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List of Symbols

ax a^ OC 1 - blade accelerations along the xyz axes
respectively

aC	 = lift curve slope

CLL coefficients in the,A S ,C4 and KMmatrices

AL coefficients of the 
Px 

loading in Appendix B

A cross-sectional area of the blade

6^ coefficients of the KS,& matrices

BL coefficients of the 
P	

loading in Appendix B

b t =	 coefficients of ythe Ks and K., matrices

C =	 chord length

CA• =	 drag coeff;.cient

CT	= thrust coefficient

C A	 = aerodynamic damping matrix (see equation (52))N

	4	 = gyroscopic matrix (see equation (52))
r
C	 = reduced damping matrix (see Flutter Analysis)C

D	 = drag force on the aerofoil (see figure 7)

e	 = distance between the mass centre and the
shear centre of a cross-section

ea	 distance between the centroid and the shear
centre of a cross-section

eo offset of the blade from the F. axis

El, , EI2 	 flexural stiffnesses of the blade about the
major and minor neutral axes respectively
(both passing through the centroid)

EB, I EBI 	 = cross-sectional constants defin pd in
appendix M

	

ET- 1 	 = modified EI 2, for non-straight elastic axis
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E B, E 62	 = modif ied E B^ , E8 2. for non-straight elastic
'	 axis

E;	 = coefficients of the 
tx 

loading in appendix
J

F= transformation matrix given in equation (2a),
(6a)

F= aerodynamic force in the v^ direction (see
equation	 (46b))	 J

F= aerodynamic force in the	 direction (see
equation (46a))

G T	 = torsional rigidity of the blade

h	 = vertical velocity of a vibrating blade

H„ Hei H,1 H. Hot
Hermitian Interpolation polynomials

e.
(see equations	 (50))

H,	 H o	 = Hermitian Interpolation matrices (see equations
(50) )

H^	 = coefficients of the 	
loading in appendix J

LX Ly L unit vectors along the xyz system of axes
..0	 ^	 -I
L t	 L1 L t	 = unit vectors along the	 system of axes

I	 K	 = unit vectors along the XYZ system of axes

Lx^ LIB Lk	 = unit vectors along the	 x. L ^^ system of
axes

I i	 = coefficients of the	 o	 loading in appendix

J	 y

kA	 = polar radius.of gyration of cross-sectional
area about elastic axis

K„,	 = polar radius of gyration at cross-sectional
mass about elastic axis

Km^^^(M1 = mass radii of gyration about the major neutral
axis and about an axis perpendicular to the
chord through the elastic axis, respectively

KS	 = assembled structural stiffness matrix
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KG =	 assembled geometric stiffness matrix
(see equation (52))

KA =	 assembled aerodynamic stiffness matrix
(see equation (52))

KM assembled mass stiffness matrix (see
equation (52))

K= reduced total assembled stiffness matrix
for flutter analysis (see Flutter Analysis)

N local element structural stiffness matrix
for non-straight elastic axis analysis
(see equation (82))

kG	 local. element geometric stiffness matrix
'-	 for non-straight elastic axis analysis

(see equation (82))

km	 local element "mass" stiffness matrix fDr
non-straight elastic axis analysis
(see equation (83))

Ki = coefficients of the	 loading in appendix
J	 2

K= total assembled stiffness matrix for non-
^, straight elastic axis (see equation (87))

L = total lift force on the aerofoil

L C = circulatory lift component (see figure 7)

L Nc = non-circulatory lift component ( see figure 7)

L` = secondary (constituent) matrices displayed
" in appendix C

= length of ea,ch finite element

M = pitching moment on the blade (see figure 7)

MC = circulatory pitching moment component

M NC = non-circulatory pitching moment component

M s = assembled aerodynamic mass matrix (see
equation	 (52))
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 = assembled structural mass A:,ktrix
 (see equation (52) )

	l• ►^	 = bending moment component along the y-axis
(see equation (57a))

	

M^	 bending moment component along the z-axis
(see equation (57b))

	

M	 reduced total assembled mass natrix for
flutter analysis (see Flutter Analysis)

	

wl^	 local element mass matrix
(see equation (83))

Mtotal assembled mass matrix in the non-straight
elastic (see equation (87))

distributed loadings along the xyz axes

	

^^	 = load vector in the non-straight elastic
axis analysis (see equation (82))

distributed moments along the	 dand Z axes.

	

Q w Q	 = generalised coordinate vector for W, W,
deflections,respectively (see equation (49))

	

1	 = total assembled generalised coordinate vector

	

^ 	 (see equation (51))

	

C1	 = load vector in the straight elastic axis
analysis

Qs+ead^ = steady load vector in the straight elastic
axis analysis (see equation (52))

	

L	 = normal generalised coordinate vector

	

^-	 (see Vibration Analysis)

	

9	 reduced normal generalised coordinate vector
 for flutter analysis (see Vibration Analysis)

	

q q p q	 generalised coordinate vector for Us-
LIA 	 Y	 W, , deflections, respectively in the non-

straight p lastic axis analysis (see equation
('0))

tctal generalised coordinate vector for the
non-straight elastic axis analysis (see equation
(81))



ORIGINAL SAGE 1S
	 xi

OF POOH QUALITY

r	 = distance from the 6'..A,,-axis  (radius)

r = e. cos + x cos (Pt5)
R	 tip radius of the cantilever blade
Stransformation matrix given in equations

(4) , (6b)

T	 = centrifugal tension in the straight elastic
axis analysis (= f %,LX)

T= nodal values of T (see equation (60))

Taw ; 	 = average value of T along the i th element

T	 = transformation matrix given in equations
(66) , (71b)

Tt	 centrifugal tension in the non-straight
elastic axis analysis given in equation (75b)

T"	 transformation matrix given in appendix L

-^-	
defined in equation (85)

^A	 transformation matrix defined in equation (86)

To transformation matrix defined and given in
appendix L

^.	 elastic axis displacement along the x-axis

tl^	 elastic: axis displacement along the 7%- axis
i,A the non-straight elastic axis analysis

UW	 = wind velocity along the x -axis

U, U,I UT = wind velocities along the r^ 	 axes,
respectively

V	 = total wind velocity felt by the blade

elastic axis displacement along the y-axis

VW	 wind velocity along the 1 -axis

V,	 = induced velocity (along the ?, -axis)

V	 = air free stream velocity in Greenberg theory
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Vh	 = equivalent air velocity due to the blade
vibration h

	

Vy` vnt	 = nodal values of the shear forces along
the y and z axes, respectively

VL	 = elastic axis displacement along the y, , -axis
in the non-straight elastic axis analysis

W	 elastic axis displacement along the z-axis

	

W	 = work done by all loadings on the blade
WW	 = wind velocity along the Z -axis
WL	 elastic axis displacement along the 	 -axis

in the non-straight elastic axis analysis

X
V
1 Z = orthogonal cartesian system of axes fixed

in a ace, defined in figure 1

	

Xt{	 = orthogonal cartesian system of axes,
JJ	 describing the undeformed blade only in the

straight elastic axis analysis (see figure 1),
also defined in figure 24 for the non-straight
elastic axis analysis

XL  ^^,	 orthogonal cartesian syste:r of axes describing
the undeformed blade element in the non-straight
elastic axis analysis (see figure 25)

ti
^;	 = coefficients of the ^^ loading in appendix J

d	 = angle of incidence of the blade defined in
Figure 5

n
	d 	 = "in-plane" inclination angle of a given element

in the non-straight elastic axis analysis,
defined in figure 25

= blade precone angle shown in figure 1
A

"out-of-plane" inclination angle of a given
element in the non -straight elastic axis
analysis, defined in figure 25

	

8^	 = secondary coefficients defined in appendix B

	

^^	 = secondary coefficients defined in appendix B
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shear strains of the blade cross-section

1` = coefficients of the 'p^ loading in appendix B

•^ blade droop angle shown in figure 1

coefficients of the 
Q, 

loading in appendix B

longitudinal strain of the blade cross-section

E blade, pitch angle defined. in figure 6

r^ curvilinear system of axes, following the
blade throughout its deformation (see figures
2 and 26)

OM direction of motion of the blase defined as

+an ,

O^
W

coefficients of the 1, loading in appendix J

A = eignnv&lue matrix in vibratinr. analysis

AcN = complex eigenvalue matrix in flutter analysis

= real part of a complex eigenvalue

secondary coefficients defined in appendices
I^ I and J
r.
•"'- mr*rix defined in equation (62)

Tr = total potential energy functional

P= air density

4
= blade density

(he. •^ ll.^Jes } CT = solidity ratio	 =
R

2 
y

= blade prstwist

= eigenvectel matrix in vibration analysis

= eigenvec for of a particular mode in vibration
analysis

^j
Ic complex eigenvector matrix in flutter analysis
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	Z^	 complex eic;envector of a particular mode in
flutter analysis

= elastic twist of the blade about the 9 -axis

= elastic twist of the blade element about the
i -axis in the non-straight elastic axis

analysis

T= reduced generalised coordinate vector for
flutter analysis (see Flutter Analysis)

= normal reduced generalised coordinate

	

-r	 vector (see Flutter Analysis)

a constant cmeff icient matrix for
(see Flutter Analysis)

	W^ w, 	 W	 angular velocity components of a point on the
Llade cross-section, alone the 	 system
of axes, respectively

	

td1	 vibration frequency of the blade, or imaginary
part of the complex eigenvalues

	

c^+	 angular velocity of the "rigid" blade
defined in f igvire 1

O

C .	 ^ t

x

	

O^	 = first variation of ( )

V= volume of the blade

	

Vi	 = v.lume of the i th element
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1.	 INTRODUCTION

In an effort to convert wind power to electricity in the

most efficient way, large, slender, high aspect ratio blades

are being used. Aeroelasticians for the last twenty years

increasingly have developed more accurate and complex ways to

model the aeroelastic response of such wind turbine blades.

The overall structural behavior of such turbine blades

was generally accepted to be sufficiently represented by an

Euler-Bernoulli beam. Since good design often requires non-

uniform properties and complex, twisted geometry, the overall

equations of motion of a wind turbine blade cannot be obtained

easily from first principles. A systematic way that this has

been done in the past is by variational methods; i.e., Hamilton's

Principle and the Principle of Minimum Total Potential Energy.

It has to be noted that research done for wind turbine blades

parallels greatly research done for helicopter blades, since

the real difference between the two structures is only the

structural stiffness. (Wind turbine blades are stiffer than

helicopter blades.)

Houbolt and Brooks in 1956 (Ref. 1) presented for the first

time the fall linear differential equations of motion for rotat-

ing nonuniform helicopter rotor blades. They also presented a

total potential energy functional whose variation would provide

the same differential equations of motion. Finally, they pro-

aosed solution based on modal methods (Galerkin and Lord

Rayleigh's method).
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Hodges and Ormiston in 1976 (Ref. 2) presented the stability

ana Isis of uniform untwisted cantilever rotor blades for hover-

ing flight. The general nonlinear equations of motion were linear-

ized about the equilibrium operating position using Galerkin's

method.

Kottapolli and Friedmann in 1979 (Ref. 3) showed the non-

linear differential equations of motion with periodic coefficients

fc.• a horizontal axis wind turbine. Later Friedmann (Ref. 4) and

Straub a,.d Friedmann (Ref. 5) solved these nonlinear differential

equations of motion by a local Galerkin method resulting in a

finite element formulation. This was done for a helicopter in

hover.

The stability of a rotor blade in hover was also examined

by Stephens and Hodges (Ref. 6) in the same year, 1980. They used

a mixed deflection and force, formulation and they solved the non-

linear static equilibrium equations by a collocation method.

Kata (Ref. 7) presented the nonlinear equations of motion

for nonuniform, twisted, horizontal axis, wind turbine blades

using Hamilton's Principle.

Finally, Sivaneri and Chopra (Ref. 8) in 1981 presented the

aeroelastic stability of a helicopter rotor blade in hover by

finite element method based on'Hamilton's Principle. The flutter

analysis was done with normal rotating modes obtained from the

finite element method.

In the present analysis, the linear differential equations

of motion of a horizontal axis wind turbine blade are solved

using the finite element method coupled with the total potential

energy formulation of the structure.
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According to the finite element method, the structure is

discretized into a number of finite elements. The field

variables within each element are interpolated with respect

to the nodal values of some generalized coordinates, using

piecewise continuous functions. The assembly of all the

elements will then represent the complete structure (Ref. 9).

With the finite element method, complex geometries and

nonuniform properties can be easily represented by averaging

them inside each element and then decreasing the size of the

element.

The matrices involved in the global equations of motion

of the assembled structure will have smaller bandwidth as

simpler finite elements are used (e.g., the 2 node beam element

used in this analysis).

For a cantilever blade, a small amount of finite elements

is sufficient for a good displacement solution, while a larger

number of elements is required for a good stress solution.

In Chapter 2, the static and the vibration analysis of a

straight elastic axis (rotating) cantilever blade was done

using finite element method. The flutter analysis was done

using a modal method, the modes having been the normal rotating

modes of the blade obtained by the finite element method.

In Chapter 3 the vibration analysis of a nonstraight

elastic axis beam was performed. The blade was discretized

into a number of straight elastic axis finite elements suf-

ficient to describe the curved shape of the beam. The stiff-

ness and mass matrices were first obtained along the local axes
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of each individual element and then they were transformed along

a set of axes common to all the elements. The problem was

then solved in a similar manner with the straight elastic axis

case.
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2.	 STRAIGHT ELASTIC AXIS ANALYSIS

2.1 Mathematical Model

A global orthogonal system of axes, fixed in space,

X,Y,Z is defined as shown in Figure 1, with the blade rotating

at a constant angular velocity Q about tre Z axis.

The blade is set at an offset Ce from the Z axis, as

shown in Figure 1. A new orthogonal system of axes x,y,z is

now defined, with the x-axis being the elastic axis of the

undeformed blade. The blade is also inclined to the XY plane

by a precone angle P and a droop angle C. The cross-section
of the blade is symmetrical about the major principal axis

and pretwisted at an angle t . The shear center E.A., the
center of gravity C.G., and the centroid of the cross-section

are not necessarily coincident.

All blade properties are in general nonuniform. The

blade is allowed to deform under the action of rotary, vi-

bratory and aerodynamic loadings, according to linear small

deflection engineering beam theory. Since the blade is of

moderate to hich aspect ratio, plate bending effects are not

significant and the deformation due to shear is neglected.

Also torsional warping has been neglected.

The deformation mode of the structure consists of three

translations u, v and w and one cross-section rotation ^ as

shown in Figure 2, under the assumption that the cross-section

shape does not change throughout the deformation of the struc-

ture. The three translations u, v and w describe the behavior
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p1,the elastic axis only.

The equations of equilibrium of the blade are written

with respect to the undeformed blade axes x,y,z.

The aerodynamic forces are calculated according to

strip theory based on quasi-steady, two dimensional, incom-

pressible unsteady aerodynamics. The position of a point A

in the blade can be defined by blade coordinates ^' n and

which follow the blade (see Figure 2). The position of

the same point with respect to the xyz system of axes will be

X	 ^+w	 o

^	 =	 v	 +	 F 1	 (1)
t	 w  

where § is equal to the x-axis coordinate of point A in the

undeformed blade.

F =^ v`	 cos(^ot^)
r	 W^	 sln^^+^^0

tr51n(Ot#)—W'C-0S\^o

Cos (^o +

for small 0
Cos (ode + 0) = COS	 — SIN

o	 e

S	 + ^Cos^

then to first order terms
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1
F

W

-trCOS¢ -WSINO VVKO -WCOS^

COS 0. - 05i'n 	 -sin -^co- ^	 (26)
Sih 0 + OCOCs 	 cos - sin#

The position of the previous point A, with respect to

the fixed system of axes X,Y,Z will be

X	 x	 cos	 (.0s

Y	 = 5 d	 + eo I sin Rt sin	 3)•
z j	 Sino

where

COS UGt CAS (r+S) - SI- "at - COSRf sin (A+9) ,

S =	 si n at coos 0+ 9 )	 Cos Rt - Sina ^ Sin (P+9)	 ^r )N

Sin(ofq	 0	 ccS(A+g)	
i

It should be also noted that

F -' = F T
-^	 T	 CS)

S = SOW

and



10

OR1MNAL PAGE 15

OF POOR QUAUT-X

Lx	 Lt

Ly 	 L	 (6cx)

1, 	 L LT

I Z.
(66)

K j	 L Ll

2.2 Minimum Total Potential Energy Formulation

We can define the functional 7r where

Tr =( S^ min Energy) (Work of E x {ernat LOaQS) (4)
and

S^rain Enerj^ _	 E Eft + GYin + G^z 	 AT

It	 R	
R

Wor K of EX ternoct Lo« oLs = ! ('pxdz) .( Eft didl)d^
A x

o R
	 (R A

	
R

+  y Lrdx. + )t1 wdx +	 as
0	 0

R	 R

+ jlyw ,(4x + J1 a "Cl.	 (9)
O	 O

:'::en, among all the possible displacements u,v,w and	 that

satisf y compatibility inside and on the boundary of the

lade, the one that satisfies equilibrium everywhere in the

structure will also minimize the functional 7r of equation (7).
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, Hdnce, the condition

S-a = o	 (io)

will provide the solution for the displacements u,v,w and ^ .

We can express the strains in equation (8), with respect

to displacements u,v,w and ¢ as follows.
Let Js and cis, be the lengths of an infinitesimal element

along the blade before and after deformation respectively.

Let AB, AC and AD be three mutually perpendicular line

elements before deformation (see Figure 3), with

(,j,)' = (AB)' + (AC) ' +(AD)'

and AB' , AC' and	 be the saa me elements after deformation,

hence

(cL s , ^ 1 = (AB`f + (AC 1)^ + (AD")'

Then, for small deflections

AB = S old
of

&s' d ^
CL

and iE	 AB-AB
AB

d. s,	 vls

= CL t	 dF	 rill
ds	 ` 1

(if
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Let the coordinates of point
.

axes to be given by equation

with respect to	 and subst

ds, =	 dx

C dd^	 ^

A, with respect to the x,y,z

(1). Then differentiating it

ituting into the following

l2 + ( C, z+( CLa
`d	 d

CL s,

d.^	
could be obtained.

To find	 Lwe simply substitute
CL 9

LL = v--W= 0= O

into the	
d

&s^	 equation above.	 Then by substituting

the expressions fc	
S-	 and	

ds
 into equation

(11), dropping nonlinear and higher order terms, we get

 (i'su —I (V- C.os + W sin J -	 -trin
o	 a	 o

+ w "cost ) + & +	 '^	 (12
0

Substituting equation (12) into the tension equation

T — E ff Ess d^dh
A'

we get

T + eA ^u-^cos^ + W"sine - KA ^ 	 (i 3O	
o	

i

Ea
Substituting equation (13) into equation (12) we can eliminate

u in favor of v, w and	 and hence obtain
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t
t

E	 — T + (eq - 
^l ^(v-^c.0S + w "'S n	 + w „sir+

^j	 EA	 O	 o

	

- w'co s ¢) + ^= t	 - KA^

Similarly yrom Figure 3

A B' = d3. ^^
d.I

Ac = d 1
aLi

	d.x ^^ _ dx	 z + cly 
cl	

dy	 z
13 c C d	 CL9	 d. ^	 do

aL h

Since

cos
2 - 

^^^^ = S in ^ f ,1 e%v Y1,

then,	
^ 2	 ^ Z^

♦ ^AC^ - (F3 1c, -
(AC)	 '1

Or, substituting the ex pressiins for AB' , AC' and B'C' into

equation (15) we get	 g

_ dS,/d ,,vlti +(ck; J.1^2d2oCL^ - dx/cLn) ^c 	 ^^	 ^	 ^1[(CL-XICL C
Z(CLS,/CL'f')X',CLS,/CLj) CL§CLI

	

+ [(d^/CLoa^ - (CL31CLO CL11 , + d'ICLOd§ -(dIL/d. 1) CL 1	 i
(d-s,/d§Kds, /Ot d9^i^1
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Differentiating equation (1) with respect to I and
substituting into equation (16) together with the following

Equation

ds,	 OLX 2 
+	

OL 
t +	 of '

	

= C	 Cd	 C^

	

7	 '1

we get, after deleting higher order and nonlinear terms

Similarl y , substituting n by	 into equations (16) and (17)

and repeating the former l analysis we cet

yt ^ 
= 9 0*'

substituting equations (la), (18) an", (1 9 ) into equation (8)

for the strain energy, we qvt
R

Sera in Ener	 =	 + ^EI, s^ni	 S^ + EI ces v III)jl
	 z ,	 EA	 o

^	 2

+ EI, cost + EI S sin2OKW *^ + 2 cos ^ sino EI ` E^

	

J	 o	 o 	 ^^

U„w,, + C G T ♦ E 8 (0`') 11(0) x - z E B r-os ^- Lr

, (0.) w

where EB B and ED, are i7ivon in 1ppen,lix M. Sind' the above
t

equation is up to second order o:: :'11Unitucle wh orl we come to
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ORIGINAL PAGE IS

OF POOR QUALITY
R	 R

pX a.X E^^ d j dj) cL^

A x	 A

or
R

T 1
JfE d djcL	 (21)

o	 A

we need to consider E tg up to second order of magnitude, too.
Hence, if we kept second order terms into e quation (14) we

would get

E tt = u/ ♦ z [(t' ) I 
+ (WI) 2 

+ ` Its ^ 2,^ 2 '^st

it 	 N	 (i^	 ^IV- COS	 yy Slrto t ^` U Sin + W COS)

+	 V "Sin — W'CO5^ + ^(tr lcos# + wllsin^	 (22)e

Then, substituting equation (22) into equation (21) and ignoring

the u' term since it is one order of magnitude higher than the

other displacements, we get	 R
1

WorK of fie,++ri Ju4at Tension	 T — z ^^')z+(W^)J	 o	 `

+ e,4 (V / Cos# + W'sin ô̂ — eA ^C^ ^Sih^ - e
W Coq)

- KA [ 2 (^") 1
+ 0- /^"d^ (2.3)
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r

Substituting equations ( 23) and (20) into equations (9) and
t

(7) respectively, and ignoring the term	 I
T

which does
EA

not contribute in the variation of 7r , we get

 f2.

IT	 EI, st n2 t E I1 cosi v"} 1 + E Il cos"p

0

+ El, sin' . yy'^,
2
 + .2cosy^ Sin [EI. — El: kr 

Wa

+Gr ♦ ^6,(')tk^')= — 2 E^1 cash..

— 2 E B,1 	qo^w
R R

^x dx —	 (v'}^ + (W'}^] + eA L "cos

x0
+ yy "sin¢ - eA Ulsin - W/Cos

o	 •

KA [ z (0Y + 
01

R	 R	 R

tr cLx -	 w dx -

°.	 o
R	 R

q w'd.z -	 tr'cLx	 (24 )
0	 0

Note that rotation 	 is about the deformed axis and hence the

work done would involve 4, rather than x
The above functional jj is ecuivalent to the one given in

Ref. 1.

V

i
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(a) Blade Absolute Acceleration Vector

It is essential to know the magnitudes of the absolute

acceleration components along the x,y,z system of axes (un-

deformed blade axes) to be able to formulate the inertial

(D'Alambert) loadings exerted on the structure.	 ,

A systematic way this can be done without losing Coriolis

and Centrifugal effects is the following:

Assume a point on the undeformed elastic axis to be

displaced by u,v,w and then the cross-section to be Notated

by ^ (Figure 2) .

The global coordinates of any point A of the above

cross-section will be, according to equation (3),

X	 z	 COS PI cos

Y
0

	

= S y	 + eo sillRt COS^.	 o
z	 sip

where, according to equation (1),

v	 + F I I
^	 w	 3

Matrices S and F are given in equations (4) and (2b)

respectively.

Substituting equation (1) into equation (3) and dif-

ferentiating equation (3) twice with respect to time, we

get the absolute accelerations with respect to the fixed
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system ,of axes:

••	 ••	 o

X	 u	 O u	 + 6C

Y= 5 U + 2 S	 + ,^ ,r	 +

w J	 LW J	 L w

t^SF+ 2SF SF)

L C.OS

+	 eo - Sin&h sihp	 (25)

0
Resolving these accelerations along the x,y,z system, of axes

we get the required components

0(x

aI

a=

X
o• o

uT T 
o

S Y U +2SS v +
N o •

LZ
9 •

W
~

up'
►r

T •.	 +u

+ S S Lr

W

tCs S F + 25 
'r

F t

0
	 2	 — cos l^ r^^ cos

+ F	 I ^ +	 eo	 0
	

(z6)
3	 Sit' ( ^+5) dos

Where
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CCL

	

C3	 on-
0	 CC-

4• p 	 v^	 to rl	 H	 i

++ ^--^ + o	 v
p

,
	 `'°

gyp 
.^	 40	 :^ .-.

	

CO-e	
^ •a . ^+ ° V^ ' a^X V^p 	 `^	 CC-	 -

"V► 	 %A-%-.-S gym. C^	 s N `^'°	 N x tc

et	
0

+
•	 N

Lo
4 1	 _

	

Is,	
Lo

vie

,gCA
+ "o LIo	 1	 '-` m-	 c o

	

+	 +	 l'o	 .
CCl	

p	 +

`N 	 N	 : O N	 N n C8 ^	 1`

Loo	
4.	

Loo

H	
C80^ ^	

o C O V	 N o :`^O	 1	 v

Loo	 oLoa+
a^	 N

	^- 	 `"^ `	 CC1	 0 5	
O

	

N	
o 03	

,3	 `'
N

cYl. Ca. 	
L+.	

.	 C1+7..

	

+GO..	 LOO	 + ...^CCL

^N	 C	
+	

^	 S	 ^^

d v N cg	 C2 p^	 N 
c8

C^ c-c +	 cg	 +
1	 +	 1	 1	 ► 	 +	 V1t

S T S F+ 2 S T S F F
S
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U I D'Alambert Forces and Moments

Since the components of the absolute acceleration vector

have been found, we can now proceed to evaluate the inertia

loading thus induced on the structure.

Assume that a point on the elastic axis of the blade is

allowed to be displaced by a set of small virtual displacements

^tx ' 9Lr , 9W and 9^ due to the action of the real inertia load-

ings. These virtual displacements will create a virtual change

at the x,y,z coordinates of ar y ;point A on the cross-section,

i.e., gX , ^j , S I respectively. These virtual changes will
be obtained by taking the first variation of e quation (1) and

using the F matrix as given in equation (2a). The expressions

thus obtained are listed ,below:	
1

^x = ^u — C [ ►^ coS 1 t7'^ - ^Sin^ +^^
1 W

, + ^— Sin( ♦^^

—^coSC +U, 5^ —	 Sin(o +0) t TCoS(^ +^)
J

^OSI ô+ ^) — ^ S1, (^ +0+0) OV^

Std _ ^tr t r - Sin( + 	 - ^ cosCO +^) J
l

SW + ►^ ccs ( '̂O + 0)	 sin(t +¢)

The virtual work done then by the inertia loading during the

above virtual change of coordinates 9x, 94 , 9?_ will be

	

Sw	 + (-OL')&-a)fCL§CLI CL3 (206



{S
pRIG^N^ Q^^ me
of ^

where the minus sign of the acceleration components is to

make them inertia components.

Substitution of equations (27) for Sx, p, , 91 into the

virtual work equation (28) will give

^	 —	 ^x SLk +	 5U" + 	 g w + 18 90
0

where the inertia loadings will be

	

^x =	 Pb^"ax)d^d^
A

A	 (30)
A

A Pb
A -^dIdI +	 ^'Ctak-v)OL dj

A Pb	
I

A b

- ff ̂ ax) (V-- C' 
^	 A

Substituting t;ia equations (26) for Otx , C( I , 0( 1 previously

found, into equations (30) for the loadings, deleting all non-

linear terms and all u terms, since u and its derivatives are

much smaller than v,w,	 and their derivatives, we get the

equations of the six loadings as presented in Appendix A.

L-
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(c) Blade absolute Velocity Vector

To be able to perform flutter analysis, we must know the

aerodynamic forces exerted on the blade during its rotary

and vibratory motion, which means that we have to know the

velocity field induced around the blade. This velocity field

will be different at different points on the cross-section

of the blade. To avoid this difficulty we will take as a

reference value for the velocity, the value at the aerodynamic

center which is at the elastic axis in our case, i.e., at

(31)

Similarly, as before, allowing a point A on the elastic

axis to be displaced by u,v,w and then the cross-section to

be rotated by ^ , the global coordinates of this point will

be, using equations (1), (3) and (31),

X	 + V.	 cos	 cos A
Y	 —'	 S	 v'	 + eo I sine coSP

r+	 ` W	 Sin

(32)

Differentiating the above expression with respect to time we

can obtain the absolute blade velocity with respect to the

global system of axes

e ^tu

+s V-r
W

Y =se
W

-2 sing L cos
+ eo

SI cosRt cos

0

(33)
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where S was given in equation (4).

This absolute blade velocity is due to the vibratory

and rotary motion of the blade and it is taken positive along

the direction of the unit vectors I 77. Hence, the equiva-

lent air velocity to this blade motion will be e qual in

magnitude with the blade velocity but taken positive along
7 -* 7

the direction opposite to I J K (see Figure 4a).

Allowing the air free stream to have velocity components

VW , VW , and W,, with respect to the X Y Z system of axes

and the induced velocity t!` to be in a direction opposite

to W. (see Figure 4b for positive directions of all air

velocities), then

TctoLt air vtfoci +4 = Beade wetociCj t Free air vetocity

1 noLttceci. treloc.ity
0

X	 uw	 a
Y + Vw _ o	 (34)
LZJ	 LWh, J	 L U'c

Resolving the total air velocit y of the above expression

along the xyz system of axes, according to equation (6b) we

get

Vx	 T X+^w

vy =	 Y +Vw
(3Y)

N	 •
1	 Z + WW - U^

24
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Figure'4b 
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Further on we will have to resolve these components along the

deformed blade since we are interested in the aerodynamic loads

after deformation of the blade. Air velocities Ut , ^iI and US area1.__&
going to be taken positive along the negative LI	 L LI unit

vectors. Hence according to equation (6a)

= FT
. 
V

 ̂ y	 (36)
Ut j

where

U^	 rowboct componevA of uelocl* ^j

U^
	 ^cx.TV tiaC COM?ohen{, 01 Vefoci Ly

UT
	 perpenO.icular component of uetoci

Substituting equations (33) and (35) into equation (36) we get

U9	 T U.	 T T• u't	 T T	 UW

U^ — F ^' + F S s	 + F S VW

w	 W	 WW - ^;

T T	 - ^LihS`L COS

+ F S e,	 r-05Ri cos	 ^3}^
01

where F is given in equation (6a)
N

Since the radial component of velocity is much Smaller

than the perpendicular and tangential ones we can neglect its

contribution to the aerodynamic forces. Also the Ll.displace-

ment and all its derivatives are much smaller than the corres-

ponding tr and W ones. Hence all the Lt terms and their deriva-

Ut

U7

UT
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tives can be neglected in t'Ze Un and US equations.

?resenting U, and Uj explicitely (after nonlinear terms

have been deleted) we have

U	 Cos tr + sin W +	 S;n(P+8)5in Lr " asin(p4).

Cos W -	 t C. Cos Sb + Q s cos( p

+S)Cos^ + RC' Cospcos¢ + V" -r.0SUQ{CoS(P+S)•

WS 	 + Lr Cos^) - SiM2 (COSH - ;lh - COSQi
o	 e	 o

S1%1{At9xs1n0 + CoS^) + V	 h ^{	 /	 yy'.V,

	

-S^ +	 COS( ts)
e	 o	 `

Sim + V Cos^^} + COSRi(Cos# - osirlo - si"Rt Slrt^^+^)
0	 0	 0

(sin# + cos	 + ^ 	 (w^ - U^^ -- sin(^ts)(ti++^ Sir!¢ +

+ Lr COS ) + cos( ts)(Sirl + Cos

t cos \ 	\	 t^u^ =	 w t +^ s^n(^t^)CoS tT +	 Sln^^3tb}.0

sin w - c.oq Cos	 + e, Cos	 _	
cos(D

i

+^)51Y1	 - U^,e,CoS 5in	 + Tr CoS U(,L cos its)
•C-w 'cos¢	 + SinR] (:Sim 'o' ;- Cos ) - costal,{

0
Sit. (t +g CoS - sin) + Vw	 x 

W

• Cos t V' 'S ► n) - CoS ^L{ l`Sin^ t ^GOS)

•Si rt(^3 +^){COS - Sin	
+ (WW _ U) Siv!(^ +^^

--woos + U'sln) cos{^+S^^cos^ -^sir,^^	 ^3g°	 o

Also since the blade is allowed to pitch to the free stream,

we can define this pitch to be E taken positive in the clock-°
wise direction. Then the rare of pitch E , which is aiong the

Lt direction, to first order terms, will he obtained' from



OROW `AGE a	 2 9
OF POOR QUALnir

CWf w^ wTJ 
L^	

L 0 0j l^ +^ 0 - w VI LZ + ^ 0 0 ^^ I

L7	 LI	 iy	 J
LLIJ	 qj	 LLzjK

=C[ 00] +[ 0 -W F + [oo 2]sF LI

Hez,,7e, to first order terms	 Li

@	
J

(39)
(d) Aerodynamic Forces and Moments

The aerodynamic loads are formulated according to strip

theory; i.e., assuming that only the velocity components per-

pendicular to the 5 axis (deformed elastic axis) influence

the aerodynamic loads.

The convention used for positive air velocities U11 U3

angle of incidence d , lift L , drag D , and pitching moment

M . is displayed in figure 5, according to which all velocities

-r	 -►
and forces are taken positive along the opposite L, , LI direc-

tions while d and M are taken anticlockwise as positive

(nose-up).

Ass laming that the blade is vertically displaced with
a

velocity ^ , being positive downwards, and is pitched up at

an angle E to the free stream, the total lift and aerodynamic

moment will be respectively

L = Lc. + L NC	
^o

M - M : + MNr_

in terms of their Circulatory and Non-Circulatory components.
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Greenberg theory provides the values for

'dYid Ak for two dimensional oscillating airfoil in a pulsat-
NC

ing incompressible flow V ,	 the airfoil being pivoted about

the quarter-chord point which is the aerodynamic centre and the

elastic axis (See Ref. (71)).

L C 	 rcxc V( ^^ + VF_ t 2 E)

0
L NC = - 2 ^ac y {^' + VE + VE + 4 E)	 ^4^)

ez pact. L Y VE
^'	 C 3 E

^^ N ^.	 L L 	 p tX c C y) E

7	 NC	 3 1	 2	 o

Since the blade is moving with speed	 downwards then

the equivalent air speed will be VI, upwards where

v h = ^
Allowing the free air to approach the blade with velocity

V (see figure 6) , then projecting V and V^ along the YI and

axes and applying the conventions for positive velocities

stated before we get

U  = VcoS E -- Vh stnE

UI = - V1, USE - VSInE

For small angles E CoSE ~ 1 	 Sine . E and since VS < V

one has

v^ - V	 (y^)
V3 - —h VF_
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Also, since

,^'tJ	 U^	 Ui ^< U^

then	 U = Vu^ + U^ z U 	 V

substituting equation (42) into the lift equation (41) we get

LC	 U	 U +. !^. .\

_ _ 2 Po^c /_	 c .o\
(lie 3)

LN 	 ` s } —y E

The drag force D will be

D = i pa c C * U z	 (0)2	 a
Constructing then figure 7, we can write force equilibrium

equations for forces E and F exerted on the blade and
being positive along the positive L  and L  directions.

F= L c. s^na — Dcosa(
(45-)

F.= — Lccos y — Dsirtd — LN c
and

V
Cosa = ^	 sing = U

U
Hence substituting equations (43) and (44) into equations

(45) we get
Of

^	 zP	 ^	 y	 z
 E]	 (^6aj

zP	 z OL

Pa.c Cy )2 ^ USE _ U^ + 3c E	 (y6 C.
z	 8
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'^.." The convention used in this report for positive forces

and moments	 q Q along the xyz system of axes,

is displayed in figure (8).

	

Transforming equations (46 a,b,c) from the	 axes

to the xyz axes using equation (6a) we get for the forces

	

^z	 0F F
F.

or for the complete loading

^x = (- w's;vio - ur coq , + (- Wcos^ + U s^n^ FIo
sin	 t C— sin — ^ cos^J F

	

^^ = (InP	 cos^^ E + (cos^ — Osi n^^

^^	 M -- L x

M L-'

q = M W I

Note the negative sign on L 
due to the convention for IL

adopted in figure B.

Substituting equations (38a,b) and (39) into equations

(46a,b,c) and then into equations (47) we can express all the

six loadings listed above, in the following general form

(Loading) f-(COt^)1 U -^ ^Coer) 1V } CCo4_d	 + CCot ' "

	

/	 p ^
	 R•	 3	 y

+ lCoet w + (Coe'),+(Coe; 1r +- CCoet w

	

 
0•	 a 	 •^

	

+ Coe^^ + CC"'S lr + (Coe6w"' + CCoef Vw^	 s

+(Co0-f) w + CCOJ)
13	 ^S
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where the 14 coefficients for each loading are presented in

append `.x B.

It has to be noted that many of the terms in these coef-

ficients are shown to have negligible contribution in the load-

ing terms and hence they can be neglected.
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Throughout the analysis the following ordering scheme

was adopted

Quantity	 Order of Magnitude

e 0(1)
e, 0(1)
e A (1)....0

sin (a+b) 0(l)
f.. .....0 (0)

C4./« 0(l)
Lk 0(2)
Lr . 0 (1)
W 0(l)

0(1)
Ks" 0(2)...... . ...............
K; , 2 0(2)
K;, 0(2) 
K 14 0(2)

everything	 else .._...............0(0)

It can be seen from the above table that l_ displacement

is one order of magnitude higher than Lr and W	 This is why

terms including Lk and its derivatives have been neglected every-

where in our analysis.

Further on, the equations of equilibrium resulting after

the first variation of the total potential ener gy of the blade,

were kept up to second order terms 0(2) except in the torsion

equation which was allowed to go up to third order terms 0(3)

due to lack of first order terms 0(1). Doing this, the stiff-

ness matrix of the structure became unsymmetric. To preserve

symmetry, we had to allow u; to third order terms in 	 , in the

11 and W equations.
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More explicitly, for all the inertia and aerodynamic

loadings we'have :

In the ti loading

0(0) terms were kept together with up to 0(2) terms

in V and W (all their derivatives; have been neglected)

In the	 ,	 loadings

Up to 0(2) terms in Lr and W and up to 00) terms in

were kept.

In the ff loading

Up to 0 (3) terms were kept in Lr Wand	 .

Using the above approximations, many terms could be neglected

from the inertia and aerodynamic laodings (See appendices A and B).

2.5 Finite Element Formulatio n

The blade was discretised into a number N of finite elements.

In each element, the field variables were interpolated according

to piecewise continuous interpolation functions. To satisfy the

compatibility and completeness requirement for monotonic conver-

gence to the true answer as the element size decreases (see

Reference (9)) , we had to prescribe V', U", W , W' and	 on each

node of the structure. (See figure 9). The corresponding inter-

polation functions were:

Zeroth Order Hermitean Interpolation function H° for 	 and,

First Order Hermitean Interpolation function H i for V and W
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x	

Qr	 '

Similarly for W

Figure 9
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Then

jr	 ,H 0 0	 4^

	

H, ^Y M	 y

W	 0 H, Q	 qM,

Q

(48)

j
T 	 [V_ _i L	

09)
IT

	 ^W, W,W= W

Hl = L Ho, H,; Noz N 12 ]
No	 Ho, fat

-3(711)^fo^ = 2 C^3z +
Q.,H : l _ ti+[C^^ — z x^2 x JC^

Noz = — 
zC ^3 + 3 ^

N,'

Hol t.
H= x02	

4

(s0)
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Substituting equations (48) , (49) and (50) into (24) -for

the minimum total potential energy and taking the variation

with respect to where

T	 ^T ^T 2T

Alt N et.e. a is
we get

C K S + Kr)q = Q	 (s^^
where

	

K	 S+ruc+t4rat	 Mm4-rix ( Ass. I.w+6ted)

	

Kr	 CT eome.+r+G StIlness Ma+rix	 ( Asset-Abtecd)

Q

and

KS =

L oa j ;"I Ve4or	 { Asscm61ed )

b, L,. 63 L,	 by L2

6^ L,	 6s Li
n¢^ ^^ ^,,•	

S YM 
66 L3

R	 L	 0 ^} Ls

K G =	 C ^^dx^
au H	 x LI

`e`'.,	 5 YIA
L33

eA `Os^ 1 x dx'l H, d ^	 + f H; dx + JKITI
..............x........o. ..............o..:`.. ,.......3...

._..	 R	
"T J 	

L.
^..

ep S'f1^ j dx ^^I Q^ +	 N T ^ d7C + N^ p !^z

	

.,z ..

	 ♦ 	 H

HoTd^ 	 I Mo 4E d^
^	 ^	 w
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t

where the L^ matrices are presented in a ppendix C and the 6^

ccafficients are

6, = EI,	 + EI z slnz S
o	 •

bz = E I, 	 + EI 2 cos'

(E I z — EI.'GOS^Sin
/	 o	 •

^5 = — E B2 Cos O

	

[Q	
o

6!5 = — EB2 SIV7

66 - G.T + EB,	 2
6^ = CASrn^,

68 = - eA cos ^
2

6, = KA
Substituting the reduced leading equations presented in

appendices A and B into equation (51) we get

MA +	 9. +( CA tCG CL +

KCT Kt	 A+ KS + 	+ 1 ` 
M\j`/ 

9-	 S tad	
S 2)

where

L'!A	 = Aerodynamic Mass Matrix

N1s	 = Structural Mass Matrix

^p =	 Aerodynamic Damping Matrix

94 =	 Gyroscopic Matrix

=	 Aerodynamic Stiffness Matrix
1.

K S =	 Structural Stiffness Matrix

K =	 Geometric Stiffness Ma'--ix
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M = Structural ".Mass" Stiffness Matrix

9

	

	
Steady Load Vector

s+`..y

BL6 BL $LTl
/	 1 ... \	 .t .,. 6 3, 9

M H _	 `ter ^` ^T

(,1	 (	 4ae 
'Vetc..,,.	 S Y M	 ^ 0

'	 n	 T

	

a-^ L 6	 0	 a3 r4

TS	 a,L6 «y L 4

N`	 SYM
a2 L I,N

au	 r^^ f L. F L6 + r,3 L} r^ Lo
k : 	 —

At ., L„	 6 13 L10	 ; 6 6 Lg

T	 T
p	 : -aSL6 —a^L} — a ,6Lq —a,}L^o

G	 ^	 _a,, C9 a, 4 Leo

^6 Lq aid is ; a,t Lq + ai4 M ^oN

KS K

G

matrices were defined on page 5b., 
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T

<

B8 L6
	 '` L?.	

Bq L, * B,S L ♦ D,6Ly ^.., ^,

F. L_ * ^y L? D,^ L	 G L^ +A	 4Q^	 ...........--y. .....^.N . 	 •s Ll	 C L9

 L10	 o Lp

KM

Qcc N

T	 T

a } 	o ai Lq - a Io L ^o

\	 T

I aO	 au L.

SY \M
ag L g

A^ ^	
T	

Hl'T
e os	

^x d
" H d + (a ^: _ 8,) 

H, cl t a,, 	 dx
.. R ... a	 ^: f, .T ....... ........ 

e	 t ^.......... a	 ^: .. .

	

S4acaal	 Sin	 ^x N, , d + a -	 T x + a	
,T

o	 A	 ^^X	 .3 ^6 N. d	 ,s N,N	 c
t, 	 ,T	 ^ T

K	 dx o d	 COLIS - a16 I N, d
ax	

0

where the CQ eoef f ic: ients a: e

	

Oc t 	1

a1 m K„,

a; _ - me sin

Ocy = mecos^

as = 2w,^ Sin C^}SJ
a 6 = lmS2ccos(p+o) Sln^

o

CX^	 MAGI

a	 ►^ CO S + S K,„

2
OLi = m SZ e s i n

2	 ^.K,„ , cosC^ +S) cos 2^S - e ^ s^ n
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e^	 cos	 +S + e" cos+E Cos ^ _	 ,•.,.T

a„ - met]G2 cos2(P tO + eo Cos (P +&)COS Pi Cos

z
a ll = vhe2 COS

0( 12 = — W1uv SI ►1 (5+S)[ § COS(P +E) + e0 00SP]

a l y = — me 
21 [

^Cos
i(Pt.8) i- ecos(P+Ocos ^]

ass = - ^2coS [t.Kw: - KM) COST( +E)Sin^ t e sln(^+s)

Cns^ + + eeo Si n+^ cosC )
a ib = 2m e2 sln(f3 + JCO56

/o

a lp = 2M Q(k ;1 - }(,^ , )Cos( +S)Cos s1vn
0

a lg = zme^ sin( +^) SIV1^

OL li =	 S1	 Cos	 CO5 (P +h	 KM

The BL-, 	 and	 coefficients relate to the aerodynamic

Forces and are listed :, appendix B with opposite sign since they

have been obtained from the loadings directly. Hence, in order

to be substituted in the matrices M A , C A and KA a ppearing in

equation (52) their signs have to be changed since these matrices

have been transfered from the right-hard-side to the left-hand-

side of the equilibrium equations.

2.6 Static analysis

To perform static analysis of the structure we set

= 0

= 0

then the equilibrium equations (52) will be

K cL = Q s+eady	
(53)

and

K = KA + Kss + K4 ♦ KM
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The solution of equation (53) will give the generalized

displacements Q, where

,rT—
	 [V.-Lr.'t'r'Lr"WW,'WW'	 /z1

-U N e".

To obtain the shear forces VI and VI and the bending moments

My and M} of the blade we used the same conventions for

their positive directions that are shown in figure 8 for the

loadings 	 Ly	 ^^	 respectively.

The shear forces V7 Va for each element can be obtained

from the equilibrium equations, using force summation method

(see Reference (1) )

	

-^Vj — — ^	 (Sya}
Ix	 y

	

'fix _ — ^^	 (5y 6}

Approximating the above derivatives for the i th element

'fix 
_	

I;	
(55)

VI 	 V-Z	 VZ

7x

then, the nodal values of V, and V, for each element will be

obtained from

vy `+, _ V, - ^y^ ^ c 	 (56 vc)

vas., = V^^ — ^^L
(56 b)

with the condition that VI	- v^	 — 0
free CAW)	 ("604)



it has to be noted that in equations (54a,b) we have

	

û

	

	 t

	

dt	 C^y^ / A¢ro ^l no w+ iC 	`

	

( 1̂L)A eroj1jmaPw#'c 	 `Dei Xv- -A- c4urat 

where the "aerodynamic" and "structural" parts can be obtained

from appendices B and A, respectively, by setting all the time

derivatives to zero and then substituting the solution for q

(which is a function of tl , W, ^ and their derivatives) .

To obtain the bending moments Mj and M i for each element

we use the mode displacement method where (see Reference (1)).

2 M^ = ET, cos + ELv mzo W t (E I2 'EI)sin^cos^u'"
0	 O

(Te+ EBz 3'^)Sin - TeA ^ Cos	 (54C0
Mz = EIZ - EI,^smn cos w' + (EL sin "̂  + EI,cos"^) tr

(TCA t EB ^05^ +TeA ^sin^	 (5 60	 0

and	 ^--r = ^x
	 CS

g1

In this case we cannot substitute directly into the moment

equations the solution for 	 since they contain curvature
N

terms that are not represented explicitly in Ci 	 Nevertheless,

we can approximate the curvatures for the i th element, like

(59)
^X

X	 Q:
and then substitute the solution for Q	 It has also to be

noted that since the equation (58) has similar form as equation

(54a or b) wc can express T in the following form (for the
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i th element)

T t I	 T (6o)
x^

wi' h	 T= 0
lcee er+d

where	 = C x̂i)aerod namic Ch )structuralx 	 y	 xi

and the "aerodynamic" and "structural" components can be

obtained in an exactly similar way with	 and tdiscussed

before.

Finally, after all the nodal values of T have been found

using equation (60) we will have to average them for each

element; i.e.,

T+^ t T

	

T = Ta^^ =	 z

and then substitute it in equations (57a,b) together with

equations (59) and the solution for q to obtain the bending

mements My and Mz .

2.7 Vibration Analysis

To perform the vibration analysis of the structure we set

.0
.r

all aerodynamic terms = 0

Q S +Q.,a.,►y = 0

Then equation (52) will become

MSCL + CKs+K,, +P = o I+I  	 ti

The above equation can be solved as a generalised eigenvalue

problem (see Ref. (10)) of the following form
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Cis + KG+KM -M n
if

wt	 '_	 Q	 a n off, 9= q , e

where

Wi

1

_	
W%	

is + hc e ► q en voc eaf- ►+roc.+rix

^. 1	 CM xrn^
W

and

Ts	
1.S +" e1 envec+Or MaLf rIA

^	 ,r w+
~	 (M xM)

for w degrees of freedom (generalised coordinates)

(a) Uniform Cantilever Beam

The lowest 6 vibration modes were obtained for a non-

rotating uniform beam cantilever, discretised into 10 elements,

using subspace iteration.

The frequencies corresponding to these 6 modes were also

obtained theoretically using

E I,	 w ^ oc	 E Ix
F ^c► 	

YY► 
Y	 Lag	 h	

V11 ^y

W
Torsior	 ^h	 1

YYt Km Q

where the blade properties, the coefficients OL„ and bn to-

gether with the theoretical and numerical vibration frequencies,

,ire presented in appendix D.
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The agreement between the theoretical and numerical

results is very good.

Also, in the same appendix, the vibration frequencies

for the same cantilever, rotating with	 = 4.191 rad/s,

are listed, for the lowest 6 modes.

(b) NASA MOD-0 100KW Wind Turbine Blade

The above blade was discretised into 10 elements with

non-uniform properties which are listed in appendix E.

The vibration mode-shapes and frequencies for the lowest

10 modes were obtained.

Figures 10, 11 and 12 present a comparison between the

first flap, first lag and second flap rotating mode shapes,

respectively (9= 4.191 rad/s) as obtained numerically using

subspace iteration with our analysis, versus numerical results

presented by Lockheed California Company.

The agreement is very good.

(c) Investigation of the Direction of Motion -

- Flat Plate

In figure 13, the direction of motion OM of the MOD-0

blade during the first flap, non-rotating mode shape is

presented versus the pretwist t , where
0

0	 sari ' WM	 Lr
It has to be noted that according to figure 13, although

the blade is pretwisted from the root to the tip by as much as

26°, the direction of motion doesn't seem to be affected a lot.
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In fact, the blade appears vibrating in most of its span along

the direction normal to the chord at the section around 30-35%

of the span.

Similar behaviour is exhibited in the North Wind Turbine

(figure 14) with total pretwist 14°, and in the McCaulev Pro-

peller (figure 15) with total pretwist 220.

Examining the former three blades for the direction of motion

during the first lag non-rotating mode shape (figures 16, 17 and

18) no such behaviour is encountered.

In an effort to see how far we can stretch the direction

of motion concept, we examined the vibration modes of a non-

rotating very thin uniform plate, which has been treated as a

cantilever beam. (See appendix F). 	 The plate was given a

very high bending stiffness in the lag direct: , w:'Lth a very

small bending stiffness in the flap direction (ill-conditioned

problem). The first flap and first lag modes we examined for

30*, 60* and 90* root to tip pretwist and the directic.. of motion

was plotted versus the total pretwist in each case (figures 19,

20, 21, 22) .

For the first flap mode shape a similar behaviour was

encountered where the blade appeared to move throughout most of

its span, in the direction normal to the chord of the section

around 15-20% of the span (figures 19, 20, 21).

No such behaviour is encountered during the first lag mode

shape (figure 22).

k _,
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2.8 Flutter Analvsis

To perform flutter analysis of the structure we set

QS+ea^l^	
0

and hence we have

M9-+ C CL +K^
with	 M	 IV1 A + /

 

C, = CA + CG

K - KA + KS + K,, + KM
Doing a modal analysis, we can select a number of modes P 

out

of a total of m (see Vibration Analysis) and then transform

the above equations into this reduced modal space, through

the following relation

to obtain
00	 V

M	 +K-CL
with

C = ITpC^^
K	 0.

Further on, setting 	 = e

we obtain	 L
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Equation (62) is much more handy from the ccmputational

point of view due to the appreciable saving in computer storage

that results. For instance, in a typical modal analyE:is of a

cantilever blade, the assembled, damping and stiffness matrices

are 55 x 55 in size (for 10 beam elements). Picking up 5

normal modes; i.e., first and second flap, first and second 1%-

and first :_orsion, (p = 5) then the resulting 	 matrix will

be 10 x 10 in size.

Equation (62) can be solved as a complex eigenvalue

problem. For ,{!+'	

T. T
equation (62) will be

r-+
1 C.

where

being the complex eigenvector matrix

and	
11

llc	 (zPxzp)

being the complex eigenvector matrix
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i.e., a complex eigenvalue will be

A= ^tC W

u represents the damping associated with a given mode

while W is the frequency of that mode.

When	 is zero we have flutter, while when it becomes

positive we have dynamic instability.

Three numerical cases were examined, concerning cantilever

beams, as a comparison test between results obtained from this

analysis and results presented in the following papers, respec-

tively:
Ref. (3) by Kottapalli, Friedmann and Rosen

Ref. (6) by Stephens, lodges, Avila and Kung

Ref. (8) by Sivaneri and Chopra

In all cases, the vibration analysis of the beam was done

with the beam having been discretised into 10 finite elements.

(a) Ref. (3) by Kottapalli, Friedmann and Rosen

In this case the response of the NASA/DOE SOD - 0 WIND TURBINE
blade was examined. The blade was allowed to experience aero-

dynamic loads due to a constant wind velocity wwalong the K

direction, while rotating at an angular velocity R = 4.191 rad/s.
Note that according to our convention for wind velocity in figure

4b, WW 'or this case has to be negative.

Vibration analysis was first performed and 5 natural modes

were obtained ( first and second flap, first and second lag and
first torsion).
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Flutter analysis was then done, using the above five

Nodes, for the following wind cases:

,,,, _ 0
VW = 0

and	 w - - I5}, -313 -440, -62} and - 9yp.s "^S

The real part of the complex eigenvalue o
f
f
; 
the first lag

mode i.e., G 
LAf.	

Pdwas nondimensionalised with	 and plotted
I 

against the nondimensional wind velocity W I 	 where R is

the radius of the MOD-0 blade (see figure 23). 	 On the s^mr..-:

plot, results presented in Ref. (3) are also shown.

The agreement between the two curves is good, considering

the fact that in Reference (3) the input used was based on data

concerning a much earlier design of the MOD-0. The blade was

found to be stable fcr all the Wyr cases examined. The lag

stability was found to increase with ww,velocity.

(b) Ref. (6)  by Stephens, Hodges, Avila and Kung

A uniform cantilever blade was examined, with properties

as listed in the above Ref. (6) as "Reference (1] Configuration."

Two distinct cases were examined, the soft-in-plane and

the stiff-in-plane case, both for zero pretwist. The properties

associated with these cases are listed in appendix G.

The lowest six rotati.g mode shapes were obtained from a

vibration analysis; i.e., the first, second and third flap,

first and second lag and first torsion.
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Flutter analysis was then performed using the above six

modes. The complex eigenvalues obtained were non-dimensionalised

with the rotation speed 2 and then compared with the ones

presented in Reference (6). The comparison between the first

flap, first lag and first torsion modes is presented in appendix

G.

it can be seen that all the eigenvalues, except the real

part in the lag, have very good agreement for both soft and

stiff-in--plane cases.

The blade was found to be generally stable for both. cases.

It can be seen also that the stiff-in-plane blade is more stable

in flap and less stable in lag than the soft-in-plane blade.

(c) Ref. (8) by Sivaneri and Choor a

A uniform cantilever beam was examined, with the properties

given by Ref. (8) and listed in appendix H.

The blade was examined at

CT
	

0.1
Cr

where	
T _ r r 'ofo	 kr"5[ coef^icient

a- _ 509idii j ro.--;o

which is equivalent to the blade having been set at a pitch

angle of 12.70.

Vibration analysis was performed and 5 normal modes were

obtained; i.e., first and second flap, first and second lag

and first torsion. The 5 corresponding eig-nvalues were non-

dimensionalised by 2, the rotation speed, and then compared
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with results presented in Reference (8). The comparison is good

and is presented in appendix ::.

i

	 Flutter analysis was then performed with the previous five

F
	 normal modes and the complex eigenvalues thus obtained were non-

E

	

	 dimensionalised by v G and then compared with the ones of Ref.

(8). The comparison is good and is shown in appendix H.
i

The same process was repeated for

CT - 0.06
or blade pitch = 0°.

The comparison of the ^-,a.,alex eigenvalues is good.

When the blade was set at
Cr _ 

0. 3
Cr

or blade pitch = 29.30

the results obtained failed to predict the instability in lag

which is shown in both Ref. (8) and Ref. (2).
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3. LION-STRAIGHT ELASTIC AXIS ANALYSIS

3.1 Mathematical Model

A blade with a non-straight elastic axis can be modeled as

an assembly of a finite number of straight elastic axis elements

with different inclinations of and P with respect to the X

system of axes of the previous section.

Or more explicitly, we define again a global fixed in space

system of axes X Y Z in an identical manner with the straight

elastic axis case. (See figure 24).

We define an xp system of axes at an offset e, from the

71 axis and being inclined at angles 	 and S from the X y

plane.	 is the precone angle and p the droop angle (See

figure 25) .

A local system of axes XL I "ZL is then defined for every

element (See figure 26). The direction of these axes can be

obtained from the x y I system of axes if we rotate it about
d	 w

the	 -axis by an angle of and then about the4 -axis by an

angle P , the angles a and r being different for each element.

The XL -axis is the elastic axis of this element in the unde-

formed blade.

The position of a point A in the blade can be defined by

the blade coordinates 	 associated with the blade element

to which this point belongs. The position of this point with

respect to the XL y ^` system of axes of this element will be
L

(see figure 26)
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x
I
X0

1
X1.

+ T	 y`
2, -21.

where

COS d Cos - Sln d -sin 
r 

COSOC

T Si nd COS P COSOC stn P 
Sin 0(

SI n p 0 Cos

(65)

(66)

z

	

ORIIAL PAN 1S	 7 7
OF POOR QUALffy

z^ 	 + ^L	 0

^L =	 UL	 + F	 (63)
'IL j	 L wL J	 0

where

LLL , Ù  , WL and 
O 

are elastic axis displacements and cross-

section rotations of the blade element in question, UL T, and

WL being positive along the positive Lx, L 	 directions,

respectively, ^L along the ^ 'direction . 	 is equal to the

XL axis coordinate of point A in the undeformed blade element,

and i
F= U'

W^

-LrL  C.OS (O+^) - W^SIn(t+^) UL SIn(O+O^ - W^ Cos( +C ,
O {.	 O L	 o L	 . L

Cos ( Ô + }	 - sIti	 +	
(6`

Sin( + ^) Cos (¢+^`)o 

The position of this point A with respect to the x. 4

system of axes will be	 d
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and	 Xoo	 areyo the	 X	 coordinates of the left-hand-side 

nodF of the element in question in the undeformed blade, defined
i

as

xo Q;
u	 = T (64). .., o

l

o

^o a<< p^e,,:ou^ 0
etc.,, ifs

^`	 =	 element length

The position of point A with respect to the X Y	 system

of axes will be

COS @ t Cos 0
+ e, Sm S2 t Cos 0

sin 0

(6 g)

where

COSRL cos (P+s)

S= sin Rt cos (p+E)
N

Sin(+S)

-51nOQ	 -cCS btS1n(P+,E)

Cos IQ t	 - slnpit Sin (Pi-E)

o	 Cos (P.+ &)

(69)

It shnsld also be noted that

S = ST

F^' = FT
N	 IV

T = TT

/V	 N

(^ 0)
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The rest of the blade properties are identical with the

straight elastic axis case.

Finally, once the displacements LCLr W and	 along the

x 
y 
't system of axes are found, then the new coordinates

(X y	 ) of the nodes of the blade, the new element lengths
News

( Qt ) NEW their new inclinations (Ce ) HEwand (^ )ht „, and the new

pretwist of the blade (^ )
NEW 

will be obtained as follows
o 

X ,

	

 LL	 x

y	 = Lr	 +	 y

NEW	
H/	

J OLD



t

8 0	

0!'GORt' , PA Qtr IS
^Arry

a	 ^

NEW 	 — 	r 	 T	
/

C ^^ — z
0 1

New

See 7 ;4tkre 25

l a ^	 = ^an-^ ^^ - ^o
NEW 

NEW

N—	
is 20si n	 —	 -.

NEW	 G[	 NEW

t /O	 \/ 	 / O )"L." +

3.2 Minimum Total Potential Energy Formulation

Defining the functional 77 where

	7T = (Strain Energy) - (Work of External Loads)	 (42
and

Strain Energy =	 ( E E _ + G 2 t	 '^	 CLxcd dC Xx	 ^ G

= 2 Q^+G^ rtG^s3
Jdid;d^v

where	 -^, = v'oLme 4 +he 6pade
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Q^

Work of External Loads =	 ^c	 Ell CLId^ d

aN ^ 
C 
f A A

dds

+	 UL dx^	 w` dz^ t	 d^^	 ^L	 q^ L
0	 0

+W.- 
CLX' +	 (.r dz^	 {^-^)

o	 •

The strain equations that have been obtained in the

previous chapter (equations (12), (18), (19)) are applicable

here since the energy equation (72) is written as an assembly

of straight elastic axis element contributi-)ns.

Since we intend to preserve UL as a separate degree of

freedom, we w.11 not use the tension equation to reduce it

in favor of Lr , W and ^ but we will keep it in the strain

equations. Hence

a
E ^^	 u^ — r^ ^Uacosf6 + W^^S^n^^ —	 — ^ sin + W^^cos^^

o

Jo ^

V 	

L'

^^ =
	

L i
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By substituting the above into equations (73) and (74)

respectively, we get:

I
Strain Energy = T

2

e^

JI E:A ( 2 +^	 o
0

	

—	
^t EIz cost (LrL + L Ez, cos"^

"s
	

CEO +E IZ sin2 (w^ 4- 2	 2	 I
UL "wLn Slvl coq + C G^T + E$,e	 e

	

z	 ,12
L J - 2 E Ae cos ^ '+A

K z t	 U.

- 2 E B2 l tr,'co s^ + wL /s yl ^'O
L
 JJ

O	 O p 

where	
E I1 = E I2 + EAe2

E B, = E B, + EA KA

E Bz = E Bz + EA K2

Work of Exte _ ,ial Loads =	 -T-G _ ^` _ i 
CU►.^) ^ WL 

`I

u ^/	 z
emit O

+ eA I UL // cos
o
 + W/L"SIh

ê
 - 2A	 U' " 

e
SI ►1^

L ( 

wt.;'cos^ - KA z ^^^2+ ^^ d^

F
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+ 
o	

ly`U` +  WL + L 
1.

W^ + p 
^ 

VL C-xL + 	 OC
^	 L	 o	 L

or	 f	 t

i	 EA\u^ ^+ E7,sine 	E 1 Cos 1	 '' 
1

Z +

T	 ^T^

+ E 1 l co s'l + E T2 S i n^^S ] (^/y 	 +L

f 2 E lz - E I, 1 LL''wLI's1 n^ cosg +

	

o	 •

o ^ J C^ ^
12A cos VL  + 

eA s f n W I — VA 	 u`

LLL	 r^	 , ,o^

2 E b,u-L ^u5^ + wL ''s	 ^{
P.

c	 ,^	 L.	 ^/^	 eq U^ COSJ
l

^^	 1
+ WL since - eA l UL^s^n^ -- 1^^"cos

	

^	 .J
- Kp ! O'	 d^C^

V. t t; WL	 '	 U
^i	 1

0
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(C
and	 TC _ ) Px 

cLx,
x;

t Ta sin
where

t Ix COS d CO$ ^ t	 ^
P	 ^y Slvid Cos +

^S b

1 dx,
z^

dx,

Px

^y	 =

LT? 
J	

tt:^ cG,r,tnft

 AQo»^ 1Vt ^x

3.3 Forces and Moments Applied on the Blade

(a) Blade Absolute Acceleration Vector

Assume a point on the undeformed elastic axis to be dis-

placed by U,` , L;,- , w` and then the cross-section to be rotated

by

The global coordinates h Y	 of a point A on the
above cross-section will be, according to equation (68,

X	 x I	 Cos SZE Co5 ^. 1
Y	 -
	

y	 + e° S^ h Sit cas

SIki

where from equation (65)

and from Cgvation (63)

X	 X 	 XL

= V, +
	IT

^	 ^^	 l LL

IXL
 I

I + UL	 0

_ `r,	 + F

L wL

A



•	 pRIG U PAGE IS	 8 5
OP POOR QUALITY

Substituting equation (63) into (65), then into (68)
and differentiating the result twice with respect to time

we get the absolute acceleration at point A with respect

to the fixed system of axes

.•	 ••	 °
Xu^	 u"	 •• X.	 +uL
..Y =ST •• + 2ST	 + Sv	 ^,	 y + T

	

a	 ^^

^	 1N wL

+ STF +2 ° TF+SS T	 0CN^ I•.	 N h

{{^^ z — :Os 2t cos p
-^- DG eo _ Si n2t cos

0

Resolving these

we get the folli

aX	 T
aI _ S

a}

accelerations along the z y system of axes

Dwing comp.inents 	 d

V.	 ..
X	

•
 ut + 	T ° -^- ^L

Y	 ^^	 2 S S	 U1,
wL	 L W6

xo WO +u
+ S

T w 
y ♦ T +LUKIU. ` + (T F 2SrJ F_^ t	 ..T^N

7..	 L wL

:	 - cos (P+s) cos

0
Sin (P +&)  cos

(44)
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or more explicitly, the equations for a.,c ,a: and CXs are

presented in appendix I.

(b) D'Alambert Forces and Moments

In an exactly similar manner with the straight elastic

axis analysis, we assume that a point on the elastic axis

of the undeformed blade is allowed to be displaced by as set

of small virtual displacements ^u, ` , 9VL . EWE and 8^

due to the action of the real inertia loadings. These virtual

displacements will change the x y coordinates of any point

A in that cross-section by gX &^ s?. , respectively. These

virtual changes can be found by taking the first variation of

the following equation, which can be obtained by substitution

of equation (63) into equation (65):

X	 xp	 +u^	 0

	

y = Va + T Lq	 + TF 1
L i j	 zo j	 L wL

Ignoring higher order terms and applying the following small

angle approximation

Cos (0 + S6^ cos
o

Si nC^+^ = Sin	 +
o ^
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we get	 A

	

A	 - Slnd St!' ' sin coSpt OW +Ox = Cos d cos ^u`
cc'

	

+ cos y cos	 - cos - Sln	 + {Si n * cos , OUP^f^ ^^)
^

	

+ COSd COS m 	
W

	

^ - Y) ^S^n^ + ^Coso) -  ̂(costo 	 - sin

 COS Of cos	 cos 
+ lv ,sln^ 

+ 3WL'sin^

+ 	 + shot	 sin + cos	 + S (cos^

A
Sin Cos Q< I (Cos - Sint

+ ^S 
cos)] 

S	 Nc
^. sin cos Su p t cosdStr,, - slr, ^ sina 9WL

A	
A

+ Sin coS ^ [ - v^ ^ cos 0 - ^ sl n ^ + ^ sin, + c cos l ^u,;^L^

	

+ Si n d Cos r` - ^(slno + ^L. cos) - 	 cos^ -¢ sin.) SwL
^ 

t (S%n 0fCoS - [-jWL coS + (r, 'Slr, ,4 + W` sin + tr,cos

-COSd ( ►^ (Sin^ + cosp) + ^co5^ - SI r.^), -

-s^n^ S^nof [ v^ ^cos^ - sln^^ - (sin +

Sl n ^ su I. + CoS P EWI. • + Sin,- ^coS^ - Sln^ +

	

L  + sin ^	 sin + cos

- ` (Coq - ^s't1 0 ) ]  SW` T 7^^1 ^- 1 W` coS^ +

	4 JW,'Sio ̂+ ^Lr, /COS^(cos^cos	 ► 	 - Sln

-	 5^n t cos	 O

	

(42C
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Then the virtual work done by the inertia loading during

the above virtual change of coordinates Sz . 6^	 will be

C ('	 J
OW —	 C-ax)sX + C'a, )5^ + C a^oZ p dxdI0.B

6
if

CL.X) g X
	

(-CL	
P6

aAt el^u.tt tt.

Substituting equations (78a,b,c) into the above expression -or

the virtual work we will get

 f 1^

SW = ^...	 [ fix su L + ^ 8,r,
a^lL efsw^a.^s	 c	 Q,

+	 9^L CL^ .

.

where the inertia loadings will be

+
 ^ &WL t	 + 1 e1. ] 

'CL
?-L.

116"
L 	 ZL

ff C-ax Cos c( COS P - a„sindcosP - oa 2 51n^ Pb CL d^

A	
d

C-ax s#n d - a ^ Cosa) did'$Pb
A

Caxsin cosd + ^SIMPsirna - OL j COS P Pb
A

if
-v^
 

Wcos^ + jV'sirnt t ^W'Sjyj
0  + 3trcos• C-ax•

A^
• coso(cos ^ - a, sInacos^ - oc Sin ) + [ v^	 t

t ^Cos^ Ge+	 cos^ - ^51n^))• C-CX" sin  + a.^cosd)

+	 coS^	 sin	 5in^ + ^cos^ • ((X" S In COW

+ a 51n1̂,s#nol - a 2 cos ^	d. 
^^

rx^

tyl. 
=

k L
CL

I =

(4
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CL	
'	 s,	 + cos 	 cos	 S,n	 a cosd

A 
0)

IL 	0I^

A - a,S,nofcOSP - a -a Si n 	 1 

b 
CLI'CL

Q^` = f[-I(--q - s, n+ (s, n + cos • (_ax cosd cash
A	

- ay s,nctcosp - a j stnp) p̀  CLICa

Substituting the expressions for OLx 01, and d.tpresented

in appendix I into equations (79) and deleting non-linear and

higher order terms we get the equations for the six loadings

which can be presented in the following general form

(Loading) =
(COOOI

 LL + Cot1^) ll + ^Coe,^ W

ffz
^oc s 

T 

i + oe d) W + ^^oGd'C> }
C ^CG O W t Coe ^^ + C4	 to

Coe t	 Cce_')(A. + 	 Cr ± C	 .^t^ 
W

^3

Cotr

	

	 CotW+ CcO^'^

+ cot.

+ Co^^) a8

+ ^ac^) •C ^

where

(Loading) = 
tXL
	 Ĵ, 

J NL ) 't r i1j. ) '}I.

Since in this report we invest.,.gated only the vibration

analysis of the non-straight elastic axis beam, all the damp-

ing and constant loading terms in the above loading equations

were not included. Thus, only the inertia and stiffness lad-.

ing terms are presented in appendix J.
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3.4 Finite Element Formulation	 4

The blade was discretised into a number N of finite

elements with straigh t: elastic axis. In each element the

field variables were interpolated according to piecewise

continuous interpolation functions. Hence, in a similar

manner with the straight elastic axis beam analysis, we

prescribe on each node U., , Uj- , T' ^, VII., wt. I	 or
!L

	

UL	 ^N

	

L	
O

?tr	 (20)

	

wL	 ,	 Q

L W`

HO_

where	 T	
LLLI U L-1LL	 f	 I
U Ù ' Lk, Us

-r

T

and H,	 H, are defined as in equations (50).

Setting	 T 	 T T

!UTL ^ 1. !WL

substituting equations (80) and (81) into equation (75a)

we get

9T K	 — T 7L	 g.0
J t	 "L ... L ^L	 qL

I.I	 I► 	 ..I

qu #4
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where	 ^^ = Ks + ko

K S = S t rtL C^ u ra•^ S ^i J ÎV^ cst w^ a^n K °^ ^ t ^ t ^ to t

11	 ffIIk4	 Qeomef riG 41 AhCSi mc4r ix o; 4" c 04 cicwitht

^^ _	 ^oc^d ucc^'^r

and

	

6,,	 6
?	 -	 T	 —

	

1 , L1	 b,z L 	 6,3 ^3

k's —	 b, ^,	 u, L,	 bti L.,

	

L,	 6s Ll

S Y M
	

^. — L

u o 0 0

	

N	 N	 w	 ..

^^ o b LS

6L-s
6q l3

Tc.	 is given in equation (75b)

T =N

IT	 T

- f No Tc d^ + 1 N.dx,

J	 i	 I
LXL

• G
MT —
	 t	

^

' T	 ^, iT

M

+

TC

f'H"T 	 T T K,; 'd	 N.
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where the 6t coefficients are	 r' ► 	 p•

}, = EI, cos! + EIz s vi

	

o _	 Q

61 - E I, s i vi ,̀ + E IZ cos2pl

b =	 U 2. - E'. cos sin^ f
64 = -E82. GCs (^)

1e

6s = - E B, s ► n^ ^^-.o
6, = G T + E^^•^^
b, - eA sin 0̂

ba = - eA cos
^*

k
6,0 = EA

= E A eA cos e
b,i = EA eA sih^

0

b, 3 = -EA KI
and the L^ matrices are given in appendix C.

Substituting the loadings presented in appendix J into

equation (82) we get

7T	 K	 WIL + T71 Ib	 +1r	 ^"'	 ti	 M	 1\I

yu N &.wej s

where	 ML _ M ass "a+r;x of	 dewe,. L

Kom = if mass y ^^^^ tfNtS1 wtoctrrx of 4,4#- L*' e."PMt



M e CO SO0

nee s ^^^

H1 K
%	 ^	 z^^ i,r,	 t K», GOS

— M ( Ko', K. sin^cos^
a	 e

rn e. s n^.
0

are listed below

E = —M

E 
6 -'

F—

K6 =

K} _

OZ =
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E4	 E} L,o	 Q
\+	 T' c Kc L ti	 K, L4	 T

E` +I L j► 03 L9
Y M	

^Oy 
LY

Ea 	Eq L, + E ,,L,o E,o Lq * E, L..	 E„ L I
7

T
	 Li

^ T	 T
+ K, ^, + K^ !	 + K„ L^ ♦ K^ L . + K I La"^	 w

+ R,,, L}	 Nu T
T	 T

SYM	
^I„L} +11, L + lot ^^...w

^^^ Lg

the E; , Z^ , HI , G)t , Kz , :j coefficient- are given in

appendix J. Since the coefficients of the mass matrix M, areN

much simpler than tte ones of the stiffness matrix K. , they

and
E, L

ML

K"
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^3 w —Me cos
ê

I} _ - ►+^ (K, ;, cos= 
o 

+ K,,, 5^n=̂  )
 e

From equations (70) and 71b) we have

	

rx^	 T Lx
^ = T ^

	

y^ 	 I0

Hence we can write

uL

UL

wL

wL

where LL U W and are nodal displacements and rotations

measured along the x ^ j system of axes.

Rearranging the terms in equation (84) and changing the

sign of W' terms we get
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U1.	 u

VL 	 U

K I= T	 tt

WÛ	 w

P1.	 ^^ j

(85)

where I M is a modified transformation matrix obtained from

equation ( 84) 4nd is presented in appendix L.

Rearranging equation ( 85; to include both nodes of a

given finite element we get

0 ` = TA
	 (a6)

where

CLL	 LL  lt i 	 tl, , Ui U , W. W" W,, VV.' 7's

It has to be noted that for this particular arrangement of

dir,placements and rotations in the Q matrix, the elements

of Tx are related to the elements of TM by suitable rearrange-
.V	 ti

ment. In appendix L a differently arranged Q matrix is pre-

sented which leads into a simpler trar.sfu;mation matrix Ts. .

Substituting equation (86) into equation (83) and set-

ting the first variation of W to zero we get

m" + K II?^' ...T
i



where

96

C^	 l	 (^
lT	

L^ L

•^ N cLwwts

K =
T r(

KS t ^c + k^ T^^.0 N .^Zw,..,fa

T

M =	 T mLTA
.0 N eGw«,^s

3.5 Vibration Analysis

Equation (87) can be solved in an exactly similar

manner as in 2.5 Vibration Analysis, as a generalised eigen-

value problem of the following form

K^ = M^l1^ 	 ^^

W'
where	 W^

	

i	 ban' ^^+^ ell ^enuaG^t nsa^^^

Wes,

^i li • • ^iw	 ^eir► 9 4^a c;3e ►avec o, m&4ru

for m deg---s . of freedom (generalised coordinates).
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(a) Uniform Cantilever Curved Seam

A curved ^-.ntilever :+eam with its elastic axis in the

shapa of a circular arc, was discretised into 7 finite *l-aments

with the following inclinations d and

E lament A

Number 0( A

1 0' 0'

2 10' 0'

3 20' 0'

4 30' 0'

5 40' 0'

6	 50'	 0'

7	 60'	 0 e

The free v.bra*_ion mode shapes of the lowest 5 non-rotating

modes were obtained using subspace iteration.

The same cantilever beam but with a straight elastic axis

was analysed and the lowest 5 vibration modes and frequencies

were) obtained. In appendix K a comparison between these tre-

gcencies and the ones calculated theoretically, is shown. The

agreement is very good.

Figure 27 shows the first out-of-plane vibration mode shape

of both straight and circular elastic axis cantilever beams.

This mode shape consists primarily of W displacement, the W

i

ORONAL PAGE 0
OF POOR QUMM..
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and tT being almost zero. It can be seen that there is almost

no difference between the straight and the circular elastic

axis beam mode shapes, the circular one }laving a slightly higher

frequency than the straight,

	

i.e.,	
wc^ ►-cwtar

	1.86 H a

w ,* :jht =	 1.8y H?

Figure 28 shows the first Jin-plane vibration mode shape

for both beams. This mode shape consists primarily of ^r displace-

ment (upper plot). The lower plot shows the LL displacement

associated with this mode. (W x 0) It can be seen that the cir-

cular beam exhibits a little different mode shape than the

straight one and it has a higher frequency, too.

	

i.e. ,	 Wc^rcwQ.^. = 1.849 Ha

W 54,;1h4 = I.ny Hz

Figure 29 shows the second out-of-plane mode shape for both

beams. it consists primarily of W displacement ( u=lrx C ) .

It has to be noted that the circular beam, although it does not

exhibit a big change in the W mode shape, has a lower frequency

than the straight nne

wc^rcul4r - 9. 16 Hk

W s}ra;jk{ = 11. S3 H I

Figure 30 shows the second in-plane vibration mode shape

for both beams. It consists primarily of tA. displacement (lower

	

plot). Vl	 upNez plot shows the tr displacement associated with
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this mod* (w x 0). It can be seen that the circular beam has
a considerably different tr mode shape than the straight one

and also a lower frequency

i.e.,	 c^rcwL.. =	 10.01	 Nt

	

^s^ra; iM ^ =	 11. Sy HZ

Finally, figures 31 and 32 present a picture of the vibration

pattern associated with the first in-plane and second in-plane

mode of the circular beam, respectively.

i
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4.	 CONCLUSIONS

In this report, a straight elastic axis blade was repre-

sented by an Euler-Bernoulli beam, with generally non-uniform

properties. The Total Potential Energy functional?C was formu-

lated in terms of in-plane and out-of-plane displacements and

cross-section rotations, based on linear theory of beams.

The blade was allowed to rotate and vibrate in a uniform

free air stream in general. The blade absolute acceleration
S.

and absolute velocity vectors were found from which the linear,

inertia and aerodynamics loads were calculated.

The blade was discretised in a sufficient number of finite

beam elements along which the field variables were interpolated

according to the Firite Element Method. Static, Vibration and

Flutter Analysis were then performed by minimizing the functional

Tr .

In Vibration Analysis, a uniform cantilever beam was

analysed and the mode shapes and frequencies were compared with

theoretical ones. The agreement was very good. The lowest

three mode shapes and frequencies of the NASA/DOE MOD-0 blade

were obtained and compared with results from Lockheed-California

Company. The agreement was good. The direction of motion of

the NASA/DOE MOD-0 blade, the McCauley Propeller and the North

Wind Turbine blade were investigated for the first out-of-plane

and first in-plane modes. All the three blades were found to

vibrate, during the first out-of-plane mode, along most of their

span in a direction normal to the chord at the section around
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30-35% of their span. This behaviour was not generally	 j

exhibited during the first in-plane mode. Similar be-

haviour was encountered on a set of variable-pretwist

flat plates treated as cantilever beams and vibrating in

the first out-of-plane mode.

In Flutter Analysis, three comparison sets of cases

were examined, involving References (3), (6) and (6).

The agreement was generally good.

In this report, the vibration Analysis of a non-straight

elastic axis blade was also formulated, based on linear theory

of beams. The blade was modeled as an assembly of straight

elastic axis elements with different inclination with respect

to a common system of axes. The Vibration Analysis was then

reduced in a form similar to the straight elastic axis case.

Two, non-rotating, uniform cantilever beams with identical

properties, one having a straight elastic axis and the other

having a circular arc one, were analysed and their lowest two

mode shapes and frequencies were compared to each other. It

was found that there was very little difference in the mode

shapes between the two cantilever beams for the first and

second out-of-plane modes, but generally more difference for

the in-plane modes. The frequencies were, in general, almost

the same between the two cantilever beams for all the modes

examined.
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Appendix A - Inertia Loadings

Second order terms are shown deleted.

_ .^, D^+ n^ cos t ^ it - .2 JG w1 e ca^+ S^ s i h ^ 1" -

-	 r►7 sin (^+O)GOS (^t^,y^/ - 17^G MG S^J7• 	+^,GOS(^t0'•

• COS	 + V" SZ2 § c4 1 0+8} + Mul2t;,cos(A+o)cosp

- mR tsin(p+s) cos(pto) sin# - wt ^4^ Cos ^^+o^

• COS tr y - MUQ e(oS% (A+D)sin&' + m5;.^ try
+ rM e , #

e

ee	 es

- Mtr + rwiesin 0 + 2Mu(zfln($+9)w + zw+^► •
O	 i	

n
• esi„(0+S)cos^	 + w^^ tr - wt^esin^^

+ wt^ a cos + 2 ►N^e cos (P+ ^^ f ti
o f

	 + W sins	 •	 e

.e	 •• - z

+ 2mResin ( A+o)Sih
0̂

(fit

	 +̂ i)C-Os ^-O
+ Mn e^ S 

1(^
1

M21 sin c +8, c os

t
t Me V sih	 cos (its)

w► CGsIn( p+9)i +

t M	 +9) W +

^7G%S in ( p+s) cos (j3+s) 5
Y ae s = +S) S;" +

tr(ASO t W sine	 s
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wtes^n^ u - rnecos^ ^v - m K," 4S - 2 wI SZe

	

f	 nn•sm(A +S)Sin^ W	 2migc sin (p+C)costV' —
- Y a l' ( K^ - KM^ ^ cos'(p+s) cOS Zt	 .4'", e

• Sin tr + rAW^z + cos w + rr► 2e §

• sin(p+S)coS(PJ)SintO + n^^e E.s^	 +^^cos^•

51 •V1Q^^ — 1,7 uG 2 ( K% - K" )coSs(P+ S)sin oCos00

- m2c sin(P+K)cos(P +b)cosO - h,Ree.

sin(+^^c^s^cos^ - vyti^ecos^^ +^)C^cos(^+s)

+ e, cos P] W Gos^ - tr Sin , + 2 mQ sin (A+9)

COS	 S11'1(P C.os ^+ I1I- - IlIN ^ w t m2'-

sin	 cos (P+SX K' (cos:t - sin2^,^ +
+ #CIS , ( Sims^ - c o s2 A Lr' - 2b" &2( <2  - KlrA,

• cos ( p + s) cc's s in 0 it - 2 *4 	 (K S1"2
0. +

0 	 2

+ K; ,, coszt ) C.os + 9) w

	

CL	 - 2 m p e cos ( p+9)sin Ô u• + 2 w„Q cos (3+S-)

• (Ko,, sum	 t K , •cos' }	 - i#42 e ( §cos`(g+5)

+ e, cos (A+S') cos 0) cost 0 + vr+Q = 	+^^ .

•cos (^+S) sin w + 2m2 = (K22 - K ;, )s,	 +

• cos(A +S) sinocos^	 — MR , ^ ^cost (P*6) +
^3	 ^

+ co cos (^+^^ cos ^) sin	 + n+SZ ( K„, sin''t +
a	 s

+ K,;, LOS -I^ s ih	 cos (P+19) + m 22 (K; 2
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- K,;, c.os s 	 sin coso tr' + YKQ 2 ( K.2 sing

+ 	 Cosh 	CO	 t' ' O, w^	 V"	 z	 wig sin(^ .

• Cos 00tr' — M C K»,^ s I n2 0
	

„^, CO3	 W'

_ - 2 1" Pe cos (A+ E)coso tor + 2m2 ( K,* - K,;,)•
• cos +9) sin coS^ ^ + rh^ e ^ cos' (p+5)
t eo cos (A+5) cos 	 gS +

. cos (^+9' ) COS# w + m2'sih

cos (P+9) Cos 2	 - m get cos:( +d) + 

+ eo COS ( pE) C4S P) ILOS^  ♦ h1 t14	 N,1 ' ^,.^ .

• Sin (A +5) Cos (P+5) Sin¢ C st + mR' ( K'  -

- KM,, ) co z	 rsiy-"^COS^ w' + rn
cos:os + K, sin) co z 

,• ) Ir' - m (K„,. -

o

1
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Appendix . B - Aerodynamic Loader

Second order terms are shown deleted.

Let

-L9 Cos its) sin	 - ^t.	 sin + Uw ( Sln2i.

Sin	 CoSI^G^tS^CO3 ) + Vw C -c4s21 s in# -

-SIMV4^yitb^GOi^) t (^^ y -V'^, LOS^^t^^COS^S

8^ = t^GC 0+9)COSo	 r G.^ COt^ + Uw ( SIMDGL•

COs	 COSut ;LS'^.	 0 SIM^, t Y^y 2OSPLCos
o	 i	 o	 e

- sin t	 ts^ si„) t ww - vj ) Cos C)Si„
^^ = Uw COS 21 Cos ( 3t&)Si n6 + VW sinOG i WS

+ (W. - Lri	
sivi 0

j” COSRt COS 04) COS t W Sinai C%34+&,Cos

	

1	 ^	 o
4 ('YVw -tl^ SiM	 ^COS•̂

	F. 	 -	 v ^(cett^G^Sin t	 Cosh

t Yw uG 5 iM^ sin - C0992'^ ^t +g)  COS )

2 ",^ I

CL

then

Kitti^i,^..{.^.u.+.,^^^Etii^v..,.^L ► IS
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t = A, U ' + Az w'

where
A i = - cos ^ E t sih	 FP

Al - -sin F — cos# F
0

_ $ V,	 j^,, vv	 ^3 ^ + ^s U + 35' w +

+	 + 8}Lr +	 w + $9 	 + $,o Llr +

$„ AtW + B,2 V ' + B13 W " + ^,y

where

zpa.C. (-	 cos	 )

a3 = -sih
z 

Pac	 y^^

Ley = cos^z
L Pac[ -25^h^ ^, +Pt^^•

Sim# - 2cost ^a

- sivt ac^	 u^si	 S^cos	 - (1
fP
+.(-Bz sin# + 9, coso)^

cx,	 0	 O

cos 2 pac.l 2 cos	 $, - s- 
^3+^) .

^cc^	 - 2sin	 i so

- 51n
0

2 Pao[ ^ ^ si	 +^ siv1^ —

a
B6 =	 cos 0 z P ac (- z 8, )

-sih ,
Z 

Pac	 3y 62)
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2ug s in(P+& )cos^ 41 - z 21 L-^)Cos^

242 a sin( *^^ Sin1

— SI" 2 p
ac[ — 1 + a t̂ Sin (^ts) l ^t cos + 8,siq

s	 T♦. ^ SZ S I : ♦ ) s in¢
a

Bg = c05 2 fac k t^^Sih^ g, - ►̂ ^	 ^^•

	

0	 2 _t1• Sin +	 2$^ uqssu+{-+^) cos^ll

04—s_ 2	 1 +^^Sin ^h' t^/ (oZ Sih^ — ^' Cos To)

— z slhs + ^os^ 1
O

Bq = cos z P«^^ -2g,82 ♦ 2 Bz I^s^r,(3+S') - ,2

S	 zP^^[ — y wS^( SZtcos

	

• ^IVI^ ! + Vw	 (SiNW^GOCO

t coSZE Sin j3^b^siN^^ - l j+ ^•,

F- SI NHS I { - COS	 P

B,o	 4C
2

^11 = - SiH^ 
.2 Pac y ^i +^.^

^Iz =	 # fac [ 2$,y - z IXi si	 t^), ♦ ^a.
/	 a 2

s ► 	
2 P^` (- y SZ - vw slh^f cos( +^) siM +

+ Vw cos ^t cos (3 ♦ ^) s in
A

2`v1
SI M 	t ` 6zJ

OF PoM 9U4LlT
►

B}	 LOS# 2 pOLC
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Y

^,3 = cos 
2 P aC- ` - 2 g, e +	 It s	 +,E) - c ^B,

2	 ?
+ 2 82 y cclo 1

Cx J
Pa<	 <- S^ro, 2	 ` y
	

Uw s• n SZ - V,, Cos	 (^ 9) .COS +

cos t 
l +1 ` $2 e2

 t 6-^
Uq 413

Bill = cos o 2 PacC ^,2oela 
sin	 Pa^C - y w c ^Ssz^ S;N^ + S,hs2+ .

0
• SiN^^ tS) COS, + vw SiNL7[a{sin —

-G0S2{ sin (3+^)c.OS#)0
• 8z9 t +	 SANG+s)$2]

_ F1 Lrt ^w+F +r1^ +FS w+r4	 t
+ F}U + T W + 1q 92$ + F;o t'r + f ig w +r,Z r l +

+ (,, W , + rs

where the li coefficients can be obtained by replacing

Cost ^A SIN

in the a: coeffi

OW

U +

+ n; V +

t A,3 W, +

	

-SIVI^	 ^.^ Cos

	

0	 0
cients.

Q^ W + 43^ + Ay a + 'A.5 W + Q °Ur

Qa W + Al gs + 4 10 VO4 t d,, w * 4z V-

A ly
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2
— 

2 Pa` ^y soh

zfac CU  Cos.
3c e

0
0
— z P^cc y^s Z ^2

ac

	

- 2 pac (y^ Z^ - 51	 +S^ cos

	

L Pac (L)'[ u^ SIy 	 b^ — +^w 2 ( GOsQi COS¢

2	 /
Sl 	 X, UCi (SINL]U C

COS t COSt7GL	 t^,Z111^,

	

O	 J J

where

61 =

az -

a5 -

Qs =

Dc =

6} =

Og =

Alo
oll
ol^

Ali

©,ti

	

_ - z pay (y l 2 Y	 ,	Z 	 11
_„j_ ac ^ 1 _ ^SI►1(^*^^y - ^C-mow SiN ^L

2P

	

^	 nn
coS +S)SIN^ + Vw LOS Qk cos (pt^) .

e

5,0)1
- !	 -s

	

Pat < 2 [ - uq 4,V-S)d. ♦ R"	 uq `Uw slALQ,.
z	 ^ y )	 ;

• cos ( p-t g ) cos^ - Vw ccs Rt cos(^ts).

COS ),0
Z Pac 4 ) L q Sih	 $Z - Uw 12 ( c.os2t sih^,

1 s I A C s%	 t cos	 "' yry DG^ ^SIr1 Dl

SiN^ - LOSRt %I
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Matrices

12 6G,'	 -12	 6^•
Q. N

T
L l	 HI

	 a

"	 2j	 112-6L
5Y^^ 

t.
	 0 0

L'2 =	 N,IT Na d x = '	
-1

Q, 0 0

L-L 
i

,T 	1 -1
L3 —	 ^• No dx - ^ - 1 1

e	 36 31,- - U 31-

^4 =	 N, T N^ dx = 301;	 ^Gt -31- r9'

SY 
M 

36\3&

tiC

^,•	 - 1 	 i

•	 -1

o L•

"W-2  ̂taNw fit
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t•

L	 =	 H,T H, six 	
-3V

J20
S Y M

-3o 6t 30 - 61'

T - 41	 o	 6z • 	-G`

L^ = H. N, J x - 0 - 3 n ./1, 30

	

..	 6
o

G' 2 1
L ^ -	 H; No dx - k

	

6	 1 2

C t	 2i	 3^ • 	 `^	 -^^•

	

No H,	 - 
6o	 q zG ^+ -3^.

_ J N, N, dx = —12 _	 _^	
6	 G

^0

H 2t = -1
0

1
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G • 	- i

H
,T	

0l 01% =

i

0

1A

1A

-2/,2

T

N, dX =	 i

G

No x = Q L
2 1
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Uniform Cantilever Beam

Input (beam properties)

W1 = 1x10	 3 inslugs/in, a, =	 3.52

EI, = 6x10' lb in 2 OLt - 22.0 an
E12 =12x10 9 lb in oc3 = 61.7

GJ = 4x10° lb in z ^^ =	 1.571
b

kV4, = 5.0 in x =	 4.6	 n

K"+i = 6. 5	 in e =	 0.0

R = 718 in eq= 0.0

mK., = 6.725x10	 2 "Slugs-i n 2 eo =	 0.0
in

Results Obtained

it

Q = 0 n = 4.191 rad/s

Mode
Theoretical

w	 (Hz)
Numerical

w	 (Hz)
Numerical

w	 (Hz)

1 stFlap 2.66 2.66 2.76

1 stLag 3.76 3.76 3.78

2 ndFlat) 16.64 16.64 16.75

2 nd Lag 23.53 23.53 23.62

1stTorsion 26.85 26.85 26.93

3 rdFlap 46.70 46.70 46.76
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Appendix E

Oft

PRECEDING PAGE NAM 110T MMO

NASA/DOE MOD-0

eo = 32 in

7•

d - 0°

x
(in)

m
(inslugslin)

EI1
(lbs in 2X106)

EI2
(lbs in 2 xl0 l )

GJ
(lbs in2xl0l)

0.0 0.0246 173 173 132

71.8 0.00829 144 232 150

143.6 0.00751 96 179 72

215.4 0.00699 62 143 40

287.2 0.00725 42 120 25

359.0 0.00699 29 97 16

430.8 0.00570 17 72 8.5

502.6 0.00466 8 44 4.5

574.4 0.00311 2.3 19 2.0

646.2 0.00181 0.4 9.5 0.9

718.0 0.00168 0.2 0.6 0.4

e eA EB 1 EB : o

(in) ( in) ( lb	 in4x10 1 3 )
( lb	 in 3 x10 1 2 ) (degrees)

-8.21 -4.9 4.3 -0.85 24.5

-8.2 -4.9 6.3 -1.50 24.5

-8.2 -4.9 7.7 -1.65 16.0

-7.5 -4.5 5.0 -1.35 10.5

-4.8 -4.1 3.95 -0.95 6.5

-4.3 -3.7 2.25 -0.70 3.5

-3.8 -3.3 i.?1SO -0.50 2.0

-3.3 -2.8 0.8 -0.35 0.5

-2.8 -2.2 0.4 -0.25 -0.5

-2.3 -1.8 0.25 -0.15 -1.2

-1.8 -1.4 0.15 -0.10 -1.6

3
1
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KA KMI

It
Km2

(in) ( in) ( in)

15.53 8.35 8.35

14.36 9.27 11.77

13.19 8.88 12.1_1

12.02 7.68 11.61

10.85 6.05 10.23

9.69 5.05 9.25

8.52 8.16 8.57

7.35 3.17 7.60

6.18 2.48 7.01

5.01 1.86 7.12

3.88 1.16 6.35
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aocendix F

Uniform Flat Plate

Input ( plate properties)

PM	 - 0 .777x10	 "	 inslugs/in

EII = 0.262X10"	 lbs in'

Ell = 0.236x10'	 lbs	 in'

GI = 0.4x10"	 lbs	 in'

E8, - 0.142x10 7

^B^ s 0

= 6	 in

0

e 0

e	 =
A

0

kA 
= 0.866	 in

ko", = 0.029'n

KMi =
0.866 in

e, = 0

Results Obtained

Untwisted	 0° - 30°
W (Hz)	 (Hz)

	90.26	 90.55

	

345.4	

I	

664.7

	

565.7	 1	 508.7

1044.7

1584.3

1769.7

Mode

First Flap

First Torsion

Second Flap

Second Torsion

Third Flap

Third Torsion

First Lag

Second Lag

Third Lag

1519.8

0° - 60°
w (HZ-)

91.39

1187.1

407.7

1389.0
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Reference (6) Test Case

Input (blade properties)

= 4.191 rad/s

R s 718 in/s

^h = 7.767x10 3 inslugs/in

E ll = 529.52x10 6 lb in 

E12 - 971.19x10 6 lb in  (soft-in-plane ease)

E'1 2 = 6.053x10' lb in  (stiff-in-plane case)

61 = 205.69x10 6 lb in 

	

K ►M, =	 0.0

	

t Y"j =	 17.95 in

eq = e, = e = 0

V	 21.98 
cc--i 

n

	

_	 = o = 0.0
0

a s 2 TT

	

Cd. =	 0.0'-

	

(7 =	 0.1

56.39 in

	

-	 50.8857x'10 6 inslugs/in3

	

!!;	 _	 -1.854 in/s (scft-in-plane crse)

	

Lri_	 -0.401 in/s (stiff-in .-pla • ,e case)

^^1?^Hi10^1A11Y
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Comoarison of Results Obtained

Soft-In-Plane Case

Mode This Report Reference (4)

1 stLag `--0.00670 ±	 i	 0.6924 0.0011	 =	 i 0.7014

1 stFlap -0,3203 ±	 i	 1.0938 -0.3245	 t	 i 1.0751

1 stTorsion -0.3613 ±	 i	 4.966 -0.3622	 ±	 i 4.9875

Stiff-In-Plane Case

Mode This Report Reference (4)

j	 -	 Lag -0.00365 =	 i	 1.5089 -0.0011	 =	 i 1.5002

1 s~Flap -0.3233 t	 i	 1.0842 -0.3246	 =	 i 1.0741

1 stTorsion -0.3613 i	 i	 4.9661 -0.3625	 =	 i 4.9888
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Appendix H

Reference (8) Test Case

Input (blade properties)

R . 718 in
2 - 4.191 rad/s
Oj = 7.767x10 1 inslugs/in

EI, = 525.2123x10 ` lb in2

EI2 = 6.0515x10 l lb in'

CT1 . 33.5373x10 lb in2

Kw, = 0

KW I = 17.95 in

e = e q = eo = 0

KA = 26.925 in
C = 56.3916 in

= 2.865°

0°

p( = 6.0

C O. - 0.0095

p = 53.2859x10 -1 4nslugs/in3

Jcr - 0.1
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For	 CT/0- - 0.1

W/P

Vibration Modes This Report Reference (6)

1stFlap 1.145 1.121

1stLag 1.501 1.518

1stTorsion 2.632 2.4702

Flutter Analvsis
Modes This Report Reference (6)

1 stFlat) -0.325 l	 i	 1.099 -0.31448	 ± i	 1.10

1 s`L3g -0.023 ±	 i	 1.525 -0.03034	 ± i	 1.58
.'

1 s`Torsion -0.333 ±	 i	 2.546 -0.35209	 ; 4 	 2.38
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AQpendix I - Inertia Accelerations
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Let

	

cow*** COS 	 -^ S^M1^a*S'GOSt^ttfl^SlN^

Q̂ c Cos:( A+E) cosrc s lbj^ + S+yt ^^^^) Cos t^t^^ ^ot^3

sin (P+E) COS (R+S) COSd(,oS^ - sih` (A+E) S+h
3

K	 p	 pSih ( 4) COS (^+9) GoSd̂ Sin + S+H! (A+0) COS

Then

(n^ I 	 a	 ..	 2
OL x — uG k +	 cost l( pts) sivl4( V, +	 ^t W

^^f

+ Q t — ( W Soh 1 + II cosc ^ +cos 1 pt9) s+v,a • (Wsi
Si^rf¢J , +C SIN t #CostN 	 1 4

lA

	

2	 0

+ 	 (- W COS + v,S Ih[+J I + COS^(p + C ) S+N

^COSA) + h

t^G^Xr CO Si { ^^^ + ^^^+	 - D4 Eo Cc^S ^^ Y S^ GQS^

j SZ= ^d soh (^.b)^os (p^+^ + 2	 ` —co s (^+S) s+^d

COSp IA	 A- u^s(^+^}coil u' +cos( +^) sihsih r̂ 4

+ 2 ^^ COS ( A +8) SIM'g, COS p vsl'Nt* - Vtos ) +

i
4 cos {^ ♦ S) cosot p S+N# + cos (P+S) SI h  r+not 

0

COS 3V1 t •(t)(, ^-cos{^+0}siN^ eOS^ C- Wtos +
II

ttsi ►,N, + GoS (^ts) C4S 
.

oftoS	 - cos (^+g)

• s+h si„ 4^^ s,i n	 + cosi we u - sin a v

133
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A	 A a0	 ^	 a.•	 ..,

SIA (,Osd W + Casa COS r ( - W Slv^

*

 - UCOS^0 )

n Op	 n J.	 A

+ Sind ^ slo+ 0 - Slvt Cotd Cos	 + cosoccos
O.,	 ..,	 AD.COc	

+ SIYI 

A	 A
( - WCos + it siv%	 + SIN of 1"	 ^GoSd•

0	 o	 a

((^^ a	 ,^	 t	 ^

(X _ -Ob sih a COS I.0 - ^G 2COSA If + 2 SIM p sihc( W
(^ 2 ^

+ u[r -Sind COs	 - ^+^/^SIM - tr^COS^^ - t,oSo((c vS^ -

- ^gih, + SIN SIr1d

+	

(SIr1 + COZC^ )^ 1

^z [ _
Slha cos ^ ^- w COS t lf^S ivl 	 + COS a(

o	 a

sin	 + ^cosgS ) + slh p S;1,10,*(' (cos 
i	 nn z	 f

-	 ^( - VG Sind Gos	 + 2 	 (Cos 1^+^^ Co Sa
do

COS - Sln t^) SIN ) U* - COS I ^t^l Slhd U -'

- ( Cos  (^+o) Slh^ COSd + Sirt ^^+5) COS ^, W, +
^

+ ^ ^ (S +^^ COSd COS p - Sim ( Yb ) sln l' /

- W Sin - U Cos	 + co5( t^) Sinal ^ si31^ -0	 0
- c0sD+5) SIMPr-OS i + Sill (^+S)cos^) ?C-Os^ v1

+ 2 SZ[ (gas (^t^) ^osd cos — SIM (^tS) s, h ^) .
• W Cos ^ + v slm}, + 'Los ( ^ Ts) Sind^GOS^ + )
+ C 'Lo s ( 3 t^) Sol C,Otd t SIH(p+S)cos )^Sih^I^

/e
••	 n	 ^ ..

+ slh ( CoS^ U + CASd u•	 Sln^ Slrlot 1N
A 00

t S l ha COS	 'C' Wiin^ - V' cos
0

- CASd SIY1^
0 	 0

^
- slh^ siha to c.osgS^ ►^ + ( SiKd COS ^- w cos +

+ U /S 1 VIA - COSol Coe, ô + SI h S14	 Sj,"
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Ot t = 0^^^3 tl - ^G 2sin S ih^^+0, cos (A+b)v - W ^ W

+ L]G I - ^3 t W^^.irf t tl toS , - Slhd Sin ( +b, Cos (pf9) -

(Cos^ - ^s1mp , - C SIYI^ t COs ¢ 
d	 S	 a	 J

+ ^Q, 2 [	 -w'cos,^6 + u-'sI'm+ S1hd Slh C'^ts)cos^^*^^3
• (Sivl^ + o cosi 	 cos 	 0

+ wq sIvi (P+ 6r) c05 + 	 x0 '+ iJL^Z^	

o
— L^^. SIYIZ(^fi^J•

• ^o f t, t'_eSin(^+s) Cos	 + 
3

221 Slm(P4).
Sin 6( rJS u + siH (3+,Q Cosa tr — sih (3+^^ sih^

	

cos ix w	 + 2	 - stn (^+s) 5114f c.os^ w smh +
of	 1	 •

+ UCo5^ - 51h ^^4) CoSd FS Sin -Sih ^^+^^

s4i Sind ^^os^]	 2^[sih (^+s) sjharccs^-
o

- W Cos t V Si>1 ^ - Si ►^ ^ ^+S^ GoSd ^ COS ^ +

	

+ Siva r^t SIA SiVlac ^S Slh¢o 	+ 51h IA +

	

``	 oe

	

A	 ,.
+ cos ^y +	 51 VI	 - w Sivt^ - V Cos ^a ) t

llo
+ 0 Co's Cos^

1
 V^ + [

Slil A

 ^ - wGos^ + vsih^^ -
v	 o	 ^

SIVA^ COS P,0
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Appendix J - Inertia Loadings

Let

= m 2, ikos"(P+6) sited Cos	 +-
s

((^^ s- v cuq xo cos2 (p +g) t rvleR'sin(Pts)c.05(p+9) Zo

- M e Rze, cos	 cos + mebe^
z z

	

m2
s
 K 	 cos

^
oc.os^ + sin sin« sin, - r+^el?G ^{

6	 °	 oA	
" 0

((^^ 
Z

- rheL7U SIVIce COS p s

L( = w,^G2 Kni, -sin!sin( +^^Cos^^t^^cos - sin
y	 'o

}	 + mep1 l Sin(^ts)cos ( t'+E) X. - slmlotO)

t P sin (p+S) c.os^ + ^ fl

u = Wt nm , ^G2 [ - co5= (^ +S) s,ndsin^ + U Cos^^
^	 0	 2

µ w, K2 SZl 	" 

	

,^,1 	C LOS 	 t slvl slndtos^,
Iq	 o	 0

^t = YM Kam, , lG1 `SiHal S l vl(^ t^^COSn^ - u COS
10	 ^ 

((^^ 2 	 °	 S	 /o

U = - COS d COS [ ^L Cos :( ^+^) 5 ivld COS VN h, +
N	 2	 2	

2	
o	 z

+ w+^, Site ^ KM + w, 2 . 	 xo 
COS,

(^+S) t Z° .
1	 0	 =

• sin(p+&)cos (PtE)	 e° Cos (p t9)cosp + 
	
^A

A[2 7-	 A
- slln ( 

COS

p wi ^G K,,,z C-co5aCOSt + 51 p%dsin sint)

	

e	 o
2

-meR
=

l,( - ma1^jsimdcas)3

RR

	 o	 1

51 h I" C - 2 1 I'm%  sin (Pts) cos(P+&) cos ° K,2:

^' ̂ siH 0	 + wlc^ 2 ( s,h(^3+s)cos ^^+s)x°

^^^^nur e^^^^t
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- sl vl t its ^,	 IAt eo SIh (Ptgj COS 	+ 
C	 ^ 

LA 
= -

 LOS
oCCO5^ pM174 2 K yN , (- CCS 2 (^+0 )SIY1dS^M	 f'

0

Q`t I 
COS }]	 SINd cos	 YN	 Kam,, (COS dSi„!^

f 2	 nn'goo/

+ SIV1P Sihd c0q)] - St., C W10G^Kh2 (sm ^ SI ►11^+^^.

c.0S(P t9) Sint _	 COS)]
0	 y	 o

then

..
'b =	 lu+ E2Lr t

aoi 
	 u

+ Ell U' , + E.2 w,

E3 w + Ey P5
	

ES U ,

E8 u- + E9 w + E o

where

	

E, _ - _OS dCOS ^ (MCOSQ(Cos 	 - slho cos^( wi slnor
n^

COS 	 - SIN ( Kj SIN

E2 = - coSaC coS C - rn Si n a) -
 sin d Gos f3 (M COS a,
 ^coSd cos 	 - w► sIN^ Cosa j - SiM cos	 - wt sin

sI'noc) — sIn ( mCos p)

E _4	 - CoSd Gos	 e (Sindr>n

	

	 SIY1^ - SIYt^ r;.OSd cost )o 
— Sirld COS ^ m  C — coscvSIM — Slnp SIrIA(COS^^

..
- L2f wl e COS# CO S

ES = - cosod COs m e ^ - cos d COS COS ^^ - s ^ n ar

Cos ^ m e(  -SInaCOS f cost) - sIA ^ me SOAP .
.Cps¢)

Am



139

OF 
Poo* QUAU6

E = - cosot cos ^ wl e - cosd Cos sin¢ - sins COS A.c	 a
^	 w	 w	 w

m e 	slnot Cos t3 s I 'M 	 - si:^ nit -sint3

• sin,
2	 w	 '^	 t	 n

—Cos ^
oe

 COS 	 C !'Mt^i tit., '- JIYI of Cos C -iMt^ slNof•

Cos

1

!3

Eg — - ws a cos	 mcos t (^t s) sncce, - sina cos

C-^MN Cos of	 s lrl ^ (-uqm Sim OA( Sin Pt^^.

Cos( 	
'Eq - - COSd GoS ^ rh ^G ^t^ - SIv1a! Cos ^ (^Llwt SIh^

^
slnd^ - sln

E lo = - CAs o( Cos ^ [we-LQ II (-Sin CvS Z ^^+^, Shot
0

+	 Cos ,1 - si nc C,os ..[ YMtUq Coscesim^ +
Z	 o	 0

(C^^ Z

+ $14 SIhdCOs â ,,	 SIN ^ ► 1'1 t l]G ( S 1h of '

SIY1 (P+8)  Cos its) Sin a$ - !k COS ¢ A
2	 SE 11	 c.OSdGOS C-rMtRUcoso - SinctCOS

(PVIP-2^SInolCos^Gos^	 -Sih ^ (- ►^^SZ?

3cos^

E12	 cosotcos C = w,Ct)fi Sin) - Sina Cos
Z	 ^	 ^	

v	
^ 

( me- 2 S^notCOS^sin^) - Slh	 -	
U(12

. 

r33	 °

where

u ! ^^ 1 kil u are given in appendix I.
y
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v

i	 Lt +	 V ^r	 I• * Z O• T	 ,
► ^	 ^	 3	 y ^	 S 

L

y	
+ 6 W t Z^ U. + Zp v + Zq W t Io

r,S

t Z,, ll +	 12 W

the Z coefficients are obtained if the following

substitutions are made in the underlined terms of the

E^ coefficients.

/^	 ^	 A

- COS of CO	 S I N A'

-Sl o pe  COS ^	 ^`^^► 	 Go S p(

- Nu + NU t Haw + Hy + HS v"

	

+H6w' +H}u+
 

H 8	 t Hq w + Hlo
+ H,I u-' + H1 2 W'

the K coefficients are obtained if the following

substitutions are n.ade in the underlined terms of the

E; coefficients.

^- Cos of C 
1	

-4, SIN a COSoe
A 	 A	 A

- SlAce cc)$	 '''1a	 SIH SINof
A	 /^

51 y► 	 ^.p —Cos
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CLt Ou
0 w,+ 6

+ G,, tr

Qz U + 03 W t

04 u. + Qa Lr +

(312 W

Qy + Q•S tr

W + 0,o^

where

	

^	 A
Ot = w e coso Cosa stn Wsd cos t stndstn

I up

•(
l
sinoc cos	 —cos stn]

O^	 VA  s l nto + me Cos [COSoC St n (-Slnc() +

+ since stn (cos d

Q3 — 1M2c oS ^cosa stn-Sin^cosd^ + stnolStn ^•0
(—slhj Sim 0(

	 — Cos (Cos

Oy - - wt K^, z srvtz^ + KW, , cos = }
J

+ cos t CoSd Stn ^ N+ i z s tho(Sln	 - Stn'

	

..	 v• coso( Cos) + stno( sth 	 ^i,MS - CoSe( Sih^0
SIh^Sivta COS H)
	

y 
^+L 

{cos cos^,^
t^ z

Sih 
o

C-0, â S v) Ki TAM, (SI noC cOs + stn

•cOSd51Yt^, t Stv1o(5 ► h Cos fe Cos ¢
st •

	

VV	

^

+ Simp Sic^d sin ) — cos ^ W1 t^ C —Srn^Cos^),
f	 •	 o

A*	 2
OS = cos	 CoS

^
 stH w1 ^C^,2 (- cosc( cos cosps) +

+ sthd sth m"+3 -stns Cos cos^^I
V	 R

- Siv1 • cosd Stvi ^ VA K., ( coSorcOS rSin^
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• sin a s ► vt g vn Kn (sin  a COs ^ sinX6	 +
0	 2 °

(• Cos	 - cos \ —rH K^ stn cos 	 - sih^-CAS .

( M K10A2 sln^ -s

6	 C - slv%^ s in pf + GOs^ Cos C S IN	 Wt f1^=
•

—slo Cosol Cos	 (sin cost + Cos 0

S1 4or slut 	 H' ^': - Sih^ Si m of Cos	 t
0

2
t (- coS^ Sirt d - Sln GOSACSt yf	 YWi,N^ - COs

^	 ^	 s

• Cosd Cos	 +	 cos qS (osot - stn o SIVIa( sih ^^ .

rH^ , (—Cos  slmK cos) +	 Cos	 cos ^^-

— sivl 
• ( — Cos

- C.osox Met sih4(Co3 J

	

^	 ^	 2 n
t c.os^ wsd Sin me-@ r - shot SIMP A4 0- 51 PI

sing - cos MLI ^3^

lJg _ sirt rm p-s?C - sirla! cos = ^ t^, stnct + cosol0	 ^
Ccosoc l, + C.OS^ m t UG '1 [ GOsd Sion (COS2(p+s).

St Mae + Slnct stn (-cosol, -Cos ^ -shot

stn( P+s) cos 0 +9')l

Oq 	t ivt^ tMe^^ -Sthd U. + cosoc( - si n Si m
- (^	 I

t cos NY1tt)G 1 [CosO( SI h ^ k - 51r'}oaSIN ^ (SIsIcK.
A) 

o	 iz
ob

• 51 n r tCOS a

0 10
I w^,N= t^1 C- sin ot -sin ô cos'iP+s)Sihd

lM	 SIK42 N C-SIy^J
►^ Kam, sm (-cosh)

^} = S;nt C -Slho( ni e2 =u
I.
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t C os4 fit) + cos d (sim 	 t sln^3 SIM c Cos 	 +. z

+ tos^i	 ^ S^ - Slna ^COS : (p +.S )Sj woi -toS^ -

-- s	
I Y 

t Cos r( (GoSd Cos - Sim ylnlSih^^
e	 o

+ cos- s1Ytd U + COs; C	 - sInA C- SinseLL +

	

. 
f IS	 r	 p

+ c,osot 	 t cos "A	 `Cosh slh	 - sl'r,

cos P-t SIncY + r Cos 	 + slrlot Sln {Sin# +
A	 n	

2
	 ,	 ^Z	 2	 n	 ^

	

+ Slhpsl ha COS ,,	 Slut wi,.,^
	 [COSdslh

e	 ,

^cos^(p+&^ SIMot (-COS#^ - r siNm t Slnasivl

(Cos a C O5	 - s1Y1 ^ S11010?$in'p.	 - sin i slh ^s

COsd U t ° Sih ^ S1hGr U - CO' ^	 , — COS
oft

	 ^	 ^	 A	 J
sin GOSG( },l t Si ►1 Sih of ^	 - CO=

8	 s	 ^o

,e 	 n	 1 7

O11 = Slop ut t COs + u ♦ S; y,Qa - SINoc ,M f(^=
.1Z 	 AA

(- rcos^, + Cosa r#01}	
SG^(SIM

 orcos^ cos

+ Cos4 - sln^ w, K4 ,^_(^ Sint } + Cosa 61 < .

• ^IG Z -sin a( cosp s ,no	 + COs [COsdt CoS rn
0

• 
a
^— cos ^ + slh a sly wl h 2	 :^ slh or cos^Cosg

ob

cos ^ m K & uQ - N Cos )
1 

-• sih ° coSd slh A .

	

• w, K^
9

 ( ^, siiq 	 + Sin d si n w+ KSZ - s l n or

• Cos sirl o, -cos vih 9 ^ t µ s Ih A
3

Cn7
012 = - COS	 + siv1^	 + s1rt 0 wl K O` 1 - sill, K

•	 11 ,^° 11	 °	 2

Sillo + COSd
in 

c.OS Sin^a,	 +
1
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+ COS m^ ^ 6q - sincr ^- cos^S^ + Cosa SIMe

cos cos, + Cos o m ^ 2 KM2 [ co s a sin ^ { — ^t CoS)

+ Sivt si Ad9 (S I 'M a COS ^COS	 -cos	 - SI 
Pit

)J

e	

z	
^ c.osdS;n ( - r, Cos# + SinaSi h

 
11

• S in d COS
3

cos — ^ ( - 1 Cos ^,1

I, u t Iz U t 3 W t S + 5

+I6 ' + I}LktZ,,^	 I4w +I,o^t

tI„ it /+I1, w,

the	 coefficients are obtained from the @^ coefficients

if all the products that DO NOT include underlined terms
are set to zero and then the following substitutions are

made in the products which include underlined terms

CO50( CAS 0C cas 3

Sim a 61 S 1H a cos
A

-COS	 ^-"^i
A

-5 1M ^

Cos 	 ^--L^
e - S 1 N °̂

S i N	 ^"'^^ COS
0

- K, u + Kz U + K3 w	 K^, + KS U'

+ K6 w' + K} u + Kg it + Kq w + K,o yS
+ K,, Lr ' ♦ K ,, w



the K coefficients are obtained from the Q coefficients if
all the oroducts that DO NOT include underlined terms are set

to zero and then the following substitutions are made in the

underlined terms

Ados of Gos .^.a► 	 - c,o s d cos

Scope stK ^ ^^	 - Sloot Cos^3
A

-cos
A

^—^► 	 - s t K

cos cos
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Appendix K

Uniform Cantilever Beata

Inout (beam properties)

EZI 	E ll = 0.3043x10 6 lbs in'

P- = P a = eA = EB I = E81 = 0

A	 0.7324x10 " lbs/in

6
GJ	 0.2318x10 lbs in'

!^	 I

0.7324x10 '' inslugs/in

EA _ 0.2968x10' lbs

K., = 0.32 in

}Z = L = 140 in
Inner radius of the cross section = r	 . 5 in

Outer radius of the cross section = rl = .6 in

Theoretical data or frequencies are based on the

following formulae fer circular tube cantilever

beams

First bending	 W	 _
2 T

r--
^ }S-$	

EI,

7T !.	 to fl	 JH^^

Second bending	 W	 ..
II.OISFEI

f' J
2Tr ^!1

'third bending	 w _
3^iF tt	 12r Tr y

2 GI
First	 torsi -)n	 ..•

ITT
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Results Obtained

Mode Theoretical
w	 (Hz)

Numerical
w	 (Hz)

First bending 1.840 1.840

Second bending 11.531 11.535

Third bending 32.294 32.327

First torsion 164.0 164.0
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T,^, T Matrices

If instead of

qT	 k, U. U; U; 'tr, Lri ' W,  W, Wi

we use

9.L 	
u, Ur, T, W, W, ' ^ u.2 tr: U-2 ' W, wx'
 :

and	 q L r V. L 1 
^, LrL W^, W{., ^ 

uL: Lr`t 
lT ^ w,.,, W1 4 ^1

then^ ` = a, q
N	 -r

where

TS
	 ,^'"	 .

a
o T

and
^	

AA
	 A

	

COS A Cos	 SjAJ(C0S	 Sih	 0
C^nd	 COs^	 d

o	 \^Cp^,B	 0 A Sli4̂ Sill	 - COS^ SIN

	

CAS d cm
"	 y

-slvlacslM^ 0 ^COs^ 0	 0

D	 0	 0	 0	 cosec	 SIMii

0	 0	 1514	 0	 -SI AJ(Cos^ cosscosp



PRECEDING PAGE M ANK r W FILMED	
151

Aooendix M - Useful Integrals opo '^- ^+R Ol4

fl	
A

A

f^d^dj = 0
A

ff I(I' CA) d^dS =

A

fj f

IId,dj	 AeA
A

// I ^ °^7d^ = o
A

s d	 - 1l
A

A KA = 1

ji (	
i	 2

I3 t ^^ -A 7^ d ^► d^ - EBz
A

	

E4 + 4 2^' —L st	
d	 =JJ	 ^	 ^	 7	 ^ 3

A

A

A

AKA eA

a

16 d^^j =	
P

►^ a ►^ d 3 = m e
b

A	 A

Pb d^d^ = o	 Pb 	 o
A	 A

ff P6	 P6
A

A	 .^

Pb ^72t3t J d^a ^ _	 K^,
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