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VORTEX MOTION BEHIND A LJI'RC"JIARCTLIhDE_

_: Ludwig FSppl

GSttingen

• Presented by S. Finsterwalder at the meeting of January Ii, 1913

_ 1. Th___eEquilibrium Condition of the gortex Pair /I*

If a circular cylinder in a container of water starts to move from a

i_ still position, soun after motion commences, two vortices spinning in opposite
I

directions form behind the cylinder. The force of the vortices steadily

increases, since fluid is continually accruing from the beuwlary layer between
the edge of the cylinder and the potential current. Meanwhile, the pair of

vortices moves away from the cylinder, but at a velocity that is small com-

pared to the velocity through the standing water of the cylinder together

with the pair of vortices. In the Gottingen Institute for Applied Mechanics,

_ the various stages of development of the vortices after their detachment

were photographed after having been made visible by means of dusting with
,i

lycopodium powder. I The photographs reproduced in this article depict the

vortex pair in an advanced state of development. In the experiment, one

•' makes the assumption that the vortex palr which is completely developed is /2

almost stationary with respect to the cylinder.

it The observations and experiments cited prompted Herr v. KAra&n and

myself to ask whether there are positions behind a circular cylinder moving

in still water where the vortices would remain stationary with respect %c

the cylinder. Concurrently, we hoped to deal with the infinitely large

I. The photographs were supplied by Herr Rubach who, in his forthcoming

dissertation, will publish experimental material pertaining to the subject

that Is herein treated theoretically. Herr Rubach has kindly supplied me

with the accop.panying photographs.

* Numbers in the margin indicate pagination in the foreign text.
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velocity of the potential current on either end of plates moving through still

water that likewise generate pairs of vortices. 2
4'

I attempted to answer this question by searching for the stationary

site of the vortex pair behind a circular cylinder of the radius I. If the

complex coordinates

describe the Flow in the plane bound to the cylinder, and the position of

the vortex is

:offio+i,l° or "-:-o

_ then the complex velocity potential ]_r can be written with the help of the
:_ two vortices in the followir_ manner,

' "

in which means the velocity in the infinite, and.C.the force of the vor- _i

tex. • A s the velocity potential; 7'= a constant a_e the strea ml|nes. _

i

By means of differentiatkon, one obtains for (I) the complex velocity

--_==.--_t,=U I-- . +iC + 1 1 _,--_o £_I1:-

In order to derive the velocity of the two vortices which naturally lie _3

in mirror image across the _-!axis, one substitutes _ with _ _, in (2).

The term

 c-A-
--_0

2. This case has already been dealt with years ago by Prof. W. Kutta. An

extensive characterization of th_ flow can be found in the collection of

the Mathematical Institute of the Technischen Hochschule in Munich. ,

(Footnote by Prof. Finsterwalder.)

2
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gives an infinitely large velocity in the center of the individual vortex for _o

; _----if0, which, however, contributes nothing to the displacement velocity

: of the vortex center and so must be :_nored here. The complex displacement

t velocity of the vortex center is therefore_

!

"o'-;%--'--U 1--_ -j-iC 1 ¢o--_o - -"
I:o--_o :o-- (31_ol

J
If we now leave out the indices 0 as understood and divide the equa- I

tion (3) into real and iaaglnary parts, then we obtain the two equat,lons i
I

•r_ + Cb'(its--1 )' 2!_)' !"

where r_= _'nu,U_. Therefore, the condition for the pair of vortices to r-._

rem_l.n s_tionaz_' is simply '. = 0 and _ -- 0, or,

(,,_,,,) (1 ,), t'(u) 2u - c ,T-_-f= o.

Since _ appears as a factor on the left side of equation (S b), _- 0 '

or the ,I-. axis is a solution to our probleal that is, a pair of vortices

whose center points possess the coozdinates _},and--'7 cn the ,;-_axiscan

remain stationary with respect to the cylinder. The force of the vortex

belonging to the arbitrarily selected ,7 can be calculated from (5). However,

this solution for equations (5) has no further interest for us since they

were not observed during the experiments. We seek further solutions for _4

3
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the equations (5) or the determinant equation resultin6 from (5), V'"

l
.!

Since the equation (6) is not changed when the signs of ._ and _yare

changed, the curve must run s_aetl_cally in all four quadran'Cs. Equation (6)

can be transformed into the following simple formz

1
±s,7-- - - (7)

where the different signs before" _jbelong to the two branches of the curv_ 3

Equation (7) permits a simple consl,r.:otionof the curve which is de- .,

picted In Figure I for positive _ . It is emphasized that at the point _ =I,

the slope of the curve is less than 4_ and at infinity possesses an

aysyaptote that is angled against the _- axis at less than 30°. The course

of the c_rve for negative _: is naturally the drawn curve mirrored along

the ,y-exis. However, in the infinite, this branch of the curve has no

meaniag for the direction of the velocity U we have selected ._.nddepicted Z5

in Figure I for a certain position of the vortex pair.

_, , ,, , ,, -- _ =.

3. The correctness of the transformation of equation (6) to equation (7)

can be very simply proven by reversing equation (7), which can also be

written 4,1:/.,=(,.-_--II:, end inserting it in equation (6). The left slde

of e,.,ation(6) is "_hustransformed in the following manners

il 1+ _'Is 1 --S_'1 (,'S--l_'--r: _i- '_ (f-i'_'--I)_ I -- "_ _i.s (r2-- 1)2(I-- 2r_)

, ;.6 14-- I ; '

(--_"_Jr 2r_-- r* + 2r: -- 1)- (_,l_ 2,'_- 1-+-_rt;., Q,

1983012992-006
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,_. The force of the vortex C,

j determined by the various positions

2 4V /_ of the vortex pair along the curve |

(B)\ r, ]

Accordingly, at a constant
_- velocity_' in the inflnite, the

.'.! vortex force.'C increases as the

= vortex pair lies at increasing

distances along the curve away from

the cylinder. !

i. Figure 1

If we comlm..re the accompanying photographs, then we find by measurement

that the centers of the vortex pairs lle precisely along the curves deter-

mined above. From the hydrodyna=ic events observed when a very long circu-

lar cylinder is moved from a stationary position, we can make the following /6

; sketch, A pair of vortices is detached from the rear edge of the cylinder,

whic_, with continuously increasing growth of vortex force, approaches our

'I curve, ar.d after it has reached the curve, continues moving slowly alongor next to the curve, while the vortex force increases as required by equa-

tion (8). Now the question is, how does the process develop further. The

experiment shows that the development of the vortex pair as we have Just

followed it does not continue in the same fashion, but that the develop-

menf of the flow changes completely. The two vortices abandon their

symetrical positions with _espect to thei_- axis. New vortices are fomed,

and now alternately on either side of the cylinder! a kind of perL4ulous

aovement is set up in the region behind the cylinder, while the vortices

detached earlier continue moving at some distance from the cylinder in two

it vortex paths. We now have a flow regime as investigaced by Herr v.

i
• Karlan/_j7. The change of the original F|ow regime is evidently

caused by an instability in the current. We shall therefore assign our-

selves the task of testing the stability of the vortex pair behind the

i!_ circular cylinder.

]

1983012992-007



g

ORIGINAL P/_._E IS
• OF POOR QUALITY

' 2. Investigation of Stability of the Vortex Pair

"" We assume that the flow reglme . has developed to the extent that

the center points of the two vortices lie on the curve determined in Section 11
"_ we consider, that is, the condition illustrated in the photographs. As was
s

• already mentioned in Section 1, the vortex pair moves very slowly along the

curve. Thus, for purposes of investigation of stability, we can view thisr.

-._ condition as approximating the equilibrium condition. From this equilibrium

condition, we will displace the vortex pair InfinltesimLlly stall distances L7
J=

_' to see if the vortex pair returns to its equilibrium position. We shall

conduct the investigation of stability ii_ two partss Pirst, we .ill laves- |
fixate stability when displacement from the equilibrium position has a mirror

image symmetry! then, we w111 investigate asymmetric displacement.

To beg_n with the first case, we shall imagine the vortices dlsplace_

parallelto

the -6- axis and -_P or--_ parallel to the _- axis. Since the two yortices

: thus remain parallel to the _ axis, we can use the equations (_a) and (_b)

c -".m-do
derived for this condition, for th e velo ities _ .. __ parallel to the _.

axis and ,¢=_ _ parallel to the _;- axis. If in equations (#) one sub-
' stitutes _ wit_ _-_ and ._; with /;'I-/_ and develops the left side of equations

(_) with the small quantities a and _ , retaining only the first potentials

of .. and p , one obtains, taking the equations (Sa) and (5b) into conside-

ration (which cause the finite terms which appear during development to

disappear by themsel_es) we have the following stability equationss I

1983012992-008
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i_C If one eliminates one of the two dependent'_ or P from the two first

! order linear simultaneous differential equations (ga) and (gb), one obtains Z8 .'_

,_ the following second order differential equation which is valid for. /g as '

" ._' well as for - ",, ii" d_a da

..',_--_..... ,lf-" _ (t"-- A) _,_.+ (.BX --.,4.t')a = O, (It)

•: " whose general solution is

} _,= o,e,,+ c,e,, (t2)

-"i where

The conditions for stability are thus the two inequslitiess

(_) T>

(b) _x- AY> 0, (t_)

..{ which are met, as one can prove by substituting A, _, X. Y with values from

_!-' (I.o).

The stability of the vortex pair for mirror image symmetrical displace-

ment from the equillbriul=position is thus proven. If one imagines a wall

• in place of the !_- axis, so that fluid is found only on one side, then the

single vortex is completely stable with respect to infinitesimal displace-

ment from the equilibrium position, since the other three vortices are

created as mirror images on the wall or on the cylinder as the case nay be,

and the arbltrar_ displacement must remain alrmr-inage eyauetrlcal. Experi-

ments with separating walls behind the cylinder have not as yet been dealt

with.

Investigation of sta_dlity of the vortex pair with regaxd to aesyaetrical

displa_eaent fZ_m the equilibriun position renain_ to be discussed. If the

cooxdinatee of the equilibrlun position of the first vortex are , _'_ and for

7
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the second vortex _' 'l,. then the corresponding coordinates for the dis-

placed vortex pair are _nu a, Vnu _ or _--a,--,_Jr_ where a and fl are again L9

taken to mean infinitesimally small distances. In this case, we cannot use

the equations (4) as above, since, like equations (i) and (3), they are valid

only for mirror image symmetrical positions of the vortices. However, if in

general, we characterize the coordinates oi the vortex centers with _, = _, nc i_ I .

and _,-_i,12, then by similar considerations that yield equations (1)

and (3), we easily find for the complex displacement velocity of the first

vortex,

1 Cz-'-C, ' i"
l

where again _ represents the conjugated imaginary value of C •

If we s.___t_ate equation (1_) into real and i_tglrmA_y parts, substitute _i

with _-_a, 'h with _-Fp, _2 with _--a ands. wlth --_ �ˆ�and

solve again for a and #, then we obtain as above the two stability equations:

da
(a) X'a+ _p = cz-7'

(b) X'_+ Z'p= --dp (i6)

Just as we derived the equation (II) f_m the t.wo differential equa-

tions (9), we can use the two differential equations (16) to derive the

following simplified second order differential _luation as a consequence of

_'--Y' _ /10

d'a_.(_'X'--.4")a--O,
a_, (_8)

whose _eaez_l _olutlon is -

] 9830 ] 2992-0 ] 0
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a= C,_,'+ C,_,'

:_.. with -

"_ii"i so that ,_. _i"- _.X'< 0 (19);.,,._= zV_ '=- B'X', • (20)

:_ ._sche condition of stability. By inserting the values of __',/Y;.X'

_t from (17), one can easily prove that the inequality (20) is not met for any

i.I point on the curve, so that the unstcb|l|tyofour vortex pair is proved. The tworoot values

•_" = I/A"" B'.X _ ",._ _;., V:_,-_x_x. _=d,.,=-

belongto the two principal :_clllations of the vortex pair for mymmetr|cal

displacements. The value e_r_spo_li_ to _'2, gives rise to |mtab|l|ty, _td.le

._ the principal oscillation c_rresponding to" ;.,repre._ents a dampened move-ment. From the first principal oscillation, one obtains from (16) the rela-

I tionship i_'i

A'--V_'' B'X'
(_) "J= -- 9' ;

andfor thelatter, thesta_epmotion,_,+,,'._,-c_-_ (21) [ :J'il (b) J = - B'

However, .-iBceaccordi_ to (17) B'X' is always negative, B' always I'__

l positive, and _'_always negative, one sees that in the case of unsteble dls-placement _ is positive, and in the stable case_ - is negative, and taken

absolutely, is 8Tenter than the first ease. If one uses the above formulas

(21) for '_ o_ U_e specific position of the vortex p_Ir in the pho_graphs, _I

one obtains, after simple ealoul&tlom

-- 1,2 for umtable disglaceaent_ .

-_---- 8.7 for stable dlsplaoement.¢t

The change of the oboez.md @urren% foznation which was disous8_: at the

end of Section 1 thus has its nero i_danental somree in the Instability-,f one

9
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_ of the four principal oscillations of the vortex pair. Indeed, one observes

'_ that soon after the vortex fair has reached our curve and starts to move very

. • ,wly,there is a noticeable change in the hydrodynamic process which is

ca_s_ by the |nstab|l|tyjust calculated. However, this |nstob|l|tydoesnot

'_ appear as a suddenasymmetr|c displacement of the potential of the two

_._ vortices as one might exp,ct from the preceding calculation! rather, before

_" them_table displacement commences, both vortices lose their characteristics

_ as potential vortices, where a spinning nucleus forms in the center of the

vortex which is deformed into an elipse and _ccasionally also divides. Only

i_I_i after this deformation of the vortex does the displacement referred to above

occur, which starts the formation of the two parallel vortex streams as

described by KAraAn,
4E_

i_ 3. The Resistance oZ the CylLnder

We shall propose the questions Is the resistance of the moving cylinder

theoretically explained by the observed aovemen_ of the vortex pair away

from the cylinder? Per this purpose, we shall imagine the cylinder aoving

with uniform aotinn and shall calculate the chronological change of the total

iapulse caused by the displacement of the vortex pair with respect to the

cylinder. If the vortex pair reaained stationary with respect to the uni-

_ foraly aoving cylinder, then the resistance of the cylinder would be zero_ _

'_ Indeedt however, one observes that the vortices g_ow and conour._nt, ly aove _12

on. We shall mathematically grasp this process by assuming that there is a

potential flow outside the vortex nuclei, but that we nevertheless think of

the vortex as chronologically growing. The vortex pair is a_ this ttae

moving along the curve _eterained in Section 1. The total impulse is divi-

ded into two partss the impulse of the potential flc_ around +he circular

cylinder and that of the vortex pair. The first part is U.._.o, when Q

is the density of the fluid," U the velocity of the cylinder, and the circu-

lar radius is I /2_. The second I_ siena free the two solids and the two

nlrrored vortices. The coaplex potential of these four vortices uith the

coo=a.,=te, c, (see Z)is,
_J

1.0
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:i so that

(a) ¢ = C(_--p)
J

r 2 F_

.. The X components of the impulse LI3

! ,,// of the total fluid are
r _

$ ' ,s//

" ,J J 5 JJ'J ':. :1 P _ o. .dxdy -- Q &zdy. (24)

, t
', / i ._-_- !)_/ part of the plane which is filled with

(. i__-:_-_;,".....-t'/ . l': -- .............. "-+ ''_ fluid._ .'_,e integration in terms of
. /_.._:j___ L-..... 1,/

x ,.; / -_z_ can be carried out in the last double --.
'_ integral, and taking (23a) into con-

slderation, one obtains

Figure 2 tt'=4. Co.,,--O_.._(a--_)a:,. ,(25) . '

•. (circle) ii_

a ho=9.has the meaning indicated in Figure 2, and the integral extends

over the ciroumfe_nce of the unit circle. 'Fne latter integral, which can

also be written by substitutionof y- sinl' , thuss

'"
J ,=/ (a--D)cos_dZ

can most simply be solved by means of complex integration. We separate J

Into its two parts which stem from its two paArs of vorticem

:.-/o_o...,:..s,_br,_oo,._,,,,.
so that

.z-z,-,r,,

and to determine J,, we calculate the complex integral

i . iii ,ii i i L __ _i i .ul iiii i u __ __ _ 111liilll __

_. Correspondingly,one obtaAns for the Y components the impulse 9- ,:,ff¢,i_a.,.

However, one can luedlatel¥ see f_om reasons o£ syuetx7 that 'i-o .

11

I
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sin,, (r-- 1) '-- a,

as follows from Figure 2. Equation (25), which gives the l_rt stc_n_ /-15

P
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,_ from the vortices is now

• P = 4C.."ro- 2C..7,_ = 6C(,.'ro.. - - - (26)
_- If one now includes the impulse of the potential flow, then one obtains the ,

•:" total impulses

=: G = Uno + 6 Ca.no.
(zT)

The fluid pressure on the cylinder is determined by a momentary change o_0 ;

and at constant velocity is
. . _.

_. dG _ d(Oa) :
._ a--/= _''e _. (28)

Since according to equation (8), can be expressed by the momentary posi-

tion of the vortex on our curve, t,hen accozdlng to (28), the pressure ex-
/

perlenced by the cylinder at constant velocity can be derived from the

position and the momentary change of position of the vortex pair.

Great difficulties stand in the way of calculating the resistance on

the basis of the observed movement of the vortex pair alon_ our curve. This

is largely because of the |nstobilityofthe vortex proven in Section 2, where

• soon after the vortex pair has reached the curve, it leaves it again as a

consequenceof on ,mstobledisturbance. If, however, two vortex streams have

formed _ ”
€ ��„cylinder as per the vortex formation of v. K&rmAn. then,

as v. KArm_n f_/ has shown, the resistance of the body can be determined with

, satisfyip_ accuracy from observation of the displacement velocity of the vor-

tex, as well as the distance between the vortex streams.

_, The Flo__.EwArou_..__nd_nd%h_.eeInfinitely Lor_, Fla___%Plat_._2e Z16

The observations made in S,ctions I throu6h 3 for a circular cylinder

suggest expanding the concepts to the motion of a flat plate. We will assume

that the direction of movement is perpendicular to the plate. It is very

easy to prove that behind a movir_ plate there must also be a geometric loca-

tion for the position of the two-vortices turning a6_inst the plate with

opposite rotation. The reason is that if we form the previously considered

13

; K....
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i flow around the unit circle of the ._ plane together with the vortex pair
i through

": .-'= :- (29)

; conforming to _ plane of the plate of length 2 and form the derivation of

" the complex velocity potential for the flow in the • plane, which Is ob-

•_ talned from equation (1) by means of elimination of i" uslng equation (29),

" then the condition for the vortex pair to remain stationary behind the plate

i

d].V dW d._

However, since everywhere in the layer of the z plane.that the physical
de

condition _-_ o occurs, equation (30) simplifies to

_---0. _'_

However, this condition is the same as those expressed in equations (5) /7,

of Section I. That is, we obtain the desired &e,_metric location when we ex-

press the curve determined through equation (7) in the coordinates _-----z+ i_/

with the help of equation (29). =.

I will not carry out this transformation! rather, I shall daal with the

most interesting matter of whether there exist positions of the vortex pair _17 i

behind the plate that effect finite velocities at either end of the plate.
i

The calculation shows that this condition is met only for the position of i

the vortex pair in the infinite, which is naturally out of the question for !

the explanation of the flow formation. Observations of the flow accompanying

a moving plate show that similar to a cylinder, soon after movement co_ences,

a vortex pair is detached from the rear edse of the plate, which then steadily

grows and moves away from the plate.

If one uses instead of a plate, a bowl with a cross section of a circu- ,, ;

lar arc and moves it with the convex side foxward, then my theory, as

1983012992-016
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_ P_ofessor Prandtl pointed out to me, predicts finite velocities at either end
_ of the bowl, for a certain position of the vortex pair in the finite and de- ,

{. pending on the flexure of the bowl. I will not elaborate any further on this

_£ question as no photogra]_s of this flow configuration are at hand.

_: j ;

_" .- "-= .i_ "

Figure3 .. 2'

1

b

|

i
i

1
I
|

figure g "
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