /E_J .
' ] 1+0“B .
2
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Tha completa golution is

X X
(122} v,= r- L) “) a” V1¥Rgdxma'2® | o™ 2%gax
1 2 ;\(%m ; 5

G1 02

where "RS" stands for tho pight hand slde of ey, (119), With the
same arguments as thoso glven dn appendix 2 foro= o and ® = 1
we can sot G, = Gy = 0. We can furthor evaluate eq, (132)

X X

¥ J o™ M¥ax = U=fadii) o ta¥ { \?\pihl

{(123) v, ms—‘;‘r!vzww v mms

(| Loy ﬁ)
"U?‘y R TheRp b

Foxr o parabolic pressure field avound the semi~infinite plate we
have £rom og. (33) in sectlion 2.1.

, i, M 2, P
(124)  poeo- Rk S BE L B 002
ta M2 X

Congoguently, we can again rolate all guantities in our flow
fiald to the exeitation, charactorizoed by the pregsure differeonce
Apyg at hoth sides of the plate at the distance 1 from the plate
adge. Thoreofore, woe can fntroduce dimensionloss guantiticos simi-
lar to those uwsed in gection 2

e

5 vy ﬂ2~muzl R Voriy mU .
F K T RTINS T AR O D ’ ;. L m»«.‘mm
1 APyq 2 APyy
{1258} ¢ % 5 ® 12 li(1*uﬂ)+ (1=g)v§
! Tre®g b -
. T, P
=28, 5. :i y R = 74
] U 2 ‘ 0 2 } 2 . ] .

In the expression for A the positive sign in the brackets cor=
to N1, the nognbtive sign to A?, respactively. With
thaso abbroviations wa obtain the final rosult for 61, aftor

responds

58

N

3. -



+ e

ORIGINAL PAGE IS
tntegration of ogq. (12) OF POOR QUALITY

4 . . F . . . o - L R B S o Y
! [ BN £ Twdar i VaR - i
i (20) & wyo ot S S e M¥arg oy xe dedar iy Nopryfiox :
| : e (tea™y) VA, :
;
P PIx s 0y y B o) ! '
! : ’
N To obtain éﬁ wo ean elthor derive a sindlay eguation ag og. {119) ;
from the sawe initial egquations (112) and (118) w2 utilise equ, :
(112) and (118) togother with eq. (124) to obtain vy From vl.

We ol up with H

i , .

L = Flw 1 ‘ i
(127) 1 vyma e Mg LR A R AN

T e ®R) u\l ™

f (X > 0, y = =)

Hegidos the diffovences botweon v1 and va which resemblo those
in seetion 2, wo have o differvent coplficiont (vi) in the deno-
minator in Front of the brackots, Mhig leads te difforont velo-
eitivg of the inatabhility waves on both sides of the shear layoe.
Nevortheless, the ddgplacement b at both sides of the shear
laywey ig the same, as postulated 1ln the boginning.

Before we determine the corresponding u=digtributions we will
digenss the bobaviowr of é] and v, For amall and large K. For
anall § the oxpansion of eg, (126) and (137) yield

‘ o R
4 X \ - ‘L{x e o Ly e m—,.lew -y
(128) i T b - S R

(& » o)
. FETE
in both eages the envelope of the dlsplacoment h is h « x“a,
cangeguently the mean flow leaves the teailing odge of the plate
Ctangentlally, which is equivalent to the Rutta condition. For
ﬁ1 o and «w 20 highoy order terms in the oxpansion for 91.
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For laxge X we obtain for ¥, and v,

g%
(120) @y = e—mdiTO o d L2
4y B(‘l--:Lm»”ﬁ)x"i,t 4vR
(X + w)
2 ?{1.‘{
, OO 4.1 MR RNT U S
(13Q) vy ® " TI R

i (’]-ﬁi\\‘\ﬁ{() \\1 4 l§
(ﬁ > m) N

We again have a Holwholtz=type solution (first. torms of ogs. (129)
and {130))in the for f£iald and anothey contrlibution due to the
excitation belng prowortional to 1/vX. The interesting thing is,
that nature takes here an average value of the donsities repre-
santed by tho cocfficlent 2/1+R. lowever,the Helmholtz-typo solu-
tions are difforent in their magnitude by thoe ceoefficient
#§=ﬁﬁq7ﬁz in the different flow regimes.

The u=velocities are caleulated in exaectly the same way as the
v=velocitios above,with an appreach identieal to that used in
gsection 1, Wae end up with

(131) IR Vi [1+i\nf? ei]& n )-i(frfl}‘ Qiz.‘}]
T Tty LYY ‘T2

(X >0} y = +0)

"

(132) |, = - iv’?f“z E*ift:jﬁ ESE RN ES Ty e Rl
g 4(1+0°R) vy ;’\i2 i
(x » 0} y = -0)

(133) ﬁ - \,‘:; 5 [‘+j.(‘\’Eexvlﬁerfc';i"rﬁ_ J—Meiakcxvaw\zﬁ
Vet LORT Ky

{x € 0}y = +q)

Ve MiadT V4% . 1eda T Tk -
(134) | Qpem —212— E*i:_“h\*erfc.‘x1>~"-»l--i-9-§ile\2"crfcv’§'5k]
IR E ﬁ) i-’i»l \ri*z‘
(x < o3 y = =0)
60
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For large % only the amplified Helmholtz-solutions survive (terms
with A, in egs (131) and (137)).The modulus of th7:2 amplified

waves 1s for x »»1

(135) 1‘311 = /Ee"f“"o)x )
4/§ - VTI+8) (T+o%BY
X 51
and
(136) layl= v - |0,
oo ’

If we return to dimensional quantities, we have for eq. (135)

R ‘/——5—1- (1- -U——) - 22
p12 ) 0y D2

poYul,T

6. Theoretical considerations related to experiments

{137) {u1l =

Parallel to this theoretical investigation also experiments were
carried out. On these experiments we will report later., During
the experiments a number of typical problems arose which can be
settled theoretically rather than experimentally.

X point of particular interest is, that the phase speed of the
instability waves in the experiments was lower than that of our
theoretical model. Phase speed and wave number are inversely
proportional to each other. Since the wave number is coupled to
the exponential decay rate (of the fluctuations) perpendicular
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to the shear layer, this has a significant influence on the in-
duced field (see ®q. (68) in section 2,2.). Conditions which can
change the phase speed are:"overshoot" of the mean velocity
profile (section 6.1.), finite shear layer thickness and éntrain-
ment effects (section 6.2.). Finally, we have to considexr the
effects of additlonal walls in a test facility. We will consider
the case of a shear layer in the symmetry plane of a rectangular
channel (section 6.3.).

6.1, "Overshoot" of the mean velocity profile .

ORIGINAL PAGE 1S

OR QUALITY
settling chamber OF PO

mean velocity
profile

UW)

screen nozzle

Fig. 13 Interaction between nozzle and screen,

In Fig. 13 it can be seen how an "overshoot" of the mean veloci-
ty profile can be (inadvertedly) génerated. A flow penetrates
through ‘a screen of high resistance at (almost) constant speed,

The following coniraction in a nozzle leads to different accele- -

ration of the different streamlines. In particular, the regions
closer to the wall are accelerated more than the flow in the
center of the nozzle, This creates the "overshoot" of the mean
velocity profile. Since it occurs often in experiments it is
worth investigating its influence with a simple theoretical
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model. As we will see, the deviations due to this effect cannot
be noeglected, E
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0

—
0

Fig. 14 Mean flow with gradient and shear layer,

The model which we are going to consider can be seepn in Fig. 14.

Since we cannot use our pressure gradilent considerations as in
the preceding sccetion we will proceed with a slightly different
approach, In addition,we will restriet ourselves to the dis-
cussion of conventional spatial instabllity waves extended from

¥ = =o o X = +w,; The aim ls to find how the wave number and the

anplification rate will change if we introduce a mean flow gra-
dient (see Fig. 14).

We start with the same basic equations @s in section 2., i.e.,
the linearized Buler equations (1) and (2) and the continuity
equation (3). If we subtract the x-derivative of (2) from the
y~derivative of (1) we can eliminate the pressure and obtain

. 2=
u _ dv =0 au o av au
(13?) 1w (ny 3;) + Usp (3§ 3;) + v;;ﬁ = 0

This is what remains from the inviscid vorticity transport
equation if we consider a linearized fluid motion which is
harmonic in time (=« e“imt) and takes place in a parallel mean
flow with velocity ﬁ(y). If we assume a potential flow with

u = ap/ax and v = 24/5y we have from eg. (138)
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This means that we can use a potential f£low approach in regions
wheuaazﬁ/ayz = o, This condition is fulfilled outside the shear
layer., At hoth sides of the shear layer wa have to mateh the
displacement h and the pressure p, as before. We use the follow-
ing ansatz for the stability waves

for y > o3 61 =0 b= aeko (x+iy)
{140) -
for y < o: 62 = GQ + g% SRR Beiu(x—iy) .

Since ¢ is a functlon of x+ly,the continuity eguation written in
terms of the potential, i.e., V2¢ = o is satisfied. The potentials
fulfill also the boundary conditions at y =+w; because the in-
duced velocities bhecome zero there. n is the complex wave number
defined as usual in stability theoxy. A and B are magnitudes of
the potentials which are still arbitrary at this stage of the
caleculations,

The kinematle condition of equal displacement h at both sides of
the shear layer is, as in section 2:

i av
(141) Vo ® vy I

Using eq. (140) we obtain
uﬁo
(142) B =-h (1= —).

The second condition is; that the pressures or the pressure gra-
dients should be equal at both sides of the shear layer. For
y > o we haye from the first Euler equation (1)}:

ap1 _
(143) -a—x— = ipwu1 -
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and for y < o we obtain from the same eguation (1)

392 - au2 ab
(144) TR —p(--imu2 + Uo et ay J v2) ,

If equations (143) and (144) are set equal and with eq. (140) we
havs

o
-1,
(148) A =B (1- ==+ o &

Equations (142) and (145) provide a quadratic equation for o with
the solutions

(146) w5 = ﬁﬁ[_H N g%qx, ‘1 1/ (dU/d! ]
[o}

If we compare this %o cdr previous nomenclature, using A1'2=1n1'2
we find

- - 2

In comparison to the sitnation, which we had before with

dl/dy = o, we have now an increased wave number(imaginary part

of eq. (147));which will cause a more rapid decay of the induced
field in the y-direction. The deviations can be, for a typical
situation in an experiment, in the order of 10-20 %. On the other
hand, the influence on the amplification rate (real part of eq.
{(147)) is much weaker and will be in the order of typically

1-28%.

6.2. Entrainment and finite shear layer thickness effects

If one considers the effect of entrainment alone for an infini-
tesimally thin shear layer,one can extract the relevant informa-
tions from section 3, equation (121). For constant density, the

wave number is

(148) Im (A) = & -
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For small ¢ = 51/52, say o = 0,1, we have a wave number increased
by ¥ 9 %. This enhances also the exponential decay rate in the
y-direction by 9 %.

As expected, the downstream growth rate decreases with increasing
o. We have for the growth rate

1
(149)  Re (z) = &+ L 2

For, say, o = 0.1 we have a growth rate decreased by s 11 &,
These considerations are valid for a "thin" shear layer.

We cannot really neglect, however, the effect of finite shear
layer thickness. A typical parameter of the stability analysis
of shear layers of finite thickness is the Strouhal number
Se=0'f/52 where f is the frequency and 0 is the momentum thick-
ness. The momentum thickness is defined as

+ o8

(150) 6 = j L - Lyay,
b Uy

For a typical shear layer profile, which might be approximated
witk good accuracy by a tanh-profile we have the situation dis~

played in Fig. 15

—_— Ct

; \
-h—l»9--44

Fig. 15 Shear layer profile,
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The ampliflication rate and the phase speed, according to Michal~
ke [6) are given in Fig. 16

As we see from Fig, 16, the deviations in the wave number are
much more significant for increasing 5y {and thus deviating from
the "thin" shear approach) than for the amplification rate.
Therefore, the finite thickness causes an increasing wave number
and enhances again the decay of the induced field in the y-di-
rection. This influence can be quantified with the numerical
data available in the literature [6, 37}, Also the combined in-
fluence of entrainment and finite shear layer can be extracted
from [37}, where calculations are given for a shear layer of
finite thickness between two streams of different velocity 61

6.3, chgnngl effects

In an experiment, one cannot offer a facility with infinitely
extended streams at both sides of a shear layer. Therefore, we
will have to consider effects due to the finite dimensions of
the two streams. The experimental setup which can be modeled
with the least complication is that of a free shear layer in the
symmetry line of a two-dimensional channel. At the rigid walls
the velocities and pressure gradients normal to the surface have
to be zero. Thus, the boundary conditions at both sides of the
shear layer are the same. Consequently, our basic approach which
takes advantage of splitting the pressure field into a symmetric
and an antisymmetric part, is still valid. This has been shown
already in a different, more involved way in [12]). Therefore,
the general solutions for the v=velocity component are still
valid (egs.(23) and (123)). However, we will have to discuss the
deviations in the actual velocities and pressures which will

occur in
(i) the excitation field (v-velocities)

(i1} the resulting shear layer motion (v-velocities)

(1ii) the induced u-velocities
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Effects on the excitation field

6.3.1%,

There is no doubt, that the structure of the excitation field
will be still parabolic if we are close enough to the edge of

the semi~-infinite plate, Therefore, theie will be particular
conditions when the solutions calculated in the preceding section
are still valid, The restrictions of these conditions will be
discussed below. We will calculate the fluctuating flow (without
shear layer and mean flow) in a simplified test section, which

can be seen in Fig. 17,left hand side.

z, - plane Zp -’plcm

ogan ends of

treaml reonst
sr mlnu v channel (left)

upper wall ;
-
Vo'zlt , (3]
3 j:z::igjé;
Ua)
%‘0
~—0 ®
lower ‘”°“ unper wall splitter plote  Lower wall
unfolded

za-plara (physical) zy-plane (image)

Fig. 17 Simplified test section and its conformal image.

The test section is simplified in so far as the nozzle ;.1 the
settling chamber on the left hand side have not been considered,
The excitation is assumed to be generated at great distance on
the left hand side inside the bisected channel by two sources of

opposite sign*). This would be a good model for the situation

Ve

*} A similar procedure as the one described here could be uged
if the source were in the lower and upper wall, created physical-

ly by vibrating plates.
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with sound excitation by loudspeakers connected to two settling
chambers upstream of the bisected channel.

If the sound wavelength is much greater (say, at least ten times)
than a typical dimension of the problem, (e.g., the channel width),
one can describe the alternating flow in the vicinity of the
plate end by incompressible flow theory. In that case, we can
use the very powerful tool of conformal mapping to solve the
problem completely, For configurations like the one shown in
Fig. 17, one can use the Schwartz-Christoffel~transformation to
map the flow in the interiour of the channel into the flow in a
half-plane (Fig. 17, right hand side). Our channel and splitter
plate walls will be stretched into the straight line Yp = ©

(see Fig. 17). The open ends at the left hand side of the bi-
sected channel will be mapped into the two points at Xy = +1 and
Xy, = -1 on the xb-axis. If we install a positive source at xb=1
and a negative source at x,= -1 we have already the image of the
flow field in the zb-plane.

The mapping function relating the 2, and zy planes can be found
in Kober's dictionary of conformal representations [38]. We have

(51) 5 = Vise?a

with z_ = X, * iya (physical plane) and Zy = Xy + iyb (image
plane). This mapping function corresponds to the specific dimen-
sions given in Fig. 17. We introduce the complex potential

q3= ¢ + 1iv where the potential function ¢ and the stream function y
are defined as usual in plane flow problems. The complex potential
of a source at the origin is ﬂ] = 1ln 2z, Thus we have for the
potential of the positive and negative source in the zb-plane,

located at xb = +1

(152) Eb= A |:1n (zy-=1) - 1n (zb+1):l

where A is a constant (proportional to the strength of the
sources). With the transformation equation (151) we have in the
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A [}n ( V1+eza-1) = in ( V1*eza*1i] .

za-plane

(153) [

"

We are first interested in the v-velocity (in our previous nomen-
clature v1f) at the center line of the channel. The complex velo-
city is

(154) %gl =u = iv .

a
Taking the derivative of eq. (153) we obtain

(155) -y = —B

The center line of the channel is located at y_, = w; there we

have z, = X, + i7. With ei" = =1 we obtain

(156) u-iv=—2— 4t the center line {(C.L.) .
Y1-e*a

For x_, <o this is purely real, which means that v = o there.
For X, * - we have Uo g, + u_, the homogeneous velocity at
layge negative distances in the bisected charinel., Therefore is
A = u_. Equation (156) becomes purely imaginary {and u = o at
the center line) for X, > o.

Before we write down our equations in real physical guantities
such as u_, we have to relate x als¢ to the only real physical
dimension of the problem, i.e., the channel half-width 4 (see
Pig., 17). Therefore, we will replape X5 by a dimenaionless quan-
tity, i.e., §éﬂ. The coefficient 7 otcurs, because in the initial
coordinate system the channel width had this value. We end up
withk “he following equations for the wvelocities at the center
line y = #o0:
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x €0 X >0
u
(157) v=0 v = =
Xxn
edﬂ
- ,
(158) u=f—= u=o
Xxn
1-e4

For small positive X we have

(159) vosu, ° Jg s 1//§ .

This is the expected 1//§ behaviour of v. On the other hand, it
can be seen from eqs. (157), that the deviations from this
behaviour can become significant.
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Fig. 18 v-velocity distribution (excitation).
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Fig.18 shows a log-log plot of eq. (157) as well as some own
experimental data*). As we see, the theory works quite well. A
second gquestion of major importance is how far the parabolic
pressure field is valid upstream of the plate edge (see Fig. 19).

In particular, we are interested in Ap12//T as a reference

quantity.

zry%%ﬁafufaéwm/d
NEREEN .

|l|,;,,./////pgonst

sl T s [

| ] I g :

LN T

IREE

JERRREY L~

ERERRE \ "\ parabolic

l‘ll‘\\\\\\\ \ region

U T O O O A WA \ ..

IPTT7777 7727777777077l 7770 re 7

Fig. 19 Reference pressure locations in the test section

Since we can expect a parabolic pressure field only in the near
vicinity of the plate edge, we would run into difficulties with
measurements of ApjzﬂT for the following reasons: The pressure
difference of the excitation field Ap12 becomes small at small
distances 1 from the edge. This leads to poor measurement
accuracy. Close to the 1lip the signals from the (symmetric)
pressure field induced by the sheéar layer dominate and determine
the setting of the measurement system. However, for the measure-
ment of the relatively low magnitudes of the pressure difference,
the measurement system is then poorly adjusted and the measure-
ments bécome unsatisfactory. The situation would improve con-

*) The points correspond to pressure gradient measurements
(ap/dy) taken ‘with a probe microphone of =1.5 mm resolution,in
air at room temperature (22°C) and at a frequency of 200 Hz;

d was 75 mm.
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siderably, if we could take data of Ap (still at both sides of
the splitter plate) further upstream where the pressure levels

of the excitation are higher and the induced (symmetric) pressure
level of the shear layer would be lower. Consequently, it would
be desirable to determine Ap12//T, which refers to the parabolic
field near the lip, out of a measurement Ap further upstream. We
will achieve this with the same method of conformal mapping which
we have used before, As we have discussed in section 2.1., the
pressure is proportional to the potential for a fluctuating flow
field with no mean flow. In analogy to eq. {(153) we can set

ey -
(160) p = BeRe {1ln( Y1+e2a-1) - In( 41+e%a+1))
where B is a constant which we will determine later. We restrict

ourselves to the center line of the channel with Yqa =T and we
replace later x by 7mx/d, as before. We {ind

Vi-e” -1)}

1-e"*/ %

(161) P=B"' Re{ln (

The denominator of the argument of the logarithm will become
negative. Since 1n (-1) = #in., this negative sign will only con-
tribute  to the imaginary part of p which we do not consider here.
We have therefore as the real part of p

1n (11" «/1-e“";a,
1+ V179

(162) p=B"

For small x we obtain

(163) p ==2B /n/d * /=x

X=+o0 .,

This is the expected parabolic pressure field near the plate
edge (see also eqg. (33) in section 2.1.). On the other hand we
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(164) ﬁgl‘z‘ = '2"8‘__' '
V1 /=%

because the pressure difference Ap at both sides of the semi-in-
finite plate has double the value of the pressure at one side
alone. Using equations (163) and (164), we can determine the
constant B:

(165) B:-%‘/ﬂ_.fﬁl.
L v

Using Ap = 2p, equations (162),; (165) and replacing =-x by L (see
Fig. 19) we obtain as a final result

(166) P12 _Ap ., 2/7
Vi /a (1+/ 1_e-nL/d
in (————————)

This provides the desired relation between the pressure difference
Ap - at both sides of the splitter plate, measured at an arbitrary
distance L from the plate end, the channel width d and the
reference quantity Ap12//i (see also Fig. 19). Eq. (166) can be
expanded also for L »> d which gives )

Ap
(167) 12 .. /5.
V1
at (L > 4d).
One should keep in mind, however, that L should be much smaller
than the acoustic wavelength, which restricts the applicability

of eq. {167). It is, therefore, more likely that eq. (166) will
be applied in an experiment.
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6.3,2. Effects on the resulting shear layer motion

We restrict our considerations to the single stream case where
we have a mean flow Bo in the lower half of our channel. The
general solution for v is still valid, as mentioned above

X
(23) vo=- A gM¥ e”MEy ax + L gr2¥ | g7R2¥y ax
1 0 1£ g 1£
o 5 o

with A1'2 = % (i#1). For the vertical excitation velocity v,
we have to v use now eq. (157)
- u,
(157) Vig = )
£
8(3-1

We will focus our interest on simple results downstream of the
interaction region. In this situation we can neglect the second
term of our general solution (eq. (23)), because it represents

a rapidly decaying wave. As we know from our previous results,
the interaction region is limited to a distance of less than one
wavelength of the instability waves. Since Vig is now decaying
even more rapidly, we can replace the upper limit of the integral
in eq. (23) by infinity. This will provide completely reliable

results for 2% » 1. So we are left with
Y%
~Aq¥
(168) V1 = =U LB, e}‘1x'{_e—1_. dx
w VS
o d
wx e
for (== > 1).
Yo
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The integral in this equation can be rewritten in the following
form
w o 17T )
X e~A1x e-(A1+ §E)x
(169) I, = j ——e (% B j — dx
o]

= -
o / e d_1 d)

This latter integral can be found between the Laplace transforms
in [39]. We obtain

k3
(1-e *

>
[oN

- 1 17
(170) I, =5 Bllz + =), 3),

where B (x,y) is the Beta function (or the Eulerian Integral of
the first kind), defined as
1

(171) B{x,y) = J X -y Y Tae

o

The function B(x,y) is related to the I' function

(172) B(x,y) = Bly,x) = iz} 1ry)
P Ax+y)

The I' function (or the Eulerian Integral of the second kind) is .

defined as
o3

(173) () =j et % a with Re(z) > o,
(o)

Using egs. (170), (172) and ©(3) = /7 we £ind
)

1
Mg + —)
(174) v, = -u 2w

-]

&

o
sl
3

r(1 o+ )

Before we proceed with the discussion the I functions, we have
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to establish a relation between u_ and our reference guantity
Ap12//—. We have to expand eq. (157) for small x to obtain the
parabolic flow region of the excitation, to which the reference

quantity Ap12//i belongs. We £ind

(175) Vig = um¢§¥

X+ 0

1. -,

o g A

on the other hand we had (eq. (36))
R S
dow

1
(176) v R
&

Comparing (175) and (176), we can replace u_ in (174)

a e
AP Pl + ~—)
(177) vy = —tR ok B o Mx 2 7
I U A4

pyU ul o T ; )

or, if we use a dimensionless 61, as in section 2

! X1d)
Mg + —— i
(178) T Y- L «

Uo A1d

- r{1 + -
285 9 :
3] kS

[o]

This is a new analytic solution for the excited instability

waves in a channel at ¥§;>> 1. The I function is tabulated for

complex arguments in [g?]. However, it is difficult to see what
eq. {(178) really means. In particular, we are interested to cee
what the errors are if we use the equations for a free shear
layer without walls (section 2) in the present situation in a
channel with walls. We want to see by a gquantitative calculation
under which conditions the previous approach will fail. It makes
sense, therefore, to expand eq. (178) for large values of A1d/n.
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We will expect then, for decreasing values of A1d/n (which is
proportional to the channel width divided by the wavelength of
the instability waves) an increasing deviation from the previous

approach,

Fractions of the I function can be expanded for large arguments
in the following way [31]

Ilz+a) _ ,a-b (., (a=b) latb=1) , 5(,~2),

(79 tzepy - 2

Using this expansion, we end up with:

= Vv n . _0 Aqx
{180) vy = 4 W (1 8TIT) -3 e 1
for X 55 1 anda 24 > 1,
o, T,

With exception of the term in brackets, which quantifies the
deviation caused by the channel walls, we have obtained the same
result as in section 2 (eq. (49) , first term of the instability
waves). We are also interested in the modulus of Vi which is

/T T
(181) lv1| == (1= o =3

for mx/ﬁ >> 1 and wd/ﬁ >»> 1, as before. The abbreviations in
eq. (181) are the same as in section 2, i.e., X = wx/U and

61 = v pJ;E—ﬂ/Ap12 Equation (181) is simple enough for a
straightforward error analysis. Consider-a simple example:

d =75 mm, w = 27 - 82 Hz, ﬁo = 12 m/s. We end up with a value
for |61} being about 6 % lower than predicted for a free shear
layer without channel walls. This deviation reflects the in-
fluence n»f the limited size of the parabolic excitation region
around the end of the semi-infinite plate.
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It would be quite complicated to calculate the whole u~velocity

field. Therefore, we will restrict ourselves to éﬁ > 1 where we

have to consider basically deviations from the Yo field gomputed

in section 2. It is quite obvious, that close to the sdge of the
semi=infinite plate the flow field will be the same as in

section 2, If we consider ithe fileld upstream of the edge, it is
reasonable to assume that the field is dominated by the excita~

tion. Consequently, at sufficient distance upstream of the edge

we will obtain u = tu, at both sides of the plate. In the inter-
mediate range upstream of the edge, but closer to the edge, the :
field becomes more complicated. For the upper region with no !
flow, the u-velogity field can be derived from the known pressure
field in a straight forward way, using the first Buler equation.
Wwith other wordg, u ls proportional to the x-derivative of the
pressure. In the lower half of the flow field, the first Euler 5
equation produces a first order differential equation for u,
which has to be solved. The same situation arises, by the way,
also for the parabolic flow field in section 2, with the differ-
ence, that the resulting functions (error functions) are there
easlier to deal with.

P

P

The situation far downstream from the plate edge becomes much
simpler, Here, the amplified instability wave dominates the ve-
locity field. The effect of the channel walls can be taken into
account by a simple imaging technigue (see Fig, 20)

Uind S
~
.._5_\ e N\

—=0, 4 \ Uz

T

Wb e roryroryrrsrynasoaees TAT 777772777 =

channel wall \

— . wandi LUZA
. e 1:\
SN’

mirror image

/

fig. 20 Imaging technique to model the channel wall,
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The decay of the induced velocities in the ~y-direction is pro-
portional to e"lglﬂ. We know then, that the u,-velocity at the
ghear layer willuo be increased by an amount (1 + e"Egéy. Using
the fact, that at 2% > 1 we have [vel = Jv,| = |u1[~UO fu,| for
a shear layer Uo without walls, we obtain for the situation
in the channel

. 2uwd
(182)  |u,] = |yl + (1ve Vo)
(22 5 1),
UO

To give a numerical example, we take the same data as before,
namely: 4 = 75 mm, w = 2x * 82 Hz, 50 = 12 m/s, We £ind a very
weak influence of the wall of 0,16 %. This influence will become
aven weaker because the decay rate in y~direction will become
highetr in a real experimental situation, as discussed in
sections 6.1. and 6.2. We end up with the conglusion in this
section, that the enhancing influence of dirxect reflection on
the u-velocity at the wall is usually much smaller than the more
indirect decreasing influence via the change of the excitation
field.

7. Speculations

One may contemplate about the question on how far the present
approach can be stretched to really include the excitation of

a shear layer with small, but finite thickness. In section 5

{two stream case) we have considered an example where the ampli-
fication rate and the wave number can depend, albeit differently,
on exteriour parameters like ¢ = ﬁ1/62 and g = p1/p2. It is
tempting to write an equation like eq. (119) where the coeffi-
cients on the left hand side are made up from amplification

rates and wave numbers obtained from numerical results of the
stability theory of infinitely extended shear flows, such as

[6] and [37]. It is not c¢lear, whether or not this idea leads

to a viable and correct analytic¢ approach. However, it would be
interesting to see how far the concept can be generalized, that
the resulting excited instability wave is a finite Laplace trans-
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form (such as eqs. (37)and (123))of an exteriour excitation
field, In addition, extensions of such an approach to other
configurations like jaets or even to the excitation of instability
waves on a flat plate might be conceivable.

Ancther rélevant question is, how far free stream turbulence

(or other typaes of turbulénce) and its wavy predecessors which
we investigate here, ara "natural" or dependent on exteriour
forecing, We might consider whether or not an influence from the
downstream nonlinear development might provide a sufficlent or
even dominant feedback. Our pressure source approach is still
ugseful to provide a feeling for this situation. The pressure
linearization is the last to break down with increasing fluotua-
tion magnitude and it works nicely f£or subsonic flows, The
effect of the nonlinear flow evolution on the preéssure sources
is this: During the vortex roll-up we have a limitation to the
magnitude of the pressure sources, The reaction to the trailing
edge is necessarily very'small", because the pressure sources
are still only located in the shear layer (outside the shear
layer we still have V2p x 0), L.e.; in the symmetry plane and

we get a situation close to creating a stagnation point of the
induced f£low at the trailing edge (see also section 4). The
feedback is therefore strongly dependent upon the local displace-
ments of the shear layer. Therefore, a feedback is likely to be
a nonlinear effect, and it i§ very weak. Thus, it can be easily
dominated by sound waves or convected vorticity, as shown in
numercis experiments., Nevertheless, we cannot completely reject
this mechanism,becanse the upstréam influence decreases in a non-
exponential manner in the upstream direction whereas the down-
stream amplification of the instability waves is exponential.
Under these circumstances {and with an unstable shear layér),
there is no way to keep the £low laminar even if there is only
Brownean motion as an initial excitation somewhere.

There is, however, another way in which feedback may come into
play.

*) The situation changes dramatically if a rigid body, like an
additional wedge, 1s introduced into the flow field. Then, an
asymmetric pressure field is created which has a strong influence
on the trailing edge. '
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All our previous considerations were based on symmetiric boundary
conditions. To provide a feeling for slightly asxmm@bxic con=
ditions we consider the geometrically symmetric configuration of
section 6, where we excited a shear layer in the center line of :
a channel. If the conditions upstream of the splitter plate are ;
not symmetrical (caused, say, by a differencé in the agoustic
impedance in both legs of the bisected channel), a pressure
sourcae in the shear layer creates an asymmetric pressure field
in the channel and hence a parabolic local field at the edge of K.
the splitter plate, In this way, in particular if there is

resonance in one leg of the bisected channel, a linear feedback

is conceivable.

D RN P

B. Conclusions and survey of essential results

The acoustic exeitation of a free shear layer shed from a semi-
infinite plate has been studied, The shear layer is assumed to
be infinitesimally thin, The present consideration is limited to
a low Mach number mean flow and to the situation where all typi-
cal dimensions of the problem are small compared to tha acoustic
wavelength, This leads to an incompressible flow approach
relevant to the internction region near the end of the plate.
The basic contributions and f£indings of this paper -are listed
below,

1)  The basic shear layer - sound interaction model is out-
lined. The solutions are obtained by splitting the pressure
field into two constituents:

(a) the forcing pressure field of the exteriour excitation
and

{b) the pressure field which is radiated by the shear layer
itself,

The consideration of the pressure gradients perpendicular
to the shear layer leads to an equation for the v-velocity
components v, and Vs at both sides of the shear layer. A
second equation for both components is derived from the
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2)

3)

4)

i - AR B

condition, that the displacement h on both sides of the
shear layer should be equal. Both equations can be con-
densed into one nonhomogeneous differential equation for
vee A general solution for this equation is derived. For

a parabolic excitation pressure field around the plate,
which is the most common case, a special solution is given.
So far the basic approach of this paper follows a preyious
one (12].

It is proved that only the "Kutta condition" solution ful-
fills the boundary conditions of equal displacement and
pressure on both sides of the shear layer. Within the
limits of this model, it is proved, that only forced in-
stability waves exist. It is shown, that no ambiguity is
left in the excitation mechanism,

For the parabolic excitation field, also analytic solutions
for u, and u, at both sides of the shear layer are calcu-
lated. For x > o this solution consists only of a damped
and an amplified instability wave.

Numerical calculations of u, (velocity fluctuations in the
region of existing mean flow) are carried out for y ¥ o.
The u, computations are of crucial importance for the
comparison with experimental data. The calculation utilizes
a source distribution approach and is based on the analyti-
cally given \2} velocity distribution. Also simple
asymptotic formulae for the field outside the interaction
region at the plate edge are given, Thus, the region of
numerically computed velocities is completely imbedded
into asymptotic equations and fits also the analytic
solution at y = ~o. In addition, the computations have
been carried out by two different persons using different
mathematical procedures, computer languages and computers,
Therefore, the numerical computations can be considered as
a reliable bridge between the analytical solutions for

u and v, derived from separate. calculations., This is also
part of the proof 2) that the forced instability waves -do
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fulfill all boundary conditions and additional arbitrary
instability waves do not exist,

The excitation by different types of sources in various
locations is discussed. With the exception of the {singular)

cases if either

(a) the excitation field has a stagnation point at the
plate edge or

{b) the excitation is directly located at the plate edge
itself,

the exteriour excitation creates a parabolic pressure near
field at the plate edge which dominates the control of the
shear layer. The possible existence of a stagnation point
(case (a)) is demonstrated with a dipole excitation at a
certain orientation with respect to the plate. The effect
of a monopole source on the shear layer is investigated in

detail (see Fig. 21).

Fig. 21 Excitation by a monopole source in different

locations

A monopole in position (a) nearly creates a stagnation

point at the plate edge. Therefore, this type of excitation
is very inefficient. The excitation by a feedback from down-
stream turbulence would be also of this type. A source in
position (c) would produce a strong parabolic excitation
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field and would be by orders of magnitude more efficient

than an excitation in position (a). This is the reason why
free shear layers are so sensitive to sound waves from up=-
stream and so insensitive to the strong near field pressure
created by the turbulence. :

The excitation directly at the plate edge (b) has been N
used in some recent experiments. It was not clear, however, '
what the relevant reference quantities were. An expansion

for small distances provides an elegant and simple result: ;

wix-|y])
U

o
(183) |u2| = 9%— . e for %5 > 1
2U

AU U,
For this case also a complete solution for the shear layer
motion at all x can be given, as well as an analytic
solution for the whole induced field at y + o, in terms of
exponential integrals of complex arguments (this function
is tabulated in [31]). The result in eq. (183) refers to
the fact, that 1/2 of the volume flux Q of the source pene-
trates through the line y = o. In a real experimental
situation, this ratio might be higher, maybe closer to 1,
depending on the individual configuration of the excitation
device at the lip.

The major part of this paper, however, deals with the
excitation by a parabolic field at the plate edge, which

is created by any source far away from the edge. It is
shown, that in this "parabolic" case the interaction takes
place within less than one wavelength (of the instability
waves) downstream of the plate edge. Downstream of this
interaction region, the v-velocity field (at y = *o0) splits
into one contribution of a pure amplified instability wave
and another contribution from the excitation alone. 2

The theory is also extended to the "two stream case", where
we have two different mean velocities and densities above . i
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(51,91) and below (ﬁz,pz) the shear layer. Although the
details of the calculations become somewhat awkward, the
mathematical results are still very similar to the preced-
ing ones. The quantity in the excitation field that is
most easily dealt with is again the pressure, and it
becomes clear, that pressure gradients (3p/3y) rather than
velocities drive the shear layer. Again, the far field
downstream of the interaction region splits into an
amplified instability wave and a forcing velocity distri-
bution which is continuous through the shear layer. Since
the densities on both sides of the shear layer are
different, nature prefers the average value of both densi~-
ties as a coefficient in front of this forcing velocity.
The consequences of the introduction of the new parameters
¢ = 51/52 and 8 = p,/p, are the following:

(a) the downstream amplification rate of the instability
waves is reduced for reduced difference of the veloci~
ties, as expected;

{b) if the low speed region has a lower density than the
high speed region, the amplification rate is also
reduced.

The present theory predicts potential fluctuations outside

an infinitesimally thin shear layer. In an experiment,
however, we have always a shear layer of finite thickness.
Nevertheless, at low Strouhal numbers 8g¢ hoth theories
provide the same potential field outside the shear layer
(if the instability wave is fully established downstream
of thwe plate). By matching both (identical) potential
fields, we can predict also the motion inside the shear
layer, as calculated by Michalke [6].

Obviously, the influence of finite shear layer thickness
leads also to deviations from the present model. If the
data acquisition in an experiment relies on measurements
in the potential field outside the shear layer, we have
to consider in how far the wave number in the real case
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deviates from our idealized case. The wave number is an
essential quantity, because it determines the decay rate
of the induced field perpendicular to the shear layer
(y-direction). From Michalke's [6] and Freymuth's [7)
results it is clear that the wave number becomes higher
than in our model for increasing Sy- This leads also to
an increased decay rate in the y direction.

10) Another typical deviation in experimental setups is the
"overshoot" (mean flow gradient) near the shear layer. It
is not too difficult to model this. The analysis yields
an increased wave number; which again enhances the decay
rate of the induced velocities in the y-direction. Inter-
estingly enough, the downstream amplification rate of the
instability waves remains almost unchanged.

11) In a typical experimental situation the two streams at
both sides of the shear layer are limited in their width.
Thus; in reality, we have a shear layer in a channel
rather than a frée shear layer in an unlimited flow.
There are several things to be considered:

(a) the general solution of the shear layer motion is
still the same,

(b) the excitation pressure field, however, is changed.
There is no difficulty, though, to calculate it with
conformal mapping. The excitation pressure field is
still parabolic in the vicinity of the splitter plate
edge, but it falls off exponentially bheyond a certain
distance in the downstream direction.

(¢c) With this new excitation pressure field the shear
layer motion can be calculated, at least downstream
of the interaction region. The analytical solution
contains I'-functions of complex argument. Since this
solution is quite awkward to handle, it is expanded
for. large md/ﬁo, where 4 is the channel halfwidth.
This means that the wavelength of the instability
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waves should be relatively small compared to the

channel half-width. We end up with a reduction of the
instability wave magnitude, represented by the co-
efficient (1—nmd/1650). In comparison to this quite
significant influence on the magnitude,it turns out,that

(d) the direct reflect!on influence of the channel walls on
the velocity distribution is quite insignificant (close
to the shear layer) as far as the instability wave
downstream of the plate edge is concerned.

Perhaps the most significant finding of the present paper
is a reference quantity for the excitation of a shear layer
by a parabolic pressure field, which is a fairly general
case; as discussed in paragraph 5). It is the

reference quantity Ap12//T

The significance of Ap12 and 1 can be seen in Fig. 22.
Apq,/YI is related to the excitation field only. It will
not change, e.g., if the mean flow U5 ig switched off. For
instance, the uz—velocity of the instability waves close to
the shear layer depends on Ap12//f in the following way:

WX
Ap [ij
(184)  lu,| = ‘/_Wl T »f/_ . e ©
1 p/;ﬁ; 4.2

valid fox mx/a > 2
o
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A ‘ excitation excitation
L > BN
l Yy Seo’/ - , . \‘\‘_‘,/
= L/ = — A
—e 0 uz T uz

Excitation in free Excitation in a
conditions channel
22 Configurations for shear layer excitation,

Equation (184) is well confirmed by recent, yet unpublished,
measurements of the author.

For an experiment in a channel (see Fig, 22), the situation
changes slightly. If the two microphones used to measure

Ap at both sides of the splitter plate are moved further
upstream (to improve the accuracy of the measurements), we
have

A
(185) P12 =—A-/§ - AL

/1 in 14 A/1_e-1fL/d
1~ v?:e-wL;E

The significance of L and d can be seen in Fig. 22. The
magnitude of the instability waves is then the value pro-
vided by eq. (184), but multiplied by the coefficient
(1-nwd/16 ﬁo). The latter coefficient (see paragraph 11)
reflects the limited size of the parabolic pressure distri-
bution at the plate edge in the channel.

Acknowledgement

The present work has been sponsored partly by NASA Lewis and by

the Deutsche Forschungsgemeinschaft. The field calculations in

section 3 are a repetition of earlier computations done by Dr. M.

90

Y



B T

G o i At snd s st s b

Nallasamy (University of Houston). He was also responsible for
the elimination of some numerical convergence problems in this
section. The author was encouraged by Professor A.K.M.F. Hussain
(University of Houston) to carry out this research. He arranged
also for the author's visit to Houston in this joint U.H.-DFVLR
project. The author is also indebted to Dr. W.F. King, DFVLR
Berlin, for a careful review of this paper. In addition to the
present theoretical study, an experimental investigation was
also carried out. These results will be published separately.

91

R T R

ok % o

e wa

%gk,,-"!



9. References

[1] Leconte, J.

[2] Tyndall, J.

[3] Rayleigh, Lord,
J.W. S,

[4] Gaster, M.

{5) watson, J.

[6] Michalke, A.

pet o v eas

thicaicis Sl

‘@ﬁ%&@ﬁ

R

-y - e .
.

On the influence of musical sounds
on the flame of a jet of coal-gas.
The London, Edinburgh, and Dublin
Philosophical Magazine and Journal
of Science. 15 (1858), pp. 235~239.

Sound.

London: Longmans, 1867.

Also available in German:

Der Schall,

(Editors: H. v, Helmholtz and
G. Wiedemann)

Braunschweig: viehweg, 1874.

On the stability, or instability, of
certain fluid motions.

Proc. of the London Math. Soc. 11
(1880) , pp. 57-70.

A note on the relation between tempo-
rally-increasing and spatially~in-
creasing disturbances in hydrodynamic
stability.

J. Fluid Mech. 14 (1962}, pp. 222-
224,

On spatially-growing finite disturb-
ances in plane Poiseuille flow.

J, Fluid Mech. 14 (1962), pp. 211~
221.

On spatially growing disturbances i
an inviscid shear layer.

J. Fluid Mech. 23 (1965), pp. 521~
544.

92

e e L A R AR

e e

v et s,

"
~

o



i

% {71 Freymuth, P,
[8] 'am, C,K.W.
(9] oOrszag, S:.A.
Crow, S.C,
{10} Crighton, D.G.

Leppington, F.G,

{11) Howe, M.S.

[12] Bechert, D.W,
Michel, U.

[13] MBhring, W.

3 IR
-

On transition in a separated laminar
boundary layer,

J. Fluid Mech. 25 (1966), pp. €83~
703.

Excitation of instability waves in a
two-dimensional shear layer by sound.
J. Fluid Mech., B89 (1978), pp. 357~
3N,

Instability of a vortex sheet,
leaving a semi~infinite plate.
Studies Appl. Math. 49 (1970),
pp. 167 - 181,

Radiation properties of the semi-
infinite vortex sheet: the initial
value problem.

J. Fluid Mech. 64 (1974), pp. 393~
414.

The influence of vortex shedding on
the generation of sound by convected
turbulence,

J. Fluid Mech. 76 (1976), pp. 711~
740.

The control of a thin free shear
layer with and without a semi-infi-
nite plate by a pulsating flow field.
ACUSTICA 33 (1975), pp. 287-307.

On flows with vortex sheets and
solid plates.

J. Sound & Vibr. 38 (1975), pp. 403-
412+

93

T e



RSN .

B Sy

(14]

[15])

[16)

(17]

(18]

[19]

(20]

Bechert, D.W.

Crow, S.C.
Champagne, F.H.

Brown, G.L,

Roshko, A.

Mensing, P.

Dziomba, B.

Bechert, D.W.

Pfizenmaler, E.

Bechert, D.W.
Pfizenmaier, E.

Die Steuerung eines eheneén turbulen-
ten Freistrahls durch eine seitliche
Wechselstrémung, erzeugt in einem
Schallfeld,

2. Flugwiss, 24 (1976), pp. 25-33.

Orderly structure in jet turbulence.
J. Fluid Mech. 48 (1971), pp. 547~
591,

On density effects and large struc=
ture in turbulent mixing layers.

J, Fluid Mech. 64 (1974), pp. 775~
816.

Einfluf kontrollierter St8rungen auf
eine ebene turbulente Scherschicht.,
Dissertation: Techn. Univ. Berlin,
Fachbereich 9, 1981,

Experimentelle Untersuchung zum Ein-
fluf von Anfangs- und Randbedingungen
auf die Ausbreitung einer freien
zweidimensionalen Scherschicht.
Dissertation: Techn. Univ. Berlin,
Fachbereich 9, 1981.

On the amplification of broad band
jet noise by a pure tone excitation.
Jd. Souud & vibr, 43 (1975), pp. 581~
587.

Amplification of jet noise by a

higher-mode acoustical excitation.
AIAA Journal 15 (1977); pp. 1268-71.

94

“rg

A -



et - .

o

[21) Moore, C. J. The role of sheéar-layer instability
waves in jet exhaust noise. N
J, Fluid Mech. 80 (1977), pp. 321~ '
367,

(22) Deneuville, P. Jet noise amplification: a practical~
Jagues, J, ly important problem.
AIAA 4th, Aeroacoustics conference,
; Atlanta/Ga., Oct. 3-5, 1977 L
! : AIAA paper 77-1368. Ny

i [23) Schmidt, C. Aerodynamic characterization of

E excited jets,

| J. Sound & Vibr. 61 (1978), pp. 148-
| 152,

|

| . {24] Hodge, C.G. Aeroacoustics in: Aerospace high-
) Tam, C.¥.W. lights 1981,
Astronautics & Aeronautics
(1981), pp. 28-29.

[25) Vlasov, Y.V. Generation and suppression of turbu-
Ginevski, A.S. lence in an axisymmetric turbulent

jet in the presence of an acoustic
influence.
NASA TT F-15721
Translation of: Generatsiya i
podavleniyo turbulentnosti v
osesimmetrichnoy turbulentnoy struye
pri akusticheskom vordeystvii.
Izvestiya Akademiya Nauk SSSR,
Mekhanika 2zhidk., Gaza 6, Nov.-Dec.
1973, pp. 37-43.

T o T epr—

[26) Zaman, K.B.M.Q. Turbulence suppression in free shear
Hussain, A,K.M.F. flows by controlled excitation.
J. Fluid Mech. 103 {1981), pp. 133~
159, ! s

ISR I v e

{, 95

) £58 s 42T e

i s - o . TR

A



Wm T e

{27) Mechel, F. Experimentelle Untersuchung dar
Ronneberger, D, Schallausbreitung in luftdurchstydn-
ten Rohren mit Querschnittsinderun~
gen,
5th, International Congress on
Acoustics, Liége, 1965. Paper K23,

[28] Bechert, D.W. Sound absorption caused by vorticity
shedding, demonstrated with a jet
flow.

J. Sound & vibr. 70 (1980), pp. 389-
405,

[29] Howe, M.S, Attenuation of sound in a low Mach
number nozzle flow.
J. Fluid Mech. 91 (1979), pp. 209~
229,

[30] Howe, M.S. Phe dissipation of sound at an edge,
J. Sound & vibr, 70 (1980); pp. 407~
411‘

[31] Abramovitz, M. Handbook of mathematical functions.
Stegun, I.A. New York: Dover Publications, 1970.
(Editors)

[32} Pfizenmaier, E. Zur Instabilitit des schallbeein-~
flufiten Freistrahls,
DLR-FB 73-69, (1973).
Available in English:
On the instability of a sound-in-
fluenced free jet.
ESRO TT 122.

[33] M8hring, W. personal communication.
Max-Planck-Institut f£dr Strdmungs-
forschung, Gdttingen, 1973.

96

.

. e

P

(P

R




[34) Howe, M.5,

{35] Bronsgtein, I.N,.
Somendjajew, K.A.

[36) Bechert, D.W.
Michel, U,

{371 Monkewitz, P.A.
Huerre, P.

[38) Kober, H.

[39] Gradstein, I.S.
Ryshik, I.M.

[40) spurk, J.H,

S R E R AE T

[
"t
-t

+ 03

personal communication,
Bolt, Beranek & Newman, Cambridge/

Mass., UBA, 1981,

Taschenbuch der Mathematik

19, Auflage.

Frankfurt/d.: Verlag Harri Deutsch,

1980,

(Translation from Russian, also

available in English). '{\

The control of a thin free shear
layexr with and without a semi-infi~
nite plate with a pulsating monopole
or dipole, Some new closed form
golutlons.

DLR-FB 74~22, (1974).

Influence of the velocity ratio on
the spatial instability of mixing
layers, - .

to be published in: Phys, of fluids.

Dictionary of conformal representa-
tions.
New York: Dover Publications, 1957.

Tables of series, products and inte~-

grals.

Frankfurt/M.: Verlag Harri Deutsch, :
1981 (Translation from Russian}. :

personal communication.

Technical University of Darmstadt,
1976.

97

v,

A —




e

. e - R
Y ‘.
\ * N -
A :
i ’ - $
141] Bechert, D.W. Optical compensation measurements on
Pfizenmaier, E, the unsteady exit condition at a
nozzle discharge edge. ,
. J. Fluid Mech. 71 (1975), pp. i43- ; 8
144.
[42]) Bechert,; D.W. On the Kutta condition at the nozule !
Pfizenmaier, E. discharge edge in a weakly unsteady : e
nozzle flow. ¢'

RAE Lib., Trans. No, 1617 (1971),
Translation from: DLR-FB 71-09 (1971).

o g

s i masa i o
e R

e e




B AR g R g

a

PR\ Mo P

TRy

MY - 29 »

b

10. Appendices
10.1. Appendix A

Glossary of symbols

8

a1&a6

cph

cph ral

d

arf (z)

arfe(z)
£

9i099

R AR S S R s

sound speed

constants 4in {he numerieal represcontation of the
arror function erf of s real argument

lower and upper houndary of a vortieity distribu-
tion on the x-axis (see Pig, 7)

phase veloelty of an instability wave

rolative phase velocity of an instabllity wave

Con re1 © Cph/ﬁ2

half width of a two-dimensional channel (sea
Flg., 17)

%
error function, defined as erfiz) = i% J e Fae
big
)

gonplementary error functiun erfe({z) = 1-arf(z)
frequency of tho excitation £ = m/zv

lower and upper boundary of a source distribution
on the x-axls (see Fig. 8)

displacement of the shear layer due to the insta-
bility waves and the excitation field

imaginary unit { = v=7

“distance betwesn the edge of the semi-infiinite

plate and the pressure pickup devices (e.g.,
micreophonus) at bobi sides of the plate

99

e

- .

o



" S o

o
i
i

Pygr Ppg

Pygt Pog

a, qlg)

- R

summation variables (integer)

pressure, usually the perturbation pressure, i.e.,
the deviation from the ambient (atmospherid)
pressure. All perturbation quantities are pro-
portional to o lut

fluctuating pressure above the shear layer at
y > o

fluctuating pressure below the shear layer at
y <o

pressure difference between both sides of the
semi-infinite plate

abbreviation of a quantity related to a pressure
gradient in y-direction, i.e.,

contribution of the exteriour forcing field to
the total fluctuating pressure. Pig = Pp¢

contribution of the shear layer field to the
total fluctuating pressure. Pig is valid for
y > o and Pyg is valid for y<o. In addition we

have py = Pyg * Pyg i Py

= Pag * Poge
source distyibution on the x-axis; dimension like
a velocity.

radius or distance from the origin (in most cases
the cplitter plate edge) to theé considered field
point r =V X* + y?

distance between the location of a point source

= . - . d
and the splitter plate edge £, IJxO’ + yo’
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u 2

Yo

Yo

Yan

integration variable (eq. (38))

tima

intagration variable, v.g., dn ega. (171) anpd
(173)

fluctuating veloclty componant in the x=-dlroction;

all fluctuating quantitios ave propovtional to
“lu\l‘.
o

fluctuating u veloelty componant above tho sheax
layer at y > o

u=volocity inducod by a v veloelty distribubion
of an amplified Helmholtz instabllity wavo
(prananhx1) in the half=planc above tho shoay
layer (y > o). 1he v disteibution of tha dnstabi-
ity wave exists only for x » o.

sinilar to Wyyye but roforring to tha attonuatod
Holmholty instability wave (oxponont \2)

Fluekuating u=velociby in a channol with a
gplitter plato, asymptotic valuo far upastreaw of
the tralling odye of the splitter plato

Flucbuatimg u vaeloelby component bolow the shoaay
layoer abk y € ©

glmilar to W\, hut: valld below tha shoar layer
ly <o)

sihiilar to Wyyat bt valid bolow the shear layar
ly € o)

u=valoaity,; Inducad by Vo Aty € 0. vy, lg tha
difforence botween the forcod instability wave v,

and the asymptoto which bohaves like tho Holmholbs
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instability wave v,ui vop = V, = Vy,. v, becomes
Zaro both at x ®» ~m»and x = + &,

u-velocity, induced by just one trapezoidal source
element representing the local Van distribution
between two neighboring points ., and be

imaginary part of u,,

real part of u,,
imaginary part of'u2
real part of u,

u=velocity component induced by a point source
located at y = o and » = o.

center line velocity({at the splitter plate) in the
two-dimensional channel

dimensionless form of the u velocities (with
various indices, as given above) in the following
form ; ]

. P p/Uoml

u s —
Py

in the two stream case P has t¢ be replaced by
Py and Uo by 02

velocity induced by the mirror image of the shear
flow representing the wall in a channel flow

fluctuating velocity component in the y—direction,

all fluctuating quantities are proportional to
~iuwt
e

v=velocity component above the shear layer at y?> o
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1D

v=velocity component at y > o, generated by the
exteriour forcing field

v-velocity component at y > o, generated by the
shear layer; v, = vig + Vo
difference between the forced instability wave vy
and its asymptote Van' which behaves like an
amplified Helmholtz instability wave. v, =v,-v,.
(valid for y > o)

imaginary part of vy (valid for y > o)
real part of vy (valid for y > o)
imaginary part of v,, {(valid for y > o)

real part of v (valid for y > o)

1D

asymptotic behaviour of the v, component of the
forced instability wave, assumes the form of a
Helmholtz instability wave, amplified in the down-
stream direction (valid for y > o)

v=velocity component below the shear layer at
y <o

difference between the forced instability wave v,
apd its asymptote Vour which behaves like an
amplified Helmholtz instability wave. Vap©Va~Vay
(valid for y < o)

imaginary part of Vap (valid for v < o)

real part of v, (valid for y‘é o)

-asymptotic behaviour of the forced instability

wave, assumes the form of a Helmholtz instability

wave, amplified in the downstream direction (valid
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for y < o)

dimensionless form of the different v-velocities
as given above, i.e.,

<1

v+ p/0,ul
bpq2 s
be replaced by g and Uo by U,

v = 7 in the two stream case p has to

v-yelocities at the lower and upper end of a
trapezoidal source distribution. The local
strength of a plane source distribution is two
times the local v-velocity just above the distri-
bution

va,b

X horizontal coordinate

w0

nondimensional horizontal coordinate i=xm/ﬁo or
§=xm/52 for the two stream case

Yy vertical coordinate

y nondimensional vertical coordinate
y=yu/T

i$

b4 complex variable, usually defined as z=xtiy=re

-1

complex conjugate of z; z = x-iy = re

N1

A constant, used on different occasions:
in eq. (31) it defines the strength of a pressure
field
in egs. (67) and (140) it defines the strength of
a potential .
in eq. (155) it is a constant with the dimension
of a veloecity, A = u_ '

A in the appendix D, eq. (D3), A is the real part
of a complex variable in conjunction with a

B gy~ R RPN

computer program which uses the same symbol

i
E3

>
3
IS
i
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B(x,y)

B1(2)

Gqyr Gy

GBI G4
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modulus of a complex quantity , e.g.,

ABS(z) = /X¥ + y?

constant, uged on different occasions:

in eq. (67) it defines the strength of a potential;
in eq, (160) it defines the strenyth of a pressure
field

in the appendix D, eq. (D3), B is the imaginary
part of a complex variable in conjunction with a
computer program which uses the same symbol

Beta function, Euler's integral of the first kind
(see also [31, 39]), defined as

1
. X=1,: _yy=1
B xy) f X1 (-6)Y" Tae

constants (can be complex) with the dimension of
a velocity, defining the magnitude of the ampli-
fied (01) and decaying (C,) Helmholtz instability
wave

Dipole strength

Exponential integral, defined as (see also [31})

lower boundaries of the integrals in eq. (23);
their existence is equivalent to the evistence of
additional Helmholtz instability waves

lower boundaries of the integrals in eq. (68§}
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Haoviside unit step function "(x) = o forx <o
and H(q) =1 for ¥ >0

imaginary part of a complox guantity as used in

the appendis D, 2 = R + 11l, in conjunetion with
a computer program using the same symbols

integral, defined by eoqg, (169)

fmaginary part of a compleyx gquantity in brackets
distanco bekweon splitter plite ecdge and the
location of the pressure pickup devices (0.9.,
microphones) at both sides of the gsplitter plate
in a channel (sec Rlgs, 19, 22)
Mach numer, e.g., M = U /a,

0.g., in 0(27%); of the ordor of z~#

Fouriex transform of the pressune

points abave and bolow the shear layer at which
induced velocitics are considered

source strength Q = Qoe”lwt: Q,Q, have the dimen-

slon of a velocity timwes a length

radius of a nozzle (used only in the introduction)
cylinder radius (eq.(31))

real part of a complex quantity as used in the
appandix D, z = R + i, in conjunction with a
computer program using the same symbols

real part of a complex guantity in brackets

right hand side of eq. (119)
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BOUPCR strongth of o progsure soures

Strouhal famber ecalculated with the momontum
thickneas of the shear layer and defined as
8, o 0w/

ahbreviations For complex yuantities

e, ex) - e tx,)
'P @ 1 ES ﬂ*“;s:‘,:-:,-‘L ; ‘J‘ (73 1 P 2i

¥
Q y 4

mean £low velocity, it hag only a component in
the s=direction

moan Tlow velodity for vy < o

mean Flow volocity {in the two stveawm case) for
y oo

mean Flow velocity {in the two stream case) fop

¥ <o

angle of the radivae vectar in the 2 mplane;
) ) La h
> a B ¥ ¥ TP
a b oSa volyy Ty
complex wave number as doeflned usually in the
stability theory. The relation to our nomenclature
ig the fallowingy Lo e

angle of the radiua veetor in the zb~plana;
e o a - LA
2y &Ryt iyb 7o

ratio of thoe donsities at bhoth sides of the shoaw
loyor; & o a,i»g

strength of a vortivity distribution, located on
the s=axis. It has the dimensieon of o velocity

dolta function at the logation x =%

©
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quantity defining the slop9e of a shear layer
L o= 1/28

Fourier transform variable, corresponding to y

angle of the radius vector in the z-plane;
2 = x + iy = rebp

complex wave number of the instability waves in
a shear layer. The relation to the conventional
wave number a in the stability theory is 1 = fa

gamplex wave number, defined

{L) for a flow below the shear layer with G=Go
and zero flow above the shear layer as

[

AM,2 " (1+1); the positive sign corres-
u

o]
ponds to A1 and the negative .yn to Ay

(ii) for a flow with different velocities (61,
32) at both sides of the shear layer and
with different densities (p1,ﬂ2) as

w1 i
1,25 " ThoTR l:iﬁwm.*n o) /s]
2

{iii) for a flow below the shear layer with uni-
form gradient dU/dy and the value ﬁ:ﬁo at
the shear layer (y=-o) and with zero flow
above the shear layer

- / - *

_ W ab/dy, 4. ,d0/dy, 2 "

M2ty E‘“ D 11 (555 ]
(o]

is the corresponding dimensionless wave number

with A = Us or Us  for the two
1,2 1,2 r iy

stream case

A2t
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Fourier transform vaxiable, corresponding to x

integration variable for source and vorticity dis-
tribution on the x axig; ¢ has the same direction
as x

lower and upper boundaries of a trapezoidal souvrce
distribution elenent

lower boundary for the integral over a continuous
source distribution q(,) With q . = 1/VE

upper boundary for the integral over a parabOlic
source distribution q ., with q ., « v

stepwidth (length) of a trapezoidal source element
daensity of the fluid

density of the fluid above the shear layer (y > o)
dengity of the fluid below the shear layer (y < o)
velocity ratio of the two stream case with

g 51/62, 31 being the mean flow velocity above
the shear layer (y > o) and 62 being the mean flow
veloeclty below the shear layer {y < o)

complex constant in eq. (93)

amplified and decaying Helmholtz instability waves

radian frequency of the exteriour excitation
w = 24f

Gamma function; Euler's integral of the second
kind, defined as
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0 momentum thickness of the shear layer, defined as
e -
u U
2e J Si) (1. 2 gy
U ]
.00 O
$ potential function for the fluctuating velocities
1] stream function for the fluctuating velocities
] complex potential Eunction, defined asth = ¢ + iy
y? Laplace operator in two dimensions, defined as

? 52
Vip = %;? * %y?»for p, as an example

10.2, Appendix B

Discussion of the pressure sources

The sburce term in eg. (11), on the right hand side

(11) yip = -20%9 .

& S

e
1+

has apparently led to some confusion, in particular among those
people, who have heard about aeroacoustic theory and know for
sure, that there should be "some quadrupoles" [40]. We will pot
query Lighthill's theory, but the present approach is something
different., We will have to deal with pressure sources; these are
not sources of matter, which would be at variance with the
continuity equation in our model (3).

To provide a better feeling for our pressure sources we will de=

termine the pressure source structure of an instability wave in
a free shear layer. This refers to the right hand side of eq.
(11). Using a Fourier transform technique, we integrate eq. (11)
to obtain the pressure distribution in the whole field, which
could be obtained clearly also by other methods. Finally, we
check -our solution with the Euler equations.
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Woe restrict ourselves to the "one stream" case where we have a
£luid at rvest above the shear layer and a flow of velocity Uo
below tho shear layer, We consider a normal spatially amplified

instability wave where all fluctuations like p, v, u and the

alevation h are proportional to R N addition, we restrict

ourgelves to low Strouhal numbers (caleulated with the shear
layer thickness) where we have A = (1#1) 'm/ﬁo. It turns out to
bo mogt convenient to replace the v-velocity in eq. (11) by the
displacement h, The displacement (as the pressure) has the same
value at both sldes of the shear layer and can be assumed to be
gonstant throughout the shear layer at low Strouhal numbers. The

ralation batween h and v is

Jh = Jh
(7) VEW+U(Y)T)E'

Ingerting this into eq. (17), we have

au ]
(B1) § = - 2§2: ) ”*iXL h(x y t)(1'i(1’2 “éXL))
UO dy Yt UO

by writing h or h(x y,t) we mean h(y)e"x”imt throughout the cal-
trd !

culabtlons. It is assumed, that h is constant in the shear layer;

it will vary, however, for greater distances |y| from the shear

layer, as we will see later.

A reasonable model for the shear layer velocity distribution is
a ‘hypevbolic tangent profile [6, 71:

(B2) U(y) "o (1-tanh ry) ,

The gquantity 4 in this equation is related to the momentum thick-

ness 0
8y - -
Yy Y
(B3) 0= j XL (-2 ay
i} i}
o 0

- ).

N

g

ym e



R R e e e N

- -
* - - R

ORIGINAL PAGE 1S

in the following way OF POOR QUA\J‘“’E

(B4) ¢ o= 1/20

Fig, 23 shows the distribution of U(

y)*
. 7
v N |
Uo \\‘ T —*“'SRel
\ |S:20
05pu?h
N
_L-Sim\,
"'
5 4 -3 2 4 o\ 1 2

Fig. 23 Velocity distribution in the shear layer

Using eq. (B2) for the velocity distribution, we obtain the real
and imaginary part of the pressure source distribution §

2 Y

h

s = ,.‘\..".‘.:.._ . 1
Re 20 cosh? (y/20)

(B5) g = . fwlh  tanh(y/20)
'm 20 cosh* (y/20)

The distributions in y-direction of these functions in the shear
layer are displayed in PFig. 23,

As we see from Fig. 23, the real part of 8 has the near field
structure of a §-function; it exists only in a limited region

which can shrink to zero if ¢ -+ 0. The actual value of the
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§ fupetion ls determined by the surface under the 1/cosh?~-cunve
In Flg. 23,
R3]
” d
{86) ! boaﬁ’iy?ﬁui = 40
-y

Thorafore, we can replacae Sre by a § function repréesentation for
[ e

(n7) Spa * 2pwih 6()’)'

The imaginavy part hag no coptribution of a § funcklon type, and
an integral like (B6) would give zero. Contributions of a o'~
type (dipole) are prasent, but this influonce becomes negligible
with 0 » o. fTharoforo, the contribution of the imaginary part of
§ becomos zoro. We are loft with tho nonhomogeneous partial
Alfferential equation

(18) Vp o= 2p0th 6(y)‘

This equation will be solved by Fourler transformation. In fact,
usdng h and p proportional to Qxx i"‘twchave already taken a
PFouricxr transformation in time (harmonic motion) and in thae down-
stream direction x. To ohtain a notation compatible with tha
usual form of Fourier transformations wo xeplace A by dv ,
whare v ig tho Fourjer transform varviable corresponding to the
physical variable x. We have, thorefore, instead of eg. (B8):

y? a 2
(1R9) N p o+ Dyg 2 2p07h G(Y)'

We tako the Fourlor btransforin in y=direction; with

+ 0¥ b
i iny ' Lo ey
100 2y x [ oMY ari ey f P

Ny

{(B11) “9ip=p?p ® 2pupth
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where h is the displacement of the shear layer at y = o. The
transformation back into the physical plane can be found in
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tables of Fourier transforms, like (39]

(B13)

For h we

(B14)

This can

{B15)

p = - e8%h =vly[

Y

have

h o =hy - e with iv = & = 2= (141),
(y=0) Y%

be inserted into (B13) and we find

Pix,y) © = T2 oo

(1+i) . p(ﬂﬁ h : e (m/ﬁo)o(i#1)n(x+ily|)

The last two terms can be interpreted as the spatial distribution
h(x,y) of the displacement

(B16)

- (/T ) e (141) « (x+1]y])
h(x,y) = ho . e le] I |

and we find the relation

(B17)

- o 1+i) =,
Pix,yy ° 7 Pulg h(x','y)

We can check whether or not this relation is correct by using the

Euler equations and the relation between v and h, i.e., eq.
For y > o, in the fluid at rest {(index "1"), we have

(B18)

P ——

v1 = -imh(x,y)'
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ap.'
(B19) — & pw?h

If we take the y-derivative of eq. (B15) we £ind, that this
relation is fulfilled.

Wwith that result, it is shown, that it is possible to analyze
the pressure source distribution within a shear layer and inte=-
grate it (via Fourier transform techniques) to obtain the
pressure distribution in the whole flow field. Thus, there is
nothing mysterious left in our pressure source approach.

We have to mention what the difference between a pressure source
(S) and a volume source (Q) 1s. A pressure source is a singulari-
ty in a field which is described outside the singularity by the
Laplacean equation Y?p = o. A volume source is a singularity in
an analogeous field with v*¢ = o, In a fluid at rest, the re-
lation between both fields is simple. From the first Eulerian
equation we have imp%% = %5, i.e., both fields are proportional.
This is the reason why we have used potential theory and veloci-
ties like the excitation velocity Vig in several sections of
this paper instead of using pressures and pressure gradients. It
would be more appropriate, however (and less obvious), to use
pressure sources throughout the whole paper. The basic differ-
ences occur in the shear layer. Clearly it makes no sense to
define a velocity potential inside the shear layer, whereas the
pressure is still well defined there. In addition, the existence
of pressure sources in the shear layer does not violate the con-
tinuity equation.

Some readers may be dissatisfied with the above methodic approach.
Indeed, we have used a right hand side of eq. (11) which is known
to fulfill all our equations, Instead of dealing with a formally
nonhomogeneous ‘equation we can also completely eliminate v and
write eq. (11) only in terms of the pressure. This can be done
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by using the second Euler equation. We end up with

- G L)yrp = 2 U . 2P
{B20) (~iw + U aX)V p =2 3y %0y

outside the shear layer we have again V?p = o. If we insert an
instability wave ansatz p = e (%¥79E) o £ing

i

b)

(B21) .g_}?.._ilx'.iﬂ-,ulp=o,

T

it
=l

This is an equivalent to the Rayleigh eguation for the instabili-
ty of inviscid parallel flows, written in terms of the pressure.
Outside the shear layer we have p = e'“IY], as usual in the po-
tential field of a wavy motion. The complete distribution of p
can be found using a numerical procedure similar to the one used
in stability theery ([6]}. This procedure would provide reéults
valid for shear layers of finite thickness and would produce the
whole pressure field for an instability wave, extended from

x = =0 to X = +u, In fact, this latter approach provides a
genuine and complete solution of the pressure field without
knowing anything in advance, whereas the approach with a non-
homogeneous pressure equation requires previous knowledge of the
fluctuations in the shear layer.

10.3. Appendix C

The absence of "free" instability waves

In the main part of this paper, forced instability waves are
calculated, which is equivalent to the assumption that the
lower boundaries of the general solution of the instability waves

x x
(23) vy = - L eMX J.e-x1xv1fdx + & oghaX J e'kzxv1fdx
U U
) 5 _ ) &
1 2

G2 = 0, This would also correspond to the non-

should be G1
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existence of additional "free" instability waves of the Helmholtz
type. In a previous publication of the author [12]), it had been
mentioned, that additional instability waves of the Helmholtz
type do not fulfill the boundary conditions, but no detailed
proof had been given there. It is guite obvious, that a solution
valid for a shear layer extended from x = == to X = +w cannot be
valid for a semi-infinite shear layer with a rigid boundary, such
as a semi-infinite plate. The reader who is convinced by this
simple and conclusive argument doeg not need to read the remain-
der of this section C of the appendix,

However, with all the present confusion about the Kutta condition
issue the author feels that he cannot avoid providing a mathema-
tical proof for the fact, that the Helmholtz solutions do not
fulfill, in any conceivable combination, the boundary conditions.
The absence of independent Helmholtz solutions leads to the con=
clusion, that only forced instability‘wayes ex;st and that only
the Kutta condition is possible. Of course, this latter state-

ment on the Kutta condition is only valid for an infinitesimally
thin shear layer, as assumed in our model. In reality; this would
correspond to the case of low Strouhal number So. Any "rectifica-
tion" effect (i.e., a steady deflection of the jet caused by the
unsteady motion) as suggested by Orszag & Crow (9] could not be
found in tlie experiments [41,42]. Such an effect would be also

at variance with the equations of motion for a linearized
problem. The linearization is well confirmed by the experiments
(41, 42).

In the following calculations, we will restrict ourselves to the
one-stream model of section 2. To prove that free instability
waves (Helmholtz solutions) are not solutions of the preésent
problem, we have to keep in mind that these solutions are

“truncated for x < o, because v -has to be zero at the semi-infi~-

nite plate. The v distribution, therefore, assumes the following
form:

(1) vy o= Hiy (c1e"1x + cze"Zx)
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In this equation v, is the v-component of the fluctuating veloci-
ty just above the shear layer at y = +0; C1 and C, are constants
which may be complex and H(x) is the Haeviside unit step function
which is zero for x < ¢ and unity for x > o. From equation (C1)
we can calculate v,, the v-velocity just below the shear layer,
using equation (10), which represents the condition of equal
displacement at both sides of the shear layer:

DV1
EEY

o™

(10) v, vyt i

we obtain

)

(c2) v, = iH(x) [_—_C\1e}‘1x - Cze)‘z’i-] + i-UK? -G(X’ . C1+C2] .
The delta function 6(x) is created by taking the derivative of
the step function H(x)‘ The physical significance of the G(x)
function is that we need a source to create a finite displace-
ment of the shear layer at x = +o0 in the flow (at y < o and with
mean flow ﬁo).

After having fulfilled the condition of equal displacement at both

sides of the shear layer, we have to check whether or not the
pressure is the same at both sides. Instead cf taking the
pressure, we can take as well 3p/dx, the pressure gradient in
the downstream direction. 3p/8x is related to the u-velocity
component via the first Euler equation. We end up with eq. (6)

0. au Ap1-p,)
0 2 P 1. 52
(6) Uy * A o W T o T

The right hand side should be zero for x > o. We have to calcu-
late first the induced u-velocity for the decaying Helmholtz
wave (exponent Azx). In addition, we can omit the Haeviéide step
functions, if we change the boundaries of the integrals

C, 7 _AyE C, T Xot
, _ "2 (e"2 2 [e”2
(€3) gy, “z—njz—-‘;"dg *HJT-T;“-
o (-]
118

st v

. e

i,



P B T

)

'{ 7 I - .
ORIGINAL PAGE IS
OF POOR QUALITY

It is understood, that the whole induced velocity u, will then
consist of

{(C4) wu, = u +ou,,

1 12 12,
The integrals in eqg, {C3) are of the structure of exponential
integrals, defined as (see [31]):

"

-t

e

2

After appropriate substitution of variables we obtain

= E,uzi)].

This is the induced u-velocity for y > ¢ and for an instability
wave decaylng in the downstream direction, The situation is
slightly more complex for an amplified instability wave (terms
containing A1). By a straight forward integration we would
enface divergence problems with the upper boundary of the inte-
grals. This problem can be circumvented if we subtract from the
complete instability wave solution (extended from x = ~= to

X = +») a contribution from x = -« to x = o to obtiain vy =0 for
X < o, The relation between u and v of the complete wave is

(see eq. (68)) ug = -ivj. Otherwise, the integration is very
similar as that leading to eq. (C6). We obtain after some inter-
mediate calculations

C ,
(c6) - - 2 127 B0 €2

u
12,

(Cc7)

c -
= -icjek1x - 5% [%A1z . E1(A1z)+e}‘1z * E, (A12[].

u
1A,
The complete solution for u, is then (y > o):

C -
R O e I BE VT I AE -
(c8) u, = -iCje 1 T [% 1 E, (A z) +e 1 E1(11z{]..

c -
2 Xo2Z . Aoz, -
- I E* 2% Eq(ryz)+ €72 E1“2z’:]

for y~++o,
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It is understood, that y becomes +0 to obtain the valua of uy
just above the shear layer. This transition to y = +0 can be
postponed, though, to a later stage of the calculations.

The procedure to obtain u, is very similar, However, for y < o
the sign of u, changes. Tn addition, we have a contribution from
a point source, represented by a § function appearing in uy. For
negative y we have as the contribution from the source term

10, (c1+c2)*T 8 gy * (%=8)

(€9) Y25 7% T T X-E) 7+

L

For y = ~o we obtain
. 10,
(c10) Ups = = 7ox (C41C5)
Obviously, the induced u-field of a source located on the x-axis
should be proportional to 1/x. Theée complete solution for u, is

then from eq. (C2)

c -
(€11) o= ~cqet ¥y 71 er1%. E1(X1z)+e>‘1z . E1(A1§):l-
ic L‘J
2 Anz
- [ 2% . g (Azz)+e 2 "E, (» z):l mx (c +C )

for yr=0,
u, and u, have to be inserted into equation (6) to find out

whether or not the pressure equilibrium at both sides of the
shear layer is fulfilled for x > o. To do this, we have to take
the derivative of the exponential integral

dE, (z) -2
23 __1__ = - ..e——.
(c12} Iz = .’

Using this relation and, after taking the derivatives, letting
y + o, we obtain from equation (6) after some algebra
U 2 i d(p1-p2?

o,
(C13) —"""" ((C -C ) i(C +Cz)) W (C +C ) o %
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The right hand side shouwld be zers for X > o, We see, that the
right hand side can be zero for all positive x only if c1nc2=o.

This is the proof for the absence of "free" (unforced) instabili-
ty waves. Janu it is, since the .orced ipnstability waves fulfill
the Kutta condition at the plate edge, thao proof for the existence
of the Kutta gondition there. Here, the Kutta condition is under~
stood in thak way, that cthe flow dops not suffer a local jump in
lts slope when it passes the trailing edge of the plate.

10.4, Appendix D

v-computations at y = ‘o, tables

The purpose of this section is to provide numerical data for vy
and v,. This means, that the error function of a complex argument
hag to be computed. The prosent calculations are baged on ex-
panslons given in [31]. One of the building blocks of our cal-
culation is to provide an expansion for the function ezierf z
{where z is an arbitrary complex variable) and to split it sub-
sequently Into real and imaginary constituents, In the preceding
galeculations we used this expansion:

z? = 2 .
(D1) " erfz = =~ - :

It provides, e.g., the near field behaviour near the plate end

in a very elegant way. It was also used to produce the numerical
values for v, between ¥ & o and x = 2 computed in [12]. Unfortu-
nately, numerical convergence problems occur beyond x * 3 so that
this series cannot be used up to those values of X where the
asymptotic expansion for large x (say, X > 6)

. : 3 \ w . _
02)  o¥erfz = e - -l [1p p (oM 1o lnol) "]
' zvT m=1 (227)

{z > o)
s valid. The series expansion in eq. (D2) is semi-konvergent.
Therefore, it does not make sense to include; say; more than

6 terms of the series in our case.
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For our numerical computations we had to use a more complicated
expansion providing numerical convergence for low and middle
values of the argument so that also the lower validity range of
(D2) (for large z) can be covered. This is based on eq. ? ]

w.
bl

ed.
{7.1.29) in [31]. We introduce z = R + 1T and

z (R+LI)’et£(R+iI).

2
(b3) A+ iR = @® erfz® @

After splitting eq.(7.1.29)in [31) into real (M) and imaginary
parts (B) we obtain after some algebra:

- R?=X? ¥
(D4) A= e * COS2RI * erf R + z=m— (cos 2RI-~1) +
“?
20~T° o e i . .
* = n21 vy (2Rcos2RI ~ 2R gosh nI)
-2
2.
(p5s) B = ™ T sinarI. exf R+ S~ + sin 2RI +
n? '
20" % 2 4
Al n§1 RYTART (2Rsin 2RI + n sinh nI),

For the numerical representation of the error function of a real
argument we use¢ an approximation suggested by Hastings [31,
eq. (7,1,28))

1
2 . R6130
(1+a1n+a2R,+,..+a6R 1

(D6) erf R =1 -

with the constants a:

a, = 0.0705230784 a, = 0.0422820123
ag = 0.0092705272 a, = 0.0001520143
ag = 0.0002765G72 ac = 0.0000430638

The error of this approximation should he smaller than 3¢1077

over tho whole range.
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with equations (D2) and (D4), (15) we can now write the computer
subroutines for the building block "eza erf 2" which is the
esgsential part for the vy and v, computations. When we will show
some computer programs here, it is done without showing all de-
tailes of the considerations leading to these programs. The pro-
grams shown here are written in BASIC for the shaxp PC 1211
chrpcomputer*) (see Fig. 24), These programs are only provided
in order to keep the mathenatics verifyable. In addition,it is
shown, that the presept numerical solutions are not dependent on
the access to big, fast and expensive computers.

In the subroutines, which are given below, R and I are, as in
eq. (D3), the real and imaginary part of the variable z, and

A & B have also the same meaning as in eq. (D3). For eguation
(D4), (p5) we have the subroutine "SUBR 1" and for equation (D2)
we have "SUBR 2". With these subroutines we have to calculate v,
and v, f£rom eq. (44) and (45)

| iE 3% -
(4a) b, =M E’-;’ erf/ix - &2 ere /izx]
6 iz
1
. i1% A%
(45) vy = - -‘{-’E E" — erf /A% + £ 2" erf “2’{]
e 2

wibh;31 = i+1 and X, = i-1,

One point is worth mentioning concerning tha algebra of complex
numbers. If we take the root of a guantity like
7 37
Ul iTT

Y
D7) i =B et i1 =/Te 4,

*) 3old as "TRS80 Microcomputer® by Radio Shack in the U,S.,This
is not a commercial for microcomputers. Indeed, the memory and
speed of this computer are not very satisfactory. In the mean-
time, however, more powerful microcomputers are available.
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Fig. 25 rooks of complex numbers,

we Lake only the firsi of two possible roots (Bee Fig, 2!

1

-

VIFT = W2 a " ="Z (eng n/8 4 4 sin n/8)

3

1
(D8) VIST = W3 o K—=‘V§ {cos 3u/8 + 4 sin 3 n/8)w

a3 (sinn/8 + 1 cos n/8)

we procaed in the same way with the quantity Ri112.

With these relations and the subroutines, the evaluation of eqs.
(44) and (45) is a straightforward procedure. We end up with the
real and imaginary parts of vy i.a., Vyp and vyp and with simi-
lar quantities for Vou Leo, VZR and sz.

In addition to that, tha computer calculates also the difference
between v and its asymptotic form, the amplified Helmholtz insta-
bility wave :

~

(D) Vyp = Vy = Vi Vo =V, = Ty

with
i Y% X%
% ‘f} =i\/1?.01<:\7 ._ﬁ.e]‘
i H™ "1~ = 21 I '
z; L i
i
i
5 126
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As bofore, we will calculate the real and imaginaxry parts also
of the quantities in eq, (DY), i.€., Vipr & Vypr 98 well as

Vapr & Vapr

Pinally, the program calculates the modulus of Vgt which is
equal to [vzni and tho modulus of vy and vg,respectively. Since
tha memory of the microcomputer is quite limited, the mean pro-
gram to calculate all those quantities cannot contain both sub-
routines. We have two programs, "v-PRO 1" with the subroutine
"SUBR 1" for asmall and middle values of % and a second, almost
identical program "v-PRO 2" with the subroutine "SUBR 2" for
large values of X. It is suggested to switch from "v-PRO 1" to
"v=PRO 2" at values of X between 5 and 8. It has been checked,
thot also the series expansion (D1) produces overlapping values
for the velocities up to & = 243, The operation of the programs
starts with the computer asking for '

(1)  the initial values of x ("x-START?")

(1) . the stepwidth ax for the consecutive calculation of a
series of x values ("SCHRITT?")

(124) the final value of x of the data set ("x=ENDE?")
The programs "v=PRO 1" and "v=-PRO 2" are listed on the next pages.-

There is anothen version of these programs which provides data on
casette tape for further use of the following programs calculating
u, {Appendix EB). Since only VabR and Vopy are the necessary quan-
tities to be supplied for these further u-programs; the v-program
is much shortexr, so that both subroutines for small and middle x
and for large X can be comprised in the program. Each data set
stored on the data tape consists of 4 words, i.e.

1} the label "'

2) the value of ¥

3) . the Yalue ’of VapR
4)  the value of v,
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Program listing
"V"PRO 1 it

*!Q

ORIGINAL PAGE 1S
OF POOR QUALITY

11 "Y-PROSY

2L INPUT "X-STA
RT?"»AC453y "
SCHRITT?"yA¢

9)
9:!F X20G0T0 1

10:n<37>-o:9<ss
y=01R(39)=D:
R(40)=081 GCTO

27
1180=8(Mi2) 1=

cOs (N8 tY=

SIN (N/8)
12:R=0Ut 1=0Y
13:GOSUR 104
15:4(32)=AU+BY
16:AC34) =-AV+BU
17:R=0V: I=0U
18:G0SUB 104
208 R(35)=AV+BU
213AC36)=-AU+BY
223 Y=~ CIND /(4%

23
231 A3 =Y (A3
2)+AC352)
24:ACI8)=Y%{A(3
A42+AC(36))
25:1A¢3PEYR(A(S
4>~-A(36))
265AC40)=Y*(~-A(
Z3)+A(35))
278 Y=~ CITOWCEXP
RIZCARI(I20)
2835AC41)=R(37)~
YHCS  (X-C(R”

a8y
298 9(42)~9(’8>-
Y*;XN ¢ 19,04
80
205AC4Z)=RLZI+
YHCHS (XM
783
T11ACA4)=RC40)+
Y#SIN (X+(3N
7830
Z23PRINT “"N="t
PRINT ¥
ZZPRINT "V2p="
tFRINT AC3T)
T4 PRINT "y2I="

15=PRINT "ViR="
i FRINT R(Z9)
T6EPRINT "W1I="
iPRINT A{40)
ZTIFRINT "Y2DR=
"SPRINT A4l

)
B8:PRINT "V2D1=
iPRINT Ac4z

3-H PRINT "V1DR=
"IPRINT A(42
b/

128

40:PRINT "viDI=
YIFRINT Ad44

2
41tPRINT "ABS(Y
ZH=\V1H=":

-h?

FRIN
42:FRINT "ABSCY
2)=1:PRINT §
CACITI*ACIT)
+ACT3I#ACE)

J

42:PRINT "ABSCY
1)="sPRINT §
CACZ9I+A(39)
+AC4DI*ACH0)

)
44t X=R+A¢46) s IF
N<=Rx4?>FOT0

45 END
101: "SUBR1"
102:AC27)=,07052
20784 N
in3: 2828) =,04228
104z ﬁCZ?) « 00927
105: 9(30)— 00015
1063 ﬁ(z%)“.00027
107: ﬁ(gZ)‘.0ﬂ004
108:E=C14A(27*R
+A(2EIRRIR+A
C29RCRAMTI4A
CZOIHCRAMI4A

(1R +A
(;2\0tR‘63)‘

:14:z=rn+r\»su9
1e4)

[$¢
118 P={L~RCN+L 2
[l

11610=CM+, SeNHCH .

=17W)d72
1178 H=HP K=H+02
N=HN+1
1184 IF AES PXIE~
) 40073 113
11941F RES @X1E~
S 4G0OTO 117
1200 T=ENP (-11):
=EXP (RRY:M
='}]‘[F’

121 =T (LCE+{C~
O L0AMH2HATD
122: B=T+ LSE+3M

+2F 00
123:RETURN
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Program listing

" V"PRO 2 "

L T T

- uee

ORIGINAL PAGE |g
OF POOR QUALITY

11 "Y-PROZH

2t INPUT "%-STA
RT?"» A4S "
SCHRITT?"»R¢
46)y "%-ENDE?
"1AC4T)

B Kx1(45)

9!{F'X>OGGTU 1

10tACZT =0t /(38
Y=0tR(29)=03
A440)=0:G0TO

27
1130=L(Rx2) U=

COS (R/8r VY=

SIN (N/8).
128R=0L2 I=0V
14:GOSUB 201
15: 43T =AlU+BY
163/(24)=-AY+BU
17:R=0V: 1=0U
191GASUB 2011
20t A(35)=AV+BU
213R(36)=-AU+BY
22::;;<:x>/<4¢:

)
23ACIH=YR(ACS
Z)+A(355)
24'ﬂ(38>=¥*(a(3
4)+r1L36))

2ﬂ.n»39>-vn<n<=
4Y-8°363)
26:RC40) =Y ~AC
II04AC35))
271 Y=~ (LT H(EXP
RISLRICE2Y)
288ACY1 ) =R(3TI-
Ymgu (¢ L1¢ Vd

b]
291[42)=ACZE) -
Y4SIN (K-t
B
3MAC4ZI=ALZ+
V*E?S CH+430
I'é

8)

313AC445=R¢40)+
THSIH CH+C3R
2803

32¢PRINT "%=":
PRINT ¥
ZZPRINT "V2R="
tFRINT AC3TS
T4FRINT "V21="
SPRINT AC38)
35: F'F\'INT ll\plg: h
SPRINT RO3%)
381FRINT "Wil="
SRRINT Al

129

ITLFRINT "Y2DR=
"IPRINT At41

)
ZEtPRINT "V2DI=
"IPRINT A(42

b
I9:PRINT "VIDR=
"SPRINT @42

)
40tFRINT "V1DI=
" PRINT AC44

41:PRINT "ABSCY
ZH_VlH).—H.
FRINT =¥
423PRINT “RBSCY
2)="1PRINT ¢
CACITIRALST)
;ﬁﬁBB)*a(ZB)

43:PRINT "ABR3(Y
1)z s PRINT {
CACIIINHCII)
+AC40)%AL40)

P
442 K=K+A(46): IF
X<=AC47IGOTY

9
45:END
2013 "SUER2Y
202:Q=RR+1 12 01=
ATH C1/R)
203=gF R2000T0 2
(]

6

2043 IF I1XOLET D=
T+

2054 IF IKOLET D=
D-n

206sM=1sp=1sK=01
L=

2073 FeF4s, 5-M) A
xNFf2N+l>*D

210 ﬁ‘ﬁ+F sL=L+Ge
2113 IF MLTOOTG 2
a7

212¢M=EXP {(RR-11
DET=0HIREN=S
CRED

21T /=MC0S 2RI~
Fr T~ H

2143 B=p+STH 2RI+
1-T+LH

ZIGRETURM
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Besides that output feature, the "tape output version "vaD-PRO"
is ldentiecal to v~-PRO 1 4+ v=PRO 2; tha switching from the
expansion for small and middle X (SUBR 1) to large ® (SUBR 2)
takes place at X = 6. Finally, we providée in Table 2 a data
survey for the different v-velocity constituents.
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Program listing
"VQD~DRO“

A

-

ORIGINAL PAGE IS
OF POOR QUALITY

11'\V2D-FRO"

20 INFUY “R*STA
RYZ" 1 RE2T)0 "
SCHRITT2" A¢
‘B)!”R-ENDE?

"y RE2I)
3l9tﬂﬁﬂ?)

Bl{F XM0GaTo 1

1n|arsn>-0nn<st
YeOIA{32)n0t
A3V GOTO

27
LLvQuIENe2) 1l
COX (R8I tVm
SIN CReBd
120 RuOUL IOV
13 IF h«GGUSUn

l%tlg Q)HGGOSUB

1SR =AU BY
161ATIN waV I
1TR=0V 10U

1B|!F‘h<6505UB

101 :
191 1F Ro=Ee050n

01
SORTIEYAVABY
Qllﬁ(3T)k*RU#BV

!Yn-\$n)/(4m¢

Eatn\\0>uY*(ﬂ<3
42 4AL36))
a‘taxslbuY#C&tx

MHLETD
”th\‘“)uY¢<a(3
LTI
Euln\*33iY*(-n<

ACIE))
”‘!T*“ill\*(EhP
W2

JOERCHEYsR{E0 -
‘*CGS X=CRe

80
3\|n(w7>-n\31)n
Y8IN (N={R2
a>>
I2IRCES X
RRIPRINT g¥\2py
CIRLES)
44IX=R4AL28) L IE
g(-h(ﬁ?)ﬁDTo
481END
101 HEUBRRL®
1021 K=, QY0N23076
10%1Lm, 042282012
1D4:H‘.009270‘2T

lQStN".QDOlS“OIQ

RER

loétgu.OOOZTGSéT
1071 Q=, DO0O4306X

1081 End 14KRALRRY
Ma(RMIVENECR
A PYRAE) ¢
MR A1

10N ERI-E

110N tH=QEKul

lll:*gsxn 2ARC=

l§u4§RtL!”RLl
1iiluu§\P SNID
110:2;\D§T>it\9
ll%an\L-R*cuﬁl«
l!u!ﬁﬁ(ﬂ#.ﬁ*N*(u
FHYR
l\"iN“N§Plk“k§Ql
HelNil
llExlF QBb PO E-
HOOTY 113
l%“tlr ARS Q\IE*
406070 11X
SVITRENP (=110t
nE\P {RR1IN
&allaﬂf*(LCE*QC*
2 NE2HAR)
i :xtnT%(Lctﬁﬁfﬂ
I”KXKETURN
S04 U SUBRRSY
ANRNERRE1 T3 e
ATH CIeR)
”Dstég RMQGQTY 2
QQ&lIF IOLET Dw
“DSléFni\ﬂLE1 D=
-t,t)ﬁ!“*‘g!f"k! 1wt
QTEP=PYC, S=M)sQ
THeUIMEL D
S081FEPLC0S N
209t =PHSIN N
EIB!§-§9FRL-L¢51
Lil‘lF MSTGATY 2

212 IH-EYP ¢RR=11
g:g-n*ruxuwr

2UJANCAT BRI

5% Yo Ko

letB'N@SIN 2RI+
12THLH

QI*IREYUGN

- —
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OF POOR QUALITY
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u-computations at y < o, tables

The basic jdeas of the u, field computations have already been
outlined in section 3. The calculation proceeds as follows (see

Fig. 26)

(]
source -y’ o\ field points at
element ° constant x and

o varying -y

[«]

[+]

O

Uz

Pig. 26 Field computation scheme,

We calculate the velocity u,,, induced by the Yap velocity distri-
bution. U,p is computed for a set of, say, 15 field points with
varying -~y and at a constant x location. We are summarizing the
induced velocities from each (source distribution) interval Af.
We start the computation at sufficiently large negative values
of & to have a sufficiently low value of Vop* We use an integra-
tion procedure utilizing trapezoidal (source) elements between,
say, £ = =6 and §= o. For the real part of Vop? which has an
infinite slope at ¢ = ¢ (see Fig. 6 in section 2), we use for
the Var contribution to VapR a parabolic piece of curve between
£ = oand §£= o0.1. For this region we use the analytic solution
eq. (82). For the region between £ = 0.1 (0r & = o for the
imaginarxy part)and ¢ = 6, we use again the trapezoidal element
model. The stepwidth.for our calculation is Af = 0.1, Above§ =6,
the real part is set equal to zero (no contribution above ¢ = 6)
and the imaginary part, which has a -1/4YE behaviour, is. evalu-
ated with the analytical far field solution, eq. (79). The
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gomputation of Uapn and Ugpy in dona simultancouanly. The valuan
of Vyp for k- o are computed by the ug=program, beenuso it
conalots Jjust of the (hegative) lelmhaltz solution. For values
between 7, = o and 4 = 6 tho values are taken from a data tape
produced hy tho program discussed in Appendix D. For valuoes
above & = 6 we use agaln agymptotie golubions, as montlonoed
above,

Sinco many oxprossions in oaguabion  (79) for the fax fleld and
in equatlon (82) FPor the Pleld at the plate edqgo arc the samo,
we ugoe the same gubrouting, L.a., instructions 2011209 of the
mrogram, Thoe trapesoidal dntogration sogment 1 tho subroutine
Betwoon Ingtrnetions 101 and 105, The £i0ld caleulation bhotwoen
e oand L2 o0t Lo done botweon lnstructions 60 and 65, and

the Far Piold ealewlation ig dono batwoon instructlona 50 and 52,

The rost of the program congloks more or lesg of progran manngo~
mont Liko loop controls ote, apwell ag tho caleulation of theo
Helmholts wave flold which has to bo added to the values of u,y
to obtalh Ugs In addition, the reading of the Vg values from tho
datn tape Lo cheeked with the r of esach data set road from the
tape agalhob a ¢ gonorated Litoarnally by tho program. Fox a
glven & of tho field points, the program caleulatoa 15 valuos of
=y with a stop width of 0,05, Yhis takes about 6 hours {1). So
tho data nat for L) conplobting of 16 x=subsots took about 96
hours, This Ip oubkrageous, but the compubting tino is froo fai a
mlerocomputer and mueh Limo L8 savod durding tho program oaptab=-

lislmont phaso, since the microcomputer can be used aontinuously.

The BASIC computer program for b, ds glven on the next paga and
it de followed by a sot of u, £lold datn (soo Tahlg 3). Plots of
those data are glven in ¥y, 10, '
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Program listing 14 M 2-PRENT k) ér FOGHTd 2
"uz-PRON" 2:§NPUT PREPy - gF JAGLET B
- ‘5'1
e T L1 20 R 1OLET 0n
1E=OF=0t 25¢
. ‘ ] FPIHT TPHRSE
gn:’f(“*;({2> [§ }Il“ 1§l[:g=u’ g
LE O B
&R AsLoc0TO B YRY+, 051 Nehi
10 ' LS
413 IF Y, BGOTO

BiN=ZHERP AiG=
WHCHS A=
RY) tH=N+SIN
<n~enzama

TEOOTH 14

10z INPUT gt

PRCES)

11 t=nf¢b> H=A¢
&7

121IF REOALRE)
PRINT "LESEF

EHLER"

2 IF A, 1GOTO

&0
IEHRIGE IR HH A
=£

15%LmbUQ 10
1o ACNIBACHY+U
1Tsi=cHeF w0 L

=F
$GOSUE 101
C=ACHY +J
F A=, 0G0TO
S0

211Y=Y4, 05 N=N+
3 M=ttt

28 IF Y<Q, 8GUTO

!

S E=Qi Pl YD)
41N=271 11=46
SHLIF ACRGUTO 4
BEIPRINT "H="yh
3“5&”“‘%:%-

o8 “ SHERP CN-Y

oo F L
SIH v aS=cN
:31"1

TOL I rtqe Pt
CO% a4y e 1
E,‘\ll
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IDIFRINT "2 ] =Y
[
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2 sy YRR T

54:1? FROLET R=
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inl
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o

14Q

ﬁ:EHD _
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Lo GhTt\ 21
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N heG-EdHL0
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B1I00SUE 104

ERERCHY=ATNI+U

S3LGUELE 201

B4 RN =R =
LT O+ TH:
SIH CDe2) ML
NSRS RE 821 1]
5=y, 1

GRIQOTH 17

101 ¢ B=p= 18 Y=Y

100 POt wRM (NP
DAY

lﬂ«toa(?~g3m<3-g

1042 U=xh*n\4(ch
ATH CoR=Kasy
3=HTH CCBmR)
N e (L O
A ki=Bw, %
LM CQPY=-, 1)
Ly RS-
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