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VORTEX MOTION BEHIND A CIRCULAR CYLINDER

Ludwig F8ppl
GBttingen
Presented by S. Finsterwalder at the meeting of January 11, 1913

1. The Equilibrium Condition of the Vortex Pair

If a circular cylinder in a container of water starts to move from a

still position, soun after motion commences, two vortices spinning in opposite

directions form behind the cylinder. The force of the vortices steadily

increases, since fluid is continually accruing from the boundary layer between

the edge of the cylinder and the potential current. Meanwhile, the pair of
vortices moves away from the cylinder, but at a velocity that is small com-
pared to the velocity through the standing water of the cylinder together
with the pair of vortices. In the Gottingen Institute for Applied Mechanics,
the various stages of development of the vortices after their detachment
were photographed after having been made visible by means of dusting with
lycopodium powder.1 The photographs reproduced in this article depict the
vortex pair in an advanced state of development. In the experiment, one
makes the assumption that the vortex pair which is completely developed 1is
almost stationary with respect to the cylinder.

The observations and experiments cited prompted Herr v. KArmdn and
myself to ask whether there are positions behind a circular cylinder moving
in still water where the vortices would remain stationary with respect tc
the cylinder. Concurrently, we hoped to deal with the infinitely large

1. The photographs were supplied by Herr Rubach who, in his forthcoming
dissertation, will publish experimental material pertaining to the subject
that is herein treated theoretically. Herr Rubach has kindly supplied me
with the accompanying -photographs.

* Numbers in the margin indicate pagination in the foreign text.
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velocity of the potential current on either end of plates moving through still

water that likewise generate pairs of vortices.2

I attempted to answer this question by searching for the stationary

site of the vortex pair behind a circular cylinder of the radius 1. If the

complex coordinates

{=¢&+41y

describe the flow 1in the plane bound to the cylinder, and the position of

the vortex is

[N . N . < — s
‘>_o=';gr+“lo or .‘-o—v“o"f’)m

then the complex velocity potential TI” can be written with the help of the

two vortices in the following manner:

1
TV == ¢+i¥’— (;+ )_I_zClg(c—co)( Co)
L3

(1)

in which means the velocity in the infinite, and. 0 the force of the vor-

tex. & is the velocity potential; !l' = a constant are the streamlines.
By means of differentiatkon, one obtains for (1) the complex velocity

aw ‘ AT IR 1 1 1)
=—ie=0(1 c=)+‘ci;:—:o+ R 13'

(2)

In order to derive the velocity of the two vortices which naturally lie

in mirror image across the ¢-iaxis, one substitutes { with * ¢, in (2).

The term ‘

2. This case has already been dealt with years ago by Prof. W. Kutta.

An

extensive characterization of the¢ flow can be found in the collection of

the Machematical Institute of the Technischen Hochschule in Munich.
(Footnote by Prof. Finsterwalder.)

2

[3

9" %

."Uﬂ/ 4

‘4,.'-41



I ',‘l‘ 1"!;“641' s e

ORIGINAL PAGE g |
OF POOR QUALITY ;

gives an infinitely large veloecity in the center of the individual vortex for ;Y“
.=¢,  which, however, contributes nothing to the displacement velocity '
of the vortex center and so must be znored here. The complex displacement
velocity of the vortex center is therefore:

uo-—ivo=U(l—;l,-)+iCl 1 T LI Tl
>0 ICQ""C_' SO—CO to'—T (3)

If we now leave out the indices 0 as understood and divide the equa-
tion (3) into real and imaginary parts, then we obtain the two equations

o ()

where »? = {* 4 »*, Therefore, the condition for the pair of vortlices to
remain stationary is simply ‘u=0 and v=0, oxr:

$ YR
DR I N

82 1 1\
@ v(1- 557 = o (Gt - ) =0

®) 20t _¢ o — (5)

b —

Sl

Since ¢ appears as a factor on the left side of equation (5b), &==0 -
or the ’);. axis is a solution to our problem; that is, a pair of vortices
whose center points possess the coordinates » and — 7 ¢on the j-raxis can
remain stationary with respect to the cylinder. The force of the vortex
belonging to the arbitrarily selected ; can be calculated from (5). However,
this solution for equations (5) has no further interest for us since they
were not observed during the experiments. We seek further solutions for Yo

nmm—  bwig e
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the equations (5) or the determinant equation resulting from (5);:

= (.__l.- LY
' 1 " (=1 2 :;’) | -0
i 29 : 1 R (6)
| = - — i |

1

Since the equation (6) is not changed when the signs of ¢ and 7 are
changed, the curve must runsymmetrically in all four quadrants. Equation (6)
can be transformed into the following simple form:

tog=r—o, 7)

where the different signs before 7 -belong to the two branches of the cul':vm3

Equation (7) permits a simple cunmsiruciion of the curve which is de-
picted in Figure 1 for positive é . It is emphasized that at the point §=1,
the slope of the curve is less than 45° and at infinity possesses an
aysymptote that is angled against the ¢ axis at less than 30°. The course
of the curve for negative ¢ is naturally the drawn curve mirrored along
the 7- 2xis. However, in 'the infinite, this branch of the curve has no
meaning for the direction of the velocity U we have selected ~nd deplcted
in Figure 1 for a certain position of the vortex pair.

3. The correctness of the transformation of equation (6) to equation (7)
can be very simply proven by reversing equaticn (7), which can also be
written 4y*r*=(2—1?., end inserting it in equation (6). The left side
of e aation (6) is thus transformed in the following manner: ‘

LU L+
S 7 e By B T L VL P T
R iy 21802 =1)

- (:2»)_'?_-{-2)" —pb e 2)2 =) = (4~ 2,0 =1 4 DY -

gt =) 0.
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The force of the vortex (,
determined by the various positions
of the vortex pair along the curve
is calculated from (5):

C= Uo?.n(l—%). (8

Accoriingly, at a constant
velocity ¥/ in the infinite, the
vortex foz:ce . C 1increases as the
vortex pair lies at increasing

distances along the curve away from
the cylinder.

Figure 1

If we compare the accompanying photographs, then we find by measurement
that the centers of the vortex palrs lie precisely along the curves deter-
mined above. From the hydrodynamic events observed when a very long circu-
lar cylinder is moved from a stationary position, we can make the following
sketch:t A palr of vortices is detached from the rear edge of the cylinder,
which, with continuously increasing growth of vortex force, approaches our
curve, ard after it has readhed the curve, continues moving slowly along
or next to the curve, while the vortex force increases as required by equa-
tion (8). Now the question is, how does the process develop further. The
experiment shows that the development of the vortex pair as we have just
followed it does not continue in the same fashion, but that the develop-
ment of the flow changes completely. Tbe two vortices abandon their
symetrical positions with respect to the: s; axis. New vortices are formed,
and now alternately on either side of the cylinder; a kind of pendulous
movenent is set up in the region behind the cylinder, while the vortices
detached earlier continue moving at some distance from the cylinder in two
vortex paths., We now have a flow regime as investigated by Herr v.
Karnan /i/. The change of the original flow regime is evidently
caused by an instability in the current. We shall therefore assign our-
selves the task of testing the stability of the vortex pair behind the
circular cylinder.

/6
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2. Investigation of Stability of the Vortex Pair

We assume that the flow regime . has developed to the extent that
the center points of the two vortices lie on the curve determined in Section 1;
we consider, that is, the condition illustrated in the photographs. As was
already mentioned in Section 1, the vortex pair moves very slowly along the
curve. Thus, for purposes of investigation of stability, we can view this
condition as approximating the equilibrium condition. From this equilibrium
condition, we will displace the vortex pair infinitesimally small distances [7
to see if the vortex pair returns to its equilibrium position. We shall
conduct the investigation of stability ia twe parts: First, we will inves-
tigate stability when displacement from the equilibrium position has a mirror
image symmetry; then, we will investigate asymmetric displacement.

To begin with the first case, we shall imagine the vortices displaced
from their equilibrium position infinitesimally small amounts -+« parallel to
the -é- axis and - § or —f parallel to the 7= axis. Since the two vortices
thus remain parallel to the i axis, we can use the equations (4a) and (4b)
derived for this condition, for the velocities” "é%;, parallel to the ¢
axis and 3‘;=g—§“ paiallel to the 5- axis. If in eqimtions (%) one sub-
stitutes ¢ with s-+¢ and 'y with n+p 'and develops the left szide of equations
(4) with the small quantities ¢ and £, retaining only the first potentials
of a-and A , one obtains, taking the equations (5a) and (5b) into conside-
ration (which cause the finite terms which appear during development to

disappear by themselves) we have the following stability equations:

(9.) A(‘+Bﬁ=g?av
) Xa+ Ypm—m2f, (9)
where
A---%:?s‘(477’+1): B-%g(r‘+2r’+%-;f):
. 10)
Cmgity U . 280 i (
x S"”"‘(”‘m’ Y= (1+r’(r‘—-1))°
6
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If one eliminates one of the two dependent o or / from the two first
order linear simultaneous differential equations (9a) and (9b), one obtains

the following second order differential equation which 1s valid for. _ﬂ as
well as for a1

da da ,
it Y=+ (BX~AY)a=0, (11)

vwhose general solution is

‘am Gt G (12)
vwhere
/'-1.2=*Zg*ﬁi'%V(I’~A),’*4(BX—~E'). - (13)
The conditions for stability are thus the two inequalities:
() Y>4
(b) BX —AY>0, (1%)

which are met, as one can prove by substituting 4, B, X. Y with values from

(10).

The stability of the vortex palr for mirror image symmetrical displace-
nment from the equilibriun position is thus proven. If one imagines a wall
in place of the ' }- axis, so that fluid is found only on one side, then the
single vortex is completely stable with respect to infinitesimal displace-
ment from the equilidrium position, since the other three vortices are
created as mirror images on the wall or on the cylinder as the case may be,
and the arbitrary displacement must remain mirror-image symmetrical. Experi-

ments with separating walls behind the cylinder have not as yet been dealt
with.

Investigation of stability of the vortex pair with regaxd to assymetrical
displacenent from the equilibrium position remains to be discussed, If the
coordinates of the equilibrium poasition of the first vortex are &y . and for

7
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the second vortex ' - ;l, . then the corresponding coordinates for the dis-
placed vortex pair arei+4«, y+f ort—a, —y+f where a and f# are again

taken to mean infinitesimaily small distances. In this case, we cannot use

the equations (4) as above, since, like equations (1) and (3), they are valid
only for mirror image symmetrical positions of the vortices. However, if in
general, we characterize the coordinates oi the vortex centers with Li=§& +in, .
and y{,=4§ -[j i;;,, then by similar considerations that yleld equations (1)
and (3), we easily find for the complex displacement velocity of the first
vortex:

b~ b—3

& ‘ &y

u-—iv=U(1-—-—;_1—2)+iC{ 11—-4__'1_;’— 11},
1
(15)

vhere again 7 _ represents the conjugated imaginary value ofA ¢ .
If we sanarate squation (15) into real and imaginary parts, substitute ¢,

with §+a, 7, with 9+8, & with §—a and 7, with —7+ 8 and
solve again for « and p, then we obtain as above the two sta"bility equations:

@ A'a-}-B’,B.-.—.gTa,
~ , e __ 4B (16)
(b) Xat Yf=——5,
where !
B = %—.qv {2(5’— 7%) + 3'2—:1}.
(17)

2 —1

X'—?;gn {2(1;’-—&").— 3 : —-29";1(r’+1)}.

Just as we derived the equation (11) from the iwo differential equa-
tions (9), we can use the two differential equations (16) to derive the
following simplified second order differential aquation as a consequence of
Aw=Y 3

S+ @X = %0 =,
A (18)
whose general solution is

8

. - e ———— o a
- v,
= T " L
-~ . N f .
. s .
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a = C, et + C,ént

with
Alg— .B'X,<0 (19)
so that ’
he=tVAT=FX, .
h (20)

us the condition of stabllity. By inserting the values of *.' ', X'

from (17), one can easily prove that the inequality (20) is not met for any
point on the curve, so that the unstabilityof our vortex pair is proved. The two
root values

———— ————- ———

/-“ — VZ?{_ BX and ,’_ —_ ]/Alg B'X‘ '-a

-

e

belong to the two principal :scilla;.ions of the vortex pair for asymmetrical
displacements. The value corresponding to 4 gives rise to instability, while
the principal oscillation corresponding to Z, represents a dampened move-
ment. From the first principal oscillation, one obtains from (16) the rela-
tionship

) _E _ 'l/ AT — B Xl’
a B
and for the latter, the stable motion, (21)
b_ _A'+VA=BX
(b) a - — g .

However, since accor.diné to (17) B'X 1e alwayé négative. VB; always
positive, and ~}X"\a1ways negative, one sees that in the case of unstable dis-
plgcement ; is positive, and in the stable case' g is negative, and taken
a.bsolutelxs is greater than the first case. If 2ne uses the above formulas
(21) for ';' oi the specific position of the vortex pair in the photugraphs, [ii
one obtains after simple calculatlon:

——

,g - 1.2 for unstable displacenent

g = —37 for stable displacement.

The change of the observed current formation which was discuas at the
ond of Section 1 thus has its more fundamental source in the Instability .£ one

9
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of the four principal oscillations of the vortex pair. Indeed, one observes

L
4
PO mwmw@/

that soon after the vortex railr has reached our curve and starts to move very
+ ‘Wly, there is a noticeable change in the hydrodynamic process which is
caisd by the instability just calculated. However, this instability does not
appear as & suddenasymmefric displacement of the potential of the two
vortices as one might expnct from the preceding calculation; rather, before
the ustable displacement commences, both vortices lose their characteristics
as potential vortices, where a spinning nucleus forms in the center of the
vortex which is deformed into an elipse and rccasionally also divides. Only
after this deformation of the vortex does the displacement referred to above
ocecur, which starts the formation of the two parallel vortex streams as :
described by Karmdn, i

B s I e e S RIS

. sk rakhis
3 A T e

3. The Resistance of the Cylinder 1

We shall propose the question: Is the resistance of the moving cylinder ,
theoretically explained by the observed movemeni of the vortex pair away E "‘
from the cylinder? For this purpose, we shall imagine the cylinder moving ‘
with uniform motion and shall calculate the chronological change of the total
impulse caused by the displacement of the vortex pair with respect to the
cylinder. If the vortex pair remained stationary with respect to the uni-
formly moving cylinder, then the resistance of the cylinder would be zero. -
Indeed, however, one observes that the vortices grow and concur.cently move 2
on. We shall mathematically grasp this process by assuming that there 1s a
potential flow outside the vortex nuclei, but that we nevertheless think of
the vortex as chronologlically growing. The vortex pair is at this time
moving along the curve determined in Section 1. The total impulse is divi-
ded into two parts:s the impulse of the potential fluw around the circular
cylinder and that of the vortex pair. The first part is ‘U.nvo, when ¢
is the density of the fluid,’ U the velocity of the cylinder, and the circu-
lar radius is 1 /2/. The sooond part stems from the two solids and the two
mirrored vortices. The complex potential of these four vortices with the
ooordimteag.a 5 it (see Figure 2) is

W-¢+.W-ong§: %3%2-—:3 (22)

10
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so that
(a) $=Ca—4)
: g hihs (23)
- (b) =Clg, <.
The X components of the impulse /13 i

of the total fluid are
¢ (
P=0J'fud.zd_/= 7dad_; (24)

where the integration extends over that
part of the plane which is filled with
fluid.u The integration in terms of
can be carried out in the last double
integral, and taking (23a) into con-
sideration, one obtains $

P=d4aCov —Coj'(a—ﬁ)d?l *(25)
(eircle)

(-
oo

@ here has the meaning indicated in Figure 2, and the integral extends
over the circumference of the unit circle. The latter integral, which can
also be written by substitution of y=siny , thus:

Jnj‘n(a — B cosydy

can most simply be solved by means of complex integration. We separate J 3SJ'

into its two parts which stem from its two palrs of vortices:
2x 2
J, -!a cosydy, J, —J‘/Jcos 7dy,

so that
J = J,—dy,

and to determine J;, we calculate the complex integral

4. Correspondingly, one obtains for the Y components the impulse ¢ = ([rdrdy, .
However, one can immediately see from reasons of symmeiry that ¢ =o .

11
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-
— "' —re c' —reiT
0

—_—reT
s0 that

er — re'
Ji+ Ji --..flg— - 0§ 7 d .

re=ir

The meaning of the quantities ¢ and r can be seen in Figure 2. The
imaginary part Ji+Ji 1is doubled. The two integrals Ji and Ji
however, be easily calcuiated if one introduces I =¢"r

can,

as an integration
variable into the first integral and {=¢-‘* into the second; then:

=N SR =~
(circle) (circle)
Since and 7re-ivr 1lie outside the path of the integration, then
Ji=o0, 1In cogirast, Ji 1is different from zero in that
Jiga~trenac= -f}:
(circle)
flg 1—Creminydi = — ;%i—-:—;,
(circle)

so that
2n ) ) 4ni .
"o e — (@™ — ¢'T) = —— SIN Q.
Jl » (e ¢ ) r ?
Thus 1s O
J, = :;-sinep.

The same method is used to ca.lcula,tie J, , and the same formulas are valld
if one simply substitutes » with ol Correspondingly, one obtains

Jy =277 sin ¢,

so that
J=dJ, —J, = —~2asing ()——})
or 7
Jm=—2na
since

no(=1)
sing |r— - )=ua,

as follows from Figure 2. Equation (25), which gives the purt stemming

12
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from the vortices is now

P=4Cano+2Cuao=06Caryg. (26) i
If one now includes the impulse of the potentlal flow, then one obtalns the
total impulse:

G=Ung+6Ca=xo.
(27)
The fluid pressure on the cylinder is determined by a momentary change otf C;
and at constant veloclty is \.

dG¢ . d(Ca)
ar = %re=gr (28)

Since according to equation (8), can be expressed by the momentary posi-

. tion of the vortex on our curve, then according to (28), the pressure ex-
perienced by the cylinder at constant velocity can be derived from the
position and the momentary change of position of the vortex pair.

aai o

Great difficulties stand in the way of calculating the resistance on
the basis of the observed movement of the vortex pair along our curve. This
is largely because of the instabilityof the vortex proven in Section 2, where
soon after the vortex pair has reached the curve, it leaves 1t again as a
consequence of an unstabledisturbance. If, however, two vortex streams have
formed b-hind the cylinder as per the vortex formation of v. Kdrmdn. then,
as v. Karman /3/ has shown, the resistance of the body can be determined with
satisfying accuracy from observation of the displacement velocity of the vor-
tex, as well as the distance between the vortex streams.

b,

: ]
Sk

v o
oy

k. The Flow Around the Infinitely Long, Flat Plate

The observations made in Sections 1 through 3 for a circular cylinder
suggest expanding the concepts to the motion of a flat plate. We will assume
that the direction of movement is perpendicular to the plate. It is very
easy to prove that behind a moving plate there must also be a geometric loca-
tion for the position of the two-vortices turning against the plate with
opposite rotation. The reason is that if we form the previously considered

13
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flow around the unit circle of the ' plane together with the vortex pair
through

) -

conforming to 2z plane of the plate of length 2 and form the derivation of
the complex velocity potential for the flow in the £ plane, which is ob-
tained from equation (1) by means of elimination of ¢ using equation (29),
then the condition for the vortex pair to remaln stationary behind the plate
is

aw __dWw as
"a’;ad—c'z;=o. (30)

However, slince everywhere in the layer of the s plane.that the physical

condition . Z—‘i % 0 occurs, equation (30) simplifies to

aw

‘d-—E=0.

However, thls condition is the same as those expressed in equations (5)
of Section 1. That is, we obtain the desired geometric location when we ex-
press the curve determined through equation (7) in the coordinates s=uz + iy
with the help of equation (29).

I will not carry out this transformation; rather, I shall deal with the
most interesting matter of whether there exist positions of the vortex pair
behind the plate that effect finite velocities at either end of the plate.

The calculation shows that this condition is met only for the position of

the vortex pair in the infinite, which is naturally out of the question for
the explanation of the flow formation. Observations of the flow accompanying
a moving plate show that similar to a cylinder, soon after movement commences,
a vortex pair is detached from the rear edge of the plate, which then steadily
grovs and moves away from the plate.

If one uses inatead of a plate, a bowl with a cross section of a circu-
lar arc and moves it with the convex side forward, then my theory, as

14 .
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’; Professor Prandtl pointed out to me, predicts finite velocities at either end

!; of the bowl, for a certain position of the vortex palr in the finite and de- .
§ pending on the flexure of the bowl. I will not elaborate any further on this

& questlon as no photographs of this flow configuration are at hand. i
i :
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