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EXPANDED ABSTRACT 

An efficient method for calculating the contact boundary and interfacial pres- 
sure distribution has been developed. This solution technique utilizes the discrete 
Fourier transform to establish an influence coefficient matrix for the portion of 
the pressurized tire surface that may be in the contact region. This matrix is 
used in a linear algebra algorithm to determine the contact boundary and the array 
of forces within the boundary that are necessary to hold the tire in equilibrium 
against a specified contact surface. The algorithm also determines the normal and 
tangential displacements of those points on the tire surface that are included in 
the influence coefficient matrix. Displacements within and outside the contact 
region are calculated. 

The solution technique is implemented here with a finite-element tire model 
that is based on orthotropic, nonlinear shell of revolution elements which can 
respond to nonaxisymmetric loads (refs.1, 2). The basic characteristics of this 
relatively comprehensive tire model are described in reference 3. This presentation 
will focus on the contact solution technique published in reference 4. A sample 
contact solution is presented for the 32 X 8.8 Type VII aircraft tire that was 
studied in reference 5. 
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FINITE-ELEMENT TIRE MODEL 

The tire is modeled by an assemblage.of axisymmetric curved shell elements. 
The elements are connected to form a meridian of arbitrary curvature and are located 
at the carcass midsurface. Figure 1 shows the assembly of 21 elements along the 
midsurface of a G78-14 tire, for which calculated results are shown in this paper. 
A cylindrical coordinate system is used, with r, 0, and z indicating the radial, 
circumferential, and axial directions, respectively. Each element forms a complete 
ring which is initially axisymmetric with respect to z. The elements are connected 
at nodal circles, hereafter referred to as nodes. 

The finite elements are homogeneous orthotropic with a set of moduli specified 
for each individual element. The orthotropic moduli for each element are determined 
by the ply structure surrounding the element. Each ply (on each element) is speci- 
fied separately, thereby allowing the model to include carcass details such as an 
overhead belt, sidewall reinforcement, and turnups. A turnup is included in the 
G78-14 tire model. It was found necessary to include the turnup in the model to 
obtain the correct inflated shape. 
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SINGLE HARMONIC RING LOADS 

The finite element tire model will respond to single harmonic ring loads on 
the nodal circles. An approximately linear load-deflection response is obtained 
when an individual ring load is applied to any node of the pressurized tire model. 
An example ring load-deflection calculation for the 678-14 tire model is shown 
in figure 2. A harmonic sequence of stiffness matrices is obtained by applying a 
sequence of single harmonic ring loads to each of the nodes that may be in the 
tire-pavement contact region. 

0 0.5 I .o 1.5 

RADIAL DEFLECTION (in) 

CROWN LOAD-DEFLECTION DATA CALCULATED WITH A UNIFORM RING LOAD APPLIED TO THE CROWN NODE 

SINGLE HARMONIC RING LOADS APPLIED TO A FINITE ELEMENT NODE 

Figure 2 
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TRANSFER-FUNCTION DEFINITION 

As a consequence of the linearity of the ring load-deflection response, the 
application of a single harmonic ring load produces a displacement field that varies 
circumferentially in the same harmonic as the applied ring load. Figure 3 gives the 
definition of the transfer function T, as the ratio of the output and input 
amplitudes. Since each node responds differently, a transfer-function matrix, 
Tik]n' is needed to store the stiffness information generated by the ring loads. 

INPUT: Single Harmonic Ring Load A, cos no 

OUTPUT: Single Harmonic Displacement B, cos n0 

Bn TRANSFER FUNCTION T, = A 
n 

Tikjn = nth harmonic transfer function relating 
displacement of node i to an nth harmonic 
ring load on node k 

Figure 3 
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POINT LOAD VECTOR {p) AND THE DISCRETE FOURIER TRANSFORM (DFT) 

This application of the discrete Fourier transform uses an even number of 
points (N), equally spaced around the circumference. The example shown in figure 
4 uses N = 8 points. A unit load is applied at any point, say point 0. The DFT 
of the load vector yields a set of N coefficients, G-, J which are approximate values 
of the coefficients of the conventional Fourier series defined on the continuous 
interval 0 I 8 I HIT and representing the unit point load. The point load is 
applied, sequentially, in the radial, axial, and circumferential directions. 

INFLUENCE COEFFICIENT GENERAT ION 

(pi = 11, 0, 0, 0, 0, 0. 0, 0) load vector 

DFT Gj = 1'3 gk$k 
N k=c) 'e = e-i2n'N 

gk = 1Pt , Gj = b j = 0, 1, . . ., N-l 

Figure 4 
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INVERSE DISCRETE FOURIER TRANSFORM (IDFT) AND THE INFLUENCE COEFFICIENTS 

Having the unit point load represented by a conventional Fourier series, whose 
coefficients a, are approximately given by the DFT coefficients, the transfer func- 
tions Tikln are used, on each harmonic, to obtain the coefficients b, of the Fourier 
series representing the response of the nodal circle to the unit point load. The 
inverse discrete Fourier transform is then used to evaluate the displacements, um, 
at the N points. These displacements are the elements of the influence coefficient 
matrix [Aijkal as Seen in figure 5. 

1 
INPUT SERIES COEFFICIENTS an 2 Gn = H 

IT OUTPUT SERIES COEFFICIENTS bn = anTik,n = N ik,n 

DFT OF DISPLACEMENT VECTOR Gn = bn 

ik = 
N-l 

IDFT um c GnWemn m = 0, 1, . . ., N-l 
n=O 

INFLUENCE COEFFICIENTS 
ik Aijk, = uj-, j = 1, 2, . . ., N 

SHIFT: 
ik . 

Aijke = 'j-l J = t,L+l, . . ., N 

SYMMETRY: Akeij = Aijke 

Figure 5 
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INFLUENCE COEFFICIENT MATRIX 

The influence coefficient matrix relates the radial, axial, and circumferential 
components of the displacement of points on the tire surface to the radial, axial, 
and circumferential components of load at these points. The radial response parti- 
tion shown in figure 6 is used to obtain a solution for frictionless contact, in 
which the axial and circumferential force components are known to be zero. The 
matrix here covers 3 points on each of 5 nodes. The point separation with this 
matrix is 11.25 degrees. 

'k,, q load at point II on node k 

d ij = deflection of point j on node i 
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TOROIDAL SHELL CONTACT SCHEMATIC 

After the inflation solution has been obtained, the tire model is deflected 
against a frictionless, flat surface. The contact surface is perpendicular to the 
wheel plane of symmetry and located at the specified loaded radius RL, as shown in 
figure 7. The vertical load and the contact boundary are unknown a 'priori. 

Figure 7 
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RADIAL DEFLECTIONS IN THE CONTACT REGION 

When the radius RR is specified, the radial deflections are given approximately 
. . 

2 f'h,N 
= Ri cos [(j -l)Ae] - Ra, where Ri is the inflation radius of node i and 

is the point spacing. Since the contact half-angle is usually less than 
2o”, the error in approximating the radial deflections by the above equation is not 
large. An initial estimate of the contact boundary is taken as the geometric 
intersection of the tire model and the contact surface. (See fig. 8.) 

, NODE I 

--m 

CONTACT SURFACE 

Figure 8 
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LINE LOAD VECTORS 

The radial deflections within the contact boundary are known but the forces 
that produce these deflections are unknown. The tangential (axial and circumferen- 
tial) deflections within the contact boundary are unknown but the tangential forces 
are zero because the contact is frictionless. All surface forces are zero outside 
of the contact boundary. Since the number of unknowns (deflections and loads) is 
less than or equal to the number of equations established by the influence coeffi- 
cient matrix, an initial contact solution can be found. The contact boundary is 
then adjusted to exclude negative radial forces. Three to five boundary adjustments 
are normally needed to converge on the contact solution. Figure 9 shows the load 
vectors obtained in a solution for the G78-14 tire with 221 kPa (32 psi) inflation 
pressure. The elements of {p) are values of the line load at 32 points on the tire 
model equator. The other vectors give line load values in the right (and left) half 
of the contact region. Seven nodal circles are in the contact region in this ex- 
ample. 
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N:32 

' ' * {pit = 1 11.48, 5.67, 0, . . ., y, 5yk7t lb/in 

{p't = {16.27, 4.61, 0, . . ., 0, 4.61 t 

lP3t = 1 22.28, 0, . . ., ot 

(P4t = ( 13.78, 0, . . ., ot 

Figure 9 
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CONTACTING MERIDIAN AND EQUATOR 

The line load values shown in figure 9 are divided by the point spacing to 
obtain the contact pressure at each point in the contact region. Figure 10 gives 
the contact pressure values at points on the meridian passing through the center 
of the contact region and at the three contacting points on the equator of the 
678-14 tire. The tire surface points before contact are indicated by l and the 
same points after contact are indicated by 0 . 

I MERIDIAN 

28.7 psi 

INFLATION 
PRESSURE 
p=32 psi 

Figure 10 

) in. 
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CONTACT PRESSURE DISTRIEUTION 

All of the contact pressure values (psi) calculated for the G78-14 tire with 
221 kPa (32psi) inflation pressure are shown in figure 11. The estimated location 
of the contact boundary is shown as a dashed oval. The contact boundary will be 
more accurately located when the density of points covered by the influence coeffi- 
cient matrix is increased. The point density is limited only by the size and speed 
of the computer used to execute the tire model program. 

CONTACT BOUNDARY 

Figure 11 

108 



AIRCRAFT TIRE SECTION 

The remainder of this presentation shows the contact solution calculated for 
a 32 x 8.8.Type VII aircraft tire. A.theoretical and experimental study of this 
tire under inflation pressure loading was made by Erewer (ref. 5). The photograph 
in figure 12 and the tire data shown in figure 13 .are taken from reference 5. The 
white curve drawn on the tire section below marks the location of the'carcass mid- 
surface. 

MERIDIAN SECTION OF 32 X 8.8 AIRCRAFT TIRE 

Figure 12 
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MATERIAL PROPERTIES ANTI CARCASS GEOMETRY 

The parameters shown in figure 13 are used in a preprocessing subroutine to 
calculate homogeneous orthotropic properties for the finite element tire model. 

32 x 808 TYPE VII 
AIRCRAFT TIRE 

Material Properties and Carcass Geometry 

Rubber: ER = 450 psi, wR = 0.49, GR = 151 psi 

Nylon Cord: EC = 156,000 psi, WC = 0.70, GC = 700 psi 

Cord Diameter: dC = 0.031 in. 

Ply Thickness: h = 0.043 in. (all plies) 

Cord Angle B (measured from meridian) and Cord Density N, by Lift Formula ---. 

Element B(deg) N(epi) Element $(deg) N(epi) 

1 55.44 25.42 12 46.97 23.81 

2 55.35 25.39 13 45.34 23.75 

3 55.20 25.34 14 43.71 23.78 

4 54.96 25.26 15 41.99 23.88 

5 54.60 25.15 16 40.25 24.08 

6 54.08 25.00 17 38.64 24.35 

7 53.33 24.79 18 37.13 24.68 

8 52.34 24.55 19 35.73 25.05 

9 51.18 24.32 20 34.39 25.48 

10 49.90 24.10 21 33.37 25.85 

11 48.49 23.93 

Construction: 6-ply, double bead 

Figure 13 
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FINITE ELEMENTS ON THE CARCASS MIDSURFACE 

The aircraft tire is modeled with 21 finite elements positioned along the car- 
cass midsurface. The ply structure in each element is specified separately in de- 
termining the homogeneous moduli for each element. Node 22 is a fixed node, posi- 
tioned to represent the tire bead which does not displace or rotate. (See fig. 14.) 
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LOAD VECTOR CORRECTION DATA 

The problem of calculating tire shape due to inflation pressure is highly 
nonlinear. As recognized by Stafford and Tabaddor (ref 6.), a successful solution 
can only be obtained by.a nonlinear finite element analysis which includes updating 
the pressure load vector direction during the inflation solution procedure. Table 
l-l, in figure 15, gives the input load vector components, pn and ps, that are 
needed in order to have the resultant pressure load normal to the inflated tire 
model. 

CROWN 

DEFORMED MERIDIAN 

UNDEFORMED MERIDIAN 

TABLE l-1. ~PUT LOAD DATA FOR FINITE ELEMENT MODEL 
OF AIRCRAFT TIRE ANALYZED BY BREWER 

Element Rotation 
Number AO (de4 

TIRELOAD' Input Pressure(psi) 

P" ps 

1 1.46 94.97 2.41 
2 4.61 94.69 7.63 
3 7.68 94.15 12.70 
4 10.10 93.53 16.64 
5 11.23 93.17 18.55 
6 10.71 93.35 17.65 
7 9.19 93.78 15.17 
a 7.90 94.09 13.11 
9 7.18 94.26 11.87 

10 6.48 94.39 10.71 
11 5.39 94.58 8.92 
12 3.00 94.87 4.97 
13 2.24 94.93 3.70 
14 0 95.00 0 

. . 

21 6 95:oo 0 

Figure 15 
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CROWN DISPLACEMENT VERSUS INFLATION PRESSURE 

The effect of correcting the load vector is clearly seen in figure 16. The 
finite element solution obtained when the pressure direction remains normal to the 
undeformed elements is indicated by A's. The solution found when the pressure is 
normal to the deformed elements is indicated by X'S. This solution compares well 
with the calculation and measurements made by Brewer (ref. 5). 
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DEFLECTED MERIDIAN 

The deflected shape of the meridian passirig through the center of contact is 
shown in figure 17 for the deflection 6 = 19 mm (0.75 in.). The tire load calcu- 
lated for this deflection is Fy = 9.76 kN (2194' lb). The distribution of contact 
pressure along the meridian is also shown. 
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DEFLECTED EQUATOR 

The deflected shape of the equator and the distribution of, contact pressure 
along it are shown in figure 18. Since only three points on the equator lie in the 
contact region, only a rough estimate of the circumferential location of the contact 
boundary can be made. 
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TIRE LOAD VERSUS TIRE DEFLECTION 

Calculated values of tire load for specified tire deflections are shown in 
figure 19. 
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CONTACT AREA VERSUS TIRE DEFLECTION 

Calculated values of contact area for specified tire deflections are shown in 
figure 20. The calculated contact area increases in finite increments as additional 
points enter the contact region (as the load is increased). 
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All of the 
loads are shown 

/ 
I’ 
I I 

-/-- ------- -- 4- -+ 
48.7 -\ 0 \ 

0 \ 
90.5 \ 

\ 

21.3 105.6 21.3 ' 
\ 

34.4 108.6 34.4 I 

I I 
I 28.3 90.7 psi 28.3 1 

1 34.4 108.6 34.4 \ : 
\ 21.3 105.6 21.3 

\ 
\ 90.5 / 

\ / 
\ 49.7 / 

. -- ,-/ -- --___---- --- 

CALCULATED CONTACT PRESSURE DISTRIBUTIONS 

contact pressure values (psi) calculated for two different tire 
in figure 21. The tire inflation pressure is 655 kPa (95 psi). 

AIRCRAFT TIRE CONTACT PRESSURE DISTRIBUTIONS 
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(b) 6 = 1.00 in., Fz = 3700 lb 

Figure 21 
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EXTENSIONAL STRAINS DUE TO INFLATION PRESSURE 

The extensional (membrane) strains produced by inflation pressure only are 
shown in figure 22. In this plot, es is the strain in the direction of the meridian 
and ee is the strain in the circumferential direction. These strain distributions 
are axisymmetric andagree with the strains calculated by Brewer (ref. 5). 

Crown Rim 

MERIDIAN DISTANCE S(in.) 

Figure 22 
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FORCE RESULTANTS DUE TO INFLATION PRESSURE 

The membrane forces (per unit length) produced by inflation pressure only are 
shown in figure 23. The forces N, and N0 are in the meridional and circumferential 
directions, respectively. These force distributions are axisymmetric. 
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