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Stability Theory, Aercaooustice, Shear bayers

Excited Waves in Shear.Layers

szmmary

The generation of instability waves in freo shear layers is.in-
vestigated. The model assumes an infinitesimally thin shear layer
shed from a semi-infinite plate which is exposed to sound exci-
tation. For this modelo it is shown that only forced instability
waves and a Kutta condition at the trailing edge are possible..
The shear layer excitation by a source further away from the
plate edge in the downstream direction is very weak while up-
stream from the plate edge the excitation is relatively effi-
cient. A special solution is given for the source at the plate
edge. Any type of source further away from the plate edge creates
a parabolic pressure field near the edge. For this latter, fairly
general case, a reference quantity is found for the magnitude of
the excited instability waves. The theory is then extended to
two streams on both sides of the shear layer having different
velocities and densities. Furthermore, the excitation of a shear
layer in a channel is calculated. The limitations to the theo-
ry and some aspects related to experiments are discussed. In
particular, for a comparison with measurements, numerical com-
putations of the velocity field outside the shear layer have
been carried out.

Stabil t4tstheorie, Aeroaku.atik, Scherschichten

Angeregte Wellen in Scherschichten

Ubersicht

Die Erzeugung von InstabilitAtswellen in freien Scherschichten
wird untersucht. Dabei wird eine unendlich donne Scherschicht
betrachtet, die am Ende einer halbunendlichen Platte entsteht.
Diese Scherschicht wird akustisch angeregt. Fair dieses Modell
wird gezeigt, daA nur erzwungene Instabilitatswellen m8glich
sind and daA an der Plattenendkante die Kuttasche AbfluBbedin
gung gilt. Die Anregung der Scherschicht durch eine Quelle strum-
ab der Plattenkante ist schwach, wYhrend die Anregung von strom
auf relativ wirksam ist. FOr die. Anregung direkt an der Platten-
kante wird eine spezielle Lbsung angegeben. Jede Art von Quellen

`

	

	 in gr6Berer Entfernung von der Plattenkante erzeugt ein parabo-
lisches Druckfeld in KantennRhe. Zu diesem letzteren, recht all-
gemeinen Fall wird eine ReferenzgrbBe fair die Amplitude der In-
stabilitUtswellen angegeben. Die Theorie wird ausgeweitet auf
zwei Stromungen auf beiden Seiten der Scherschicht mit verschie
denen Geschwindigkeiten and Dichten. AuBerdem wird die Anregung
einer Scherschicht in einem Kanal berechnet. Die Grenzen der
Theorie sowie einige experimentelle Aspekte,werden diskutiert.
Zum Vergleich mit Messungen wird das Geschwindigkeitsfeld auBer-
halb der Scherschicht numericch berechnet.

n	 4
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Let us first consider a picture of the interaction process which
we are going to investigate, In Fig. 1 a photograph of the evo-
lution of a plane free shear layer can be seen. The shear layer
is forced by acoustic excitation into wave motion and vortex
roll-up. The lower half of the picture shows a flow from left to
right whereas the upper half shows a very slow entrainment flow
in the same direction. A smoke filament is injected into the
shear layer from the low-speed side. A splitter plate separating

the two streams ends at the left hand side of the picture. Around
the end of this splitter plate a fluctuating pressure field is
created by vibrating plates outside the flow.

r	 spotter plate	 = entrainment flow
smoke	 injection

`	 A

1cm	 mean #low

Fig. 1 Free shear layer evolution with acoustic forcing. For

j

more convenient reproduction, the colours have been inverted so

that the white sulfuric acid smoke filament is shown in black.
Mean flow velocity 6.4 m/s, entrainment velocity p 0.6 m/s, fre-
quency 63 Hz, forcing reference velocity op12 /p w4	 = 0.354 m/s j

RMS (definition see section 2.1.), Strouhal number S e = 0.0040.

Although impressive,pictures like Fig. 1 have been observed many
times in the past. In particular, the observation of the sensi-
tivity of flames to sound has been made by Leconte [1) as early

E	 as 1858. Tyndall [21 has shown in 1867, that also jets without

e	 PRECEDING PAGE BLANK NOT FILMEDr
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combustion are sensitive to sound. Experimental observations like

these were already known to Lord Kelvin, von Helmholtz and Lord

Rayleigh when they laid the foundations to the stability theory
of flows. Lora Rayleigh,e.g., refers to sound-sensitive smoke
jets in his 1880 paper "On the stability, or instability, of
certain fluid motions" [3). Since that time, stability theory

has used a model assuming a parallel flow extended from x m --

to x = +w which is disturbed by a wave motion with constant
magnitude in streamwise direction and growing with time. This
approach is perfectly valid to answer the question whether, or not

	 3

a flow is unstable. However, it is not appropriate to use this

model if an instability wave is driven by an oscillatory excita-
tion which does not vary with time. In 1962, it has bein sug-
gested by Gaster (41 and Watson (5), that in this latter case a

stability analysis with spatially growing waves is the only

reasonable approach. For free shear layers, the spatial stabili-
ty model has been verified by Michalke 161 and Freymuth (7). In
addition, it has become evident from,Freymuth's experiments, that

the magnitude of the spatial instability waves is linearly de-
pendent on the exterior forcing by, e.g., an acoustic field,

in spite of the numerous experiments with artificially forced
shear layers and jets which have been carried out in the mean-

time, the mechanism describing how the perturbations were intro-

duced into the flow was not yet understood.) About a decade
ago, however, a few theoretical papers appeared which included
a semi-infinite plate into the stability analysis of a thin free

shear layer, The introduction of such a solid surface into the

0 Also some theoretical papers on this issue have inherent
problems, e.g,, Tani's paper (8) discusses the excitation of a
shear layer by an acoustic beam. His model assumes a beam width
of typically 20 + 60 times the momentum thickness of the shear
layer. On the other hand, the range of unstable waves in the
shear layer requires a relatively low excitation frequency. This
would cause the beam width to be about 1/100 of the acoustic
wavelength. Unfortunately, it is not possible to form an acous-

yIk
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onolysts turned out to 
be 

of crucial importaned 
in 

the under-

standing of the coupling between sound waves and instability

waves. The first of these papers (9), albeit mathematically car-

reek, led to Some Confusion of the physics. Later, a few other

theoretical papers were published [10, 11) which ut-ilizod (no

19() a Fourier transform procedure (i,o-, # the Wiener-11opf tach-

niquo) , whereas a Simpler approach Using syllilliet;LY/Anymmotry

arguments 112, 131 turned out to be more elegant but also leap,

versatile in Its opplienbillty, in the present investigation we

will extend and exploit this latter approach 1121 so 
that 

0100-

rotical data are available which can be compared to experiments.

Any testing or tile now theories [10 t 131 
had 

not boon carried

out previously because the previous theories wore presented 
in 

a

way which could not 
be verified easily by experimentalists.

indood, wo think that 
it 

is desirable ill this field to track

down by individual experiments all basic assumptions and findings

of the first simple theories before going 
on 

to more complex

problems.Tho rowarding aspect 
of 

this "old far-hioned" , typo of

rosoarch is, that simple analytic solutions are obtained which

oall be clicakod with (moderately) slitiple experiments.

There are different motivations for the present investigation:

(I)

	

	 From the viewpoint of scientific Curiosity it is interest-

ing how perturbations are introduced into a ShOar flow.

These perturbations cause instability waves which, 
in 

turn,

lead to turbulence. This development can be seen in Fig. 1.

Tho interaction region is found close to the lip of the

Splitter plate, The emerging instability waves are ampli-

fiod rapidly in the downsi;rt^am direction. As usual 
in 

flow

vizualisation pictures, the linear growth regime cannot- be

seen clearly, because the displdcomonLs of the shear layer

are still too small to be visible. Since the amplification

rate of the instability waves is rather high (about 500

times within the first '10 cm of Fig. 1) , tile onset of non-

linearltios characterized by the vortex roll-up occurs



cation is basically a nonlinear effect, another related
interaction has been found. It has been shown, that the
ge"eration. of instability waves at ail edge call extract
energy from a sound field 127 + 30). This absorption
effect is (at least for small perturbations of a mean flow)
a linear effect. It can lead to quite dramatic sound ab-
sorptions, in particular at low frequencies. 'I la give an
example: Consider the sound transmission through a nozzle
and a Jet at, say, a jet Mach number of m - 0.3 and a

10

(ii) A behaviour very similar to instability wave evolution
(orderly struct p tros) has been found also in turbulent jets
[14, 151	 to acousti ,; excitation. oil the other )land,
similar orderly structures have been found also in "un-
excited jets" (16). Recently, however, it has been shown,
that at least in turbulent shear layers, orderly structures
become highly organized and dominant if an involuntarily
qenorated, mostly unnoticed and sometimes inaudible acoustic
excitation does exist (17, 18).

(iii) Tile investigations on acoustically excited turbulent jots
)love led to findings of practical importance, It has been
found, that brand band jet noise call be amplified by a pure
tone acoustic excitation from inside the nozzle (19 t 21).
nocauee of its relevance to aircraft noise qenoration this
observation has triggered a number of further investiqa-
tions (22 t 24). it has been recognized, that the acoustic
excitation of stability waves plays a crucial r8le in this
mechanism [19, 21, 24).

(iv) The change in acoustic radiation of turbulent jets due to
acoustical excitation is accompanied by quite substantial
changes In the flow pattern. An amplification of the Jet
noise corresponds to an enhanced mixing and ail increased
partubation level in the near field of the jet (21,25) ,
On the other hand, 

it has been shown, that the spreading
rate of a jet can also be reduced by acoustic control r)f
the shear layer [25, 26).

(v) whereas the above-mentioned broad band jet: noise amplifi-



dimensionles frequency aR  0.1. For these parameters*)
only 1 % of the sound power transmitted through the nozzle

exit will be transmitted into the far field!	
j

This paper, however, will not provide ary detailed prediction on

any of the three latter affects. Nevertheless, the basic

underlying interaction mechanism between sound waves and free	 f
shear layers will be dealt with and we will be able to predict,

e.g., the perturbation magnitude introduced into th,^ rhear ;layer

shown in Fig. 1.. in additionv a well-defined references quantity

representing the acoustic excitation will be given st that future

experimental investigators will be able to replace arbitrarily

taken reference pressures, velocities, or even loudspeaker input
a

voltages by a more general and appropriate reference quantity.

This paper wil l, only deal with theoretical aspects of the shear
layer excitattovi. There is evidence from our recent experiments

that the present theory is valid in the expected range.

2. One stream model

Fig. 2 'shows the simplified configuration which T.i+.-.1 be
modelled mathematically. The geometry is basica7 ' ^:he same as

in Fig. 1. We will, however, assume that there is r1oo Ftow

above the shear layer (this condition will be released in

section 5). The acoustic field is assumed to be created by a

pulsating source outside the shear layer in the fluid at rest.

The following simplifying assumptions are introduced:

1. plane flow

2. parallel mean flow

3. linearized problem

4. all fluctuating quantities harmonic in time, i.e., me-iwt

5. inviscid flow

6 incompressible flow

7. infinitesimally thin shear layer

R is the radius of the nozzle, m is 2 mimes the frequency
and a  is the sound speed.

r
a

11
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xo	 rpulsating source

Yo

h

t
	 x2

shear layer

t

i

Fig.. 2 Configuration of the analytic model,

The first five simplifications are common in the stability theory
of free jets. The assumption of an inviscid flow works quite well
at sufficiently high Reynolds number [6, 71. The sixth assumption
is equivalent to the restriction to small Mach numbers and small
Helmholtz numbers, where the Helmholtz number is defined as the
ratio of the typical length of the problem to the wavelength of
the sound waves. For our problem, the latter condition means,
that the interaction region close to the lip should be small

compared to the acoustic wavelength. It will turn out, that this
region has a dimension of the order Uo/f (where U 	 is the mean
flow velocity and f the sound frequency). Consequently, we should
have Uo/f« ao/f, where ao/f is the acoustic wavelength. This is

r
e

12
g

A',

_..
	 -
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equivalent to M w Do/no -;x I, i.e., again the condition of ssokl 3

Mach number. The seventh assumption f the restriction to an infi-

nitesimally thin shear layer will limit the validity range of

the theory to the Cana where the shear layer thickness is small

compared to the wavelength of the instability waves. in other

worda l the Stroohal number folO
o should be small. 0 is the

momentum thickness of the shear layer.

After all these simplifications we end up with the linearized

Euler equation and the continuity equation in the following form:

(1) _iwu + U '21-1 + v IU + 1. 12	 0
ax	 Ty	 1) a x

(2) +U 
1V 

+ 2 22
llx	 0 Oy

(3) U + 2—V 0
ax	 ay

where U is the mean flow velocity and u, v, p are fluctuating

quantities, all proportional to e-iOt.

The classical approach would be to fulfill the boundary condi-

tions at both sides of the shear layer, which means that both the

pressure p and the displacement h should be equal there. We

focus first on the pressure condition. Instead of taking p we

may an well choose ap/Ox. Above the shear layer (index 10 1 11 ) we

have 0 - o . Equation (1) then reads

Pi(4) -iwu1
	 P ax

+ I 	 0,

Below the shear layer (index 11 2 11 ) we have	 _U
0
 and

-iwu +	 Lu + .1 'P
2	 0 ax

2	
P ax2
	 0,

ORIGINAL PAGE IS
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If we subtract eq.	 (5) from eq.	 (4) we obtain
1
jDu	

i	
^(paxP2)(6)	 u2 + i Uw 

axe	
u1

1
i
1

For x > o we should have p)-p2 	 Qp12	 0. M

This is a first equation connecting the u-velocities at both

sides of the shear layer.
l

Now we consider the condition of equal displacements. The dis-

placement	 h and the velocity v are connected in the following

way

ah	 ah
(7)	 v	 a 	 U a:z a

In the region above the shear layer we have with 0 = o i

(8)	 vl	 -iwh

i

` and below the shear layer we obtain
a

j

( g )	 v2 - -Imh 1	 Uo 8x
k

We can insert h from eq.	 (8) and find

Uo av1
(10)	 v2 = v 1 	+ i	 w	 ax

which is the second connecting equation between the velocities

at both sides of the shear layer at y = io. However, equations

(6) and (10) are valid for two different velocity components. if y
we want to find solutions for v and u we have to generate (i) two y

equations for the two unknowns v 1 and v2 as well as (ii) again

two equations for the two unknowns u 1 and u2.

(i)	 A second equation for v,
1
 and v2 can be produced in two dif-

ferent ways. In (12) it is shown how eq.	 (6) can be con-

verted into an equation for v using a source distribution

approach. We will follow, however, another procedure (which

19 v

^ f
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is also given in (121) which will provide more insight into 	 j

the physics; this latter approach we will call the pressure 	
^!!

gradient approach.	 J

(ii) To create a second equation for u 1 and u 2 we have to convert

eq. (10) from an equation for v into an equation for u. This

will be done using a vorticity distribution approach.

;
2.1. Differential equation for v

The aim of this section is to create a second equation for v 1 and
v2 out of a consideration of the pressure field and its gradients

at the shear layer. Then we will derive a differential equation

for v 1 only and solve it.

We start out by taking the x-derivative of the first Euler 	 i

equation (1). Subsequently, we take the y-derivative of the

second Euler equation (2). Both derivatives are added and some

terms are eliminated using the continuity equation (3). We end

up with

(11) 02P = -2P av 
• ay .

In our model, the mean velocity profile jumps from U = o for

°i

	

	 positive y to U = Uo for negative y. This can be represented in

terms of a Heaviside step function H

f^.

(12) U	 Uo . H

The derivative of a step function is a delta function and we

obtain from eq. (11) and (12)

(13) v2p = 2P Uo . ex .s(Y)`	
r.

,.

Eq. (13) is a nonhomogeneous Laplacean equation with a line

source of varying strength in the shear layer. It should be

stressed here, that the sources in the shear layer are pressure
sources and not sources of fluid; the latter would violate the

continuity equation (3). Since there might be some confusion

15	 ORIGINAL PAGE 13
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about the structure of these pressure sources we will give, as =

an example, the detailed pressure source structure of an ampli-

fied instability wave in appendix D. It will be shown there that

eq.	 (13) can be integrated to produce the whole pressure field.

For tbo further progress of our calculation, however, a detailed

knowledge of the pressure sources is not necessary.
r ^

At the surface of the semi-infinite plate we have v and ^vv/ax

equal to zero. Consequently, the pressure source strength is 2 "'!

zero on the plate surface 	 (see eq.(13)). The only other location

where v'p is nonzero is at the location of the exterior 	 pulsat-

ing source (see Fig. 2). The basic idea of this approach is,

that the pressure distribution in the whole field can be split k
into two contributions: r

5

(i)	 a pressure field 'which is symmetric with respect to the i

shear layer and which is created by the pressure source

'f
distribution in the shear layer itself.

x

(ii) a pressure field which is created by the exterior	 forcing,

e.g., a pulsating source. The pressure fluctuations of this

contribution are transmitted through the shear layer. The

pressure gradient of this contribution is continuous through

the shear layer and therefore it is antisymmetric close to
i

the shear layer.
r a

As a result of this splitting process we have

^ a

p 1	 - p1s + p1f % p2 - p2s + p2f S'

(14) v1	
- v1s + v 1f% v2 r y

2s 
+ v2f

u 1	 u1s + u1gi u2, = u2s + uZf
tf

The index s stands for shear layer and the index f labels the

exterior	 forcing. The boundary conditions at both sides of the

shear layer have to be fulfilled by the summations of the

individual constituents, e.g., by v^ and v 2 % as before. on the

n other hand, we have some new informations: Since the induced

16
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field of the pressure sources in the shear layer is symmetrical

(it is created by sources of symmetrical directivity in a field

with symmetrical boundary conditions) we obtain;

(15)	 Dy	 - gays	
at	 y W to

and for the continuous pressure of the exteriour forcing
o

aplf apf(16)	 =	 at y =	 toBy

These conditions for the pressure gradients in y-direction can

be inserted into the 2nd Euler equation (2), which gives

a DX(17)	 v2s + i wo	 -vls

Uo 8v2f(18)	 v	 + i	 - v2f	 (Al	 ax	 1f 1

Equations	 (17)	 and	 (18) can be added, using eq. 	 (14)

U	 av2o 
'v(19)	 v2	

+	
i 

	
+ v 1	 = 2v1f o-

w	 ax

This is the desired second equation for v 1 and v2 . The velocity

v1f is not an unknown quantity, it is the velocity which is

created by the	 exterior forcing without the mean flow being

present, but in the presence of the semi-infinite plate.

Equation	 (10) can be Inserted into eq. 	 (19)	 to obtain anon-

homogenous differential equation 9

11	 dv	 U 12 d2 
a

(20)	 2v1	 + 21	
dx1	

- l^0
21	

= 2vlf

dx

The homogeneous solutions of this equation are found easily

a	 (21)	 T,
	 1

1 eA1x,	
T2 = C2eX2x

c
a

.,	 k

jI	
17

a;

t.;
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(22)	 d1 	
Uo 

(i + 1)i X2 " 
00

(1-1 ►

C1 and C2 are arbitrary constants with the dimension of a velo-

city. T, and 72 are the well-known spatial stability waves for

an infinitesimally thin shear layer, extended from — to +W,

which we will call the Helmholtz solutions. The complete solution

can be obtained in a straightforward way

(23)

1

t
This is the general solution for v 1 . Once v 1 has been found, v2

can be determined with eq. 	 (10). The lower boundaries G 1 and

G 2 will produce terms of the Helmholtz solution type. The actual

value of G1 and G2 depends on the boundary conditions; this will

be discussed in detail for our configuration (shown in Fig. 	 2).

However, before we are going to do this, we have to consider the

structure of v 1f , the fluctuating vertical velocity at x > o

and y = o which is created by the 	 exterior excitation.
y

The general solution (23) for v, was obtained by splitting the

Pressure field into two constituents p f , the forcing field and (
ps the field induced by the shear sayer wave motion. The field

pf is continuous through the shear layer. It can be seen, e.g.,

from equation (2), that the velocities cannot be continuous

through the shear Layer, 	 in	 other words: v lf # v2f, Therefore,
A

the appropriate approach is to calculate the pressure field r

first, which follows from V p = o outside the source location and r
the shear layer.After splitting it into the two constituents we

have (I) the excitation pressure field p t with a singularity at
F

the location of the exciting source (x o , yo )	 (see Fig. 2) and }

(ii) the shear layer pressure field ps with a pressure source

distribution in the shear layer (x > o, y = o). As we know from x
K	 potential theory, analytic functions of z = x ± iy are solutions

k
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of Lho Lnplomm eqwAL1on for the preamme. Therefore, 
we 

ena w3o

all knowl) tool" of collforilml mappiliq to m%l0t1l?1w # c.q., tilt)

pressure field pi' . 11A the famid at roat (0	 ill roklioll ' I ' l l, oc

pjq. 2) there in a 91mplo relation lwtm eull tho volooities And

the proasuro. 1411his QiAn bo obl:olnod from thc) two 1•110,or oquations

(1) And (2).

ti,	 --,L il e	 I ap

	

t^ W ')X	 t) w 	y

Wo ruNcogill-Lo, that, ill 41 f1mid tit rest, tho prou gure iR p 'vo-

IlOrtiO1101 
to 

(110 I)OU'l lItlill f111IQU011 + w11JQII in dafilwd "Is

tA u '^ 
q	 v
,IN ;

'Phis ollowon Im to ust, conVtjjjtL.j()ljaj J)OLO)Iti4l Hloc)V^! tO t-41000tos

Wlyp V ii;  for a sollrov ov, a diPolo In (`olljullctioll with a nollit-

illfillit-e	 'j'jj'j'q hairs boon dono in (I'l l And wo will (ji'vo u)lly

00 VOMIlt-s here. For a pt)lant.but] Wo-dimensional no"roo, zvn

shown Ill Fig. 2 Wo have

ra)

X-)
Ux

wi 01

(27)	 37
0	 0	

Yo

X
0 
and yo aro the hovizoiiLll. 411d vortical dIOU'lliven, r ospootivo-

ly, of Clio somee froul the plato odge and 0 iti tho so"roo

Strength, sny, ill	 Q10arly, Q io rIvIc..-t""at"ing as

(20)	 0 w Q0

Vor lArge (UsLancon ro 1 ti x we have "limply
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In [ 121 010 induced field of a dipole is also givell. WO will 110,t

give hare tile full equations of the general come of an arbitrary

location of the dipole. There is, howovar, a simple Casa which is

worth moilUallijig. Anus 	 that the dipole is far away fvvom ti 

odge, i.e., ro
 >> x # and located above the and of the plate so

that yo >> X0 (Soo Fiq. 3).

Fig, 3 Dipole as excitation of t!ho shear
layer.

Tile dirOCUO11 Of the dipole is 4 . In this case, we hovel,
aceording to (12):

(30)	 v	 Coo	 71/4)

ca

W1103:0 D is the dipole SLC0119t)1. -AS WO See, v:
li becomes a maximum

at to 45 . The direction Of maximum efficiency	 of tile

dipole clearly changes with its position relative to tile semi

infinity_ pInto (sac also (121). ror a position close to the Shear
Inyar, 

we Will linvo, as expected, to 	 90 If we use \Ubrat—
ing cylinder to create a dipole # we have for 

tile 
dipoles strength

D' au .21t12 where 11 is tile cylindar radius and it is tile Vql0q1ty0	 it	 0	 1

UC=UO . o 	or the cylinder, Similar expressions can be given

20
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for a vibrating ribbon in the fluid at rest [121.* ) The general

finding is that in almost all conceivable cases we create a field

close to the plate edge where vif Q 1frX. There are only a few

singular cases where we create a stagnation point: at the plate

edge, like the "zero" position of the dipole in eq. (30). In

section 4 it will be shown, that this region close to the edge

where v 1 E a 1/,Sc is in fact the relevant one for the whole inter-

action process.

As we will show now, v1f	 1/ 3x corresponds to a parabolic

pressure field around the edge. This fact is of particular signi-

ficance for the choice of a suitable reference quantity for the

excitation in real experimental situations. Since it is often im-

possible to track down the whole pressure field in a practical

situation, we are looking for measurable quantities relevant to

the interaction process.

To model a parabolic pressure field around the semi-infinite

plate, we have to keep in mind, that analytic functions of z=xtiy

are solutions of v 2 pf =o and that we can use conformal mapping

to fulfill the boundary conditions at the semi-infinite plate. We

start with the consideration of a plane pressure field (see Fig.4)

Z.-Plane
O

Xb

p-const7/

Fig._ 4 Plane pressure field, parabolic pressure field

7- -if  the vibrating ribbon operates within the flow regime at 	 t
y < o, the generated pressure field is, however, completely dif-
ferent, due to the interaction with the flow.

21
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This pressure field in the z a-plane (z a = xa .f iya) has vertical

Lines as lines of constant pressure (we suppress the time depen-

dence a iwt for convenience). This would be the pressure field

of a horizontal velocity fluctuation u constant throughout the

plane. In the za-plane we have p = A ^ x a . If we apply the con-

formal mapping	 Function	 xb	
za2	

we	 have for a point r	 ,

eia a conversion to the point z b = x	 =z a	xa + iya = ra	 b+yb j
rbeio = za2 = ra2e2ia	 (see Fig.	 4).

For the pressure we obtain:

(31)	 p = A ' xa = A • Re ( za ) F A • Re {-- b }	 A	 1"r. 	 • cos

For 0 = o (above the semi,-infinite plate) we have p 1 = A x and

for a = 21f we havep 2 = -A b (below the semi-infinite 'plate).

At the location 1 of the reference microphones we have

(32)P 1 -P 2 = 4p12 = 2A^

With this equation we can eliminate A and find

Ap
(33)	 p =	 b 

cos 
22

To obtain v 1f we take the derivative ^ at y = o and x < o, which

is equivalent to -	 at 6 = n . ''
d

(34)	 -	
1 	 D P	 = + aP12r 2O	 (a=71	 4 r r_

b

Since our plate (see Fig. 2) should be extended from x _ -°° to $

x = o, and since we want to have our result in	 Cartesian coordi-

nates, we write i
Y

A P 12

(35)	 _ +

s

ay	 (x >o, y _ o) 4 e

Using eq.	 (24) we can relate this expression to v1f

F

- 1	 Ap12
•L	

(36)
v1f

-
f	 4 pWF

1

22
F
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Thisa is the desired relation botwoon a quantity easily measurable	 i
auch as the pressure clifrorunce Ap, t ĵ at the plate tnkan at a
distance 1 from the lip. This quatatity, &012 , contains 110 Coll-

trributiona from the shear layor. We :fool, therefore, that Ap12
is thct most suitable rofos°eaco quantity for the o gcitaltion of
the "hoo p loyar. a

i

t	 Sinoo we hove with off. (36) a ► distribution of the excitotioll
field v i r, which in v l ci Ill Almost, all colicoiva ►l)le ca►aoa, We C4,111

F	
proQco t to solve eq. (3) , the difforontial oquation for the	 a

P	 shoar layor mol;ion. After insort>ing- vif (eq. (36)) into aq, (23)
we have

dx	 Ix

f

t

1

The lower boundariou G:l And 02 will proChtce contritatltions to the	 1

solution of the llelmholtr-typo. 5incc v 	 be zero for .x acs
these are t ►ru ►lcated	 starticlq at .c m 0. I'll
:npp +,t1llx C wo prove Oat touch solut; ms cacnnot fulfill tho cotj-
ditrioll of equal l)rrssur0 At both antes of the shear Inyer And
that there i,ts no combimatvion of V,, and G^ ful.fillinq this con-
dition, This calcnlatioa itl the a ppolldir is boodd on calculatinq
V2 from V l using thtl 0011011:1011 of equal dcStosallation of the Shear
layc%vva (o(l. (10)) , Skibsequently the coinxv pondinq U.t All(' 	 t
distr'iblltiolla arch 0alculat ed t1sinq a ;soured tlistri.Wtio tl a► iailrooch.
Finally, tisi tt1, the first Ertl ate equation (oet, ( t)) , ^ i1a ^;t,^ and

are Coll port1Ci. Since ,)p, /;Lx and 1 1e^J ;t\ are iticompatiblo
under all concolvoblce uituations, we can eoncludo, dint tĥ praaao
atr e no ltuiealrcod t:fa oe) vibratioll s or the shear layer, This its,
by the way, 0110 of the essential :resulta of the, presont illvostl- 	

1Ctart^ioll.

amine o we have G 1 	t13 	 o, we aro left- with it ftsrcucl loluti.ott
,nlyr for which we lava to prove that" it .fuirills Olcl condil;10113

of equal defo,tmatioii And equa l pressure at both sides of tile
shear layer. This in done in 1:10t0rrll s t opat

23
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(1)	 v i in calculated in an unambiguous way front eq. (37) with

f'1	
(11
2

=	 a o. Subsequently, v,, can be determined in an un-

ambiguous way tieing ©q. (10)

(ii) by a separate procedure (siction 2.2.) analytic solutions

for u 1 and u, are generated. We and up with a differential

equation for u
1 
very similar Lo eq. (37). The free constants

there are determined by the compatibility with the v
1 

and

v2 solutions 
in 

the far field.

(I 11) Since we found no direct, approach to relate the analytical-

ly obtained u1 to v1 
and 

u2 to v, In the near field, this

was done using a numerical procedure. It is a by-product

or the calculation of "2 in the whole field (not only for
y - a) which had to be carried out for a comparison between
theory and experiment.

(iv) it is shown, that the analytic solution for u 1 and u2 leads
to zero pressure difference at both sides of the shear

layer ( x > o) and also to the expected pressure difference

of the excitation field at the semi-infinite plate (x < o).

As we See, all ambiguities and, hopefully, all doubts are re-

moved by this chain 
of 

procedures. The first stop (i) is then

to evaluate eq. (37) with C1 
ka G2 - o. After some suitable sub- 

stitutions (see (121 for details) and introducing the error

function defined as

2
-9ds

we have

'pl 2c
	

2x
D 9) v	 erf 4x	 err1	 Do rf	 4	 [	 I X2'

aijd with eq. (10)

(40) v2	
AP12	 0\1X 

erf V7—.x + eA2x orf

- -	
1,

ItC,

24
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U	 Uo

It is useful to de:tinea dimensionless cluantiLicns as follows:
A dimensionless wtrve number

^a

i41) 1 i h 1i 2 i^ 1,

a dimension loss elioLanco

(42)
U

which will be used in the same way for y; and n dimensionless

ueloolt*-y *)

which depends oil 	 which can be tt easurod easily. The
8,11110 [otM will icy 460 apj)lied to u. After introduaLion of these
dimensionless quantities we haves

err	
2

e^r 1	 x

q	 i xti	 .f

C'ic . 5 shows	 plot of oqg. (44) and (45) where v and v2 have
been split into their .real and imaginary parts, xcspeot"LvGly.

R

*) based on dimensional Coils iderratnicins, similar dimensionless
quantities hard been defined in t ,121; the: relation to these is:*

v _i^rh and	 x

25
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\,	 Zx 	 N	 i
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Tables of numerical values of v 1 and v2 will be shown in appendix
D. Subsequently, we will investigate the behaviour for small and
largofi, because this provides some additional insight into the
interaction process.

For small: x we t4he advantage of the expansion given in (31)

2 w
(45)	 orf z _	 e• z	 E	 2n	 z2n + 1

3.

i
we obtain for small x

(47) Q1 rr K1.5 t v2 'xV

which shows, that there is no singularity of v1 or v2 anymore

near the trailing edge. In addition, it is shown by ea. (47),

that tile flow leaves the trailing edge without a jump in the

slope. This is equivalent Lo the presence of a Kutta condition.

A question of particular interest is the far field behaviour of

equations (44) aria (45). By virtue of the far field expansion of

the function erf z, given in (:31)

3	 m 1	 3...j2m-1)(48) t zez erfc z . 1 +	 E	 (-1)	 ,
z	 m- 1	 (2z2 III

with erfc zR 1 - erf z we obtain for large z, where the

summation term ran t)e neglected:
a ,
x

(x .r)	 1

---

with 
1	 i + 1. it is evident, that the field has separated into

an amplified ltelmholtz-type wave (1st term of eqs. (49) and (50),

27
C
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iespectively) and file contribution of the exterior excitation
v 1 ,, which is the second term in both equations. This latter con-
tribution is transmitted through the shear layer without any
change. if we call the first term in the equations v11 (where H
stands for Helmholtz solution), we may write equations (49) and

(5O)

(51) 11= vlfi * if ' v2
	 v2H + lf

Tt is interesting to see where this far field solution emerges

i.e., beyond which distance x amplified instability wave and
excitation can be split. in order to investigate this, we sub-
tract the asymptotic instability wave from the complete solution

a
(52) v1D	 v 1 - v 1[1 - vif ; V21) 	 -v2H	 v 2

The differences v 11) 	 v 2D are plotted in Pig. 6.

it is evident from Fig. 6 that the -ar field solution is valid
beyond x	 A t 6, that is beyond about 2/33. 1 wavelength of the

instability waves. This means, that the basic interaction takes
place within 2 wavelength of the instability waves. This latter

finding, that the wave field can be separated into a predictable

instability wave and the exterior excitation field (sound field)

is one of the essential findings of this paper and it supports
similar attempts made previously on a more heuristic basis (32).

This splitting is therefore admissible at distances greater than

about 1/2 •1 wavelengths of the instability waves. finally, we

provide ailso a simple formula for the magnitude (modulus) of the

excited instability waves	 x

_	 x(53) will I = I v 211 
I

e

9 V2_	
for x	 4 6

28
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or, in dimensional quantities

(54

)_.I V^z..1	

v2	 tom- ^-)	 -^^j^`	 uc
1 1l	 +I	 ^'it1^w^.	 ^ ^^

Numerioal values of v,i and v2 are gi.von in appendix ►).

Since v-valocity comtaone ►tLn are diffioulL to monsuro,we will,
in Lila subsequent soctions, both oalculaLe u 1 and u 2 at y 0 1 o
(analytic solutions) and will provide also numerically compuLad
values of u 2 outsido the shear layer in the potential. field.

2.2 bift-erenti:al actuation for u

The pr000dure, to obtain it clifferontia.L equaLion for u is nlightly
less elegant than Lila once for v. Wo restrict ourselves, in
addition, to the "prabolic" axcitaLion, for which we obtained
the special solutions, aqs. (44) and (45) In the preceding
st•,Lion. As we have shown before (sea also section 4) tine "para-

bolic" excitation case is valid in almost all concai,vable

situations. In addition, whan dealing with u-volociti.os, we do

not worry about causality; and if we encounter ambiguities, we

call 	 4hesa by linking the u-solutionns to the unambiguously
known v-solutions. If we create, e.g., a parabolic pressure

distribution around tine semi-infinito plat-o 
it 

is irrelevant,
therefore, whothor this has been created icy a singularity di,sLzi
bution at y	 "o or by a source at a Large distance. As n con 	 i

scqueaacc thereof, we do not split Llae field bore into two con-
tributions from the exterior source and Lila shear layea: itself,

i	 respectively.
k

Tile first task in this section is to construct 
all 	 for a

out of the equation for equal displacement

(10) v2 ti v1 ^+ 1 0 Dv	 6

In [12) and in appendix C it is shown how a v-valoci,ty condition

can be created out of a u-volocity condition using a source

3i

r

n
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distribution approach, Here 
we 

will do the opposite, ie. , we

will generate a ii-volocity condition out or 
a 
v-velocity con-

dition using a yoeLic1,t ^(RsLrilju^Lion approach.

p,

vorticity	 yl

distribution y(e)

dy

0	 i	 b2

tb u

Y2

^ P2

Vig. 7 Induction of a vorticity

OlsLvibuLion on a straight line

we consider the velocities which are induced by a vorticity

distribution oil rj stralghL line between b
i 
and b

2 
(see EL9. 7),

The induced volocitles vi and v cit a point P
1 

2,bova a vorticity

distribution -y 01 oil the x-axis Are:

b2

U	 y UJ	 Y-1 d r
21t I ,

bi

b2

v	 (X-t)
211

b,

If the point P,► approaches the x-axis (+y, ► 	 o), the u-component.

becomes Li	 (r) /2- !V11is fact can be verified if one analyzes

the distribii hioli y (F. ) into a series of small steps of locally

c:onstinL l (i-,) and evaluates eq. (55) . One finds that 
in 

the case

of a vorticity disLri,bution oil a straight: line no induced

31
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u-component contributions can come from vorticity elements out-

side ,(at }y 1 	a. o). By inspection of Fig.	 7 this is also obvious.
`	 For a point P 2 approaching the x-axis from below (-y 2 	 o) we
R

have u = }y(, )/2. With these considerations we obtain:

k

b

b2u( 11
v	 -

^)	
d

y	
t

b)

(56)
b
2

@
fi

v
	 u 	 d

(

f
(y = -o)	 n	 x-,

b1

H

Inserting eq.	 (56) into eq.	 (10)	 and adjusting the limits b 1 and
b2 yields

u	 (;)	 a {)	 U	 u	 Oo
(57)	 d d	 i	 2	 d^'x- x-	 x-^

Since we expect exponentially growing instability waves in the

downstream direction we will run into difficulties with the

upper limit of the integrals in eq. 	 (57). To avoid this we will
n

use a simple trick: we will subtract from the forced instability

solutions the amplified Helmholtz solution u H which has asympto-
tically the same magnitude as the forced instability wave. u
Consequently, we write

N

(U ^-u	 )	 (U —u 	 )	 U 
o(	 1H1

(U —U 	 )
1H s

(sa) d^ } J	 d^ } i —
^1

j	 d£ = o, a
_xJ	 X-4	 —^	 w	 8x	 x—^

The evaluation of the third term in this equation uses

integration by parts

t

4n1(0	 u1H(;))	 f^(u1(
	 ) -u 1H(^1 )__	 J	 =_	 (59)	 x-E,	

d,	 dax	 (x-0 1

 32
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The firaL	 Urm on the right; NOW aide bevomem zero

if (t) x rolijailin finite, (U) Ov, differonae (n,l-ulll) door not

grow rancor titian ( for lorge 110gat"ive and posiuve Values of

ThaL Wie latter condihioll ja fulfilled will be avidont; from the

soltit:ion we aro qoIng U) obtnin; so 
we 

hava	 40

f

d^	
ze 1̂ 110 (14,00)	

f

11, 1 1 0 integly*ula In oq. (60) onv,11 posses the same dan0minaLor and

tho a,Itmo bomiWArIL18. Wo have A C011ditiOn at 10ARt Ad I:0,13tricLive
if 

we wriLo)

Vol

wherti we havc roplacod t by X. since wee 	 dint: eq. (61) its

fn1f,illed 
by 

L-, he llolmliolLz solution along wn cum wriLe

U0
6 2

I't 
is 

valid for fill x qcinco eq. CIQ) wail valid for n1I	 This

and u 2 . If wo insert thisIs tho dosired Socond cond -ition for u'l

oqumt;lon into t)q, (6) wo ob(Gain a diffaret%LInl aq1tation for VA,

alone-

XI	 I

(63)	 -1 - - Tx-2

slo can obtaln the prommire at botth E,;i(ju5 ot-' a sami-infInite

pjf% to ( -jocaLc(j at ,t e o) from eft, (33) r aft:ar adjuaLmotit of

33
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I) ..)pi 
(Y.+o)	

2 ,,:i

n

	

(Yo)	 2i1(Y-0)

This can be used to find the ri ght hand side of eq. (63)

U du,	 u 2 d 2u	 Gap.
(65)	 2u1 '

141 LL axi	 (+) dxt 
R 

R°	 2s^a

for x a o the might hand side of eq. (Ca) becomes zar;o, beeause,

by definition, the pressure difference at both sides of the

shear layer; should be zero, in complete analogy to the procodtirrre
to solve the differential equation for v in the preceding section

we obtains

	

x	
A

i,A 12 LoVix	 !=NIX  dx - a\ ZX J ° 
2t 4x

1	 4 1,D0 4f	 1 R	 1 _X

We. should keep in mind, as mentioned before,, that there exists

a contribution to the integrals only for x 4o, Consequent ly, wo
have for X ? o only contributions of the Helmholtz instability
way	e , created by the lower boundaries of the integrals G3

and G in eq. (CC),

k

'^n unambiguous way to find the magnitude of these Helmholtz-type

contributions is to relate thoirr to the asymptotic magnitude of
the v instability waves. These v instability waves also behave

like Helmholtz-type solutions for distances to'	 4 r G. We
should find out, therefore, what the coupling obetween they u and

the v-components in the Helmholtz instability waves is. The
easiest: way to do this is to start mit with the potential of

the induced velocity :field of these waves;
{

34
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^l 

(67)	
^2 (y t Q) ' Be 1 r 2 (x- i,y)

we take the derivatives ^r

}

a i
vi 	 ia 1/ 2AQ a 1 r	 tx+ay)

d

1
	 11	 „	 X112AeaI#2(x+iy)

3X
1

(68)

v2 W -i-N	 BeAI , 2(x-iy)
1

2s u2a a112peA1,2(x-iy)

y

Y 

i

Therefore we have u i	 - vi and u 2	 iv2 at y m o. With the

solutions for. v i	 (eq,	 (44))	 and v2	 (eq,	 (45)), we obtain
	
(with 4

U nondimensionalized as in eq.	 (43))
9 

^

I

i

,rn aix'	 e;2X
u l "^ q=

a i 	^ a2

(69) for x a aY
ea1x	 e-k2xivinu	 +

2
i

p	 U	 P c- l

WW1	 u -	 ^p	 o	 'r	 A, A 
ax	

;	 d 1	 a 	 + 1; 	 2
12	 uo

Analytic solutions of this type had not been published before,`
w	 but they were obtained alread y with different, matheviat cal

35 _-
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methods by W. M6hring (33) and M.S. Howe [34). To find solutions

for x < o we have to proceed analogously to section 2.1, The 	 j

only difference is, that we now have additional Helmholtz-type

solutions in contrast to the situation for the component v. After 	 l

some algebra we end up with 	 r

1
for

x<°	
a

x has to be inserted into these equation, with ite negative sign.
i

The abbreviations are identical to those used in eqs 569 ► ,	 (44) e

and (45). Since erfc is defined as erfc z = 1-erf z, it is ob-

vious that equations (69) and (70) merge into each other at

x = o. if one expands eq.	 (70) for large negative x, one can

show	 that the wave structure of the instability waves vanishes

and the prevailing terms are proportional to u = 1// x. In

addition, it can be shown using the first Fuler equation (1), x'

that eq.	 (70) produces the correct pressure difference at both i
sides of the semi-infinite plate.

For large positive values we have from eq.	 (69)

Ap	 wx^(71)	 lul l
	 lu	 =	 12 e

1	

2	 o
p_ C0	 4 .^

for x ? Uo/f
^y	 a

1

which is the same result as eq. 	 (54) for v at large X. The only

difference is, however, that the excitation velocity has no ` com-

ponent in the u-direction for x 	 > o.

3

i; There is	 yet	 another less obvious feature of the exact solu-

tion, eq,.	 (71), near x = y = o. If one wants to verify eq.	 (71)
experimentally, one might take 	 e.g.,p	 y,	 g	 , 	 data of the velocity u2

36
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f

in the region outside the shear layer and would extrapolate these
data into the shear layer. However, this would lead to erroneous
results near x = y a o (plate edge). The reason is, that the

f	 gradient of a curve u 2 (y) for constant x would be inf:+.nice at
x = y * o, which hardly allows any sensible extrapolation

towards y + o from data at y +{• o. The reason for this is the
following. In the potential flow region outside the shear layer
the vorticity should be zero, i.e,,. 	 Bu2 /0y - 8v2 /ax	 o. Since
v2 -	 / for small x, au 2 /8y must become infinite (but, certain-

ly, not u 2 itself). Thus, the exact solution for u2	 (eq.	 (69))q-
t	 is only of limited value if it comes to comparing it with experi-

mental data. This is the reason why the u2 velocity field for
finite y has to be calculated numerically. After this will have
been done in the next section,and the induced u -field is r
available, the discussion in this paragraph will also become
more convincing.

_	 3. Field calculations

For a comparison with experiments it is necessary to calculate
velocities also outside the shear layer. The quantity which can
be measured most easily and accurately is the velocity u, in
the .flow reckon y < o. A source distribution approach is4used
to .compute u 2	from	 v 2 , which is given for all x. Actual data

of v2 , i.e., its real and imaginary part can be found in
Appendix D and curves can be seen in Figs. 5 and 6 in section
2.1. The source distribution approach we use here is identical
to that used in (121 or in Appendix C; there is also a formal
similarity to the vorticity approach used in section 2.2

We consider first a source distribution q Q) on the x-axis
i

(see Fig.	 8)

k
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g t	 v 92

source .
distribution 

q^^	 dq	 y2

F'2
y

Fig. a induction of e source distribution.

Tilea induced u-volociLy component at a ,point p, above a linen
source distribution q( ) is

9

(72) u #	
( X1( 1 -  t^^`, 1 d

	

2n J (x i 1	 Y,,
9''1

For a paint; p2 below tile line source distribution we end tip With
the Sallie result.- If tile paint p 1 approaches Mao ,e-nxis (+Yl *Q)

the v-component,, becomes +q (t,) l2. For Lhc case of a source distri-
bution oil a $L• raighL line no induced v-component: contributions
can come from sources cuLstde t At y 1 -ra. So ()(C) Call be re-
placed by 2v for y :, o. For negutrivo y we ol)tn.in negative induced

(	 v-compancnLs from positive source strengths q(4). Thus wo have
w for negative y^

9

e	 1	 v, (t)	 ('<2-r-)(73) 1,12 	 d .

'Phis is the type of equation which provides the relation between

38_
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V 2 and u 2 4 Xt will be evaluated numerically, ornlally, wu would
have to integrate from ea t N ..w to g2 M + W , l tawover# we again Wn-

T,o"41°a,r di fi t:ultieta with the tipper limit, b'scausat v2 grOWS,

exponentially. This difficulty will be circun►vantod in the	 A►11t>t

way as we did it before. 1Va subtract Lila exponoilLialiy growing
ataytailtoto v211 to obtain an integrable function. The difference

v2U , V2 " V211 in only proportional. to 1 /^'x for large molt .vG
x and becomes xoro eaxponantially at large negative X. After
having carried out the 

integration wa add the induced field of
the anymptota Y 211 (Sao eq.	 (68)) to obtain they complete 02-d .n--
tribution. Tills wllcle procedure ling to be carried Out nap	 ,Oro

for tiles real ntld Imaginnry dart; of v.2 to obtain the real And
1111agillary part of u2.

i

'filet Integration of u., in than Split into three rogimesl
i

(i)	 FQr largo va lues oC K L119 real part VF	 of v 'D becomes

:;ur:o and tills ll"ng'i.tlary part v 2111 of v2D is Proportional
to 1/" (se ek Flq.	 Gi .	 'Thu g ,	 for values between,	 gay,

G and R * ,.2 we will oars Lila asympLot;ic Loan Of v2Dx'
Insert it bite) eq.	 (73) and will early out Lilo integration
In closed foam. 'Tills will taken care of the+ contribution to
the Integral (73) for large values of X (car 51.

i

(ii)	 ror ,11111all positive ;	 tiles real part v211 of v2 hats a Para-
1

taol.ier baltrlvioul, 	 wit 1l t* ti	 "	 ► R.	 Caused by this t t-he a1,opc

_ of v 2 DR is infinite for x^ +o. Sallee tills call bind to

numerical problems we will also integ rate, tie region
 be-

tween a *6 o and R = 0.1 In -closed form,

(:tii)	 Tile .reiiihinde:r of t11e3 intogral tro ll%,	 gay, K * «.G	 (where
v^	 a) to	 n o And from x a o. 1 to x K +G, where tbo
asympt;ohla solution takers over,, is calculated uaing it stop
integration procedures with intervals of A t r o, t . Tile strip
integra.tleall elenlattts are trapezoidal places where Lila
upper and the lower llmiLs have the Same, va lues as the
unction V t)tt (or Y 2D,) . Tills provides a Much better

accul;aay than ordinary rectangular steeps would Cleo.

j

l
w

r
)
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f	
For such of these integration elements (1) + (iii) we have to

L

produce analytical solutions. We start with the far field in-

fluence (i). For large values of x we have for v2DT from eq.(50):

(74)	 02Di " = 1
4

( ..far field)

For u 2 , x and 4 we use the nondimensionalixed form to obtain
r

r

v

11	 (x-^)(75)' 	2Dx	 + qn	 (XMj 2^Y	 dE .

(far field)1

F

We will not find this type of integral in the usual integral

tables. however, it can be simplified by complc:., fraction de- s.
composition using the following relation

(76):-^	
rz1	 +	 z1

X4) •y

k;

with

(77)	 x = x + iy ,	 z = X _ iy ,	 ORIGINAL PAGE IS
OF POOR QUALITY

Thus we have for (75)

w

(78)	 u	 1	 4	 +	 1	 J (	 d
2DZ	 an	 (z-0

h

(far field)	 1	 1 F

Integrals of this kind can be :found, e.g., in 1381. The total

integral turns out, as it should, to be completely real. We

obtain after some algebra:'

-40
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r+^1-2	 cos -Qk/2

t
(79)	 i12DI 	 cos

A,,r	 r+ 1 +2/Vrc00%$/2

2	 sin 4/2
+ sin v' 	arctan	 ( 	 1 -n sin¢

IT

I with	 r +^ r^^	 and L^	 arctan (Y/x) , and for

in the order of 6.

The second (ii) particular element of the integration is tackled

In a similar way. The expansion for v2R (the real part of v2)

yields for small x i

(80)	 v2R ° - 3X ;

Therefore,we have to integrate

t2

(81)	 u+	
1

it
(	 (x-)	 d

2R 1 (X-t)2+y2

(small X) o

for F, 2
 
in the order of o.1. we proceed in a way very similar to

1

that shown above and end up after some intermediate calculations:

rr	
1	 ^	 r+Z2-2^ cos %^/2

(^2)	 u2Ft -	 7tC' z	 cos 
2	 In	 _(	 )	 +

r+t 2+2^ cos 4/2
(small x)

2/4-7 sin '5/2	 2 2
+ sin 2	 arctan	 (	 _	 ) -	 n

r-E2

r
with r and ,,5 defined as before.

This result has most terms in common with eq. 	 (79) which

f suggests, that the same computer subroutines can be used.

Al
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The third (iii) element is the trapezoidal element mentioned
before (see Kja,_2)

QVMN& FAGIE 13
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DO

rVb

to	 9b

Pig. 9 Trapezoidal velocity element as inducing source element.
v	 source strength.

Tile local distribution of v 2D (in the computation specified as
v	 and v	 )is	 j2DR	 2DI

(83) V2D	 Va + m	 Ca)	 J

wi th

M	 Ob -	
j

a	 b	 a(84)
b - C a	A4

The integral
&b

(85) A^	
a	

d
2D	 2+^2

Za

can be solved analytically using the integral table in [35). one
obtains after some intermediate calculations:

42
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(8b)	 !u	 ja	 ^^	
m	 1	 `^ltl°c`1an	 v	 -')	 ^Cll"t'11a ► 1	 w	 ) )

l

\s^,.lf,	 1	 lhti	 +

y

a
(	 p	 S	 "'	 (r,	 "^))	 '	 `.j	 1.11	 si r

\	
it

+
w	

a'^ a	 1ti t

wills

.1	 .a.	
`^

(87)	 rb.	 (x	 °`	
S b)	

1	 kw	 .111tj 	 a• .1 °	 (x	 ^-	 ^.^I) w	 Ie	 aR . 1

9

^

This ol,t>l#lont	 (11,1)	 14111 bo unt'd	 111 al.1	 tllt"atiolltl Whim) V21D 1J ^

lit)(, 	'401 10 q t' who	 tt	 00 ilaS'Illptotly 	C#dluticlull	 (1)	 a11d	 (:t1)	 alT) h,)(  ^

At	 the and of W	 00 anyll1)Jt.0tic 1301utl011 112111

(UnIny of .	 (uh))	 In Mod	 1x1 ollmin u^ "	 u 21 i	 U 211 .	 7110 LIOL4111:8

tit
	

(lit , t'ompl t- at Bonn ;11;'4' Won	 111 opilvolUx la €ul 1ioll an 	 t,ablmi

with vt,llputot( val uon or	 11..	 llor"),	 wo Will	 13 ,11ow the ,1#odulms CA*

11.x,	 h0callso	 at,	 0,111	 bo	 11oa till red	 In	 a
	

tit ralght.f0llVC.t.rd	 1aY,	 111

t`1.` .	 it) a t`t1111{.mLod AM ram of	 111;l (	 an	 a	 function of ^-	 .kcal'

VOIAMIN ^ villl be tivoll. 	 wo	 have u god c1	 loq jr:l=1)1111{4` plot on	 lhl.? 1

vovta4'al, -'W ti of this J j mwv, Tills all,SJws to idolllIfy a'oglomi

r	 or	 the	 t._u:clsr,u	 Nhach t311t1N	 extaullout:lal.	 15o1li1v1Q111`l 	 111ul1 1t1l1E ocG-111,'

a 	 #t l	 l.tc])1l	 .11111)!#.
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tataatiolul	 (68)	 antl	 (7 ,I)	 lt`ii call ta>'odLot	 1.ho	 a'ndtcod vol,001tl7t# of

t' ( 1 1 	 il111t11:L)r".Lc^d	 all:#t 11111111 ^^	 1Jtitvo;	 wo	 obtt1111

t	 ;
-. I i, I

(x4
)

(

^1%,i ll i1ll,)S lljtll. tl jv bohoviour to We CI jman in the 41ot61md 1,:1,nos Al
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t	
downstream of, say, x 	 1+1.5 the instability waves dominate the

;induced a-field in the potential region outside the shear layer.

It can be assumed, that this feature is exhibited more clearly

in the u-component than in the v-component. This is due to the

fact	 that the excitation has no u-component for positive x and

small y (compare equation (69) 	 for a and equations	 (49)	 and (50)

for V).

t	 One might argue, that there is also an asymptotic equation for	 ^	 1

1u 2 1 at large negative x. In the region upstream of the plate

edge, it is reasonable to assume that the excitation field do-

minates. Since the excitation pressure field is known (see eq.

(33), note that x is inverted there), the u-velocity field can

be calculated using the first Euler equation.

(1)	 -iau + Uo Lu + p g = o,

)

This is, with p known, a nonhomogeneous differential equation

for u which can be solved in closed form and leads to a solution

containing error functions of complex argument. This can be ex-

panded for large x to provide a simple far field solution. We 	 1

can produce, however, the same far field solution in a much	 a

simpler way.	 It is a reasonable assumption, that the gradients

of the fluctuating u-flow become smaller with increasing distance

from the plate edge. 	 If, e.g., u is m 1/Yr-x,8u/3x will become

a 1/(-x 3/2 ) which means that du/8x will decrease more rapidly

with increasing (negative) x. Consequently, for large negative x

the fluctuating flow will behave as if no mean flow were there.

After neglecting the second term in eq.-'(1) we obtain a simple

solution, i.e., the parabolic flow created in a fluid at rest

by the pressure distribution,-eq. 	 (33). We end up with 	 j

(89)	 1621	 -	 u
1 	cos {2 arctan 

4-^	 x	 i

This asymptotic equation is also plotted	 (dotted lines), in the	 k	 ?i
}	 lower half of Fig,. 10. It works quite well for x smaller than -1.

a
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We are left with a situation which can be considered to be ideal

in computational fluid mechanics: The region where information

relies on pure computation is limited and is imbedded into

asymptotic solutions. How well the computation works is also	 a

shown by a comparison between numerically calculated values of 	 r
..

U
2
 at y = o and analytic :values from eq. (69),

In Table 1 these two sets of data are compared. The deviations

are minimal in spite of the fact that our integration stepwidth

is relatively coarse with Az 	 0.1.	 1

The most interesting regime of the ;U
2
1-curves is found near

x o and for small y (see Fig. 10). Indeed, as anticipated in

section 2.2., the gradient of the computed curve becomes very

steep there. If one extrapolated 1u2  at x = o and y = o from

data taken at y + o one would underestimate the actual value	 )

there.
^	 1

r

4. The relative importance of the edge region 	 t
i

a

In the preceding section, it had been mentioned,that under

almost all conceivable circumstances, a parabolic pressure field	 {
r

is created close to the plate edge. The relevar • 3e of this region

to the shear 'layer excitation will be shown with a simple model

(see Fig. 11)

(b) Pulsating source

late (c)/^ ^^(a)
P	 ,cam.	 ro

so UOxo	 shear layer

--	 X	
t

X

Fig. 11 Shear layer excitation by _a monopole source,

rt
i	 r
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It will be shown, what the shear layer velocity v ) is far down-

stream of the edge, if a pulsating (two-dimensional) monopole

source is located at different positions (a) close to the shear

layer,	 (b) above the edge or (c) upstream of the edge (see
r

Fig.11).	 Per the following calculation we will only consider

the amplified instability wave constituent and not the decaying

one, because this is irrelevant at great distances x s>Gola•We

have from eq.	 (23)
(

(90)	 v1 
	
eXix-

Xiv1fdxUo t

o

x >?	 U o ^ a

6

G	 with	 a1	
w	

(i+1)
Uo

If the upper boundary of the integral in eq.	 (23) is sot equal
s

to infinity, like in eq. 	 (90), the total influence of the excl-

tation is included. This expansion will provide the magnitude

of the instability wave downstream of the interaction region

with the monopole field, in section 2, we had already given the

induced field of a monopole field near a semi-infinite plate. K
We have for v i f	 (see also	 [121);

k	 '9

1	 x+re
-^2

°
lr r2—(r7--x -

(26)	 vif - Ott	
o	 , X	 2	 2

( x-xo)	
+yo

with :rot	 x0  + yo2 and Q dieing the source strength Q 	 Qoe'iwt

The last term of eq. 	 (26) can be split into two parts
n

(91)	
x+ro,	 1	 T	 +	 T

(x-x
0

) 2 -y02	
2	

x--zo	x-xo

with 5	 -

-	 i(ro +xo)	 _	 i(ro+xo),

(92)	 zo _ xo+iyo ;	 zo = xo-iyo = T = 1+	 T = 1-
Y O,	 yo 

s

48
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we are left with integrals of the type	 ORIGINAL PAGE IS
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-^1x
(93)	

a	 dx Q -L 	 . erfc ^(-_
rxi,

V'X(x+T)	 r
b

The solution of the integral in eq. (93) can be found in tables

for Laplace transforms or in the Handbook of Mathematical Func-

tions (31, p. 3021 by Abramovitz and Stegun. We end up with the

following analytic solution *)

i

4w 2 r -x	 -
V1 +	 ° c^ ealx T e zo Al erfc +

SUo	 0

+ T e-20^1 erfc-Z 1

o	 J

in the instabili ty wave term e ^. 1 xThe solution contains x only Y ,

but the coefficient governing the magnitude of these waves is

fairly complex. We will, therefore, expand the solution for two

`i

	

	 typical cases, i.e., an excitation by a monopole source further

away from the lip ( row » 4) and an excitation directly at the

i	 lip of the semi-infinite plate.

For the excitation at large distances, we have to expand the

complex error functions for large arguments. For an arbitrary

complex argument z we have for large z [31)

z2	
1	 (^	

(-1)m 
1 . 3... (2m-1)(95)	 a erfc z =	 1 + E

3nz	 m=1	 (2z2)m

If we take only the first term of the series expansion eq. (95)

a

*) This solution differs by the coefficient 1/2 from the solution
given in (121, where this coefficient had been omitted erroneously.

49
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^^i POOR QUA_we find after some intermediate calculats ^.

21r-x	 x	 x
o	 o	 °(9G)	 v^	 Zi 1-	 (i-2-7

7
2°

al 	 -	 ro
4U	 r /it

f ro°	
01	 o s

1

This equation can be expressed also in terms of the distance ro

between source and plate edge and in terms of the anglet%(seo

Pig.	 11).	 we find

(97)	 v , K	 Q	 sin	 _'	 .^^.n.'e'ix[i+	 1	 (^ cos 26+ cowl],
1	 2 la i 	biro	 2

s

2n	 U,'-r--

If we are interested in the modulus of v 1 only, we have

^.. W x

sin	
w	 t zr e UO
	 [1 + (°os	 +-1 cos 2^)(98)	 Iv1^; 2F177Uo 	 Uro 	2Zito

Orofor	 >> 1 and x>> r 0.
U° I

The first part of this equation resembles very much the excita-

tion velocity in the neighbourhood of the plate edge

(99)	 V	 =	 Q	 si:n ^
	

1if
i

2n ro
rX

i X « r° #

i one would obtain the following expression
WX

(100)v	 Q	 sin 1% ^ n	 o U°
21^	 2na	 1 ^ 0	 4

for	 (^ )> 1)
G

it one calculated the excitation by the parabolic field at

the plate edge	 (eq,	 (99)) alone. Therefore, the expression in

brackets reflects the additional interaction with the source

field further downstream of the plate edge. The deviations from

t}

the pure interaction at the plate edge become small if wro /a	 > 1.

ff
3F

( s0
k!
a•

4
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i The conclusion from this is, that the parabolic field at the

plate edge dominates if the source is further away from the
edge. Now consider the situation shown in Fig. 11. in which to-,

cation (a),	 (b) or (c) of the source the interaction will it be
the strongest? Equation (98) will give a clear answer: at (o),
upstream of the shear layer(

' in that context an interesting question is, how far an "exteriour
excitation" can come from the turbulent shear layer downstream

..	 t
of the plate edge in a real flow situation. In our model, the
pressure sources of the shear layer motion lie in the y = o

` plane. Therefore, in this model no feedback from the downstream

perturbations is possible (sin 2 = o).. However, in a real

situation 72  = o is still valid outside the shear layer. The

pressure sources are in a region of small,), Therefore a very

weak feedback of the downstream turbulent flow is possible. This
consideration is not that nave as it seems at the first glance,

because the equation 9 2p ­2p	
*
	 -is also valid in three

r
' 8y	 ax

I dimensions. The source term on the right hand side might loot: ±
III

slightly different in a nonlinear flow situation, but the con-

cept of having linearly superposable pressure sources in the

shear layer will not break down, because the pressure is a
linear quantity in all our equations.,. and deviations of this y(

linearity will occur only if the pressure perturbation is of the

same order as the ambient gas pressure. Anyway, eq.	 (98) shows
clearly, why shear layers are highly sensitive to 'perturbations
(such as sound) coining from upstream and not very sensitive to
perturbations having their origin downstream of the edge in the

shear layer.

Those who know recent experiments on excited jetsknow that an
excitation close to the lip is very efficient. The preceding
calculations did not consider this case, because it was assumed,
that wro/Uo >> 1. Clearly, this assumption does not include the
excitation directly at the plate edge. On the other hand,

{
i equation (94) can be also expanded for wr o/Uo « ?, which would

i include the	 lip excitation case. To do this, we use the follow-

ing expansion of erfc z for small arguments of z	 (see	 [31I):
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2	 co	 2n+1
(101)	 erfc x	 1-	

2	 e	 1;	 1-3.Z.	 2n + 	 Tj 3,i	 n=o
z

For small z, as in our case, we use only the first term of this

expansion, It is no difficult problem, to extend the expansion t r

further, but it will not provide much more insight. During the r	 ,

calculation it is also useful, to replace xo by -xo to avoid ^.
.,

ambiguity problems with complex roots. At the end, x0 is used in

the previous sense again. After some intermediate calculations

we find

}

(102) v1	
4w	 e X 1 x re-xo !"1 Cos (yoal)-2J rb I sin
2UO n

ar

_
-	 with X

1 
= _w (i+1)	 and valid forwro/Uo « 1 and	 0:o' I.

Uo

For very small row/Do +o we find a very simple result

w

(10.3) v 1	 QQ W e!`1x
2U 

o

This shows, that the source assumes its highest efficiency, if

it is close to the lip, just above the shear layer. If vie compare

equations (100) and (103)	 in their relative efficiency, we find

a coefficient n

sin 	 FU(109)	 n	 - (ilr0

This shows, however, that the excitation via the interaction

from upstream (sin2	 1) and at a distance not too far away

3	 is not much worse than the excitation just at the lip.

There is some interesting physics hidden in eq. 	 (102). ,Assume
n

.i
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jyo x j j++ 0 and	 sin	 -a. Then WO have a source lust above
the shear layer at small, say, positive xo . The source acts then

ass A 6-function with the strangt1i 0/2 on tile shear layer. 0/2 is

just the flux which penetrates through Lila shear layer , plane,

With this 
in mind we reconatdar the general solution for tile

shear layer motion, MI. (23) *)

	

x	 x

I 0 -\I	 +	
k2

V 1	
- 0	 - x	 7- a x 

1 
0 x2x Vita$

Uo	 U o 	 0

Par v., r we have here

v 1	 (X-xo)	 at y- +0
 f

oncwith oq.	 (23) we have the complete solution 	 once

(106) V1 
12-111 NIX	 eN2x	 a-% 2K̂

2ll0 .

if both influences, the "local" ^S-function influence and another

term of the parabolic type are In CompoW.Lion, one sees, 0laL

the "local" influence can bacama weak in comparison to Lila para-

bolic Lypa influence, 
In 

particular, I f the source in further

away from the plate edge, tiara
	
Influence at the edge

has piled tit) to suvll high magnitudes by the exponential ail ►plifi-
oation, 

so 
that a local influence (sea position	 (4)	 in Fig.	 111

would only contribute a term of the order

(107)	 v1	
o v, (x-xo)

local u0
t.

ror tile PuVa "local" excitation with
	

1-k X I ' o we have, oil the

other hand, a simple analytic solution which might 
be 

utilized

if the free shear layer ir, really excited just at the plate edge

with G i	 G2

ri
5 3
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Also the u-distribution In the wholes ambient f.'eld can be written
in closed form. It contains exponential integrals of complex

argument for the induced field of the instability weaves truncated

at x a o (v 1	o for x <a) and of the induced field of the source

The details can be soon in appendix CO where just this calcula-

tion is given in another context. cor distances further down

stream, we have a ultra-simple equation for the magnitude of the

instability waves, where Iv,{ u IV 2 1 x ju 1 1 R Iu2 1. We find	 j
L

mx

(109)^u I	 '^! . e 0	 at y	 -o
U

2 2v0

i
with the usual decay in ^+y direction

F

(110)	 jut  { = ate'- a Qo	 x a uo/w
2U 	 y 1, o

Q is the volumes flux (say, in m2 Is) of the excitation source. In

a real :situation with an arrangement like the one shown below

(see rig. 12) we suspect, that more than half of the volume flux

Q penetrates through the y x o plane. Therefore:, the efficiency	 3F
n

might be even slightly higher than suggested by eq. (110).

*) For numerical computations in the potential field outside the
shear layer, it is also recommended, to use the calculations in
[36).
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shear layer

Wt 00	 U2

}

Fig. 12 real edge excitation configuration,

t^

5. Two streams with different densities

As we will see, there is no simple transformation to convert the

results of the case with a single stream	 o for y > o

U2	 UQ for y ^ of A l	 n 2 ) to the case with two streams 01+0;  

!	 U2+0; p 1 t`up 2 ). Nevertheless, it will turn out 't.b,gt the results
of this section will be still very similar to those of section 2.

!

	

	 However, the mathematics is much more tedious. Since it would

not provide any specific insight to show all details of the

calculations, we will provide here only the basic ideas and

steps.

We start, as in section 2, with the condition of equal displace

i
ment h at both sides of the shear layer

8h + U Ih
v 1 = at	 1 ax	 s

(11.1)

I	 v _
all + U Dh

2 at 	 2 Dx

1	 "

By using h -e ed t and by eliminating h from equation (111) we

i	
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P

U 2 DvI	
L,
	 ;t v2

Litz)	 vt	 .k	 i.	
rr	 ^X a v
	 ;^	 ^r

t
This equat ioni.on holds for all 	 and its also valid for 0 1 + p2' ^
since It is a merely ki llamat:i.c cond i,t i.on. To create a second

condition for v! I and v2 we roly	 on a consideration of thei agaln
pressures field. Since 00 density Jump in assumed to occur in

the shear layer an wall as the mean velocity Jump, we obtain

again V 21) - o outside the shear layer and with exception of the,
location of tho axterlour nourca. Theref-oro, we can again use

the second Lefler equation 	 (2)

Ov l 	 ap.i
r. t 	 fi=1+av,l 	 ay i

l
1110	 ^vz	 ^ia2 -0

P 2	 (-:ltav 2 	 U)	 -
2 ox	 tty 3

u

a

The procodura, to split the pressure field into two constituents,
tho forcing terms	 (index "f") and the shear .layer, torlos	 (index
Hall) is still possible. The 'If" pressure gradient in cont inuous m

thimugli diet shoat: layer and the 'Is" pressore gradient is nyhl-
motri.o with t°espec t to the Shear layer. We have r

^v l f	 7vn

tt 1 	(-iurv'if	 t` u1ix	 )	 02	 ( - iwv 2f " U2-

^vl )	
-n, 1-- ',mv	 *	 u,	

ox
t- i^,ry

1	 i s 	1	 ax	 z	 2a	 d	 ^x

(

where v	 +
1	

v
1t	 1s+ v	 ; v2 	 2,C;n v	 + v ,a .	 Equation (93)	 can be can-

k

dana"aft into

U 1	 ^v l 	 U2	
Dv,,U2 tv,rI1 l a) (v t !' i' nl	 ®x ) + v2 

.f 1 w ^x	 2 (v2f 	 i w ' ax').

b, 56
ar
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Since it is more convenient to calculate the forcing pressure

field (which is still parabolic Around the semi-.infinite plate),

we prefer to express t;no right Band side of eq. 	 (115) in terms

of the pressure finl.d. We have from the second Euler equation

U2	 IV 	 i	 Dp2f(116)	 v2f + i	 m	 ax	
:p2m	

9y

t where the pressure gradient in y-direction is taken at y = o.

We will abbreviate in the following calculations

a hp	 U	 n
Z

1

'

^ 2f ; a	 —^	 ; R r n1(117)	 p -	 -	
1)2w y 	2

U2

consequently, we can grite eq.	 (94)
a

(118)
U	 Iv

	
U 2 OvA(v1 + i 4 X̂) fi v2 + i	 .,^2 = p

with the .right hand side being known and proportional to 1//x.

Equations	 (118)	 and (112) can be used to provide a single non-

homogeneous differential equation for v1

t (119)
2,pav	 U 2	 d2v	 icrU

(1+p)v1+ .. 	 (1+nt3)dX1 2(1+v 2 Q)	 =p+^	 2 d2 1 w
m	 dx ^\

The homogeneous solutions 	 ([ielmholtz solutions) are

(120) 1 	= C2e1x ',	 ^2	
C2ea2x

with

(121)	 X1,2- U2	 2ai(1+oA)'!`(1 -a)
1 +0
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^1	 r
i1 2)	 v1	

—Z 	 , j; 1 e )^	
\ 1 , I O"x,,^12Sr1X-^^` ^` 

J 
?~^+^`RSO

c	 ^2

i

Y

I

wholla, ' I RS" Stand 's far tho v ighL halld sl.da o!? ml, 	 ( 119) ,	 With	 Lho ^ a
Samergkilliell s as t,Ilaso given :111 appendix 2 for 	 T o mid v
we call Sat 0	 G	 o, We can i°1irthor ovaluate oq,	 (`122)

(123)	 vlRr	
,	 v,^	 v	 ^.

'	
I •I^lrj+l})c^	 I	 ^ o	 I	 ^c^;, -I1-:tu,•1^1<* ^` 	 04 ^'^xix^,

«U^+'►^	 1^^ci^lt
o

1

?or n Parabolic prossurc, _ field arowid tho	 plat,o wr 4
have	 from Qty.	 (3:1)	 ltl	 Sett t loll 2. 1. f

Vii.	 111dC	 x-	 :T la('I	 )	 E^	 - ly	 ra+t 2	 )1"],

t.'t111trcquonLly, 	 wcl Pon again 1'olaLo all qualltities 1.11 tltir fl,oW
field to tho. QXCALatioll, chniact;oriz(ld by thO pros8urca d1.t:t'o.rollv(, 1

(itA)^.12	L both sides of tha plato at the di. tanco 1, f om the plat o
cage.	 Tharofalre, 	 1Je i MII	 i,ntroduco C11,111ollstoIlloss C,jualit1.tios	 stilli-
lar to thoso used In section 2; Y

v 1	 ll2+o-'t,+u2.1	 vz'p2+'ui^Ja . l

v 1	 c11^ ,x	 i	 v2 K	 s11i:^
at

1 ,. ci	 11
r

t► .	 N.

In tho oxpression for \ tho positive slgli in t ilo beackclt ; 00r-' 8
rosponos to \,,	 tho nagati.vo mi.gn to a., 	 respectively,	 With a
these Mbbrav;iat ons wo obtwO the .f:1nol, rostll.t for v1 , after

x

u ^Y
y.
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5	 ^ti ,Y	 1') i,il Ix	 ^^ 	 1	 ^l ^.t aTl ti	 ^p^	 f(1	 ti)	 ^ t	 ^	 ^ ,.,	 ^	 1	 tiff (`	 ^; 1:1 a-	 -	 --t?	 t^t^I'^ \"d
i

1

^ t

i'
k To obtain	 52 too van	 olthor tlt?lino	 a	 b11.1r1ilk1'.v vejna -ioll 	 Ali	 t<cj.	 (1,19)

from	 tilty 	tiallio	 inittsal	 tvtluatitlns	 ( 1 I2)	 and.	 CUB)	 00	 Isi.l.lme pgtl.
(114)	 anti	 (118)	 tcaijtvOwr Wi eq.	 (124)	 to obtain V%l'from

We	 1\nti	 ill) with
s

r

^	
^	 ^v	 t l f^itit7	 a	 S	 °-	 l^ltiil	 lTMK	 ,^-	

-....

(127)	 ^.,,-.. _	 f	 F.	 ..	 ^,	 1 ' at\i°fy ^. er	 .	 <\	 t^.rl ( ^:^
1,

:^

,
i	 ^i ^ 1 r,,i"tt)	 '	 i 1	 5 ^,^
ra_

Be v, 	 tilt, tl'(('i'evenooa botwovil 1+ 1 	anll vd	 whl.0i 1'i?wmblo	 t:hom)

- 111	 lity [*t-,itln	 ,	 WO	 )1t1Vty	it	 t1iffore'nt	 i'`oorc -lott"llt	 ( 1, 10	 ill	 ti1e	 dencl^

itiillator	 In	 .front	 Lit	 tHlty Ial'ackotti.	 'ihia	 .ltav' ds	 tv di.fCi? ,l'on	 volo-
vi.tiott of tilt' instability wavoa Oil both nitie" of tho Rheaar Inytir,

^	 N131 tt'Laltlt,i,i,tht 	 ll	 ,it	 hs.>th	 n;lti(O	 t)S'	 010 	 s3ht)til'

l(1-yot' ill	 the 	 amilo,	 As	 po g til,lat^od7	 in	 010, bo(jlnllt.nq.

111s ft1,vo wo tita l=ormitiv 	the	 wo w:1.1.1

4llewnss	 the bolla\t '.lt}11r of sk i 	all(i	 V2 for	 'aiiUal.l,	 anti	 lartio \.	 t'o
Silliall	 S	 the	 t`xl)tllltii.lall	 or	 eg,	 [11111	 ( '127)	 yt,t7I.cl

E
1 `X	 t14	 2[^}y	 M	

s ^^

t l	 0)

I ' ll	 )loth	 p au0n	 the	 t?llvol opo of	 the	 t 1 spl.:1CC!Il onto 11	 in 11	 tc	 X `t • ^,

oonuegovnt 1y th0 moon, r1kiw 1.eavos tht3	t10go of t;ho plai:o

tangent:lally, Woh to echl ma1r nt: to the Huita^:€ai^T' . -Ion, .vo

U,)	 k 11 and	 sv	 wt) h1:c1]?P f5;t,'dor (o iiw	 in	 the oxpanuion for Vtl,
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For large ^k, We obtain for ^' i and v2

^^1^''
1

c nn^?('130)	 v	 t	 t^
4(1- 1	 1	

A^`
Y

We again have a 1lolntllol tx-type, solution	 (first Lerttts of eq s, Mg)
1

r	
and	 ( 130 ). n the far field and anothoi, Q nitribu Llon due, to the
oxci ration being prodofti.onal Lo 	 11'11e intorest ing thing is( 1

LhaL nature takes here ill avet.a o value of Ole don g iLle g ro( ro-

sentecl by the cooCficient.	 11oweverothe 11c1.1»1lolLz^Lypc) solo-- ^	 3
Lion : are cliflorcnlL In Lhei.r mcignitude by the cmitticicant 

in the clitforenL flow regimes.
The u-vel.0C1ti.0s ace calCUlaLed in exactly Lhe ;wine wily is the

g

v-velocities abovc,wi.t-Al an approach Identical Lo t11at usod In

secat.i©n	 1.	 110 end	 tap wiL11
r y
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For large k only the amplified nelmholtz-solutions sl=ive (terms

with N in eqs (131) and (131)).The modulus of thA,4:! amplified

waves is for x >>1

s

(135) 1u11 =	
rz ej
4 4/_6(1+01 11 +A Rl	 ^

r
f	 >> 1

and

r	
,

(136) ju21=	 1u11
i

>>

If we return to dimensional quantities, we have for eq. (135)

6. Theoretical considerations related to experiments

Parallel to this theoretical investigation also experiments were

carried out. on these experiments we will report later. During

the experiments-a number of typical problem4 arose, which. can be

settled theoretically rather than experimentally,.

A point of particular interest is, that the phase speed of the

instability waves in the experiments was lower than that of our

theoretical model. Phase speed and wave number are inversely

proportional to each other. Since the wave number is coupled to

`	 the exponential decay rate (of the fluctuations) perpendicular

r'
61
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to the shear layer, this has a significant influence on the in-

duced field (see eq. (68) in section 2.2.). Conditions which can

change the phase speed are:'"overshoot" of the mean velocity

profile (section 6.1.), finite shear ,layer thickness and entrain-

ment effects (section 6.2.). Finally, we have to consider the

effects of additional walls in a test facility. We will consider

the case of a shear layer in the symmetry plane of a rectangular

channel (section 6.3).

6.1. "Overshoot" of the mean velocity profileI 

ORIGINAL PAGE IS
OF POOR QUALITY.	 )

I	 settling chamber

I	 3
I
I

I	 ^
mean velocity

- -	 profile

0(y)

screen	 nozzle

i
Pig. 13 Interaction between nozzle and screen,

In Fig. 13 it can be seen how an "overshoot" of the mean veloci-

ty profile can be Unadvertedly) generated. A flow penetrates

through a screen of high resistance at (almost) constant speed.

The following coni;raction in a nozzle leads to different accele-

ration of the different streamlines In particular, the regions

closer to the wall are accelerated more than the flow in thei	
1

a	 center of the nozzle. This creates the "overshoot" of the mean

velocity profile._ Since it occurs often in experiments it is 	 y
j	 worth investigating its influence with a simple theoretical

3
I	 i5 .t
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model.. As we will see, the deviations duo to this effect cannot

be neglected,

ORIGINAL PAGE IS
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wt

dy 
^a

region„
T Un	 reg(on

p
Y°

0

l	 'iq.	 14 Mean flow with gradient and shear layer,

The model which we are going to consider can be seen in Fig. 14.

Since we cannot use out pressure gradient considerations as in

the preceding section we will proceed with a slightly different

approach.	 In addition,we will restrict ourselves to the dis-

cussion of conventional spatial instability waves extended from

x = - mo to x	 +*, The aim is to find how the wave member and the

amplification .rate will change if we introduce a roan flow gra-

dient	 (see V1g	 14).

We start with the same basis equations as in section 2., i.e..,
t	 )

the linearized Buler equations	 (1) and	 (2)	 and the continuity

equation	 (3).	 If we subtract the x-derivative of 	 (2)	 from the

y-derivative of (1) we can eliminate the pressure and obtain r

(138)	 -iw	
(iu	 .v) + U 3	 ( ^u.	 5v_)	 + j	 o-	 --

'fix 3y	 !ax	 1y	 D
3y^

This is what remains from the inviscid vorticity transport

equation if we consider a linearized fluid motion which is

harmonic in time	 kv e-iwt ) and takes place in a parallel, moan

flow with velocity 
U(y). 

If we assume a potential flow with

.A	 u - 0^/Ax and v _ ^fi/Iy we have from eq.	 (138)r

z
63
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(135)	 .	 o ,
ay	 3y

This means that we can use a potential flow approach in regions

whereD 20/5y 2 - o. This condition is fulfilled outside the shear

layer. At both sides of the shear layer we have t o patch the a

displacement h and the pressure p, as before:. We use the follow- ^	 .t

ing ansatz for the stability waves  '

for y >	 a:	 U 1	 a	 ;	 h 1
	J+e a(x+iy)

(140)

for	 o; U	 U	 * dD
	 = Be ia(x-iy)y	 2	 d	 y	 r	 `2o

fi

Since	 is a function of x +iy,the continuity equation written in

terms of the potential, 	 i.e., V 2 d	 = o is satisfied. The potentials

fulfill also the boundary conditions at y a4 m, because the in-
duced velocities become :zero there. a is the complex wave number

defined as usual in stability theory. A and B are magnitudes of-

the potentials which are still arbitrary at this stage of the'

calculations.;

The kinematic condition of equal displacement h at .both sides of

the shear layer is, as in section 2: x

U	 3v
(141)	 v2	 v 1 

+ i 40 a1

Using eq.	 (140) we obtain

(142)	 B =' ,-n	 (1.	 a^U0)

The second condition is	 that the pressures or the pressure gra-

dients should be equal at both sides of the shear layer. For k

y > o we Kaye from the first Euler-equation (1)

Dp
(143)	 ^x1 = ipmul

64
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and for y < o we obtain from the soma equation (1) 1

(144)	 v
- A (-'wu2 + 

Uo axe + ay—X 	 2)
i f ^

If equations	 (143) and	 (144) Are set equal and with eq. 	 (140) we
i

have

t	 ji U a	 ^

(145)	 A m B 0- w +	 F). y.

Equations	 (142) and (145) provide a quadratic equation for a with r
the solutions

7

2
(146)

_ ^^
(1 + d2wdy) + i 

,^ 

(a2wdx)1,2 Y

I
7

If we compare this to our previous nomenclature, using 1'1,2=in1,2	 F r

we find

_	 w	 dG d	 dUJd^Y 2( 1 47)	 a 1 ^ z - op_ 
Ci	 ( 1 + -z	-)	 ± 1(	 ^ w	 1

In comparison to the situation, which we had before with

dUJdy = o, we have now an increased wave number(imaginary part

of eq.	 (147)),which will cause a more rapid decay of the induced

field in the y-direction. The deviations can be, for a typical

situation in an experiment, in the order of 10-20 8. On the other

hand, the influence on the amplification .rate (real part of eq.

(147)) is much weaker and will be in the order of typically

1-28.
y

6.2. Entrainment and finite shear layer thickness effects

f If one considers the effect of entrainment alone for an infini-

tesimally thin shear layer,one can extract the relevant informa-

tions from section 3, equation	 (121'), For constant density, the	 )

wave number is_ _	
1	 + u' Jv

1	 2
i (148)	 Im	 (a)	

w

fi . 02	 1+(01/02)2
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For small 4	 U^/U2 , say a F o.1, we have a Wave number increased a

by Z	 9 %. This enhances also the exponential decay rate in the

y-direction by 9 ^.
e

As expected, the downstream rg owth rate decreases with increasing
..

a. We have for the growth rate

w	
1 - 01/52

a(149)	 Re	 (N)	 =
U2	 1 + (V1^U2) i

For, say, a _ o 6 1 we have a growth rate decreased by	 11 B 4
These considerations are valid for a "thin" shear layer.

L

k

We cannot really neglect, however, the effect of finite shear
s	 _a

layer thickness. A typical parameter of the stability analysis

of shear layers of finite thickness is the Strouhal number

S e =0 • f/5 2	where f is the frequency and 0 is the momentum thick-

j

ness. The momentum thickness is defined as

f+^ r

(150)	 9 =	 U (1- U)dy. ,
J

U^	 U2
-^

For a typical shear layer profile, which might be approximated

with good accuracy by a tanh-profile we have the situation dis-

played in Fig.	 15

\	 U

02

p	

I

4e

Fig. '15 Shear layer profile,

M

i

i
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The amplification rate and the phase speed, according to Michal-
,

ke (6) are given in Fig. 	 16

As we see from Pig. 16, the dev iations in the wave number are '.

much more significant for increasing S 6 (and thus deviating from

the "thin" shear approach) than for the amplification rate.

Therefore, the finite thickness causes an increasing wave number

and enhances again the decay of the induced field in the y-di- , r	 r

rection. This influence can be quantified with the numerical

data available in the literature (6, 37). Also the combined in-

fluence of entrainment and finite shear layer can be extracted

from (37), where calculations are given for a shear la yer of

finite thickness between two streams of different velocity U 1	 k

k
' and U

2'
'

6.3. Channel effects

In an experiment, one cannot offer a facility with infinitely

extended streams at both aides of a shear layer. Therefore, we

will have to consider effects due to the finite dimensions of

the two streams. The experimental setup which can be modeled a
with the least complication is that of a free shear layer in the

symmetry line of a two-dimensional channel. At the rigid walls

the velocities and pressure gradients norwal to the surface have

k
to be zero. Thus, the boundary conditions at both sides of the

t
shear layer are the same. Consequently, our basic approach which

takes advantage of splitting the pressure field into a symmetric

and an antisymmetric part, is still valid. This has been shown

already in a different, more involved way in (12). Therefore,

the general solutions for the y-velocity component are still

valid	 (egs.(23) and (123)). However, we will have to discuss the

deviations in the actual velocities and pressures which will K'

occur in

(1)	 the excitation field (v-velocities)
r	 is

(ii)	 the resulting shear layer motion (v-velocities)

(iii) the induced u-velocities

^f
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Where is no doubt, that the structure of the excitation field

will be still parabolic if we are close enough to the edge of

the semi-infinite plate. Therefore, there will be particular

conditions when the solutions calculated in the preceding section

are still valid. The restrictions of these conditions will be

discussed below. We will calculate the fluctuating flow (without

shear layer and mean flow) in a simplified test section, which

can be seen in Fig. 17,left hand side.

Z. plane	 Zb - Plane

upper wall 	 streamlines W sconstJ 	 age ends
eftl

Ya2rt^l
f	 dam+s

Va=n	
_ C L

^ d	 -	

Yb

Q	 ya

lower wall	 un9er wall	 splftter plate	 lower wall	 }
unfolded t

z a-plane (physical)	 Z.-plane (image)

Fig. 17 Simplified test section and its conformal image,

t

The test sect,.= is simplified in so far as the nozzle .;..1 the

settling chamber on the left hand side have not been considered.

The excitation is assumed to be generated at great distance on

r;	 the left hand side ,inside the bisected channel by two sources of

}	 opposite sign* ) . This would be a good model for the situation

?

	

	 *) A similar procedure as the one described here could be used	 1
if the source were in the lower and upper wall, created physical-
ly by vibrating plates,

• 69	
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with sound excitation by loudspeakers connected to two settling

I

chambers upstream of the bisected channel.

If the sound wavelength is much greater (say, at least ten times)

Y

than a typical dimension of the problem,(e.g., the channel width), e	 i

one can describe the alternating flow In the vicinity of the '	 Al

plate and by incompressible flow theory. In that case, we can

use the very powerful tool of conformal mapping to solve the

problem completely. For configurations like the one shown is

Fig. 17	 one can use the Schwartz-Christoffel-transformation to

map the flow in the interiour of the channel into the flow in a

half-plane (Fig. 17, right hand side). our channel and splitter ;=

plate walls will be stretched into the straight line yb = o
(see Fig. 17). The open ends at the left hand side of the bi-

sected channel will be mapped into the two points at xb = +1 and

x 	 = -1 on the x
b-axis. If we install a positive source at xb =1

and a negative source at x b= -1 we have already the image of the
flow field in the zb-plane.,

The mapping function relating the za and z b planes can be found
in Kober's dictionary of conformal representations (38). We have a

r'

k (151)	 y	 =	 1+eZab
9

with za = xa + iya (physical plane) and zb = X  + iyb (image
plane). This mapping function corresponds to the specific dimen-

sions given in Fig. 17. We introduce the complex potential

+ iT where the potential function 0 and the stream function r

are defined as usual in plane flow problems. The complex potential 9

of a source at the origin is 	 In z. Thus we have for the
rpotential of the positive and negative source in the zb-plane,'

^. located at x 	 = +1

i (152)	 = A	 [ln	 (z b-1)	 - In	 (zb+1)]

where Ais a constant (proportional to the strength of thei
sources). With the transformation equation (151) we have in the

 ORIGINAL PAGE IS
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r
(153)	 =A	 in	 (	 1+e a-1)	 - in	 (	 1+e a+1)]

We are first interested in the v-velocity (in our previous nomen-

clature v i d at the center line of the channel. The complex velo-

city is

r
(154)	 l = u - iv

a

Taking the derivative of eq. 	 (153) we obtain

I

(155)	 u - iv =	
A •	 '

lteza

(1

The oZnterx
 l

ine	 chei7nel-ya	 ,r; there we

have	 iO f With	 lsweoobtadnataa

(156)	 u - iv =	 A:	 u" the center line (C.L.) )

For x 	 < o this is purely real, which means that v =,o there.

For xa ► -W we have uC.L. + u., the homogeneous velocity at
n

_large negative distances in the biseoted charinel. Therefore is

A = u	 Equation (156) becomes purely imaginary (and u = o at
the center line) for x 	 > o._

Before we write down our equations in real physical quantities
)

such as u., we have to relate x aleo to the only real physical }

dimension of the problem, i.e., the channel half-width d (see

Fig.	 17). Therefore, we will replace x a by a dimenoionless_quan-
 

g
tity, i.e.,	 .`The coefficient 7 occurs, because in the initial

coordinate system the channel width had this value. We end up

with -..he following equations for the velocities at the center

fine y = +oe

ti	 71
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x < o	 x> o	 t

U.	
r.	 a

115 71	 v = o	 v =	 ° °

i	
e d _1	 :.'

u	
r

(158)	 u=fu= o

V 1-e d
xn	

#

For small positive x we have 	
L'	

a

(159)	 v •	 u

a

This is the expected 1 / /,- behaviour of v. on the other hand, it

can be seen from egs.(157), that the deviations from this

behaviour can become significant.
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rig•18 shows a log-log plot of eq. (157) as well as some own

experimental data* ) . As we see, the theory works quite well. A

second question of major importance is how far the parabolic

pressure field is valid upstream of the plate edge (see Fig. 19).

In particular, we are interested in np12//l as a reference

quantity.

I	 I	 / P -const

I I QPIIiti^► ^%	 ':
^ 	 I I I I I I^^ I	 ^^	 ^	 i

dl I I f I	 1 2 ^^	
^\ parabolic

I	 I 1 i I 1	 region

r
1

Pig. 19 Reference pressure locations in the test section

t
Since we can expect a parabolic pressure field only in the near

vicinity of the plate edge, we would run into difficulties with

measurements of Ap12 // for the following reasons: The pressure

difference of the excitation field bp12 becomes small at small

distances 1 from the edge. This leads to poor measurement

accuracy. Close to the lip the signals from the (symmetric) 	 p'

pressure field induced by the shear layer dominate and determine

the setting of the measurement system. However, for the-measure-

ment of the relatively low magnitudes of the pressure difference,
.	 R

r

	

	 the measurement; system is then poorly adjusted and the measure-

ments become unsatisfactory.. The situation would improve con-

*) The points correspond to pressure gradient measurementsit	 #
(ap/ay) taken with a probe microphone of =1.5 mm resolution,),n
air, at room temperature (22°C) and at a frequency of 200 Hz=

i`	 d was 75 mm.
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siderably, if we could take data of Ap (still at both sides of
the splitter plate) further upstream where the pressure levels

of the excitation are higher and the induced (symmetric) pressure
level of the shear layer would be lower. Consequently, it would
be desirable to determine 6p12/j1 which refers to the parabolic

field near the lip, out of a measurement Ap further upstream. We o

will achieve this with the same method of conformal mapping which 1	 f.'

we have used before. As we have discussed in section 2.1., the )	 °	 `•

pressure is proportional to the potential for a fluctuating flow R

field with no mean flow.	 In analogy to eq.	 (153) we can set

a

)
)

4"/r_,
Z

_
(160)	

P = B
• Re	 (In(	 y1+ea-1)	 -	 In(	 +e a+1))

r,

i
I

where B is a constant which we will determine later. We restrict
ourselves to the center line of the channel with y 	 n and we x
replace later x by frx/d, as before. We Plnd

/d
(161)	 p '= B	 Re { In	 (	 1-e nx 1 )

1- jx	 +1
.

i

The denominator of the argument of the logarithm will become
A

negative.	 Since In	 (-1)	 _ tiff. this negative sign will only con-

tribute to the imaginary part of p which we do not consider here.

We have therefore as the real part of p

-(162)	 p	 =	 B	 •	 In	 {	 )

1+ Vi-e-' x
z

For small x we obtain

(163)	 p = -2B d
x4+o

This is the expected parabolic pressure field near the plate
edge (see also eq.	 (33)	 in section 2.1.). On the other hand we

i
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(

(164)
'P12	 2p ,

}

because the pressure difference 4p at both sides of the semi-in-

finite plate has double the value of the pressure at one side

alone. Using equations (163) and (164), we can determine the

constant B:

(165) B = - 1
	 a12

4 -̂

Using op = 2p, equations (162), (165) and replacing -x by L (see

Fig. 19) we obtain as a final result
S

s

This provides the desired relation between the pressure difference

Ap at both sides of the,splitter plate, measured at an arbitrary

distance L from the plate end, the channel width d and the

reference quantityAp 12 / 3!'(see also Fig. 19). Eq. (166) can be

expanded also for L >> d which gives

	

(167)	 Al2 =

at	 (L >> d) .

One should keep in mind, however, that L should be much smaller

than the acoustic wavelength, which restricts the applicability

	

t	
of eq. (167). It is, therefore, more likely that eq. (166) will

be ;applied in an experiment.

z'
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6.3.2. Effects on the resulting shear layer motion

We restrict our considerations to the single stream case where

we have a mean flow U 0 in the lower half of our channel. The

general solution for v is still valid, as mentioned above

x

(23)	 V	 eXjx	 e-Xjx v dx + "' ea 2x	 e-12xv dx
 JU 0
	

if	 U 
0

0	 0

with X	 (itl). For the vertical excitation velocity v

	

1,2	 U	
if

we have to	 use now eq. (157)

(157)	 v if	
u

47-1

we will focus our interest on simple results downstream of the

interaction region. In this situation we can neglect the second

term of our general solution (eq. (23)), because it represents

a rapidly decaying wave. As we know from our previous results,

the interaction region is limited to a distance of less than one

wavelength of the instability waves. Since vif is now decaying

even more rapidly, we can replace the upper limit of the integral

in eq. (23) by infinity. This w i' ll provide completely reliable
xresults for !w- >> 1. So we are left with

U0
-X 1x

(168)	 v	 -u	 21-	 e
x i x	 e 1 dx

1	
0	 fit —x

0 /e-Z - 1
for	 (-w-x- >> 1

U0
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The integral in this equation can be rewritten in the following
form

+
e-x 

1x	 e	
1	 2d

(169)	 1	 f	 dx	 f	 dx
1Tx	

- 

7rx
0	 d	 0	 (1-e 'T) T/e

This latter integral can be found between the Laplace transforms

in	 (391.	 We obtain

(170)	 1	 =	 d	 13
1	 it	 2	 2

where B	 (x,y)	 is the Beta function (or the Eulerian Integral of

the first kind), defined as

(171)	 B(x,y)	 t X-1 (1-t)y-ldt
f
0

The function B(x,y)	 is related to the V function

r(X)	 -	 r(y)(172)	 B(x,y)	 B(Y,X)	 =
r(x+y)

The r function (or the Eulerian Integral of the second kind) is
"j

defined as

(173)	 r (z)	 f e- t	 t Z-1 dt	 with Re(z)	 > o.

0

Using eqs.	 (170),	 (172)	 and	 we find2

X	 d)

(174)	 v 1	
-u.	 -d	 1	 2

/-Tr	 X d0
r(i	 +

7T

Before we proceed with the discussion the r functions, we have
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to establish a relation between u. and our reference quantity

6p12//' We have to expand eq. (157) for small x to obtain the

parabolic flow region of the excitation, to which the reference

quantity Ap12/ r belongs. We find

(175) v1f ^ u9, nx
x ,0

on the other hand we had (eq. (36))

(176) v	
_ 1	 i	 Ap12

if	 4p

Comparing (175) and (176), we can replace u. in (174)

a d

(177) v	 Ap12	 i	 w	 e11x	 r ( 2 + 1 )
. ^	 ^ d

Al Uo	 o	 (^ + n )

d

3
r

e

or, if we use a imensionless v 11 as in section 2

(178)

This is 'a new analytic solution for the excited instability

waves in a channel at mx » 1 The r function is tabulated for

complex arguments in (
U
3?]. However, it is difficult to see what

eq. (178) really means. In particular, we are interested to see

what the errors are if we use the equations for a free shear

layer without walls (section 2) in the present situation in a

channel with walls. We want to see by a quantitative calculation

under which conditions the previous approach will fail. It makes

^.	 sense, therefore, to expand eq. (178) for large values of X1d/,r.

78
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We will expect then, for decreasing values of X 1 d/n (which is

proportional to the channel width divided by the wavelength of

the instability waves) an increasing deviation from the previous

,approach, C

Fractions of the r function can ;be expanded for large arguments j

in the following way 1313 1

r(z+a)_	 a-b	 (a-b)(a+b-1)	 -2(179)	 x	 (1+	 +	 ON	 ► )

^ 	 3

r z+b	 2z

Using this expansion, we end up with:
U

(180)	 v1	 _	 i	 '	 (1-8	
i+1)	 wd)	

e^1x
4

for	 wx »	 1 and wd >>	 1.
Uo	Uo

With exception of the term in brackets, which quantifies the #

deviation caused by the channel walls, we have obtained the same

result as in section 2	 (eq.	 (49)	 , first term of the instability

waves). We are also ,interested in the modulus of v 1 , which is -

(181) ^v1^	 _	
r+	

(1-	 ex
1G	 md)4.^

for wx /Uo >>	 1 and wd/oo >>	 1, as before. The abbreviations in

eq.	 (181)	 are the same as in section 2, i.e., x = wx/Uo and

v 1 = v
1
a , ta7G0l /6p 1 2.	 Equation	 (181)	 is simple enough for a r

straightforward error analysis. Consider a simple example;

d = 75 mm, w = 27 •	 82 Hz, Do = 12 m/s. We end up with a value

r for 1v ( { being about 6 % lower than predicted for a free shear

layer without channel walls. This deviation reflects the in-

fluence of the limited size of the 	 gparabolic excitation region

around the end of the semi-infinite plate.

1.

't

r
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it would be quite complicated to calculate the whole u-velocity

field. Therefore, we will restrict ourselves to ' 	 >> 1 where we

have to consider basically cevi.ati.ons from the 	 D  field computed

in section 2. It is quite obvious, that close to the edge of the

semi-infinite plate the flow field will be the same as in

section 2,	 If we consider the field upstream of the edge, it is

,reasonable to assume that the field is dominated by the excita-

tion. Consequently, at sufficient distance upstream of the edge

we will obtain u - ±u. at both sides of the plate., in the inter-

mediate range upstream of the edge, but closer to the edge, the

field becomes more complicated. For the upper region with no

flow, the u-velocity field can be derived from the known pressure

field in a straight forward way, using the first Eulor equation.

With other words, u is proportional to the x-derivative of the {
pressure. in the lower half of the flow field, the first Euler r

equation produces a first order differential equation for u,

which has to be solved. The same situation arises, by the way,

also for the parabolic flow field in section 2, with the differ-

ence, that the resulting functions 	 (error functions) are there

easier to deal with.

i

The situation far downstream from the plate edge becomes much

simpler. Here, the amplified instability wave dominates the ve-

locity field. The effect of the channel walls can be taken into

account by a simple imaging technique (see Fig. 20) Y

Uind
WE

--► l)p	 d U2

- --

s

channel wall
77 77777

U^\---►

mirror image
F

r-ig. 20 Imaging technique to model the channel wall, a
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The decay of the induced velocities in the -y-direction is pro-
portional to e- 4L.'°. we know them that the u 2-velocity at the

shear layer willuo be increased by an amount (1 + e-2—od). using,

the fact, that at 4x >) 1 we have lv1l - lv 2,[ - lull*go 1u 2 1 For

a .shear layer Uo without walls, we obtain for the situation

in the channel,
2wd

(182)	 )u2_1	 lv11	 -	 ( 1+e	 Uo	 1
,

(max » 1)
4	

,r

O

To give a numerical example, we take the same data as before,
namely: d - 75 mm, w = 2n • 82 Hz, U o = 12 m/e+ We find a very
weak influence of the wall of 0.16 8. This influence will become 3

i
even weaker because the decay rate in y-direction will become'

higher in a real experimental situation, as discussed in
sections 6.1. and 6.2. We end up with the conclusion in this

section, that the enhancing influence of direct reflection on 7
thp,. u-velocity at the wall is usually much smaller than the more
indirect decreasing influence via the change of the excitation
field.

a

7. Speculations

One may contemplate about the question on how far the present

approach can be stretched to really include the excitation of

a shear layerwith small, but finite thickness. In section 5

(two stream case) we have considered an example where the ar.;pli-

G	 fication rate and the wave number can depend, albeit differently,

on exteriour parameters like a = U1/02 and S = p 1 /p 2 • It is
G

tempting to write an equation like eq. 	 (119) where the coeffi-
cients on the left hand side are made up from amplification k

rates-and-wave numbers obtained from numerical results of the
stability theory of infinitely extended shear flows, such as

[6) and [371.	 It is not clear, whether or not this idea leads
' to a viable and correct analytic approach. However, it would be

interesting to see how far the concept can be generalized, that Y
the resulting excited instability wave is a finite Laplace trans-
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form (such 
As 

equ.	 (37)and (123))of an extoriour excitation

field. in addition, extensions of such an approach to other

configurations like jets or even to the excitation of instability

waves on a flat plate might be conceivable.

AnQther relevant question is, how far free stream turbulence

(or other types of turbulence) and its wavy predecessors which

we investigate here, are "natural" or dependent on exteriour

forcing. We might consider whether or not an influence from the

downstream nonlinear development might provide a sufficient or

even dominant feedback. Our pressure source approach Is still

useful to provide a feeling for this situation. The pressure

linearization is the last to break down with increasing flUotua-

tioh magnitude and it works nicely	 for subsonic flows. The

effect of the nonlinear flow evolution on the pressure sources

is this: During the vortex roll-up we have a limitation to the

magnitude of the pressure sources. The reaction to the trailing

edge is necessarily very small*), because the pressure sources

are still only located in the shear layer (outside the shear

layer we still have V 2 p x o), i.e., in the symmetry plane and

we get a situation close to creating a stagnation point of the

induced flow at the trailing edge (see also section 4). The

feedback is therefore strongly dependent upon the local displece-

ments of the shear layer. Therefore, a feedback is likely to be

a nonlinear effect, and it is very weak. Thus, it can be easily

dominated by sound waves or convected vorticity, as shown in

numerojs experiments. Nevertheless, we cannot completely reject

this mechanism,because the upstream Influence decreases in'a non-

exponential manner in the upstream direction whereas the down-

stream amplification of the instability waves is exponential

Under these circumstances (and with an unstable shear layer),

there is no way to keep the flow laminar even if there is only

Brownean motion as an initial excitation somewhere.

There is, however, another way in which feedback may come into

play.

The situation changes dramatically if a rigid body, like an
additional wedge, is introduced into the flow field. Then, an

gA
yWmetric pressure field is created which has a strong influence

Fe trailing c-dge.
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All our previous considerations were based on symmetric boundary

conditions. To provide a feeling for slightly asymmetric con-

ditions we. consider the geometrically symmetric configuration of

section G, where we excited a shear layer in the center line of

a channel. if the conditions upstream of the splitter plate are	
4`

not symmetrical (caused, say, by a difference in the acoustic

impedance in both legs of the bisected channel), a pressure

source in the .shear layer creates an asymmetric pressure field 	 K	 ,

in the channel and 'hence a parabolic: local field at the edge of

the splitter plate. In this way ► in particular if there is
resonance in one leg of the bisected channel, a linear feedback

Is conceivable.

' B. Conclusions and survey of essential results

The acoustic excitation of a free shear layer shed from a semi-

infinite plate has been studied. The shear layer is assumed to

be infinitesimally thin, The present consideration is limited to

a low Mach number mean flow and to the situation where all typi-

cal dimensions of the problem are small compared to the acoustic

wavelength, This leads to an incompressible flow approach

relevant to the interaction region near the end of the plate.

The basic contributions and findings of this paper are listed

below.

i)	 The basic shear layer - sound interaction model is out-

lined. The solutions are obtained by splitting the pressure

field into two constituents:

(a) the forcing pressure field of the exteriour excitation

and

(b) the pressure field which is radiated by the shear layer

itself.-

The consideration of the pressure gradients perpendicular`

to the shear layer leads to an equation for the v-velocity

components v 1 and vz at both sides of the shear layer. A

p second equation for both components is derived from the

r:
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condition, that the displacement h on both sides of the

shear layer should be equal. Both equations can be con-

densed into one nonhomogeneous differential equation for

v 1 . A general solution for this equation is derived. For

a parabolic excitation pressure field around the plate,

which is the most common case, a special solution is given.

So far the basic approach of this paper follows a preAous
one (12).

i

1

1

,

2) It is proved that only the "Kutta condition" solution ful-

fills the boundary conditions of equal displacement and

pressure on both sides of the shear layer. Within the

limits of this model, it is proved, that only forced in-

I stability waves exist. It is shown, that no ambiguity is

left in the excitation mechanism,

3) For the parabolic excitation field, also analytic solutions

for u 1 and u 2 at both sides of the shear layer are calcu-

lated. For x > o this solution consists only of a damped
zr

and an amplified instability wave.

4) Numerical calculations of u 2 (velocity fluctuations in the

region of existing mean flow) are carried out for y + o,

The u2 computations are of crucial importance for the

r comparison with experimental data. The calculation utilizes

F a source distribution approach and is based on the analyti-

cally	 given v 2 velocity distribution. Also simple

asymptotic formulae for the field outside the interaction

region at the plate edge are given. Thus, the region of

numerically computed velocities is completely imbedded

into asymptotic equations and fits also the analytic

solution at y = ^-o. In addition, the computations have }

been carried out by two different persons using different

( mathematical procedures, computer languages and computers.

g, Therefore, the numerical computations can be considered as

a reliable bridge between the analytical solutions for

r ,; u and v, derived from separate calculations. This is also

part of the proof 	 2) that the forced f;°,stability waves do

xi,
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fulfill all boundary conditions and additional arbitrary

instability waves do not exist,

5)	 The excitation by different types of sources in v'ario'us

locations is discussed. With the exception of the (singular)

cases if either

i
(a) the excitation field has a stagnation point at the

r r

plate edge or

(
C (b) the excitation is directly located at the plate edge

itself,
ir

the exteriour excitation creates a parabolic pressure near

field at the plate edge which dominates the control of the

shear layer. The possible existence of a stagnation point

r (case (a)) is demonstrated with a dipole excitation at a

+ certain orientation with respect to the plate. The effect

of a monopole source on the shear layer is investigated in

detail	 (see Fig.	 21).

f
t

/; f

;Uo —fix

Fig. 21 Excitation by a monopole source in different

locations
J+

A monopole in position (a) nearly creates a-stagnation
E	

` point at the plate edge. Therefore, this type of excitation

f is very inefficient. The excitation by a feedback from down-

} stream turbulence would be also of this type. A source in

 position (c) would produce a strong parabolic excitation
a.
i.&
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1

field and would be by orders of magnitude more efficient

than an excitation in position (a). This is the reason why

free shear layers are so sensitive to sound waves from up-

stream and so insensitive to the strong near field pressure

created by the turbulence.; i

RThe excitation directly at the plate edge (b) has been 1^'

used in some recent experiments. It was not clear, however,

what the relevant reference quantities were. An expansion

for small distances provides an elegant and simple result:
i

w(x_	 ) -	 A

Uo

(183)	 ^u2^	
QW	

a	 for wx > 1
2E	 U

r	 __o	 o a

For this case also a complete solution for the shear layer

motion at all x can be given, as well as an analytic

solution for the whole induced field at y + o, in terms of )

exponential integrals of complex arguments (this function

is tabulated in	 (311)• The result in eq. 	 (183)	 refers to

the fact, that 1/2 of the volume flux Q of the source pene-

trates through the line y = o. In a real experimental

situation, this ratio might be higher, maybe closer to 1,`

depending on the individual configuration of the excitation

device at the lip.

6)	 The major part of this paper, however, deals with the

excitation by a parabolic field at the plate edge, which

is created by any source far away from the edge. It is

shown, that in this "parabolic" case the interaction takes

s-	
place within less than one wavelength (of the instability

waves) downstream of the plate edge. Downstream of this

interaction region, the v-velocity field (at y = ±o) splits

-	 into one contribution of a pure amplified instability wave

and another contribution from the excitation alone.

7)	 The theory is also extended to the "two stream case", where

we have two different mean velocities and densities above

t

¢
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(U l ,p,)	 and below (UZ,p 2 )	 the shear layer. Although the

details of the calculations become somewhat awkward, the

mathematical results are still very similar to the preced-

ing ones. The quantity in the excitation field that is i

most easily dealt with is againthe pressure, and it

becomes clear, that pressure gradients (ap/ay) rather than
5

y ' velocities drive the shear layer. Again, the far field
4

downstream of the interaction region splits into an r	 ,

amplified instability wave and a forcing velocity distri-

bution which is continuous through the shear layer. Since

the densities on both sides of the shear layer are

different, nature prefers the average value of both densi-

ties as a coefficient in front of this forcing velocity. t
4 The consequences of the introduction of the new parameters A

a = U^/U2 and @	 p,^/p2 are the following:
I

(a) the downstream amplification rate of the instability i

waves is reduced for reduced difference of the veloci-

ties, as expected;

` (b) if the low speed region has a lower density than the

high speed region, the amplification rate is also

reduced.
Y

E)	 The present theory predicts potential fluctuations outside	 t

f an infinitesimally thin shear layer. In an experiment, j

however, we have always a shear 'layer of finite thickness.

Nevertheless, at low Strouhal numbers -S e , both theories

provide the same potential field outside the shear layer

(if the instability 'wave is fully established downstream 4i

of the plate). By matching both (identical) potential

fields, we can predict also the motion inside the shear

layer, as calculated by Michalke [6].

9)	 Obviously, the influence of finite shear layer thickness

leads also to deviations from the present model. If the

data acquisition in an experiment relies on measurements

in the potential field outside the shear layer, we have

to consider in how far thewave number in the real case

87
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deviates from our idealized case. The wave number is an r {

essential quantity, because it determines the decay rate

of the induced field perpendicular to the shear layer

(y-direction). From Michalke's	 (6) and Freymuth's	 (7) _ f
results it is clear that the wave number becomes higher

than in our model for increasing S,. This leads also to t

an increased decay rate in the y direction.

10)	 Another typical deviation in experimental setups is the 3

"overshoot"	 (mean flow gradient) near the shear layer. It

i is not too difficult to model this. The analysis yields

an increased wave number, which again enhances the decay

rate of the induced velocities in the y-direction. Inter-

estingly enough, the downstream amplification rate of the

i instability waves remains almost unchanged.
e l

!i

i° 11)	 In a typical experimental situation the two streams at

both sides of the shear layer are Limited in their width. 7

Thus, in reality, we have a shear layer in a channel

rather than a free shear layer in an unlimited flow, -

There are several things to be considered:

(a) the general solution of the shear layer motion is w

still the same,
x

(b) the excitation pressure field, however, is changed.

There is no difficulty, though, to calculate it with

conformal mapping. The excitation pressure field is
a

still parabolic in the vicinity of the splitter plate

edge, but it falls off exponentially beyond a certain

"	 distance in the downstream direction.

(c) with this new excitation pressure field the shear

layer motion can be calculated, at least downstream

` of the interaction region. The analytical solution

contains r-functions of complex argument. Since this

solution is quite awkward to handle, it is expanded

for large`wd/Uo, where d is the channel hal-fwidth.

This means that the wavelength of the instability
r
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waves should be relatively small compared to the

channel half-width. We end up with a reduction of the

instability wave magnitude, represented by the co-

efficient (1-nwd/16U0 ).	 In comparison to this quite

significant influence on the magnitude,it turns out,that

A

(d)	 the direct reflection influence of the channel walls on a

the velocity distribution is quite insignificant (closei =.

to the shear layer) as far as the instability wave

downstream of the plate edgeis concerned.

12) Perhaps the most significant finding of the present paper

is a reference quantity for the excitation of a shear layer

by a parabolic pressure field, which is a fairly general

case, as discussed in paragraph	 5).	 It is the

reference quantity 	 6p 12 / 3l 4,

The significance of Ap 12 and 1 can be seen in Fig.
	 22.	 i

X12/r is related to the excitation field one. It will
not change, e.g., if the mean flow Uo is switched off. For

instance, the u 2-velocity of the instability waves close to

the shear layer depends on6p 12 / 31 in the following way:

^ b

1	 /71
(184	 u	 _ IAp12

1	 ego
2I!

f
p	 4 	 p

I

valid for wx/D	> 2
, o

f	 }

'
N

Y

t

i

j
t
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_	
-

j	 Excitation in free	 Excitation in a

conditions	 channel

Fig. 22 Configurations for shear layer excitation

t	 Equation (184) is well confirmed by recent, yet unpublished, 	 9

F,	 measurements of the author.t

For an experiment in a channel (see Fig. 22), the situation
a

changes slightly. If the two microphones used to measure

Ap at both sides of the splitter plate are moved further

upstream (to improve the accuracy of the measurements), we

have	 1

(185)	 Qp12 = AP '	 2 /-7r

yri-
1
+ ^irL/d	 F	 3

f	 In

1- ^e-trL d]

The significance of L and 'd can be seen in Fig. 22. The

magnitude of the instability waves is then the value pro- j

vided by eq. (184), but multiplied by the coefficienty	 i	 -

E	 (1-nwd/16 Uo). The latter coefficient (see paragraph 11)
t
^	 reflects the limited. size of the parabolic pressure distri-

bution at the plate edge in the channel. 	 <
t,
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10. nppendicr3s

10.1. Appendixdix :►

Glossary of symbols

ao sound speed

a

a 1 ta^ constants in tho numerical representation of the

error function erf of a real argument

b1r	 b 2 lower and upper boundary of a vorticity distribu-

tion on the x-axis	 (see rig,	 7)

c 1► phase velocity of an instability wave

cph rel	 alative Phase velocity of an instability wave

r rPh rel ' 'ph/U
2
	 z

d half width of a two-dimensional channel (see

rig, i7 ►
z

orf (z) error function, defined as erf(z) 	 2
- ►

e rr' dt	 s
o

erfc(7) aomplemenLa]:y prror function erfc(z) 	 1-erf(z)

f frequency of rho excitation f TA w/ 2 ,t	t

91,92 lower and upper boundary of a source distribution

on the x- axis	 (see Fig.	 8)

11 displacement of the shear: layer duo to the insta-

bility waves and the excitation field

i imaginary unit t = wA-1

r ¢'

I

w

distance betwerm kip, edge of the semi.-infinite

plate and the pressure pickup devices

microphom + is) at bot:,i s ides of the plate

rF 99
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r

v

m, n summation variables (integer) -

P Pressure, usually the perturbation pressure, i.e.,

the deviation from the ambient (atmospheric))

pressure. All perturbation quantities are pro-

portional to e
-iwt a

P 1 fluctuating Pressure above the shear layer at

y > o

P 22 fluctuating Pressure below the shear layer at

y < o

k Apt Ap 12 pressure difference between both sides of the

semi-infinite plate

p abbreviation of a quantity related to a pressure

gradient in y-direction, i.e., c

P	
21	 'p2f

^+

P;^m By
a

p 1f 1 p2f
contribution of the exteriour forcing field to

! the total fluctuating pressure. plf = p2f

P is' p2s
contribution of the shear layer field to the

total fluctuating pressure. p is is valid for

y > o and p2s is valid for y<o. In addition we

have p, = p1f + pis i p2 =p2f + p2s.

k q,	 q(g) source distribution on the x-axis; dimension like

f a velocity.

r radius or distance from the origin (in most cases

the cplitter plate edge) to the considered field

point r	 -x'+ y' k

^	 f

ro distance between the location of a point source

and the ` splitter plate edge ro _ 	 x

( r

E
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R Ae	 ,

t3 Intogration variable (eq. 	 (38)1

L Lillie

a intogration Var iable, e.g.,	 IA oqs.	 ('171)	 nlit(

(173)

u fluctuating voloQity compoliont 1.11 the x-Olrt_tct on;
all	 i`l1tCt:l)ilteillg	 fjllNltlt:l,l;1.a3	 t► 1'Rl	 pl.`opoZt= ion tilt	 t~C1
a"iwt

ti:1 fluctuating u velocity component above Ow :}ho.,tr
layer at y > o

u.1 r .1 u-valocity 1, ►iclucarl by a v valoci.ty c' t3«: ► irt;l.bution
of all 	 Helmholtz ;iiWtab:lliLy wave
(uxponciut\ 1 )	 ,i,n the half-platic above ttio ahati,i°
layei` (y } Q). Tho v diati:ibiit:ion of the instabi-
lity w4va axitilO only for X > t),

x.

i1 1 a2 similar to ti.l r. i ,	 but rafaira;i litt 	to tho at:tan"cwtt~t1

10, ►►dhol.tx :(.nutablIl,ty wave	 (oxpoilont	 a2)

lln J.1:tieLkv..lt;ing %I-Vul.ocity in a cha linal With S:t

aplittar pinto, itflymptodv 1fioWn far upatromm of
1. it) Lraillnil c0go or the np'lltter plaU,

}}}j(

112 fliletwiLlml 11 V0100ity Q'4 ►11po1'10lit baloW t'hc $h011r

4

ltlya;r At y l Ca

U.^r 1 aimilor t(5 Li l r. 1	but v€riid below the shoar iayai:

(Y < 0)

t12.r2 .9imi lar to wli21 but Valid bolow the ffioar layer
(y	 < 0)

i u	 t) u-valocity, induced by v«i) nt y < o. kv ►) is the
di,f erolim between the forced lnst6bllitr w^va v^I ^ ^	 w
and tho asiympLota whii.ch behaves like the IlalmlholL	 'i

-
^e
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D

,	 becomes.instability wave y2U ; v2D m v2 - v 211	 V2
zero both at x	 and x 

K '
t	

1

Au 2p u-velocity, induced by just one trapezoidal source

element representing the local v 2D distribution

between two neighboring points a and fi b . i
t r

y
2D1

imaginary part of u
2D t1

u2DR real part of u2b

u x imaginary part of- u2

k

u2n real part of u2

u ' s u-velocity c.oniponent induced by a point source h
located at y = o and x = o.

' uC.L, center line velocty(at the splitter plate) in the

two-dimensional channel
a

i

u dimensionless form of the u_velocities (with

Y

}

various indices, as given above) in the following

form

u
	

0V bowl '
U =	 ---hp12

in the two stream case P has to be replaced by

lP2 and Uo by -U 2

uind velocity induced by the mirror image of the shear

flow representing the wall in a channel flow

` v fluctuating velocity component in the y-direction, 3

all fluctuating quantities are proportional to a

e-

` v1, v-velocity component	 above the shear Layer at y> o,

f ORIGINAL PAGE IS
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Oct,

v1f v-velocity component at y > o, generated by the
exteriour forcing field A

va s v-velocity component at y > o, generated by the

shear layer; v 1 * v if + vIs

v 1 difference between the forced instability wave 'v)
and its asymptote v 1t1 , which behaves like an
amplified ilelmholtz instability wave. v1D-vl -vlli
(valid for^y > o)

v1= imaginary part of v1 	 (valid for y > o)

v 1 real part of v 1	 (valid for y > o)

v1DI
Imaginary part of v 1 (valid for y > o)

v'1DR real part of v 1 (valid for y > o)

v )L! asymptotic behaviour of the v 1 component of the

forced instability wave, assumes the form rof a

Helmholtz instability wave, amplified in the down-

stream direction	 (valid for y > o)
A

V2 v-velocity component below the shear layer at
y < o

(

v 2 difference between the forced instability wave v 	 s

and its asymptote v2111 which behaves like an
amplified Helmholtz instability wave. v 2D -v 2 °2C1	 f
(valid for y < o)

v2DZ Imaginary part of v 2p (valid fox y < o')

v2DR real part of v2p (valid for y <C o1

v214 asymptotic behaviour of the forced instability

s wave, assumes the form of a Helmholtz instability

'	 f wave, amplified in the downstream direction (valid

t;r$
}

103

f



J

,ep

ORIGINAL PAGE IS
OF POOR QUALITY

for y< o)

v dimensionless form of the different v-velocities

as given above, i.e., +

v	 p 3U w 1 F
V	 ° 	 in the two stream case p has to

Ap12
be replaced by p 2 and Do by 02

va,b v-velocities at the lower and upper end of a

trapezoidal source distribution. The local

strength of a plane source distribution is two

t times the local v-velocity just above the distri-
,
a

I
E bution

X horizontal coordinate F

x nondimensional horizontal coordinate x=xw/Uo or d

x=xw /U2 for the two stream case
t

y vertical coordinate
)

y nondimensional vertical coordinate
y=yw/Ua

z -	 complex variable, usually defined as z=x+iy=rein'

z complex conjugate of z; z = x-iy = re

A constant, used on different occasions:

in eq.	 (31) it defines the strength of a pressure`
field

in eqs.	 (67) and	 (140)	 it defines the strength of
a potential u

in eq.	 (155)	 it is a constant with the dimension

of a velocity, A = u
f

r

A in the appendix D, eq.	 (D3), A is the real part

1? of a complex variable in conjunction with a
computer program which uses the same symbol

x,
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ABS (z) moaulus of a complex quantity , e.g.,

ABS (z)

B constant, used on different occasions; ?

in eq.	 (67) it defines the strength of a potential;

in eq.	 (160) it defines the strength of a pressure

field

B in the appendix D, eq.	 (D3), B is the imaginary

part of a complex variable in conjunction with a

computer program which uses the same symbol

s (x,y) Beta function, Euler's integral of the fir,gt kind

(see also	 [31,	 39)), defined as J
8

fi(X = 	 Xr ^t	 (1=t) y^ 1 dt +y)	

J 1

0

C 11 C2 constants (can be complex) with the dimension of }

a velocity, defining the magnitude of the ampli-

fied	 ( C1 ) and decaying	 (C 2 ) Helmholtz instability

wave k

N
D Dipole strength $t'

c 11z} Exponential integral, defined as	 (see also [311)

(

m	
_t

E1-	
J

t	 dt

Z

Gil	 G2 dower boundaries of the integrals in eq.	 (23);

their existence is equivalent to the (wistence of
r
€ additional Helmholtz instability waves

_

F

G3, G 4 lower boundaries of the integrals in eq.	 (66) P

a
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{ If fix) ,	

11(0
hazlvi,side unit stop function if

(,)	 o for x t ca

I
and 11	 i	 for x > clox)

x imaginary part of a Complex quantity as used in
the appendix p , 'z = R + il, in conjunction with
a. compltter program using the same sYmwi.s

integral, defined by eq, 	 (169)

11t(} imaginary part of a complex quantity in brackets
i

r, distance between spli,tt;er plate edge and the

location of the pressure pickup clo'vices	 (0.g.,
microphones) a4 both sides of rile splitter plato

ill a oha11ne1 	 Ilea Pigs.	 I g ,	 22)

p1 rlaoh numor, e.g,, rl 	 ucCatl

t? e.g.,	 in O{z
-2 )/ Of the order of Z-

P Vourier transform of Lhe pressure

P 1 ,	 P points alcove and below the shear layer tit which

induced velocities are Considered

Q, Qo soured strength Q zz Qoc	 Q100 have the dimen-
sion 04 a velocity tildes a length

R radius of a noz?lc (used only in the introduction)
)

f
cylinder radius	 (eq. (.11)) .

P r,
E	 R real part of a, complex quantity as uscjd ill the r'

appondix p , z - R + iX, in conjunction with a
computes; program using the samr.. symbols

Re{l real part of, a complex quantity ill brackets

115 right hand side of eq. 	 (119)
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quantity defining the sloV1 of a shear layer	 j

r,1/2
j

n	 courier transform variable, corresponding to y 	 * ,

'	 angle of the radius vector in the z-plane;

z =x +iy*rei'
µ

a	 complex wave number of the instability waves in

a shear layer. Tile relation to the conventional, )

wave number a in the stability theory is a = 14

a 1 ^ 2	Oamplex wave number, defined

W	 for a flow below the shear layer with U=Uo

and zero flow above the shear layer as

a1,2
	 (it1);	 the positive sign corres-

U
0

ponds to a 1	and the negati.vo	 ...,n to a2	 b

(ii)	 for a flow with different velocities 	 (U 1 ,	 1

`	 Uz) at both sides of the shear layer and

with different densities	 (A1102)	 as

U2	 737-0	 al
w

(iii) for a flow below the shear layer with uni-

form gradient dU/dy and the value U-U0 at
t

4	 the shear layer (y=-o) and with Zero flow

'	 above the shear layer
t 

v w	 dU/d	 1 dU/ 2	
a

K	 -
Uo

A1,2	 is the corresponding dimensionless wave number

r	 with a 1 2 = ^1	 2	 O
o	 or	 A

l, 2	 U2
	 for the two_'

j;	 stream case	
w	 W

A'

^.	 108
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v Fourier tranaform variable, corresponding to x 	 A

F integration variable for source and vortcity dia-
tribution on the x axis; g has the some direction
as x

lower and upper boundaries of a trapezoidal souvca
distribution element

F 

1

lower boundary for the integral over a continuous 9
source distribution q ( , 	 with q ()	 1 j

F 2 upper boundary for the integral over a parabolic
source distribution q(F) with q()

AF stepwi.dth (length) of a trapezoidal source element

P density of the fluid

1
P1 density of the fluid above the shear layer (y > o) j

0
2 density of the fluid below the shear layer (y < o)

1

velocity ratio of the two stream case with fi

S
ox p1/U21 v 1 being the mean flow velocity above
the shear layer (y > o) and U2 being the mean flow
velocity below the shear layer (y < o) i

T complex constant in eq.	 (93)

T1, m 2 amplified and decaying Helmholtz instability waves

W radian frequency of the exteriour excitation
t

W	 =	 21rf
E

' r(z) Gamma function; Euler's integral of the second
kind, defined as

p(y) f e-t	 tz-1at
o

t_
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Q	 momentum thickness of the shear layer, defined as
too	 F

dy

.Ot ^0

potential function for the fluctuating velocities 	
j

stream function for the fluctuating velocities

oomplex potential function, defined at 	 + i!	 j

rV	 Laplace operator in two dimensions, defined as :y

V:p 	 a4 for p, as an example

10,2, Appendix D
J

Discussion of the pressure sources

The source term in eq. 	 (11), on the right hand side
a

d11)	 v'p = -2pau	
3X	

s

k
p

has apparently led to some confusion, in particular among those

people, who have heard about aeroacoustic theory and know for

sure, that there should be "some quadrupoles"	 (40). We will not

query Lighthill"s theory, but the present approach is something

j different. We will have to deal with)pressure sources 	 these are )

not sources of matter, which would be at variance with the

continuity equation in our model (3).

To provide a better feeling for our pressure sources we will de-

termine the pressure source structure of an instability wave in

a free shear layer. This refers to the right hand side of eq

(11). Using a Fourier transform technique, we integrate eq, 	 (11)

' to obtain the pressure distribution in the whole field, which

could be obtained clearly also by other methods. Finally, we

our solution with the Euler equations.

y

check

,r
t t

1

}
,.	 ik

'^.	 +. ♦ 	

_

...	 _	 _	 ._.	 . <	 ._	 —
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we restrict ourselves to the ,one stream" case where we have a

fluid at rest alcove the shear layer and a flow of velocity ua

below the shear layer. We consider a normal spatially amplified i.

instability wave where all fluctuations like p, v, u And the

elevation h are proportional to e^ x iS° t .	 In addition, we restrict

ourselves to low Stroulhal numbers (caloulated with the shear

layer thickness) where we have a = (i+1) 	 • 40e . It turns out to r

be most convenient to replace the v-volocity in eq. 	 (11) by the

displacement h. The displacement (as the pressure) has the same a

value at both sides of the shear layer and can be assumed to be

constant throughout the shear layer at low Strouhal numbers. The

relation between h and v is i
r

C	 :
ih	 1h	 }

(1)	 v	
;a	 u (y)ix

Inserting ;tills into eq.	 (1 10, we have
3d	 ,

t

(81)	 S= _	 2 ►__Lti''	 dgC	 (1-1(1-2 u(0))
p	 y	 Ue

^x-iwtby writing h or 
h(x,yrt) 

we mean h (y) c 	 throughout the cal-

culations.	 It is assumed, that h is constant in the shear layer;

it will vary, however, for greater distances (yj from the shear

;Layer, as we will see later,

A reasonable model for the shear ]ayes velocity distribution is

a hyperbolic tangent profile	 [6,	 71:

U	
i ,

(132)	 U (y)	 a 2
	 (1-tank ry)

x

Tile quantity 5 in this equation is related to the momentum thick-
r
f mess	 tl

1
(133)q

( 
4n) ( 1-U- ) )dy

a4

Ue	 Uo
. w

^r
i^

111

j .,



A

get

µpt

	 ^ 

ORIGINAL PAGE IS
in the following way	 OF POOR QUAL"'V

(B4)	 i; ar 1/20

rig. 23 shows the distribution of u(y)' 	 r ,
{	 ti„	 9

U,	 -S Re'

4	 1

{	
1

Y

R

3
s

rig. 23 Velocity distribution in the shear layer

d

Using eq.	 (A2)	 for the velocity distribution, we obtain the real

and imaginary part of the pressure source distribution S y

0 fil l tT	 1
SRe - 2	 costs (Y/20)'

(Ba) put'11	 tanh(	 /20)
Till ^	 25	 cosh	 Y 20

i The distributions in y-direction of these functions in the shear `<

layer are displayed in Fig. 23. s

As we see from Fig. 23, the real part. of S has the near field

stl:uctuto of a 6-function; it exists only in a limited region

which can shrink to zero if Q	 o. The actual value of the
I

r, f

9
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s ruoction is dotermineci by the surfaaca under Lim 1 lconi'-curve
in kicj.	 23,

-^,-^
CO	 7	

- M0,

'horofoae, we can replace SRO by a d function representation for
f o

(117)	 Silo	 *	 24?n^ 1 l3	 s(y) ,

11,110 iivaginary part Itaa$ no contribution of a S function type,	 and
an integral like (no) would give zero. Contributions of a
type (dipole) are prosent, but this influence becomes negligible	 s
With tt	 o. Therefore, tho contribution of Lbo imaginary part; of
.9 becomes zero, we are JOEL with the nonhomogeneous partial

( differential equation

i (118)	 y'p	 P,	 2rrw 1 11	 S (y)

i
This equation will bo solved by Putirier transformation. 	 In fact,

j using h and p proportional to ca ,t.r I we have already taken a
courier transformation in trite (harmonic motion) and in the down
s-t t c±anr direction X.	 'PCB cabt ni, ►t	 ► notattlon compatible with the
usual form of Fourier trans foa:mations 	 we replace	 A by iv
wham v is the Fourier transform variable corresponding to the
physical variable X. We have, tllerefore,	 instead of eq.	 (13$) - ,

i
(139)	 -v'p + D2	 2p10'11	 & (y),

We take the Vouri.nr trautsform in y- direction; with

m
+OL.	 4.

01)w	 N(y)dyi	 p (Y)	 " 2rr f a^i4y 1'(l1)dr)"(810)	 P63) J	 .,
s>

(1311)	 -v' P- n' P	 2 p ter' h

r:

}
113
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(B12)	 P = °- v^p
A

where h is the displacement of the shear layer at y x o. The

transformation back into the physical plane can be found in

tables of Fourier transforms, like (39)

j (B13)	 p = _ ? ^Lh e'vIy1,

For h we have

(B)4)	 h	 ho	 e Xx	 with iv	 A _	 (i+1).

L
(y=o) 	 o

This can be inserted into (B13) and we find
qq
M.

(B15) _	 11 +i)	 _	 (w/B	 )•(i+1)•(x+ily l)
p(x,Y)	

-	 2	 pwUo	 e	 oo

The 'last two terms can be interpreted as the spatial distribution

h
Ix,YI 

of the displacement

{B16)	 h	 h	 e (w/D	 )•(i+1)•(x
+ilyl)

(x,y)	 o

and we find the relation

(B17) p (X,Y)	 2	 RwUo	 h(x,y)

We can check whether or not this relation is correct by using the

Euler equations and the relation between v and h, i.e., eq. 	 (7).

For y > o, in the fluid at rest (index "1"), we have
1

i

(B18)	 v 	 -iwh(X,y)'

s 114"
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(s19)8y1 ° pw'h(x,y).

If we take the y-derivative of eq. (B15) we find, that this
relation is fulfilled.

With that result, it is shown, that it is possible to analyze

the pressure source distribution within a shear layer and inte-
grate it (via Fourier transform techniques) to obtain the

t

	

	 pressure distribution in the whole flow field. Thus, there is
nothing mysterious left in our pressure source approach.

I
i

We have to mention what the difference between a pressure source

(S) and a volume source (Q) is. A pressure source is a singulari-

ty in a field which is described outside the singularity by the
Laplacean equation 4 2 p = o. A volume source is a singularity in
an analogeous field with P 1 0 = o. In a fluid at rest, the re-

lation between both fields is simple. From the first Eulerian
equation we have iwpl = 12, i.e., both fields are proportional.
This is the reason why we have used potential theory and veloci-
ties like the excitation velocity v1f in several sections of
this paper instead of using pressures and pressure gradients. It

would be more appropriate, however (and less obvious), to use

pressure sources throughout the whole paper. The basic differ-

ences occur in the shear layer. Clearly it makes no sense to

define a velocity potential inside the shear layer, whereas the	
111{

pressure is still well defined there. In addition, the existence

of pressure sources in the shear layer does not violate the con-

tinuity equation.

Some readers may be dissatisfied with the above methodic approach.

Indeed, we have used a right hand side of eq. (11) which is known

{	 (	 to fulfill all our equations. Instead of dealing with a formally

nonhomogeneous equation we can also completely eliminate v and

write eq. (11) only in terms of the pressure. This can be done

115
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by using the second Euler equation. We end up with

(820)	 ( - iw + U ax )o x p = 2 ar . a P

1

outside the shear layer we have again 7 1 p = o. If we insert an

instability wave ansatz p 	 ei(ax-wt) we find
l

au2- au
 'p _ n^ p = g(B21)	 a	

,
j

D-2
n

This is an equivalent to the Rayleigh equation for the instabili-

ty of inviscid parallel flows, written in terms of the pressure. )

Qutside the shear layer we have 	 m e a^y^r as usual in the po-
y	 p )

a
tential field of a wavy motion. The complete distribution of p

can be found using a numerical procedure similar to the one used

in stability theory (6). This procedure would provide results

valid for shear layers of finite thickness and would produce the

whole pressure field for an instability wave, extended from

x	 -m to x = +	 In fact, this latter approach provides a

genuine and complete solution of the pressure field without

knowing anything in advance, whereas the approach with a non- k

i homogeneous pressure equation requires previous knowledge ofthe

fluctuations in the shear layer.

10.3.	 Appendix C

The absence of "free" instability waves

' In the main part of this paper, forced instability waves are ?

calculated, which is equivalent to 	 the assumption that the

lower boundaries of the general solution of the instability waves
C	 ^

x	
x

(23)	 v1	
= -	 e

alx ( e- 1 1 x
v1idx + " e' 2x j e_^2xvlfdx

Uo	 1 U 
G

1
	 G2 x

should be G 1 = G2 = o. This would also correspond to the non-

s
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existence of additional '"free" instability waves of the Helmholtz
type. In a previous publication of the author [12), it had been
mentioned, that additional, instability waves of the Helmholtz
type do not fulfill the boundary conditions, but no detailed
proof had been given there. it is quite obvious, that a solution
valid for a shear layer extended from x	 -	 to x _ +w cannot be
valid for a semi-infinite shear layer with a rigid boundary, such
as a semi-infinite plate. The reader who is convinced by this '	 +
simple and conclusive argument does not need to read the remain-
der of this section C of the appendix,

7

However, with all the present confusion about the Kutta condition 4
issue the author feels that he cannot avoid providing a mathema-
tical proof for the fact, that the Helmholtz solutions do not

fulfill, in any conceivable combination, the boundary conditions.

The absence of independent Helmholtz solutions leads to the con-

clusion, that only forced instability waves exist and that only
the Kutta condition is possible. Of course, this latter state-

ment on the Kutta condition is only valid for an infinitesimally

thin shear layer, as assumed in our model. in reality, this would
a

correspond to the case of low Strouhal number S V Any "rectifica-

tion" effect (i.e., a steady deflection of the jet caused by the
unsteady motion) as suggested by Orszag & Crow (9) could not be

found in tLe experiments (41,42]. Such an effect would be also a
at variance with the equations of motion for a linearized
problem. The linearization is well confirmed by the experiments

[41,	 42).

In the following calculations ., we will restrict ourselves to the

one-stream model of section 2. To prove that free instability
waves (Helmholtz solutions) are not solutions of the present

problem, we have to keep in mind that these solutions are
truncated for x t o, because v has to be zero at the semi-infi-
nite plate. The v distribution, therefore, assumes the following

form:
H

(Cl)	 v1	 H(x)	
(Clealx 

f C2eA2x)

g
117ti
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H	 p

J;with X1, 2 
= _=`	 (it 1) .

Uo

In this equation v1 is the v-component of the fluctuating veloci- K

ty just above the shear layer at y = +os 
C1 

and C Z are constants !

which may be complex and 
H(x) 

is the Haeviside unit step function

which is zero for x < o and unity for x > o. From equation (C1)

we can calculate v20 the v-velocity just below the shear layer,

using equation ( 10), which represents the condition of equal n

displacement at both sides of the shear layer:

Uo Dv1
(10)	 v2 =	

v 1	 + i	 w	 Bx n	 d

we obtain

u
(C2)	 v2 - iH(x)	 CC1 eA1x - C2eXZx]	 + i	 'b(x ► 	 [C1+C2^

` The delta function d (x) is created by taking the derivative of

the step function He x) . The physical significance of the d(x)

function is that we need a source to create a finite displace-

' ment of the shear layer at x = +o in the flow (at y < o and with
4

mean flow Uo).

After having fulfilled the condition of equal displacement at both

sides of the shear layer, we have to check whether or not the °•

pressure is the sameat both sides.. Instead of taking the..

pressure, we can take as well ap/ax, the pressure gradient in

the downstream direction. ap/ax is related to thew-velocity

component via the first-Euler equation. We end up with eq. 	 (6)

E

U
	 'u2

	 -p )
2

(6)	 u2 + i:°	
ax 	

-u1	
pax

The right: hand side should be zero forx > o. We have to calcu-

late first the induced u-velocity for the decaying Helmholtz

wave (exponent a2x). In addition, we can omit the Haeviside step

functions, if we change the boundaries of the integrals

C	
^ 2 g	 C	 f	

'2
r

r°
(C3)	 ula2	 -I-n	 z-^ dg ±J e2-a

'k O.	 p ...

f
i

k
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It is understood, that the whole induced velocity u, will then

consist of

(C4) u 1 = u1^ + u1X
1	 2

The integrals in eq. (0) are of the structure of exponential
i

r
integrals, defined as (see	 (311):

e
f

(C5)	 E1 (
z)	

=	
J
t dt

(

z

" After appropriate substitution of variables we obtain

2
2

	
E l " 2 z)	 + d2z . E^ (azz ►^(C6)	 u

1A
	 2n Le2	 ,

This is the induced u -velocity for y > d and for an instability

wave decaying ih the downstream d irection. The situation is

slightly more complex for an amplified instability wave (terms	 a
containing 1^). By a straight forward integration we would

enface divergence problems with the upper boundary of the inte-

grals._ This problem can be circumvented if we subtract from the
complete instability wave solution (extended from x -	 to	 1

i, x = +) a contribution from x 	 -^ to x = o to obtain v 1 = o for

x < o. The relation between u and v of the complete wave is

(see eq.	 (68)) u, _ -iv 1 . Otherwise, the integration is very

similar as that leading to eq;. 	 (W. We obtain after some ,inter-

mediate calculations

C
(C7)	 u 	 - ic l exlx - 2n 	 E1(a1z)+ex1z	

E 1	 (A1Z)^LeX1z1

The complete solution for u 1 is then (y > o):
C

(Cg)	 u1	 = -ic e^^X	
2n

_

[eh^z	
E1(X1z)+e11z	 E ^

(X t Z)^ -
,t

!1
(-ek2z	

E1 (X 2 z)+ e12!	 E l (a2z)]
2n

C
for y++o,

^

(
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It is understood, that y becomes +o to obtain the value of u

Just above the shear layer., This transition to y	 +o can be

postponed, though, to a later stage of the calculations.

The procedure to obtain u,, is very similar. However, for y < o

the sign of u 2 changes. in addition, we have a contribution from .

a point source, represented by a & function appearing in u 2 . For

P
negative y we have as the contribution from the sourceterm

iU	 (C +C 1 +^ a	 (x-) w

26	 w	 n	 J

' For y	 -o we obtain
Y	 r	 i

l iU )^0

(C10)	 U26	 -	
(C1+C2),

rrwx

obviously, the induced u-field of a source located on the x-axis

should be proportional to 1/x. The complete solution for u2 is

then from eq.	 (C2)

C
(C11)	 u2^ -Clealx+i C,	 C ^1z•	 E 1 (A	 z)+e^ 12 	E 1 (1 1 z)^ -F

SC2

2ir le	
E	 (A z)+eX2Z•E	 (A z)]	

_ 1U0	
(C +C1	 2	 1	 2	 2nwx	 1 -

for y-r.-o.
u
1 
and u2 have to be inserted into equation (6) to find out

whether or not the pressure equilibrium at both sides of the -

shear layer is fulfilled for x > o. To do this, we have to take,

the derivative of the exponential integral

dE
1 

(z)	 _z
e

u

F (c1a;	 dz	 _ - Z

e
Using this relation and, after taking the derivatives, letting

y -)-o, we obtain from equation (6) after some algebra
f

U	 U,	 d(p-P )
°'	

1	 1	 2

g..

(C13)	 — 	 )-i (C +C ) ► - --°-3	 (C +C ) =
vmx_ ((C l - 2	 1	 2	 ,rw x	 1	 2	 pw	 dx

F
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The right hand side should be zero 4or x > o. we sea, that the

right hand side call be zero for all positive x only if G1 UC2 =o. h,

i

This is the proof for the absences of "free" 	 (unforced) instabili-

ty waves, anal it ia, since the ::orced instability waves fulfill

the Kutta condition at the plate edge, the "proof for the existence

of the Kutta condition there. Here, the Kutta condition is under-

stood in that way, that the flow does not suffer a local jump in

its slope when it passes the trailing edge of the plate.
a,

10.4, ^Luendix D
t

v computations at y _ !o, tables

The purpose of this section is to provide numerical data for v1

and v2 . This means, that the error function of a complex argument

has to be computed. The present calculations are based on ex-

pansions given in (31). One of the building blocks of our cal-
s

culation is to provide an expansion for the function ez °erf z

(whero z is an arbitrary complex variable) and to split it sub-

sequently Into real and imagina ry constituents. in the preceding

calculations we used this expansion;

^

(n1)	 e z' erfz -	 2	 2
n

	z2n+1
I	 ..,	 n4111 0

It provides, e.g., the near field behaviour near the plate and
in a very elegant way. It was also used to produce the numerical

values for v 1 between x	 o and x = 2 computed in [12). Unfortu-

nately, numerical convergence problems occur beyond x x 3 so that

this series cannot be used up to those values of x where the

asymptotic expansion for large x (say, x > 6)

tD2)	 a	 erfz	 ez ^	 -	 1	 11+	 E	
(-1) m	 1-3 ... (zm-1) ^

k	 i

m
(^	 s w)	 2r	 mml	 (2z')

e is valid. The series expansion in eq. 	 (D2)	 is semi-konvergent.

'j Therefore, it does not make sense to include, say, more than

6 terms of the series in our case.
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For our numerical computations we had to use a more complicated

expansion providing numerical, convergence for low and middle

values of the argument so that also the lower validity range of

eq. (D2) (for large z) can be covered, This is basecl on eq.

^	 17.1.28)	 in	 (31J. We introduce z - R t iI and
f

(n3)	 A + ID w ez3 erf x w e(R+iTlierf(R+iI),

After splitting ef . 	 q. (7.1 .29) in	 X31)	 into renal	 (A)	 and imaginary
parts	 (a) we obtain after some algebraz

R'-x	 e_J2
(D41	 R	 e	 cos2RT	 erf R +	 (cos 2RI-1)

zr n__?--
+ 2c
	 E	

n-r+4itr (2Rcos2Rl - 2R cosh ni)it n;=, 1

(D5)	 p	 eR 2 , l : ,	
sin2i	 •	 erf R +	 sin 2RI^^r R

n2

2e`12 	 e 4+ n -	
r'
	 W + 4 -Rr (2Rsin 2RI + n si.uh nll

n=1

For the numerical representation of the error function of a real

argument we use an approximation suggested by Hastings (31

eq. (7. 1.. 26)] r
s

(D6)	 erf R	 1	 -	 1	 t

[1+a 1 R+a 2 R +...+a S	^°R6) 
}

with the constants an:

a 1	 = 0..0705230784	 a	 = 0.0422820123-

a3	 0.0092705272	 a4 = 0.0001520143

a
a 5 = 0.0002765672	 a6	 0.0000430638

The error of this approximation should be smaller than 3.107

over tho whole range,

^	 122' }	 %
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with equations (D2) and (D4), 	 f':f5 ► we can now write the computer
subroutines for the building block "e ZO erf z" which is the

essential part for the v 1 and v 2 computations, when we will show

some computear, programs here-, it is done without showing all de-

tails of the considerations leading to these programs. The pro-

grams shown here are written in BAsrc for the sharp Pc 1211

Microcomputer* )	(see Pig. 24). These programs are only provided

in order to keep the .mathematics verifyable. In addition,it is

shown, that the present numerical solutions are not dependent on s.r

the access to big, fast and expensive computers. 7

In the subroutines, which are given below, R and I are, as in

eq.	 (D3), the real and imaginary part of the variable z, and

A $ B have also the same meaning as in eq.	 (D3). Vor equation

(D4),	 (D5) we have the subroutine "5UBR 1" and for equation (D2)

we have "sUBR 2 11 . With these subroutines we have to calculate v1

and v	 from eq,	 ( 4 4) and (45)E	 2

(44)	 v1 = i4 le,	 erf	
- e -	

erf
h	 T2

1

x

(45)	 v1, = - 4 ^e^^ erf	 } e^2x erf`
1 f

with a 1	i+1 and 12	 i-1.
,
s

One point is worth mentioning concerning kh.q algebra of complex

numbers. if we take the root of a quantity like
i

iIT 	 i iT

(D7)	 i+1 - r e	 ;	 i-1	 e

r ffi

x
(

*) sold as 11 TRS80 Microcomputer" by Radio shack in the U.S..This
is not a commercial for microcomputers. Indeed, the memory and
speed of this computer are not very satisfactory. In the mean--
time, however, more powerful microcomputers are available.
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La t'f^cdi~^tm	 Illo inq	 of	 "SUI)12 1" "SUBR 2"
tho uubrou^ inon

x f t^ f: "^I,^I`r.111 t,w,I t ,l	 a )rF•;• lf E
I4	 tli	 «i1+^r41i4^: X11 `:uQtYkIIItJim r	

^31^i$ li wTi^	 r I ^ a

04 
.
011 	 P ,06110 2

-	 b

K^"1I {x
^G^#sri^ w9 a 	{l^^l :1WS It' I MITT Do;

pprr

I4 I c 4, 1 3n^=r ^tn^f ^ ^al^,tlF	 I . ^ll.t=m	 c,^^

j IrS ti^l3f^	 r	 Q^,"i y1'^ttl^r:e1tr«'	 IIIno

air Hr	 ^	 sty 	^t 20:P4 4 k,541 , -Ll3(lil$
1CtEi^	 c if+i^c27^+

t tla , 2M+I 1*D
ll t(adf aCCA, I 

+ta^2S^^R+iR+N .NPI4'iilr.{:sill ti
*1 hrILUL,+Git

_ t31:a;kR ^1•t? x2I	 IF It tGu'rU M

In 2121MME"'p (Rp-IIIOS:ea f-C
1 1004" I t limoo r'n j

):Tw0{:rA	 mr
(RQ

1fl t `nSIN 2IRtCw 213riANI'lico$',RI..
coq. 2 IR h	 T I	 Ii

I Ie` Ta4 RR: Lw2RCi
tl	 t ° 1111. H

f IwsUE,rr' 	 CNI)SIa . l :r'	 T1.1rtt
*)Ili

IIt; (In I M(i,°{l.i

WIN I i
l l	 s Ir AI.• f	 Ids.

4 !'-' T4)	 I f s
II'^tIF	 aac"y 0,I[-

f ^'.'r: Tr.	 c ^	 a
L ^i:;r•`	 chrw :Pi

^ I »I : {awT+ r;1§^ Vii'+ t;"
I	 M+N III

F:

f
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tIm	 Imt

i	 i	
3 Ttj	

1+14

4	 3 
T11	

+1

1/4
7/8

Re	 Re	 A

P19 . 25 rooLa of Complex numbers.

4

we Lake Only the	 gi: two PoIsible roots (suo

a	
(COS it/8 4- 1, ail) If/0)	 i

W

311

(D8) s/r--T `F2 o	 `r2 (--os 31r/8	 sin 3 u/8)

Nri (sinu/8 + i Cos it/8)

we procced in the same 
way 

with tho quantiLy R^
1,2'

With these relations and the subroutines, the evaluation of eqs.

(44) and (45) is a S traightforward procedure. We and tip with Lila
real and imaginary parts of v i l i.a., V IR and v 11 and with Simi-

lar quan
t
ities for v 21 i-c'-' V;^11 and v 

12 1

In addition Lo that, tha computer calculates also tile difference

between v and its &sylljptotj,C for,,,, ti l e amplified 1,10 1mil ol tz inst

biliLy wave

(D9)
1D	 1	 111	 2D	 2	 211

with

a
v	 v

2 H	 —4

126
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As before, we will calculate the real and imaginary parts also
s

g of the quantities in eq,	 (DB),	 i.,e., v	 & V	 an well as1 DR	 1 DT
v2DR & v2Dl'

Finally ,	 the program calculates the modulus of x 111 , which is
equal to Iv 2ji ( and the modulu s of V 1 and V2 , respeotiVely. Since

the memory or t11e microcomputer is quite limited, the mean pro- ,	 t
gram to calculate all those quantities cannot contain bath sub-

routines. 	 We have two programs, "v-PRO 1" with the subroutine

"SUBR 1" for small and middle values of :k and a second, almost

identical program "v-PRO 2" with the subroutine "SUDR 2" for

large values of R. It is suggested to switch from "v-1,RO 1" to

"v-PRO Z" at values of R between S and 8. it has been checked,

that also the series expansion (D1) produces overlapping values

for the velocities up to R - 2+3. Tile operation of the programs
r	 = starts witli eho computol asking for

(i?	 the initial values of x ("x-START?")

(ii)	 the -stepwidth Ax for the consecutive calculation of a

series of x values	 ("SCIIRITT?")

(i:ai)	 the final value of x or the data set (" x-ENDS?")

l
The programs "v-PRO 1" and "v-PRO 2" are listed on the next pages.

There is another version of these programs which prov.des data on

casette tape for .further use of the following programs calculating

U 2	(Appendix B). Since only v2DR and v2QY are the necessary guan-

titibs to be supplied for these further u-programs, the v-program
a

is much shorter, so that both subroutines for small and middle x

and for large x call be comprised in the program. Each data set
r

stored on the data tape cons ists of 4 words, i.e.	 a

a

i 1)	 the label. "v2D"

2)	 the value of x

3)	 the value	 of v2DR

a A)	 the value Qf v2Dx
r

xi

i

127
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40:PRINT 11V1DI=

Program listing !s"V—PROI"	 "'PRINT A(44 1

"v—PRO 1"
21INPUT "X—STA
RT7PA(45 >r 	 41:FRINT "ABS(V
SCHRITT? "r A(	 2H=VIH)=":

46)r"X—ENDS?	 PRINT —1'
"0(47)	 42:PPIMT "ABS(V s

3:X=A(45)	 2)= .PRINT I
9tIF X)060TO 1	 (A(37>*A<37)

I	 +A(33)*A(38) t
101A(37)`0sA(38	 }

"ABS(V)=0:A(39)=):	 43:PRINT

A(40) nO:GOTO	 1)="s PRINT i
(A(39>*A(39)

Ii:O?T(X*l2)sU=	 +A(40)*A<40)1
COS (R?B):V=J
SIN (1I/8)	 44:X=X+A<46):IF

12:R=OUsIwOV	 X<=A(47)GOTO
SI	 913-1 00S UP 101 }

15:A<33)=AU+BV	 45:END

r 16:A(34)=—AV+BU	 101:11SUBR1"
17:R=0V:I=0U	 102cA(2?) .07052

L 20 :
:A(35) 101	

11^3:A(28)=.04228..OA<35)=AV+BU 7

21:A(36>=—AU+BV	 20123
:2(29)22:Y=—(TA)/(4*f	 104=.00927

<4*2))	 05272

23:A(37>=Y*(A<3	 i05:A(30)=.00015 1

3)+A(35))	 20143 1
24:A(38)=Y*<A(3	 106:A(31)=.00027

4)+A(36)>	 65672

250A(39)^Y*{AC3'	 107:A(32>=.00004 ?

4)-A<36))	 30630 a

26:A(40)=Y*(—A(	 108:E=(1+A(27)*R

33)+A(35))	 +A(28)*R*R+A
1

27:Y=—(fA)*<EXP	 <29)4:<R^3)+A

X)/(4*f(J2)}	 r30)*(R^4)+A

28:A(41)=A(37)—	 C31 >f {R"5)+A

Y*COS (X—(R/	 C16}:f;i,R^6)),^ x`
8))

. 29:A(42)=A(38)-	 109E 1—E
Y» SIN <X—<I/	 110 N=1aH 0 K=0

8))	 111 S=SIN 2IR:C= a

301A(43)=A(39)+	 CMS 2IF,
s

Y*COS (X+(3)I	 112 T 4RP.:L=2RC;
/fW	 M_'RS

31%A(44)=A(40)+	 113 W=EX	 (NI):D
Y*SIN (X+(3A	 =NN
/8))	 114 2=(D+T)*EXP

0/4> 1
32:PRINT A X="=

PRINT X	 115 P={L-R*(W+it

° 33:PRINT "M="	 ll>>/Z

i :PRINT A(37)	 116 U= r,M+ 5*N»,{W
y

341PRINT "Y21="	 —1^b!}}/2
{

^. :PRINT A(38)	 117:H=H+P:k=1
r
,+Q:

"
35 PRINT WIR="	 N=14+1

:PRINT A(39)	 118:IF ABS PXE—
t
1k

c..
36:PRINT "V11 =" 	4GOT11 113

t •PRINT A(40)	 119:IF ABS Q>IE—

37:PRINT "V2DR=	 4GOTO 113

'
":PRINT AM	 120:T=EXP
}	 L=EYP (RP)%M

38:PRINT 11V2DI=	
^p

":PRINT A(42 --	 1'=1 H Tf'(LCE+(C—
1 )/D1+2H/)I)

a

39:PRINT "V1DP.=	 122:F=T*eLSE+S/M
a

ry	
[}": PRINT' A(4 RETU

x

` 128
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Program listing
it"V-PR02'1 371F'RINT 11V2DR=

"v—PRO 2 11	 2t INPUT "X—STA '"1PRI14T A(41

`	 RT?11rA(45>r" >
SCHRITT?11rA( 38:PRINT 11V2DI=

"WRINT AM
„

46)r X^^ENDE? r	 r>

3tX=A(45) 391PRINT "VIDR=
9:IF MGM 1 ":PRINT A(43

1
401PHINT "ViDI=

>=01A(39)=0s ";PRIfJT A(44
1

A(40)-0:G0T0
27 41'PRINT "ABS(V

11s0=t(X*d2):U= 2H=V1H) =11:

COS (A/8):V= PRINT —Y

SIN (9/8)__ 42tPRINT L'AFS(V
121R=6U:I-6—V 2)=11;PRIHT T
14:GOSUB 201 (A(37)*A(37)

'	 15:A(33)=AU+BV +A(38)*A(38>
16:A(30=-04U >
17:R=0V:I=0U 431PRINT "ABS(V

191GASUP 201 1 w"WRINT

20:A(35>=AV+BU (A(39)*A(39)

211A(36)=—AU+$V +A(40)*A(40)' 1

22:Yn-STX>/(4*J' >
(t2>> 449X=X+A(46>:IF d

23:A(37>=Y*(A(,3
9<

nA(47>GOTCi
3)+A(35))

24:A(38)=Y*W3 45.END
4)+A(36)) 201.+1WER211

25:A(39)=Y40(3 202:0=RR+II:II=

4>—A1'36)) ATN O/R)
s	 26:A(40)-Y*(—A( 203:IF_MGM 2

33)+A(35>) 06

27:Y=—(,rA)*(EXP 204:IF I30LET D=

X)/<4*T(d2)> I1+A

28tA(41>=A(37>— 205:IF IiOLET -D=
Yw•COS (X—( P/ D—J1

29!A(42>=A(38)- L=O
Y4GIN (X-(JI/ 201 P=P4rt 	 .5—M),,Q

f	
8)) :N (2M+D*D

30:A(43)=A(39)+ 20}•F04COS N
y' »r,•r_s	 (,f+(3Jt 20^ 0=P*SIN N
/8)) 210.1,=X+F:L=L+G:

31:A(44)=A(40)+ M=11+1
Y*SIN (X+(3A 211:IF M<760TO 2 z

/8)) 07

32:PRINT "X= 11 : 212:f1=EXP (RR-1I
PRII-IT X >sT=r1*TJT*H=T

33:PRINT 11V2R=11 aJtl't>
f	 :PRINT A(37) 213 A=P1*C0S 2RI—

34-PRINT	 11V2I=1'
: PRINT A(38) 214:D=P1 :SIN 2P.I+

1	 _'	 MPRINT "V4P=11 I/T+L'H
1 .	 r

'PRINT A.39i 215:FETURN

36:PRINT Wit=-'
^F'F'IIJT	 A1:4O)

1
129
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"tapeBesides that output feature, the	 output version 'IVM P110"

is identical to v-PRO 1 + v-PRO 2; the switching from the
expansion for small and middle M (SUBR 1) to large A (SUBR 2)

g

takes place at A w G. Finally, we provide in liable 2 a data

survey for the different v-velocity constituents.
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Program 111tung 11 "V2n-M`RO"
21 INPUT mg-STA

106tt'*,C►OI)Z7&5c7
2

11	 V1101, RT?" ► A(27) ► 1' 1QT1Q•.000O4x{ t

28)t"X-ENDt:? lost Cuet+KR+LRR+
" ► A(29) M+tR^x^+N+^

318«AM) '4yti^rCR 5>+
9t IF X:QGOTO i O+^K`ri))°'^-16

t Il^9tER1^E t
101AtSO) nOW31 IIO1N•ttHwQIKWO

)wOIA(32)nO1 IIIIS414 21RtCn
A<3B)^O1 G{1TO CM 21K ^ ► 	 ,.
27 i1+ ► Mwakti.•:Rr t

1110nr(K+r2)lu. .,	 .

MS (R.,B)tYR 11.3114nENP ^NI)11)
SIN eX4) ANN

f2 ► R ►+OU:I .OV 1141z^c1►+T)*trXp
1311F W660SUB (n'42

101 1l5k pv'^L-R+CWt 1:? ^-
1411F )t MMSU1t 11'11',.

2Ot t_16tClwlcPl+.^+N*{11
151A04)*AU+ry ^IrWt)..2
t61A0-5) m-AV+rU ' f1	 tN«ti^Rtl^h+q1
t71Rwt1Wt IWOO N n N+'i
It3S W X<6cosuB I IBt IF APS F^It

lilt_ 400TO 11,3 
i91IF X) •(,COSUP 1-1.9111" ADS A)I[-'

20i 450TO ItS
<01A(36) nAwsu 1 Gt1 T•B\F c-1 111
2ItAC37)*-AU +1Y

LwEXP 
(M )Iht

221 YK-i:11)t{4*J *-%
(T2)) 12 14-kut*CLCEt{(^-

4)0(M) 1:2tPMT+<LSFrB.rN
24tA(31) „ Y*(A (3 +:h. A)

5)+At37)) 1.LAWTURN
251i1M)kY*00 2011 "`"UPR21'

5)*A(37)) ZC12tQNRR+11;Pe
20 AQAS)Ky*(-A( ATN 0iI R)

A04A(36)) 2t1St I1= MGM 2
2-11 Y w., {J1t)*(EXI? tit+

„),1(4M1tr2)) 20411F INOLET Psk
301 AC;^)^A{30)-^ A+11 1

Y*COS <X-(R.# 2051 IF I OLE1' t1*
^)) D.A

311A 57)'1itS1)- 2061 met IR,111evo
MIN {){.•(Re LaO
6)) 2011 P vW . 5-M)eQ r

t̂a1AC35) g)t tN^ti2M+1Ft4
33IFRINT OBtrv*p*COB N

I t1{55) 20910hp+B1N N

4419*X+A(28)11F 2IO1KwK+FtL*L+G1
8<0A{29)GOTO MmM+I
9 2W IF MMOTO 2

t
45

t'E'NIPKI” -tX?2I21MMR-11
1021 KO.07052307 0 ) t T' 90+110 N+1

(AD)
MlLm.04228:012 2111AKM+COS 201-

1049M*.009270521 2111
^T+1.IN 2R1+

1051N p .Ot►015Z0f4 21S,REURN:. x

I,

t̂J r
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u-computations at y < o, tables

The basic ideas of the u 2 field computations have already been
outlined in section 3 The calculation proceeds as follows (see
FJ2. 26)

Qo
source	 -	 field points aty	 o
element	 o	 constant x and

o	 varying -y
o
o

.Pig.	 26 Field computation scheme, j

l We calculate the velocity u201 induced by the v2D velocity distri-

1

bution. u 2 is computed for a set of, say, 15 field points with
varying -y and at a constant x location. We are summarizing the

induced velocities from each (source distribution) interval. AF.
We start the computation at sufficiently large negative values

of C to have a sufficiently low value of v 2D . We use an integra-

tion proeodure utilizing trapezoidal (source) elements between, 3

say,	 _ -6 and	 g = o. For the real part of v2p, which has an

infinite slope at	 _ c	 (see Fig.	 6 in 'section 2), we use for
the v2R contribution to v2DR a parabolic piece of curve between is

`, = o and	 9 = o.1. For this region we use the analytic solution
eq.	 (82). For the region between 4 = o.1	 (or C = o for the

imaginary part)and C _ 6, we use again the trapezoidal element
model. The stepwidth for our calculation is A4 = o.1. AboveG = 6,
the real part is set equal to zero (no contribution above F> =_6)-

and the imaginary part, which has a - 1 19 3T behaviour, is evalu-
ated with the analytical far field solution, eq. 	 (79). The

r
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ciompotat.lon of lt2Dlt 'And it2DI in done N imull;anclounly, 	The VnIl ► tltd	 ^•

j

of vl? for	 A	 •	 o are("(}IIl],?llLad by	 L", e tl^^^)^^IC^L"{I) ►Ir	 ^^?Gt14 1 t1Q it
colltl.tms just of (bo	 (n.eq.ntl.vo)	 1101111holtz oolution. 	 ror values  ^;A
between	 c^ o mid 1 , ;- 6 tho values are taken from a data tape
produved by the 1►rog.►'am discuosod in Alatsondix ta. Vor vol,uom
above	 6 we une .►iaain a€ ymptot is oc` out—lotin, no mentioned  ^

'	 z► hovca.	

^

r	
^

iil.nG''o mrilly e\1lLoucll.olln in equation 	 (79)	 for the f-hr t`,t,old and
In equation	 (82)	 for the field at t1io	 al.ltc 10090 aa'c the Same,
Wo lino tho Banta Foul routinof 	 1.aij	 Mut),uctl.onn 20111109 of the
p1'o111"stn. 	 Mis tJ:opozoida.t ,lntaq rafton Deilmont, In the nuhl'tll U.ro
botwoon Ilia tune( Iolln	 101 and 105. The field cahoul.athon betwoon

+	 o and F u 00 in d4 io bot;w(oon lontM'uct;tonn Gd and G5, and
Hie tai 1',1old oaloul.atl,on 1.0 Clone botwomi Instructions 50 and 52.
Ito root of the larogram eonn;laLl) 1►► co1e Ala.' less of v)'0gx'nn1 maling0- -;

mont like loop control.a ete.	 all well, n o We ctll,eul, n Uon of We

tl(11111hol.tz ways field which ha s to be added to Lila values of ll,h
to C)hta,i.n 0 2 .	 In addl.thon,'tho )'ending of the v 21, values from tile
data '(apt) In L`backod with Mo r of andi data ooK	 rood .fil,om 

the

tape ."lgnJuink a 4 cgt+l1C?].'ahad Int3orm.',ly by the p ogtam.	 For a
tJ,l.VOIA x of the field Po,tnto,	 the progra111 Cal.cul.ates '15 values of

wilh a atop width of 0.05. '.I! iin taken abolata G hours	 (1) .	 l0
We data not for A calin.tnt,tncl of	 ti X-ol► i "t-'n took shout 96

E hour[]. This Is ouLrar1oomi, >aut the cmWuUmg Una is J5e0 fat a
m,tr l't9eo111)?41 t: 	 .t` and nlurylt	 tl.mo	 in	 aavod	 t1u,►.l nci	 the	 th►:oga^an ► 	 on 'ala rm 	 ^ l

l,l,ahmonl p-hano, _Fl:l.ncol alit► microcompuLor Can be 1100d Colih ,M	 01.101.
',Ilia BASIC ctl►►►tal► tCla', tIJ.'t7tfram for 112 in 50mon on the next page and
it is followed by a not of u2 Mold data (Ilea Table 3). 	 ?lots of
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Program listing	 Irl'u2-PRONI, 761 IF F'OGOTO 3 n
"tt 2-PRON"	 2sklIPUT "„ ?"^

r':IF I 1 0LET 0=
3: A=-h,1 t H-2T:

114 ,161 Y-1. E-9
..n, ('I +11

h	

IF I+ QLET O
sE=OsF=O:^'=C

^. 
O`^

dli )^ t4*J Cd2>
z	 PRINT "PHASE

, U2"Y, c- " t CG
4: A=A+, 1 1<' + 1. cl4 j
5:IF A>=OGOTO 40`t=y+ 05:NCN+

10 1:H=M+1

tatW ='MEkP As G= .11:I F MSG=	 r

W tr)s CA-(11+'
` ,

6 i
8))!H=W*SIN 420:1EN]]LI£ i201t OT O7 14 51	 f4c10=A(M)-CSI: 114PU	 14" h "10 : 1NPUT II \uA 5^I. ^:r11^ht41J))
i A?nS) wC°4^+45IH (D

11 G=AC60 :H=AC
t^+°a 5vc• T-71) )
0-0TO ?1	 a521

12:IF^A:)AC6S) 60:6=2114E,* H)*	 r
PRINT "LESEF b':

1	 :IF A=.100TO
60

.L=E

61 GOSUB 101.
14,1=(G– E)iIO:L 62 A4111=A(W+U 

=E [I63	 UE 201t,
1S DOSS 101 a4 H>NI=ACH1–CC
I6 ACN)?$ACt0+U f11	 If)wCL)+T*:
1 i	 f'.-.I:H,WF)"G10;L tiIl•1	 ^.Y	 '^)+C

I =F "^ t.15rlf):G
f 18 • GL1sUR 101
` 1A4M)=A(M)±U SS GC:T11	 1

20: IF A=6.000TO IQ1k1=H–.I.Y=Y+fir

21:Y=Y+.05:N=N+
1;11=h1+1 1034 On(X-0`10-A

22, IF Yt0.L;00T0
1

)4-YY
ILl4 : IJ=rKsR) :CY^^[

23 E=G: F=W: Y=Q AT14 C r A-,X)/Y
1 24.14=2":11=46 )-HTN iM--W) ;E

M IF H 600TO 4
26:PRINT 1' r 	B)+:,5w
2 1 PPINT " Y="a- LN	 ^r^°F)–.1)

I
y YMY-4'

28. W<,4 C.P (X-Y 1+ 15•RETURN

;;q : R: +M f N'^ +4Th t;

SIN	 +y'–^ ;^: • 1F	 OLET n=
u*T

t To I —Al N!-W'!, W•	 ,.r )+V

31:P'FI11T	 "U:F," 24 I 	 i IwrJ?^4
T14	 i It	 , I

z ^:PRINT "I,r:Iw" ;I;h	 T . r:Tld	 'w'IJd-

:FTI I rT	 "AT'S'LI 'ti"c:IF	 • W=M,a•.0	 r

",r FP+II V TvT+n

30 1F  R=0LE1' F i rx	 • t id+
Nr4 	 3l+ra„L+	 s

t,': t'hrr

r^
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