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ABSTRACT

In this paper the title problem is studied by using Reissner's transverse
shear theory. The main purpose of the paper is to investigate the effect of
stress-free boundaries on the stress intensity factors in plates under bending.
Among the results found, particularly interesting are those relating to the
1imiting cases of the crack geometries. The numerical results are given for
a single internal crack, two collinear cracks, and two edge cracks. Also
studied is the effect of Poisson's ratio on the stress intensity factors.

1. Introduction

1

In many relatively thin-walled plate and shell structures through cracks
may develob as a result of cyclic loading. To analyze this fatigue crack
propagation process the stress intensity factor calculated from the elastic
analysis of the structure appears to be the most widely used correlation para-
meter representing the severity of part-flaw geometry and the intensity of
applied loads. In plates containing through cracks and subjected to membrane
loading only, usually the solution obtained by ignoring local three-dimensional
effects and by assuming the validity of conditions of the generalized plane
stress seems to be quite adequate. Partly because of the practical importance
of the problem of plates under membrane loading and partly because of the
relative simplicity of the related elasticity problems, the two-dimensional
crack problems have been studied very extensively. Even though in many appli-
cations the bending components of the external loads are also present, as in,
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for example, transversely loaded plates and structures undergoing flow-induced
vibrations, the solution of the plate bending problem seems to have been
carried out only for an infinite plate [1]-[5]. These studies have demonstra-
ted the importance of transverse shear effects on the stress intensity factors
and have shown that the bending results are sufficiently different from the
plane stress results. It is, therefore, worthwhile to'investigate the influ-
ence of finite in-plane dimensions, particularly that of stress-free edges

-on the stress intensity factors in plates undergoing bending.

The problem considered in this paper is a relatively long rectangular
plate containing collinear cracks perpendicular to its long sides. Of parti-
cular interest is the investigation of the edge cracks and crack-free boun-
dary interaction. As in [1]-[4] the external loads are assumed to by symmetric
with respect to the plane of the crack and a transverse shear theory [6], [7]
is used to formulate the problem.

2. The Formulation of Bending Problem

Consider a relatively long flat plate of finite width which contains sym-
metrically located collinear cracks perpendicular to its sides (Figure 1).
It is assumed that x, = 0 is a plane of symmetry with respect to loading and
geometry and the problem in the absence of cracks has been solved under the
given applied loads. Thus, through a proper superposition the crack problem
may be reduced to a stréss perturbation problem in which the self-equilibrating
crack surface tractions are the only external loads. Also, it is assumed that
the plate is acted upon by a sufficiently large tensile membrane load so that
there is no crack surface interference (on the compression side) in the bend-
ing problem. Thus, the results given in this paper should be considered
together with the solution given in [8] where the corresponding generalized
plane stress problem was studied for the same crack geometry as Figure 1.

By using the Reissner's transverse shear theory, the basic equations for
elastic plates under bending may be expressed as follows (see, for example,
[9] for the general case):

V4w = 0, | | (1)
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The dimensionless quantities which appear in (1)-(9) are defined in Appendix
A. The dimensions are given in Figure 1. In the usual notation M . and V /
(i, = 1,2) are the bending, and the transverse shear resultants B1 and Bo
are the components of the rotat1on vector, u Uys Uos and uy are the components
of the displacement vector, and a*is a length parameter representing the
crack size (a*=a forc >0, d <b, a*=d for c =0, d < b, Figure 1).

As in the corresponding plane stress problem [8], here it is assumed
that Xy = 0 is a plane symmetry. Thus, in the perturbation problem under con-
sideration the solution of the differential equations (1)-(3) may be expressed
as

w(Xx,y) =-% f (A] + yAz)e'“y cosax da

[e]

+ %—J (C1cosh8x + Cox sinhgx)cosgy ds , (10)
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a(x,y) = %-I Bye™ "1 sinax da + Z,f B,sinh rox singy dg , (11)
o _
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and the unknowns A], A2 and B] are functions of «, and C], C2 and 82 are
functions of 8.
By substituting from (10)-(12) into (4)-(9) the components of rotation,
the moment resultants and transverse shear resultants are found to be
o _ r -ry .
ex(x,y) = %-j (-[-A]+(2Ka-y)A2]e ey ;;-B] e | )sinax da
[o]
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Because of the assumed symmetry, it is sufficient to consider the problem
for O Xy < b, 0 Xy < only. Thus, referring to Figure 1, the boundary
and symmetry conditions of the problem may be expressed as follows:

M. (B.y) =0, M,y (B5y) = 0, Vx(t'uy) =0,0<y<=, (22)
Mxy(O,y) =0, VX(O,y) =0, 8,(0,y) =0, 0 <y <=, (23)
Mxy(XsO) = 0, Vy(X,0$'= 0, 0<x<b" , (24)
Myy(x,O) =m(x) , c' <x<d' |, | (25)
By(x,0)=0,0ix<c',d'<x<b' s (26)

where the normalized length parameters are defined by

b* = b/a* , ¢' = c/a*, d' = d/a* . (27)




From the expressions (14), (18) and (19) it may be seen that the
(symmetry) conditions (15) are identically satisfied, By using the five
homogeneous conditions (22) and (24),- five of the.unknowns A, B, C.,

(i = 1,2) may be eliminated. The sixth unknown may then be determined from
the mixed boundary conditions (25) and (26). By substituting from (18)
and (20) into the homogeneous conditions (24) we find

_ 1+ _ 1=y
Mgzl > R by - @
If we now define
%ﬁﬁmﬂ)=ﬂﬂ,0ix<b', (29)

from (15), (26), and (28) it can be shown that (Figure 1)

dl
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Cl
and d’ d*
Ay(a) = - ;-:%J f(t)sinatdt , Ay(a) = %’[ £(t)sinat dt. (31)
c! c'

By using the expressions (16), (18) and (19) the boundary conditions
(22) may be reduced to

B, & sinh rpb' - C, 252 sinhgb' = -H
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Equations (30)-(34) indicate that all of the unknowns in the problem can
be expressed in terms of the new unknown function f(t). It is also seen that
all of the boundary conditions (22)-(26) except (25) are satisfied. The
- equation to determine f(t) may, therefore, be obtained by substituting from
(30)-(34) and (17) into (25). From the formulation of the problem one may
observe that the unknown functions Ay, A2 and 81 refer to the "infinite"
plate and should give the kernel found in [4]. Indeed, after some simple
manipulations it may be shown that .
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where K, is the modified Bessel function of the second kind, By solving
(32)-(34) for Cy» C, and B, and by substituting into (35) we find
»
a*(1=v?

3 1 41<1-
2mha [ '{(113 (7x+ 1+x) - (’ vl’((t Nk (t+x)3)

Cc

F o L ylrltx]) + 2 Koly[ta)]) + k(xot)

- k(x,-t)}f(t)dt = m(x), ¢c' <x<d', _ (36)

where the Fredholm kernel k(x,t) is given by
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If the cracks are internal cracks as shown in Figure 1, then from (26)
and (29) it follows that

dl

f F(t)dt = 0 . (41)

Cl

Thus, the integral equation (36) must be solved under the additional condition

(41). .
From the following asymptotic behavior of Kz(z) for small values of

Kp(2) = 222 - ;—+ 0(z210g z) , (42)

it may be shown that the kernel of the integral equation (36) has only a Cauchy
type singularity. Hence, the solution is of the form-

f(t) = Fft) — ,c' <t<d, (43)
(t-c')¥(d'-t)?
and the bounded function F(t) may be obtained by using the numerical method
described, for example, in [10].
If the plate contains a single symmetrically located crack, i.e., for
c=0, d<b (see Figures 1 and 3), by using the symmetry of the problem and by
observing that f(t) = -f(-t), (36),(41), and (43) may be epxressed as

dl

Qi%:gil v 1 4k(l-v) 1 4 1
2nha f .{['H'v t-x = 1+ (t-x)3 1R Tx Kz(Ylt"Xl)]
+ k(X,t)}f(t)dt = m(x), -d' < x <d', (44)
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dl

I f(t)dt =0 , : (45)
~d" . ,
fe) = FEL . gt <d V (46)

vdZ-t?

where a* = d is used for the normalizing length parameter. (Appendix A).

3. The Stress Intensity Factors

In the symmetric plate problem under consideration the bending component
of the Mode I stress intensity factor at the crack tips is defined by (Figure 1)

"‘c(x3)=l:Tc [2(c-x)T% 0pp(xps00xg) 5 (47)
k14(x3) = Tim [2(x;-d) 17 0pp(x;,0,%5) . (48)
’ 1

Let o be a stress amplitude calculated on the plate surface and used for
normalizing the stress intensity factors. For example, in a plate subjected
to uniform bending M22 = Mo away from the crack region

2
oy = 6Mo/h . (49)

The stress intensity factors are then normalized with respect to ob/—*. If
the stress intensity factors on the plate surface are defined by

k(c) = ky (h/2) 5 k(d) = ky4(h/2) , (50)
it is sufficient to calculate k(c) and k(d) in terms of which we have

X3 *3
k]C(x3) = E7§-k(c) , k]d(x3) = ﬁ7§-k(d) E (51)



We now note that (36) gives the normalized bending resultant m(x) on _
y = 0 outside as well as inside the crack. Thus, a relatively straightforward
asymptotic analysis would show that [11]

X3 hE BB2 .
kc(x3) = p7z 3 1im. V2(x;-¢] e (52)
X3¢
X3 hE Bz .
kalxg) = - gz lim V2D 5 (53)
Xy

From (43) and (51)-(53) it then follows that

k(c) = 46* F(c') » k(d) = 2*% F(d') . (54)

In plane elasticity problems for cracks it is known that in the close
neighborhood of a crack tip Xy = d, Xo = 0 we have

k

0'22()(]’0) = — + 0(]) s (55)
1
- ;
ST l;fd 2EXT g5 [ap(xq540) = up(xp,-0)1 (56)

where k.l is the Mode I stress intensity factor, p is the shear modulus, Ko =
4-3v for plane strain and «, = (3-v)/(1+v) for the generalized plane stress.
In the symmetric bending problem under consideration the crack surface dis-

placement is given by
uz(x],+0,x3) = x332(x],+0) . (57)

From (48), (53) and (55)-(57) it may be observed that the results found from
the solution of the plane elasticity and the bending problems given by (53)
and (55) are identical providgd Ko is selected as (3-v)/(1+v), (i.e., if the
value for plane stress rather than for plane strain is used for Ko). Also,

-12-




as shown in [9] and [11] the transverse shear theory used in the present
analysis gives an angular distribution for the asymptotic stress state around
the crack tip which is identical to that found for the plane elasticity
problem. ' ’

4. The Edge Cracks

An importént special case of the problem described in Figure 1 is the
edge cracks for which d=b and ¢>0. In this case as x and t approach the end
point d'=b' simultaneously the kernel k(x,t) given by (37) becomes unbounded
and consequently influences the singular nature of the solution. Since the
integrand in (37) is bounded in any finite interval in 0 < 8 < =, the unbounded
terms in k(x,t) will be due to the asymptotic behavior of the integrand.
Thus, by separating the asymptotic part of the integrand, (37) may be expressed
as

k(x,t) = f [K(x,ts8) - Ke(xst,8)1ds + f Ko(x>t,8)d8 . (58)

0 0

o0

The first integral in (58) is bounded and the second may be evaluated in
closed form. After a somewhat lengthy analysis similar to that described in
[8] we obtain .

) o 6(b'-x 4(b"-x)2
J Ko(x5t,8)dB = k(Xst) = spro—s = optxt)Z ¥ 2B ox-t * (59)

0

One may note that ks(x;t) given by (59) is identical to that found for the
plane edge crack problem given in [8] and, together with the Cauchy kernel
1/(t-x), constitutes a generalized Cauchy kernel. N

Referring to the definition of f(t) given by (29) and the boundary condi-
tion (26), it is seen that the condition (41) is not valid for the edge crack
and, as pointed out in [8], is not needed for the solution of the integral
equation (36). In this case the generalized Cauchy kernel kg(x,t) = 1/(t-x) +
ks(x,t) has the property thatﬂkg(x,bi) = 0, kg(b',t) =0, and f(t) is non-
singular at t=b'. Thus, the numerical solution of the problem is obtained by
letting '
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f(t)=5(3)—,<:'-<'c<bl . ‘ | (60)

t-c

5. Results and Discussion

The problem is solved for three crack geometries shown in Figures 1,
3 and 4 and for a uniform bending moment Myy = M, (per unit plate width)
away from the crack region., The results for a symmetrically located inter-
nal crack of length 2d are given in Tables 1-3 (see the insert in Figure 3).
Since the problem has three length parameters, namely h, b and d, the results
depend on two dimensionless length constants., Table 1 shows the normalized
stress intensity factor as a function of b/d for fixed values of b/h. One
may note that, as expected for (b/d) - 1 the stress intensity factor becomes
unbounded. Also, for fixed plate dimensions b and h in the other limiting
case of d » 0 the stress intensity ratio is seen to approach unity, which
is the result given by the plane elasticity solution for an infinite medium
with a through crack. These trends are clearly observed in Figure 2 where
the asymptotes are indicated by b/h = constant lines. The behavior of the
solution for the 1imiting case of (d/h) > 0 may also be shown analytically.
Referring to (44), in this case the problem is one of an infinite plate for
which the Fredholm kernel k(x,t) is zero. Noting that ford - 0 y - 0, by
using (42) it may easily be shown that in Timit the kernel of the integral
equation (44) would reduce to 1/(t-x). Also, by observing that the crack
opening displacement on the plate surface is uy = Byh/2, m(x) = M22/(h2E) =
Mo/(h?E) = ob/(GE), and A% = 12(1-v2)d2/h2, if we replace f(x) by

f(x) = 3By/ax = (2d/h)av/ ax » V= uz(x1,+0,h/2) . - (61)

equation (44) becomes
dl

E 1 1 ov 4. _
——f th dt--c

R b °® 'd' < X < dl s (62)
-d!

which is the integral equation for an infinite plane under uniform stresswb
- and. for which the stress intensity factor is k(d) = cb¢a',

~14-.




Table 1. Stress intensity factor in a plate of finite width containing
a symmetrically located single crack and subjected to uniform
bending (My) away from the crack region, v =-0.3, o = 6My/h2,
(Fig. 1, ¢=0). )

b = 2h b = 4h b = 6h b = 8h b = 10h
b/d  |k(d)/a, /@ [b/d  |k(d)/oy /A [b/d |k(d)/oy/T |"b7d  |k(d)/oy /T |b/d  [k(d)/oy VA
> ® > 1.0 > © + 1.0 + +1.0 +> o -+ 1,0 + o - 1.0
40 - 0.9887 40 0.9680 |60 0.9676 80 0.9676 100 0.9675
20 0.9697 | 20 0.9231 |30 0.9218 40 = | 0.9213 |50 0.9210
10 0.9296 | 10 0.8530 |15 0.8491 20 | 0.8476 |25 0.8469
5 0.8747 | 6.666] 0.8125 |10 0.8045 13.333| 0.8019 [12.5 | 0.7716
2.5 | 0.869 |5 0.7910 |7.5 | 0.7780 | 10 0.7737 |10 | 0.7526
2 0.9094 | 4 0.7812 |6.0 | 0.7620 |8 0.7556 |7.5 | 0.7332
1.5 1.0664 | 2 0.8320 |3.0 | 0.7502 4 0.7267 |5 0.7166
1.04 | 3.7426 | 1.04 | 3.4252 [1.5 | 0.9282 2 0.7817 2.5 | 0.7347
S1.0] »e 1.02 | 5.1526 |1.04 | 3.2040 | 1.04 | 3.0449 |2 0.7702

1.01 7.4209 {1.01 | 7.1933 1.01 6.9928 1.04 | 2.9256
.0 »e  [+1.0] s {10 | s 1.01 | 6.8141
>1.0 |+ =

In bending problem the kernel of the integral equation is a function

of the Poisson's ratio v.
the stress intensity factors in bending are dependent on v.
results given in this paper have been calculated for v = 0.3.

Therefore, unlike the plane elasticity problems
Most of the
However, to

show the influence of v on the stress intensity factors, for a central crack
and for two edge cracks the results are also given for v'= 0, 0.2, and 0.5.

Table 2 shows the results for the internal crack. It is seen that the stress
intensity factof slightly increases with increasing Poisédn'é ratio;
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Table 2. The effect of Poisson's ratio on the stress intensity factor in
a plate of finite width containing a single crack and subjected
to uniform bending, (cb=6M°/h2, b/h = 10, Fig. 1, ¢ = 0).
B k(d)/o,vd
b/d b'™ .
v=0 . v = 0.2 v = 0.3 v = 0.5
> » - 1.0 + 1.0 - 1.0 + 1.0
100 0.9583 0.9650 0.9675 0.9717
50 0.9002 0.9151 0.9210 0.9307
25 0.8119 0.8368 0.8469 0.8638
12.5 0.7278 0.7587 0.7716 0.7938
10 0.7074 0.7392 - 0.7526 0.7758
7.5 0.6868 0.7194 0.7332 0.7573
5 0.6689 0.7023 0.7166 0.7416
2.5 0.6850 0.7197 0.7347 0.7612
2 0.7192 0.7547 0.7707 0.7975
1.04 2.8152 2.8916 2.9258 2.9881
1.01 6.6721 6.7715 6.8141 6.8886
> 1.0 + ® > ® > >
Table 3. Stress intensity factor vs, width-to-crack length ratio in a plate
containing a single crack and subjected to uniform bending, (v=0.3,
d/h = 1, oy = 6My/h2, Fig. 1, c=0).
b/d | > 1 2 4 8 10 20 > @
k(d)/obla' +~o 0.9094 0.7812 0.7556 0.7526 0.7488 0.7475

Table 3 shows the effect of b/d ratio on k(d) for d/h = 1.

Again, as b-d

k(d) becomes unbounded, and as b ~ » k(d) is seen to approach the infinite

plate result given in [4].
To give some idea about the distribution of the stresses in the plate,

the bending moment Mzz(x},o) = M(x) is given in Figure 3. The result is
obtained from (44) which shows that the moment is -M, for 0 < x; <d, and has
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a singularity at x; = d + 0, The figure indicates that My, is a monotonically
decreasing function of Xq

Some results for collinear cracks shown in Figure 1 are given in Table 4.
One set of results shows the stress intensity factors for fixed crack and
plate dimensions and for varying crack location, The other set of results
shows the effect of crack length for a fixed crack location (as determined by
its midpoint). As ¢ -+ 0 or 2a/(c+d) + 1 it is seen that k(c) becomes unbounded
which is expected. The somewhat unusual result in this case is the steep rise
of k(d) to the sfng1e central crack value as ¢ - 0. As pointed out in [4],
a smooth continuation of k(d) as ¢ -~ 0 would correspond to the "pinched" crack
solution - the steep rise in k(d) being the result of the relaxation of the
crack surface rotation By at x; = 0 from zero to the single crack value.
Even though it does not seem to be possible to analyze this phenomenon in the
bending problem, it can be done for the collinear cracks in plane elasticity.
For example, from the expression given for k(d) [12]

k(d) _1 E(k) =
;i_/%r-?n-mj,k-n—-zw (63)

in an infinite plane containing two collinear cracks along Xy = 0, ¢c < ]x]] <d
and subjected to uniform tension g, away from the crack region, if we consider
k(d) a function of ¢, it may be shown that for fixed d

k(d) .1 and 4 k() »-= for c>0 , (64)
cofd'

meaning that for ¢ » 0 the approach of k(d) to the single crack value is very
steep. In (63) K and E are the complete elliptic integrals of first and
second kind, respectively.

The results for the edge cracks are shown in Tables 5 and 6 and in Figure 4.
Table 5 and Figure 4 also show the results obtained from the plane elasticity
problem for the identical crack geometry, The effect of the Poisson's ratio
on the stress intensity factor in the plate under bending is shown in Table &6,
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Table 4, Stress intensity factors in a plate containing two symmetrically
located collinear cracks and subJected to uniform bending, (Fig. 1,
v=0.3, a=(d-c)/2, b/h-]O o -6M /h ).

b/h = cHd = b

L k(c)/op /A k(d)/o /a | b/ k(c)/oy/@ | k(d)/ay /@

+1/9 +1.0170 00 -+ 1.0 - 1.0

0.14 0.7758 0.7835 10 0.76846 0.76847

0.15 0.7720 0.7765 8 0.76058 0.76060

0.2 0.7685 0.7685 7.5 0.75969 0.75971

0.3 0.7764 0.7720 6 0.76299 0.76292

0.4 0.7923 0.7803 5 0.77550 0.77552

0.5 0.8167 0.7916 4 0.81218 0.81212

0.6 0.8519 0.8058 3 0.9442 0.9432

0.7 0.9014 0.8232 2.5 1.2083 1.2041

0.8 0.9751 0.8447 2.08 3.1343 3.2639

0.9 1.1172 0.8734 + 2 +> ® > ®

0.95 1.3018 0.8944 :

0.96 1.3743 0.9000

0.97 1.4791 0.9066

0.98 1.6516 0.9148

0.99 2.0268 0.9265

+1.0 > ® +1.0134

Table 5. Stress intensity factors in a plate of finite width containing sym-

metric edge cracks and subjected to uniform bending or membrane load-
ing away from the crack region. cb=6Mo/h2, om=N0/h, v=0.3 (see
insert in Fig. 3).

¢/b Bending: k(c)/opva Tension
b=10h b=6h b=2h k(c)/o, /2

>0 > > o > ® > o
0.01 8.7889
0.05 3.4726
0.1 2.2893 2.4567 2.7957 2.9467
0.2 1.5754 1.6656 1.9359 2.1769
0.3 1.3082 1.3690 1.5802 1.8744
0.4 1.1693 1.2171 1.3922 1.7136
0.5 1.0878 1.1130 1.2849 1.6328
0.6 .1.0396 1.0800 1.2266 1.6080
0.7 1.0157 1.0583 1.2069 1.5970
0.8 . 1.0170 1.0665 1.2320 1.5915
0.9 1.0694 1.1369 1.3501 1.5883
0.95 1.1666 1.2645 1.4798
0.98 1.3466 1.4383 1.5452
0.99 1.4589 |
+1.0 +1.5869 -»1.5869 +1.5869 +1.5869
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Table 6, Effect of Poisson's ratio on the stress intensity factors in a plate -
containing symmetric edge cracks which is subjected to uniform bending
away from the crack region, bfh =10, o = 6M /h? (Fig. 1, d=b,

2a = b-c), :
k(c)/ob/a_ |

c/b

v=_0 v = 0.2 v =10.3 v = 0.5
>0 > o +> © > ® > ©
0.05 3.3451 3.4352 3.4726 3.5360
0.1 2.1681 2,2533 2.2893 2.3514
0.2 1.4744 1.5452 1,5754 1.6281
0.3 1.2197 1.2816 1.3082 | 1.3548
0.4 1.0889 1.1450 1.1693 | - 1.2118
0.5 1.0132 1.0653 1.0878 1.1274
0.6 0.9695 1.0184 1.0396 1.0769
0.7 0.9495 0.9956 1.0157 1.0510
0.8 0.9548 0.9981 1.0170 1.0502
0.9 1.0127 1.0522 1.0694 1.1000
0.95 1.1159 1.1151 1.1666 1.1943
0.98 1.3003 1.3293 1.3466 1.3631
> 1 +1.5869 +1.5869 +1.5869 +1.5869

The results given in the tables are self-explanatory. It should, however,

be emphasized that'(a) the stress intensity factor for the plate under bend-
ing increases with decreasing b/h ratio, (b) bending values are always smaller
than those of the plane elasticity, (c) as ¢ = b (or as the crack length 2a
approaches zero) bending as well as the plane elasticity results approach to
that of a semi-infinite plane containing an edge crack (i.e., k(c) -~ 1.5869¢va,
o= oy 0ro= cm) (see [8]), and (d) if the results are normalized with

respect to o'/C (rather than ova), it is seen that as ¢ > 0 in both cases
k(c)/a'/¢ approach 2/ which is the value obtained from the closed form elas-
ticity solution of an infinite plane containing two semi-infinite edge cracks
and subjected to tension equiyalent to an average net section stress cm', where
op' = o b/c, ob' = oy, b/c (see Figure 4).
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APPENDIX A

The normalized quantities for the plate bending problem, -

s * *
X = x]/a s ¥ = x2/a s 2 x3/a ;

* *
u= u]/a s V = u2/a s W= u3/a H

_ _ E , _ 12(1-v2)a*?
8 = oty o < 7 o M T A

In the problem described by Figure 1 a¥=a for 0 <c <d <b and a*=d for
c=0,d<b. |
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Figure 1. The geometry of the plate,
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Figure 2. The stress intensity factor in a plate of finite width containing

a symmetrically located. single internal through crack which is
subjected to uniform bend1ng‘moment Moo = M, away from the crack
region (see insert in Figure 3); v 8 3, cb = 6My/h2.
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Figure 3. Distribution of the bending moment M22(x71,0) = M(x7) in the plane

of the crack for a plate containing a single symmetric crack and
subjected to Mp2(x1,0) = -My on the crack surface -d < x7 < d.
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Figure 4. Stress intensity factor in a plate containing‘two symmetric edge

cracks which is subjected to uniform bending moment My or uniform
tensile stress op away from the crack region; v = 0.3, b/h = 10,
ap = 6Mg/h2, op' = op b/C, op' = oy b/c where op' and op' are the
average net section Stresses.
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