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1. INTRODUCTION -

In an effort to convert wind power to electricity in the
most efficient way, large, slender, high aspect ratio blades
are being used. Aercelasticians for the last twenty years
increasingly have developed more accurate and complex ways to
model the aerocelastic response of such wind turbine blades.

The overall structural beanavior of such turbine blades
was generally accepted to be sufficiently represented by an
Euler-Bernoulli beam. Since good design often requires non-
uniform properties and complex, twisted geometry, the overall
equations of motion of a wind turbine blade cannot be obtained
easily from first principles. A systematic way that this has
been done in the past is by variational methods; i.e., Hamilton's
Principle and the Principle of Minimum Total Potential Energy.
It has to be noted that research done for wind turbine blades
parallels greatly research done for helicopter blades, since
the real difference between the two structures is only the
structural stiffness. (Wind turbine blades are stiffer than
helicopter blades.)

Houbolt and Brooks in 1956 (Ref. 1) presented for the first
time the full linear differential equations of motion for rotat-
ing nonuniform helicopter rotor blades. They also presented a
total potential energy functional whose variation would provide
the same differential equations of motion. Finally, they pro-
vosed : solution based on modal methods (Galerkin and Lord

Rayleigh's method).



Hodges and Ormiston in 1976 (Ref. 2) presented the stability
ana ysis of uniform untwisted cantilever rotor blades for hover-
ing flight. The general nonlinear enquations of motion were linear-
ized about the equilibrium operating position using Galerkin's
method.

Kottapolli and Friedmann in 1979 (Ref. 3) showed the non-
linear differential equations of motion with periodic coefficients
fc - a horizontal axis wind turbine. Later Friedmann (Ref. 4) and
Straub a.d Friedmann (Ref. 5) solved these nonlinear differential
equations of motion by a local Galerkin method resulting in a
finite element formulation. This was done for a helicopter in
hover.

The stability of a rotor blade in hover was also examined
by Stephens and Hodges (Ref. 6) in the same year, 1980. They used
a mixed deflection and force, formulation and they solved the non-
linear static equilibrium equations by a collocation method.

Kata (Ref. 7) presented the nonlinear equations of motion
for nonuniform, twisted, horizontal axis, wind turbine blades
using Hamilton's Principle.

Finally, Sivaneri and Chopra (Ref. 8) in 1981 presented the
aeroelastic stability of a helicopter rotor blade in hover by
finite element method based on'Hamilton's Principle. The flutter
analysis was done with normal rotating modes obtained from the
finite element method.

In the present analysis, the linear differential equations
of motion of a horizontal axis wind turbine blade are solved
using the tinite element method coupled with the total potential

energy formulation of the structure.
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Accor&ing to the finite element method, the structure is
discretized into a number of finite elements. The field
variables within each element aré interpolated with respect
to the nodal values of some generalized coordinates, using
piecewise continuous functions. The assembly of all the
elements will then represent the complete structure (Ref. 9).

With the finite element method, complex geometries and
nonuniform properties can be easily represented by averagiﬂg
them inside each element and then decreasing the size of the
element.

The matrices involved in the global equations of motion
of the assembled structure will have smaller bandwidth as
simpler finite elements are used (e.g., the 2 node beam element
used in this analysis).

For a cantilever blade, a small amount of finite elements
is sufficient for a good displacement solution, while a larger
number of elements is required for a good stress solution.

In Chapter 2, the static and the vibration analysis of a
straight elastic axis (rotating) cantilever blade was done
using finite element method. The flutter analysis was done
using a modal method, the modes having been the normal rotating
modes of the blade obtained by tﬁe finite element method.

In Chapter 3 the vibration analysis of a nonstraight
elastic axis beam was performed. The blade was discretized
into a number of straight elastic axis finite elements suf-
ficient to describe the curved shape of the beam. The stiff-

ness and mass matrices were first obtained along the local axes




of each individual element and then they were transformed along
a set of axes common to all the elements. The problem was
then solved in a similar manner with the straight elastic axis

case.
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2. STRAIGHT ELASTIC AXIS ANALYSIS

2.1 Mathematical Model

A global orthogonal system of axes, fixed in space,

X,Y,2 is defined as shown in Figure 1, with the blade rotating
at a constant angular velocity’sz about tre 2 axis.

The blade is set at an offset € from the Z axis, as
shown in Figure 1. A new orthugonal system of axes x,y,Z is
now defined, with the x-axis being the elastic axis of the
undeformed blade. The blade is also inclined to the XY plane
by a precone angle P and a droop angle S. The cross-section
of the blade is symmetrical about the major principal axis
and pretwisted at an angle g . The shear center E.A., the
center of gravity C.G., and the centroid of the cross-section
are not necessarily coincident.

All blade properties are in general nonuniform. The
blade is allowed to deform under the acticn of rotary, vi-
bratory and aerodynamic loadings, according to linear small
deflection engineering beam theory. Since the blade is of
moderate to high aspect ratio, plate bending effects are not
significant and the deformation due to shear is neglected.
Also torsional warping has been neglected.

The deformation mode of the structure consists of three
translations u, v and w and one cross-secticn rotation ¢ as
shown in Figure 2, under the assumpticn that the cross-section
shape does not change throughout the deformation of the struc-

ture. The three translations u, v and w describe the behavior

\
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;gg;tﬁe elastic axis only.

TThe.eqﬁétions of equilibrium of the blade are written
with respect to the undeformed blade axes x,Yy,Zz.

The aerodynamic forces are calculated according to
strip theory based on cuasi-steady, two dimensional, incom-
pressible unsteady aerodynamics. The position of a point A
in the blade can be defined by blade coordinates §, " and
; which follow the blade (see Figure 2). The position of

the same point with respect to the xyz system of axes will be

X $+u 0
y = v t E (
2 w S

where § is equal to the x-axis coordinate of point A in the

undeformed blade.

y -u"cos(yf,+¢) -w'sm(fii-;‘) u"sm(é‘l';é) "W'COS(}éA-ﬁ)ﬂ
v’ c<>s(9£+¢) -sln(ﬁi' ¢)

sl
I

bW' Sm(gé-a-sﬁ) cos(¢°+¢)

for small ¢

cos(g+¢g) = cos g - ¢Siné
Sln(2+¢) = s:'ng + ¢CO$¢;

then to first order terms

(2 )
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P 1 -u-'cosgf - w's.u'ngé u"su'u;é —w'cos;é .
v’ Cosgé - 9551'"2 -St'n,f -;bcosyf (ib)
w' s.'ng + ¢cos‘¢; cosé -Sisiné |

™
[

The position of the previous point A, with respect to

the fixed system of axes X,Y,2 will be

X x COsszfcpsg
Y = S{Yyp + & {sinRtsing (3)
Z Z St'n%

where

[ cosSlt ws(B+8) -sinQlt  -cosSUt sin(B+)]
sin&f s (ﬁfg) Cos&t ~sindbt s:'n(ﬁq»S) (4)
sin(B+§) 0 cos(B+§)

TN
]

It should be also noted that

£ -
-1 T (5)
S

~

i
IR VoW e B |

and
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{ -‘:3 = E { ",‘ > (6a)
gtl s-cs p
(T ’["’
T o= ST (6b)
LK 9 ia

2.2 Minimum Total Potential Energy Formulation

We can define the functional v where

iy :( Strain Enercw) “(Work ot External Load-s) (;)

St Ererqy = L } [ (E€s+ Gyt + Gyl )dsdnd]  (8)
Work o External. Loads = j (Jus) (//egqud3)4§
j:u‘dx + }1’ wdx 4 j? gd§
°T R R
.,.jtlyw'dx +jciau-'clx. (9)

Then, amonc all the possible displacements u,v,w and{ﬁ that
satisfv compatibility inside and on the boundary of the
rlade, the one that satisfies equilibrium everywhere in the

structure will also minimize the functional T of equation (7).
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-hence, the condition

Sm = 0 (10)

will provide the solution for ﬁhe displacements u,v,w and ¢ .

We can express the strains in equation (8), with respect
to displacements u,v,w and ¢ as follows.

Let ds and ds, be the lengths of an infinitesimal element
along the blade before and after deformation respectively.

Let AB, AC and AD be three mutually perpendicular line

elements before deformation (see Figure 3), with
(ds)" =(A8)* +(AC)" +(AD)’

and AB', AC' and AD' be the same elements after deformation,

(ds,)l :<AB')2+<AC')1 + (AD)’
Then, for small deflections

AB = 45 o
o §

I___E‘
AB'= ¢ oA §

and , ds, ds
AB-AB8 __ ol § d§
€& =~ Ag (t4)

=
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Let the coordinates of point A, with respect to the x,y,z

axes to be given by ecuation (l). Then differentiating it

with respect to g and substituting into the following

Loz (B (e (B

ds,
:Ig‘ could be obtained.
To find Jﬁ%— , we simply substitute
w=v=ws=s 96 =
: d.s, . et
into the :IE- equation above. Then by substituting
. d s, d.s . .
the expressions £c - and —— into equation
d§ d§

(11), dropping nonlinear and higher order terms, we get
E¢s = T q(u‘”cosgf +w”sfn9£) - }(‘U’”S"“Sé
+w”c.osg) + <q2+§2>g’¢ (12)

Substituting equation (12) into the tension eguation

T = E ) €dldy

>

we get

W= _E.% +C(U'cos¢+WSm ) KA¢¢ (13)

Substituting equation (13) into eguation (l12) we can elimirate

u in favor of v, w and ¢ and hence obtain
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E¢g — —EIA- + (eﬂ - q)(v"cosg + W/Sl'nyé) + K(U’”sing

- W"cossé) + (' T- K:) g'g (“’é
Similarly from Figure 3 B
¢ — s d

’

AC
BC/ \/(%&g - °’~) (aL.‘I 4§ - d’ dn)’
TR
cos( " ¥g) = Sin¥em X Yy

. (s8) +(ac)’- ()
cos( ") = Z(As’)(Acg = Oy us)

1l

Since

ther.

Or, substituting the expressions for AB', AC' and B'C' into

ecuation (1l5) we get

Y _ (8/s) ol +(=*s/dn) dn’ -[[(""‘/ﬁ)ig @"/d'l)‘i'l]

;- 2(ds, /5 Xds./dy) o6 dn

+[(dy/ag) ds —(ly /ebn)dy]? l(i!/di)di (di‘/dn)d'ﬂ] (t
2(ds. /J.g)(cls /olq) d§ely
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Differentiating eguation (l) with respect to q and
substituting into eguation (16) together with the following

equation

ds‘ ( ( jf' ’ (13)

we get, after deleting hicher order and nonlinear terms
- ‘§¢' (£8)

Similarly, substituting 7 by 3 int> equations (16) and (17)

anéd repeating the former analvsis we cget
Yoo = ¢ (19)

ubstituting equations (14), (18) and (19) 1nte eguation (8)

Ul

for the strain energy, we get

R
Strotin En"jj = _-:ZL.,]{ -;—:A- + [EI, Sln")é + EI,COS%](U-")Z
+[EI|ms'}é + EI, Sm‘sz.ijW”)l + 2coSéSl'ﬂ£[EI2'EI|]'
[T+ EB(¢)U(#) - 268, cosp(g) g
-2 Estin;f(%’)w"yS'} o§ (20)

where EB, and EB, are given in Apvrendix M. Since the above

equation is up to second order of maanitude when we come to
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R R
j;‘-( jpxd.z)(jjégg dyd])d$

/(K +) //e§§ dyel] d § (21)

we need to cconsider egg up to second order of magnitude, too.
Hence, if we kept second order terms into equation (14) we

o o] Gl
1 i"”°°5?f + w'sing + B(-v'sing + W"Los;é)]

-

gt 5t )]

Then, substituting equation (22) into egquation (21) and ignoring
the u' term since it is one order of magnitude higher than the

other displacements, we get R

Work of Cobifugat Temsion = | T{- 1[0

+ EA(U’”cosfé + w"sfng) = CA %(V”Sl'ﬂﬁ - W”(.osé)
K @) 9}’76’]} d (23)
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LI |
Substituting equations (23) and (20) into equations (9) and
2

(7) respectively, and ignoring the term EA which does

not contribute in the variation of T , we get

= —j EI Sm¢ + EIgcos;ﬁk ) + [EI c.os¢
+EI,sm ¢kw") + 2‘“75 Sm¢[EI EI]U'W
+[GT + EB,(¢' )](?5) - 2EB, cosg g'w”¢

- :zEB2 sinié g'w’l’é] O‘-§
R R
- j( )i |- Ty + en[uoss
P gt
-K'[ 207+ #9]}4
R
I’f rdx - 'PWOL" _/L,ﬁdg

J‘twix-hz (24)

Note that rotation¢ is about the deformed § axis and hence the

work done would involve ? rather than 2
$ x

The above functional 7Y is equivalent to the one given in

Ref. 1.
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(a) Blade absolute

Acceleration Vector

It is essential to
acceleration components

deformed blade axes) to

know the magnitudes of the absolute
along the x,y,2z system of axes (un-

be able to formulate the inertial

(D'Alambert) loadings exerted on the structure.

A systematic way this can be done without losing Coriolis

and Centrifugal effects

is the following:

Assume a point on the undeformed elastic axis to ke

displaced by u,v,w and then the cross-section to be x»otated

by ¢ (Figure 2).

The global coordinates of any point A of the above

cross-section will be, according to eguation (3},

X pd

cos St C‘”?i

Y = § yr + & Sin&fcosé

Z 2

Sa'njé

where, according to eguation (1),

x S +u
gl v o+
z W

Matrices S§ and F are given in equations (4) and (2b)

respectively.

Substituting equation (1) ipto equation (3) and dif-

ferentiating equation (3) twice with respect to time, we

get the absolute accelerations with respect to the fixed

\
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. - s St cos B
+ Se - sinflt sinB (25)

Resolving these accelerations along tne Xx,y,2z system of axes

we get the required components
) (%) (& . [
o :S Y = (Vv +2 SU’
o8 ! '2 W T 7w
. [+
T To 2 4
#S 8w +(SSE-258E-
w

’0 2 —cos(ﬁfg)cosﬁ
’1} + R& { 0 } (26)
3

+
tTTe
\—/

sin (B+8) cos B

where
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.mmou&N.wN - T&:G& - Nmoé.

;w*nv«:.m: 0: (3+g)s0d] | O W+ﬂv:_w 0
B LT R =¢g ! +5c_w: 0 . +m_ $0d Nw
Aw+nV8.un.f. renr e wa .m..pm w Aw v

ﬁ.Am.,,mcsw :w,m: $03 - 0 S:&mou- ; 0 )

{
st
-
wat

m:_nma sgd)ms.
(3+d)ws- | dsorg + Yy

.~w+m_ :_mumw _ ﬁms_wb . Amav:_mm:_w&@& - Twmou& + bﬁwim_v:_mmwm +
&woo\s M_?,m:uou wtmc:_w.mw “ &:.LG&Y:E@ - m&moubn m M G&v«:_w“.mm_-
RN 5d SEN R e Sainic i SRR AL bt <2

- (gtd)wisy :_mmwﬂm_w + R:.n& &me& o

200

—mc_mb + Bsoom :u 9+d)s507- (8+g)urs 57 - Troub + &:_m\s% : M(9+gd) s BT -
B+ PR ¢ mé@ (srd)srrs - s %&G (srd)=eT 18-

R S g ) by RIS RSt AN
BroBasy + [Jusg- | - Pesm- (gd)seogusdrgr e L p(ged)soopsy-

Bsor] (5+d)s0>(g+d)ws g+ - [Bsoog + s (g+d)so2(gd) s 09 + M;Qé,ssésm@,

?\c.mb mou\S_ w+uv $07 S

Tm &Em BH_Aw+nv mOuNw Aw+av«mou«NMIL
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(") D'Alambert Forces ané Moments

Since the components of the absolute acceleration vector
have been found, we can now proceed to evaluate the inertia
lecading thus induced on the structure.

Assume that a point on the elastic axis of the blade is
allowed to be displaced by a set of small virtual displacements
gu., gu‘ ' gw and gf due to the action of the real inertia load-
ings. These virtual displacements will create a virtual change
at the x,y,z coordinates of anyv roint A on the cross-section,
i.e., S-x. , gy , 82 respectively. These virtual changes will
be obtained by taking the first variation of eguation (1) and
using the F matrix as given in ecuation (2a). The expressions

thus obtained are listed belcow:

Sx = Su - [[qeos(B+8) - Tsin(gep)|w' +[-nsing+#) -
Seos(go A ]g - [ sin(B o)+ Teos(g))Sw’
[1cos(+9) - Tsin(g+9)] Sv”
Sy = Su +[-nsin(B+9) - Teos(g+9)] 6
§2 = Sw +[eos(ged) - Ssin(2+7)] 6p

(23)

The virtual work done then by the inertia loading during the

above virtual change of coordinates gx, S:j ' gi will be

Sw = j[j{(_q,)sx H(a)y + (-ou)82) pdSandy  (20)

4
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where the minus sign of the acceleration components is to

make them inertia components.

Substitution of equations (27) for Sx, gy , gz into the

virtual work ecuation (28) will give
R
(w = j{?xgu. + fngv + T’zgw + 1§g¢
* chgwl * clzgvl} 45 (2)

where the inertia loadings will be

= ]/ ﬁ(-az)dv‘dE

1@, }/ f(-ety ) elyl3
f/ p(-eez) dyoly
]/f( w9+ (W) dd3 jjf( a,)(w
-Bdnd] + jjﬁ(-az)(g -v) oyl
1, = j/ p(-oex)(w- ?-')oL»]oLS
., =, f/ pCoa)(v-y) dydl]

Substituting the equations (26) for a, , aj » O, previously

(30)

found, into equations (30) for the loadings, deleting all non-
linear terms and all u terms, since u and its derivatives are
much smaller than v,w, ﬁ and their derivatives, we get the

equations of the six loadings as presented in Appendix A.
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(c) Blade Absolute Velocity Vector

To be able to perform flutter analysis, we must know the
aerodynamic forces exerted on the blade during its rotary
and vibratory motion, which means that we have to know the
velocity field induced around the blade. This velocity field
will be different at different points on the cross-section
of the blade. To avoid this difficulty we will take as a
reference value for the velocity, the value at the’aerodynamic

center which is at the elastic axis in our case, i.e., at

n=3 =0 (31)

Similarly, as before, allowing a point A on the elastic
axis to be displaced by u,v,w and then the cross-section to
be rotated by‘¢ , the global coordinates of this point will

be, using equations (1), (3) and (31),

X S+u cos S0t cosBl
Y — S{w t Co {sinBlt cosp (32)
~t
Z LW sinp J
Differentiating the above expression with respect to time we

can obtain the absolute blade velocity with respect to the

global system of axes

X (] . |$eu -QsinSet cos P
Y| = § 2 S v t G Sl cost cos B (33)
Z W w 0
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where S was given in ecuation (4).

This absolute blade velocity is cdue to the vibratory
ané rotary motion of the blade and it is taken positive along
the direction of the unit vectors I E’Ri Hence, the equiva-
lent air velocity to this blade motion will be egual in
magnitude with the blade velocity but taken positive alceng
the direction opposite to T T K (see Figure 4a).

Allowing the air free stream to have velocity components
Uo,, Vw ., and W, with respect to the X Y Z system of axes
and the induced velocity U to be in a direction opposite
to VV; (see Figure 4b for positive directions of all air
velocities), then

Total air v(fod'}'z = Blade u‘e_l_pci‘.j + Free air ucl,ocfij
- lnduced wvelocit

o

X Uy 0
? + vw - {0 (3‘/)
Z wa Vi

Resolving the total air velocityvy of the above expression

along the xyz system of axes, accordina tc equation (6b) we

get

Ux T )( + Uw
v — S Y + Vo (35)
Uz 2{ + w Vi
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Blade Velocity

I,
1

Equivalent Air Speed

Figure 4a
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Furﬁhef on we will have to resolve these components along the
deformed blade since we are interested in the aerodynamic loads
aiter deformation of the blade. Air velocities Ug,‘Jq and Usare
going to be taken positive along the negative L; Ln L; unit

vectors. Hence according to eguation (6a)

U v
$ T | Yx
Uy — F U (36)
~ J
Us Vs
where

US = vodial c.omPone.n'E of ucloci":j

-
- )
I

‘Lomge.r tial com?oncnt of udoci{:j
US = Perrenol.icu[ar c_omPonent': of ueﬂociky

Substituting equations (33) and (25) into equation (36) we get

U§ &' T e u+§ T _7T Uw
Uy ff +ES S+ E ST\
US \?V w Ww"u'&

-SdsinSot cos P
T AT (33)
t E §Co 52 cos 0t cos B
O .
where F is given in eguation (6a)

Since the radial component of velocity is much smaller
than the perpendicular and tangential ones we can neglect its
contribution to the aerodynamic forces. Also the W displace-
ment and all its derivatives are much smaller than the corres-

ponding U and W ones. Hence all the W terms and their deriva-

Ty
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tives can be neglected in the Uy] and US eguations.

Presenting U'] and U; explicitely (after nonlinear terms

have been deleted) we have .:
U,] = c.osg‘tof + sn'n;év% + Sasin(ﬁﬁ)sin;éLr - stm(?n—S)‘ i
-cos;{w - Qsinyg {gcos(ﬁ+5) + €, cos ﬁ} ?5 + Szv gcos(B
+S)cosgé 4 Szeocosﬁcosfé + U, {-cos@{c,os(p+g). »»
(w'sfng+ u”cosz{) - SinSZ-E(coszS - 7‘3'")3) - cosbdt - 3
.sin(B+5)<sm32§ +¢cosy§)} + VY., {~sm.§2{ cos(BfG)(yv'.
sing + u"cos?f) + c.osS?;{:(Cosg -¢sin;é) - sindt sm({hg)-
(sng + feosg] + (W, -w)[-sn(pod)(wiing » |
+ u"cosgé) + c.os(B fS)(sinzs +;5cosz5)} (3?
U, = -sing 7 + cosd w + Sann(ﬁ+5>cos Fu o+ SZ:Sm(}%S).
sim;éw - SZ(.oS}é {gcos<]3+g)+ e.cosB @ ~ gz?ws(ﬁ
E)smgs - QecosBsing + Ul cos Lt cos (Be5),
-(-w'cos;i : u"sn'ng) + sm&i’.(siny:’ -:-;zfcosg) - cosdit -
-sih~<§+8)(cosg -fs:’né)} + Vw{sfnsz{ cos(ﬁ*'g)(-w'-
-cos;é t V'thg) ~ cos&i(\sing t+ ¢cos;§) - simdlt -
-sin(B+8)(cosg - /dsin;é)} + (W, - ‘,‘.){5;,,(5,;5) .
(-w'cosg + u’smg) + cos(B+S)<CosZ§ -fsiné)} (3%

Also since the blade is allowed to pitch to the free stream,
we can define this pitch to be € taken positive in the clock-
-]
wise direction. Then the rate of pitch € , which is aiong the

*
Lg Airection, to first order terms, will be obtained from



[wg wy wel [G] =8 0 O]Eg +[0-w Cr']jf, +[o 0 QJ(F)
B 4 Gy {7

. : 5 .

° ot ot ()

=([¢ 00] +[0—w U']f +[0082]5‘F) .t.f

~ Wy

Heitice, to first order terms I;

€ = Wy = };5 + QS'IN(B'PS) + QCOS(B*S)W' J (39)

(d) Aerodynamic Forces and Moments

The aerodynamic loads are formulated according to strip
theory; i.e., assuming that only the velocity components per-
pendicular to the g axis (deformed elastic axis) influence
the aerodynamic loads.

The convention used for positive air velocities Uﬂ, U;
angle of incidence o , lift L, drag D , and pitching moment
M. is displayed in figure 5, according to which all velocities
and forces are taken positive along the opposite t; ' i; direc-
tions while o and M are taken anticlockwise as positive
(nose-up) .

Assuming that the blade is vertically displaced with
velocityl: , being positive downwards, and is pitched up at
an angle € to the free stream, the total lift and aerodynamic

moment will be respectively

L = Lc + LNc
M= M.+ Muac

(40)

in terms of their Circulatory and Hon-Circulatory components.
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Greenberg theory provides the values for Lf_ ' LNC' Mc
‘dnd Mchor two dimensional oscillating airfoil in a pulsat-

ing incompressible flow vV, the airfoil being pivoted about

the guarter-chord point which is the aerodynamic centre and the

elastic axis (See Ref. (71)).
L. = --é—faCV<K + Ve + %60)
Lue = =% G(K + Ve« Ve + £E) (41)
M= -ppee(£)VE
Muc= -5 Lue - 3p2(5)5
Since the blade is moving with speed h downwards then

the equivalent air speed will be \/k upwards where

V,,=}1

Allowing the free air to approach the blade with velocity

V (see figure 6), then projecting V and Vh along the l] and}
axes ané applying the conventions for positive velocities

stated before we get
Uy = Veose -V, sine
Uy = -V, cos€ - Vsine

For small angles € ,CoS€ =1 , sine€=< € and since Vh<v'

cne has
Uy
Vs

i
<

(42)

in

|
=

]
<
m
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Figure 6
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Also, s;nce

wls g Uy o U <l

then U= VU; + U; = le ~

substituting equation (42) into the lift equation (41l) we get
_ | <__ Ne °>
— _Jloxc 9:-(_ ’ <
LNC - - 1‘: 4 U} *

The drag force D will be

D = Lpaec == <. p? (44)

Constructing then figure 7, we can write force equilibrium

(43)

equations for forces F and FS- exerted on the blade and

being positive along the positive L,' and L; directions.

E] = LC sing —~ DCOSa(

(45)
= Lo D - L

and
cosa = n_ sing =—U5—

U U

Hence substituting equations (43) and (44 into eguations

(45) we get

_ _ g ° C 200 _ Ca, C o

FS = 'irocc[ 9 U; +<7y-) € (i-l-—a—)ug U'] + que] (l’ém)
2 c - Cda)?

Fo= hpec[ U - S €Uy - Syl (465)

) [Ué - Uy + 3 €] (46

il

|
s o )

R

N
N\
|

M
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' The conventlon used in this report for positive forces

and moments along the xyz system of axes,
P ?'§ ?-! 1a

is dlsolayed in figure (8).
Transforming equations (46 a,b,c) from the § ‘N 3 axes

to the xyz axes using equation (6a) we get for the forces

h[ =

wil_sTl ©

Fx =<-w'sin2 - U"Cosf)ﬁl + (" W'COSXS +U"Sm5é)F§
b = (g -pomd B + (sing - peosg)s ()
b, = <smﬁ’ + yfcos@ﬁ; + (cosyé - 525sm¢q>l:;
Iy= M=q,
- My
9.= Mw’

Note the negative sign on q. due to the convention for 9_
b

J

adopted in figure 8.

Substituting equations (38a,b) and (39) into equations
(46a,b,c) and then into equations (47) we can express all the

six loadings listed above, in the following general form

(Loading) (Coe}) (Coe.f) W (CoJ o (Cuf)tr
(Cod) W+ <Co¢i>¢ + @oef vo+ (CoQ.DW
(Cae.ﬁ) @ + (Coe_f) V- <Coe9 <Coe£/1r
(coef) w (cmi)H
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where the 14 coefficients for each loading are presented in
~append‘x B.

It has to be noted that many of the terxrms in these coef-
ficients are shown to have negligible contribution in the loaé-

ing terms and hence they can be neglected.
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2.4 Order of Magnitude Approximations

Throughout the analysis the following ordering scheme

was adopted

Quantity Order of Magnitude
e 0(1)
& 0(1)
€a _ 0(1)
T
sin(p+8) 0(1)
(6 /x 0(1)
uw 0(2)
Vi 0(D)
W 0(l)
V4 0(l)
K, 0(2)
Ks, 0(2)
K} 0(2)
everything else ... . ... .. .......0(0)

It can be seen from the above table that W displacement
is one order of magnitude higher than V" and w . This is why
terms including W and its derivatives have been neglected every-
where in our analysis.

Further on, the equations of equilibrium resulting after
the first variation of the total potential enercy of the blade,
were kept up to second order cerms 0(2) except in the torsion
equation which was allowed to go up to third order terms 0(3)
due to lack of first order terms 0(l). Doing this, the stiff-
ness matrix of the structure became unsymmetric. To preserve
symmetry, we had to allow up to third order terms i1x55 . in the

U and W -eqguations.
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More explicitly, <for all the inertia and aerodynamic

loadings we have

In the P, loading

0(0) terms were kept together with up to 0(2) terms

in v and w (all their derivatives have been neglected)

In the 'P ,P , 9 , @ loadings
3 1)
Up to 0(2) terms in V" and w and up to 0(3) terms in FS
were kept.

In the Z§ loading

Up to 0(3) terms were kept in U, Wand ¢

Using the above approximations, many terms could be neglected

from the inertia and aerodynamic laodings (See appendices A and B).

2.5 Finite Element Formulation

The blade was discretised into a number N of finite elements.
In each element, the field variables were interpolated according
to piecewise continuous interpolation functions. To satisfy the
compatibility and completeness requirement for monotonic conver-
gence to the true answer as the element size decreases (see
Reference (9)), we had to presc;ribe v, U",w,w'and ¢ on each
node of the structure. (See figure 9). The corresponding inter-
polation functions were:
Zeroth Order Hermitean Interpolation function H® for 'd , and

First Order Hermitean Interpolation function H' for U* and W
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Similarly for w

Figure 9
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Substituting equations (48),(49) and (50) into (24) Zor
the minimum to%al potential energy and taking the variation

with respect to i where

=S [22%]
vo got Al N elements
(K.+Kogq = Q (51)

K, : Geometric Stiffness Matrix  (Assembled)
Q Loadin«g Vector (Assembled)

and

- -L‘rL»'. ";l:' le;;z-

o N
K= =1 L L
SYM \E‘ ,1:3‘

R | ‘:# 9 5; l'_-_;
Ke= 2@**‘) N b L

ceess a et a s "2' s i ass e a s 0...&‘.. sess oo ose aV¥oo.0en
o2 [ . /T T
| K R }ﬁo d§ + fﬂoWE ]
[ -~
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where the Q:i matrices are presented in appendix C and the L;

ccafficients are

b = EI cos’d + El,sin’g
b, = ET, sin'g + EI, (.os'é
by = (EI2 - EI)co:gs.ngé
E,, - EB, cosg@/)

b. = - ER, mn;é(%l)

b = GT + EB:(Z?DZ

B; = C,‘Smé

b, = -¢&cos¢

b = K

Substituting the reduced loading eguations presented in

w
|

LY

appendices A and B into equation (51) we get

CINOL R CR
* CKA * Ks * KG * KM) (j; = Q-sho.dg (52)

where

»
]

Aerodynamic Mass Matrix

Structural Mass Matrix

NI
]

>
1

Aerodynamic Damping Matrix

1M
3
[

Gyroscopic Matrix

Aerodynamic Stiffness Matrix

3
I

Structural Stiffness Matrix

1:7<£7<):x.‘
fl

o
I

Geometric Stiffness Ma.Tix

| VR

-
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}Q“ = Structural "Mass" Stiffness Matrix

-

= Steady Lcad Vector

PB' ‘:.5 Bzi.—.é Ba,L,-Te-‘

\ T
[ L E':.-e

C&u SYM N
L o |
r T 7
Cl‘L;‘ 9 ClaL:q
NG
AUN Y tzg a‘l L'-:
¢Lens SYM N
- o Ly |

BL&'*BQL;%BL‘ +B BLq

C, \\ .
r + [y Lz : [ Lc + ra.L; l—}_
L.. An [;w Als LN\.\A‘LQ

l‘['_ »
()

‘ T
t—dqu—Qn

RINE

;"'aﬂgL:q'-cxn

o

-QIS!:'Q +al§£—la. a L +a|?L ::

%{S‘ }QG matrices were defined on page 56.
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g'a,ﬁt_ﬁa..,_g, Bl BoLy Al B(
XSA v m:‘ EL‘AL r.L‘ " r L‘ N r L'
Aw [:to Ans L \Alo Lt
oy l;,-‘ 0 Ay l;‘? -, ’:Ttoq
KM: 2 \9 &, Eu
QaNQ&., SYM \ [_
L Y=t

‘K ;zﬁfpatxju ot§ (ot., A.D/H aL§

where the O coefficients are

o, =M

2
G.l = m KM
Ay = —mesin;ﬁ
o = me,c.osys

A = QMRsm(ﬁ 8)
X = 2m53ecos<B+S) Sing

CX; = -MSB

g = m 90 COS<B+8>[(sz -K )C05<B+S)C°S2}5 Cgsmyﬁ
S|n<B+S>]

oy = milesing
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MQSZ [§<°5 (5»,8) + € cos<B+S> cosﬁ] B

I 8

me Sl [§ cos (B +§) + €, Cos (B "'g)c.os P] cos P

Qi = me.ga oS

Ra
H

l

oy = = msin (B48)[ § cos(B+5) + escosP]

Ky = - me@z[gcos‘@ +S> + QCOS(BHS)COSF]

Olis = -MSZ:COS%[(K:I-K:\') c.osz(ﬁ+g>5m5é + C?sm(ﬁ+g>°
. cos.(Bfg) + &8¢, S|n({3+8>cos ﬁ]

o = Amedd sm(ﬁ-\-g)c.oscé

Xy = m@(hm- K. )cos<ﬁ+8>cos¢sm}z$

xyg =

Zme@:m(B«»g)sm?S
Ay = m@(Km Sm¢ K , Cos ¢>COS<E+S>

The B.', , r: and A; coefficients relate to the aerodynamic

forces and are listed u appendix B with opposite sign since they

have been obtained from the loadings directly. Hence, in order

to be substituted in the matrices MR' C'R and KA appearing in

equation (52) their signs have to be changed since these matrices

have been transfered from the right-hand-side to the left-hand-

side of the equilibrium eguations.

2.6 Static Analysis

To perform static analysis of the structure we set

020
[ d

{ro

then the equilibrium equations (52) will be

Kq = Qs (53)
K = }Sn '*'}Ss + 56 +

and

-~

M

A0 g - A
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The solution of equation (53) will give the generalized

displacements 1 , where

QT:_- Z [ww'u'lui'WW.'Wsz'?é]

-~ ol N elowm,
To obtain the shear forces v’ and Vi and the bending moments

M: and Mz of the blade we used the same conventions for
their positive directions that are shown in figure 8 for the
loadings 1’ P , respectively.

g ’ K ?y ' ?2 L by

The shear forces V: VZ for each element can be obtained
from the equilibrium eguations, using force summation method

(see Reference (1))

’be
Tx = -E (5‘,0')
W.
9: = -fz (54b)

Approximating the above derivatives for the ith element

7V3 - Vi, = Vi

’Dl l‘; (55>
,‘)Vz - VZL'N = VZA'
I x L

then, the rnodal values of Vﬂ and Vz for each element will be

obtained from

<
-
b4

]

Vi - P& (S6e)
Vziﬂ = Vl,; - ‘Pﬁ& (56 b)

with'the condition that VK (Free end) = Vz“r““) =0
r
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It has to be noted that in eguations (54a,b) we have

‘F( = <?5i>ﬁeroduno.mic t (E’; )S*rudural
FZ‘C = (EL)AerodJn:m{( * (ﬁfi )SH’\;durQL

where the "aerodynamic" and "structural" parts can be obtained
from appendices B and A, respectively, by setting all the time
derivatives to zero and then substituting the solution for i
(which is a function of Vv , w, ;f and their derivatives).

To obtain the bending moments ﬁAj and ﬂquor each element

we use the mode displacement method where (see Reference (1)).

Mj = (EL coslg + EI’-“*’\%)W”-;— (EIz ‘EI,)SlnjéCOS;é o
-(TEA + EB, 9/¢jsmg - Ténizﬁcossé (5%
MZ = (EI - EI)Slngﬁcos?Sw” + <EI szg{ ) EIzcoszg)U'”

<TeA EB;é?)cos/d Te,#sing (5%
and — = -} (58)

In this case we cannot substitute directly into the moment

equations the solution for since they contain curvature
1 Yy

Cad

terms that are not represented explicitly in q . Nevertheless,

~

s
we can approximate the curvatures for the i“h element, like

W/I = f)(w’) - W&i- - WLI

2x L

= ) - (59)
A% [/

(AP _ P8

7= A T

and then substitute the solution for q . It has also to be
noted that since the eguation (58) has similar form as egquation

(54a or b) we can express 1- in the following form (for the
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ith element)

T = T; - ﬁ‘_& (60)
wi’h -T} =0

ree end

: £ (b
where 1;‘ (:#;£:>aerodynamic kq structural

and the "aerodynamic" and "structural" components can be
obtained in an exactly similar way with h. and A discussed
before. l ‘

Finally, after all the nodal values of T- have been found

using equation (60) we will have to average them for each

element; i.e.,

— -E;u*'1:
T= Ty =

and then substitute it in equations (57a,b) together with

equations (59) and the solution for Q.to obtain the bending

mements ﬂ43 and Aﬂz.

2.7 Vibration Analysis

To perform the vibration analysis of the structure we set

[

?. =0

L d

all aerodynamic terms = 0

Qs = 0

Then equation (52) will become

/fvv\sﬁ_ +CKS+KG+KD?: =0

The above equation can be solved as a generalised eigenvalue

problem (see Ref. (10)) of the following form
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(K r K+ KD D = M,

if
= ~ = - A t
194 =4 q=9[
where -
Fuxz 5
wz
A = ' is the C‘j"“l’“eu.c motrix
_ -w:“ (m X M)
and
@ o [ ®, @,‘ R m} is the ei{jenvedor matrix
~ - - - (m xm)

for m degrees of freedom (generalised coordinates)

(a) Uniform Cantilever Beam

The lowest 6 vibration modes were obtained for a non-

rotating uniform beam cantilever, discretised into 10 elements,

using subspace iteration.

The frequencies corresponding to these 6 modes were also

-

obtained theoretically using

EL
w = fi!i =
Flap n WE wLaj Xn m Z"

(61)
GT

Tors.'on = n m K: el

where the blade properties, the coefficients Cln and t% to-

getﬁer with the theoretical and numerical vibration frequencies,

are presented in appendix D.
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The agreement between the theoretical and numerical
results is very good.
Also, in the same appendix, the vibration frequencies
for the same cantilever, rotating with SE = 4,191 rad/s,

are listed, for the lowest 6 modes.

(b) NASA MOD-0 l100KW Wind Turbine Blade

The above blade was discretised into 10 elements with
non-uniform properties which are listed in appendix E.

The vibration mode-shapes ané frequencies for the lcwest
10 modes were obtained.

Figures 10, 11 and 12 present a comparison between the
first flap, first lag and second flap rotating mode shapes,
respectively (g2= 4.191 rad/s) as obtained numerically using
subspace iteration with our analysis, versus numerical results
presented by Lockheed California Company.

The agreement is very good.

(c) Investigation of the Direction of Motion =

- Flat Plate

In figure 13, the direction of motion C&KOf the MOD-0
blade during the first flap, non-rotating mode shape is
presented versus the pretwist ¢ , where

(-]
-
0. = tan -

It has to be noted that according to figure 13, although

the blade is pretwisted from the root to the tip by as much as

26°, the direction of motion doesn't seem to be affected a lot.
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In fact, the blade appears vibrating in most of its span along
the direction normal to the chord at the secticn around 30-35%
of the span.

Similar behaviour is exhibited in the North Wind Turbine
(figure 14) with total pretwist 14°, and in the McCauley Pro-
peller (figure 15) with total pretwist 22°. |

Examining the former three blades for the direction of motion | %
éduring the first lag non-rotating mode shape (figures 16, 17 and 3
18) no such behaviour is encountered.

In an effort to see how far we can stretch the direction

of motion concept, we examined the vibration modes of a non-

rotating very thin uniform plate, which has been treated as a
cantilever beam. (See appendix F),. The plate was given a
very high bending stiffness in the lag directi. ., with a very

small bending stiffness in the flan direction (ill-conditioned

.

problem). The first flap and first lag modes we examined for
30°, 60° and 90° root to tip pretwist and the directic. of motion
was plotted versus the total pretwist in each case (figures 19,
20, 21, 22).

For the first flap mode shape a similar behaviour was
encountered where the blade appeared to move throughout most of ;
its span, in the direction normal to the chord of the section ]
around 15-20% of the span (figures 19, 20, 21).

No such behaviour is encountered during “he first lag mode

shape (figure 22).
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2.8 Flutter Analysis

To perform flutter analysis of the structure we set

QS‘}QOJ’ =0

and hence we have
09

5 - ge’l+

r~

- Mo
Ca +

0N
o

with

N 13

G

W< N 2:; zE;

= Ko+ Kov Ke + K

Doing a modal analysis, we can select a number of modes }> out

of a total of m (see Vibration Analysis) and then transform

the above eguations into this reduced modal space, through

the following relation

{

~0
i

1=

,_‘,r_m

to obtain

|
(-3
LY

with

o WS
v o4 0
+
@Y
1Ol
+
LR
101
]
o

v

ORISR ES
i
ISR
v -4

)x M 22

"
o
O D -0

-

Further on, setting

we oktain

=
I
1rOte 01

==Y (62)

where

~

-~
=
At
-M

|
E
iz 1@
:l?ﬂ
@Y
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Equation (62) is much more handy from the cumputational
point of view due to the appreciable saving in computer storage
that results. For instance, in a typical modal analysis of a
cantilever blade, the assembled, damping and stiffness matrices
are 55 x 55 in size (for 10 beam elements). Picking up 5
normal modes; i.e., first and second flap, first and second 17~
and first i‘orsion, (p = 5) then the resulting Eg matrix will
be 10 x 10 in size.

Equation (62) can be solved as a complex eigenvalue

- (4

problem. For

R

equation (62) will be

¢ A =

[1]
HO g

where - = ~
— x
®C — [ ~c‘ ~c1 .., ?C 1P] (2P 2? )
being the complex eigenvector matrix
and r .

M=) Ho (2x2p)

being the complex eigenvector matrix
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i.e., a complex eigenvalue will be

kl.Lre

/\: \Ltl'-w

presents the damping associated with a given mode

while W is the frequency of that mode.

When r is zero we have flutter, while when it becomes

positive we have dynamic instability.

Three numerical cases were examined, concerning cantilever

beams, as a comparison test between results obtained from this

analysis and results presented in the following papers, respec-

tively:
Ref. (3) kv Kottapalli, Friedmann and Rosen
Ref. (6) Dby Stephens, Hodges, Avila and Kung
Ref. (8) by Sivaneri and Chopra
In all cases, the vibration analysis of the beam was done
with the beam having been discretised into 10 finite elements.

(a) Ref. (3) by Kottapalli, Friedmann and Rosen

In thic case the response of the NASA/DOE MOD-0 WIND TURBINE

blade was examined. The blade was allowed to experience aero-

dynamic loads due to a constant wind velocity Wwalong the K

direction, while rotating at an angular velocity Sa = 4,191 rad/s.

Note that according to our conwention for wind velocity in figure

4b, Vwﬂfor this case has to be negative.

Vibration analysis was first performed and 5 natural modes

were obtained (first and second flap, first and second lag and

first torsion).
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[

Flutter analysis was then done, using the above five

modes, for the following wind cases: \

=0
0
-15%, =313 =410, -62% and -940.5 ™,

U.
\/W
WW

and

The real part of the complex eigenvalue of the first lag

mode i.e., },L was nondimensionalised with Q and piotted
LAG

against the nondimensional wind velocity SEE , where R is
the radius of the MOD-9) blade (see figure 23). On the s>me
plot, results presented jin Ref. (3) are also shown.

The agreement between the two curves is good, considering
the facct that in Reference (3) *he input used was based on data
concerning a much earlier design of the MOD-0. The blade was
found to be stable fcr all the Vqﬂcases examined. The lag
stability was found to increase with Vfﬂvelocity.

(b) Ref. (6) by Stephens, Hodges, Avila and Kung

A uniform cantilever blade was examined, with properties
as listed in the above Ref. (6) as "Reference [l] Configuration."
Two distinct cases were examined, the soft-in-plane and
the stiff-in-plane case, both for zero pretwist. The properties
associated with these cases are listed in appendix G.
The lowest six rotati .g mode shapes were obtained from a
vibration analysis; i.e., the first, second and third flap,

first and second lag and first torsion.

[



Flutter analysis was then performed using the above six
modes. The complex eigenvalues obtained were non-dimensionalised
with the rotation speed SZ and then compared with the ones
presented in Reference (6). The comparison between the first
flap, first lag and first torsion modes is presented in appendix
G.

It can be seen that all the eigenvalues, except the real
part in the lag, have very good agreement for both soft and
stiff-in-plane cases.

The blade was found to be generally stable for both cases.
It can be seen also that the stiff-in-plane blade is more stable
in flap and less stable in lag than the soft-in-plane blade.

(¢) Ref. (8) bv Sivaneri and Choora

A uniform cantilever beam was examined, with the properties
given by Pef. (8) and listed ir appendix H.

The blade was examined at

S oo
o
where C; = votor thrust coefticient

o = Soel'diij roctio
which is equivalent to the blade having been set at a pitch
angle of 12.7°.
Vibration analysis was performed and 5 normal modes were
obtained; i.ec., first and second flap, first and second lag
and firs% torsion. The 5 corresponding eigenvalues were non-

dimensionalised by SZ, the rotation speed, and then compared
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With results presented in Reference (8). The comparison is good
and is presented in appendix H.

Flutter analysis was then performed with the previous five
normal modes and the complex eigenvalues thus obtained were non-
dimensionalised by SE and then compared with the ones of Ref.
(8) . The comparison is good and is shown in appendix H.

The same process was repeated for

S - oo
(o3
or blade pitch = 0°.
The comparison of the cuuplex eigenvalues is good.

When the blade was set at

the results cbtained failed to predict the instability in lag

which is shown in both Ref. (8) and Ref. (2).
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3. NON-STRAIGHT ELASTIC AXIS ANALYSIS

3.1 Mathematical Model

A blade with a non-straight elastic axis can be modeled as
an assembly of a finite number of straight elastic axis elements
with different inclinations :( and E with respect to the x,j 2
system of axes of the previous section.

Or more explicitly, we define again a global fixed in space
system of axes XYZ in an identical manner with the straight
elastic axis case. (See figure 24).

We define an z.:!z system of axes at an offset &, from the
E. axis and being inclined at angles ﬁ) and g from the X Y
piane. P is the precone angle and S the droop angle (See
figure 25).

A local system of axes Xx_ 3; Z,_ is then defined for every
element (See figure 26). The direction of these axes can be
obtained from the sz system of axes if we rotate it about
the 2 -axis by an angle % ar;d then about the j-axis by an
angle E, the angles é:' and ﬁ being different for each element.
The X, -axis is the elastic axis of this element in the unde-
formed blade.

The position of a point A ;p the blade can be defined by
the blade coordinates giq 3' associated with the blade element
to which this point belongs. The position of this point with
respect to the X ju Z_ system of axes of this element will be

(see figure 26)

e a—— 1. - . AR
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Figure 26
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X, gftLL 0
Jop = ) w + Fiy (63)
2, W, 3
where

W, V. W, and % are elastic axis displacements and cross-
section rotations of the blade element in question, W_ , U and
W, being positive along the positive .E;L f;L t;‘ directions,
respectively, % along the § ‘"direction . § is equal to the
X, axis coordinate of point A in the undeformed blade element,

and

K -y 'cos (f+¢) -wisin(g+¢) v sin(grg) - wL'coS()'é +?i)
s o4 sin(g o) (¢
cos(g+4)

A Sm(éqﬁ)

The position of this point A with respect to the x.j F

T
]

system of axes will be

x X, X,
gt =iyt Liw (65)
z 2, 2,
where )
Cos & cosﬁ - siha -smﬁcos& 1
dcoob ok smBant (66)
T = | Sin« Cosf) cos« Smﬁsma

Smﬁ 0 |




and X, % 2, are the 1:3 2 coordinates of the left-hand-side
<o
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node of the element in question in the undeiformed blade, defined

as

4

l Previoy,
elewends

element length

(63)

The position of point A with respect to the )(‘{ ;E system

of axes will be

X

where

1N
I

H
N
vy e W

[ cosSet cos (ﬁ+5)
sinddt cos(B+S)

Sln(ﬁ+8)

It sh~ald also be noted that

- T

wN

-

-

— 1M W
n ]
t— 't

cos Ot Cos;é

+ eo &n&-t C_DSZ’S

sing

~sinQt  -coshit sin(B+8) .
cosidt  —sinSot Slh(p+8)

0 cos (B+§)

(63)

(69)

(¥0)

oo s s -
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The rest of the blade properties are identical with the
straight elastic axis case.

Finally, once the displacements W U w and ¢ along the
xXyz system of axes are found, then the new coordinates
(X'j z )Msf the nodes of the blade, the new element lengths

A A
( & )Nmthez.r new inclinations (« )Nenand (ﬁ)niw and the new

pretwist of the blade (52‘ )NE will be obtained as follows
° w

X w p d

3 = U + y

2 w zJ
NEW oLd




(% )ren

3.2

RIS L
U R PAGe ’S

\/("' “x) (g9 (2-2)
(See— {iau.re 25)

NEw

= (8),. + 7

Minimum Total Potential Energy Formulation

Defining the functional Tr where

Tr = (Strain Energy) - (Work of External Loads) (?Q

and

Strain Energy

where

—i—///(Eé + C-(y + G(Y )dxdjdz
7
///CE% * Gyg,, t Gx >°L’] dTd§

““ehmud

YV = volume of the bfude
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Work of External Loads = I_’: [fﬁn d-vld; d.g
A a

o

a& ME
A 2 &
+/ P!LU‘ 4 t,f [ dx - / Cigyfdg
L (; 1

' qg‘wfdxg + qum'de (t4)

o

The strain equations that have been obtained in the
previous chapter (equations (12), (18), (19)) are applicable
here since the energy equation (72) is written as an assembly
of straight elastic axis element contributinns.

Since we intend to preserve WU _as a separate degree of
freedom, we w'll not use the tension equation to reduce it
in favor of v , w and 5? but we will keep it in the strain

equations. Hence |
€ = wi - n(Wreosg + wsing) - 3(-u"sing + w'cos8)
“(e3) 88
=3
b = N7
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By substituting the above into equations (73) and (74)

respectively, we get:

R
Strain Energy = -;— 2 j{EA(u_'L)z . [EIigng +

W' smgcosd + [GT + EB-
@))E)" - 2ea[yeosg s
vesmgw! - Kig'gul -

- 2EB, [neosd + w.'sing | ¢'e } ds

where

EI, = EI, + EAe}
EB, = EB - EAK,
E—éz = EB:. + EAKzeA

(A
Work cf Exterunal Loads = S I {_ / | U ]
- = W
Al [

Y dﬂ:;;;~ 0
t e, [lf Cosg + W, sm,d - € [U‘ sm;zﬁ

.-chost]- A[; )+ 2'e U
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+o/{ ELU‘.. + ELWL + CZLW[ + CZZLU[’} dx, +° /;} %cif}
-2 F

ﬂ” d"“"ﬂ‘g

/ { EAu) + [€T, sing + ELa cosg |(0")’
(ET o+ ETomg](uf) -

+ 2T, - ET] UZ"WL"’st!COSZ; .
6T+ EB(#)](pY) - 264

.[e osgu” + e sindw, - K’yﬁ'g"] ,

- 2E8, [, CUS}x,,WLSmMM}dg
fﬂ a7 [ (Y] + efiosg
Fwsing | - € @ [i'smg - w'eod]

(2 g ])es
{[pv fw“.?w . 3 w}dz

L

) / 1,% d§ J 250)
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0.
[ A
and —E._ = } ?ZLd_xL + ’E‘COSQCOSP + ?:’Slng' COS§ +

+ Pesinf (358)]

where
X
[ ] ’pl‘ dx,
Tﬂ = 1_ /:‘ Py‘ dxa.
?z J veit of Lowaents l. !thdx,_
Alons We -L.a ‘ )
directon

3.3 Forces and Moments Applied on the Blade

(a) Blade Absolute Acceleration Vector

Assume a point on the undeformed elastic axis to be dis-
placed by W, U , W_ and then the cross-section to be rotated
by .

2
The global coordinates X ’ Y , Z of a point A on the

above cross-section will be, according to eguation (68:;

X x] cosRicosxﬂ’]
Y({ — S y t & Smsatwséj
x
d

~

P z Snnzﬁ

where from eguation (65) -

o-c

i
al
[

+ 1

8

Y
[a )
[+ ]

|2

and from cquation (63)
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Substituting equation (63) into (65), then into (68)
and differentiating the result twice with respect to time
we get the absolute acceleration at point A with respect

to the fixed system of axes

X ut. ?
vt = ST{up + 25
2 W, e

—|
<o Qe Fo
-+
1N
\_/ - ~
M o< N
-+
—
[V a)
s e
'.F
~—

\ - st cosP
+ e —smg?.’c_ws? (}6)
o)

Resolving these accelerations along the :r.jz system of axes

we get the following components

ax T 56 U'L al. 1
J

+ ,SSI__) h + Be, 0 (??) :
3
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Or more explicitly, the equations for Olx Oty and X, are B ORI

presented in appendix I.

(b) D'Alambert Forces and Moments

In an exactly similar manner with the straight elastic
axis analysis, we assume that a point on the elastic axis
of the undeformed blade is allowed to be displaced by a set
of small virtual displacements gu,L, gu;_ R gw'_ and Sé
due to the action of the real inertia loadings. These virtual
displacements will change the x.ﬁ 2 coordinates of any point
A in that cross-section by gx Sj Sz , respectively. These
virtual changes can be found by taking the first variation of
the following equation, which can be obtained by substitution

of equation (63) into eguation (65):

X Xeo %*‘uu 0
i = Y47 7 Tiw p+TE{y
3 Z, W, T

Ignoring higher order terms and applying the following small

angle approximation

COS(¢+5é> =~ coié —}ésm?
sm<¢+9§,) = sing + gcosd




N

g . |

S: = o5 & cmé Cu, - sina Sv - sméws&gm +
v sk cosB[ - (cosg - Fsng) + T(sing + peosg)| Su
+ COSQ cosﬁ[-v] (sing + peosg) - T (cosg - %smg)] Sw,
+ {cos&cosﬁ[-qw,_'cosg +N'sing + Iw'sing
+Tucosg] + snd[ 4 (sing + Beosg) + T (cosd
- %smg)} - smﬁcos o?[v,(cosg -psing) - S(smzj
+ geosg)]} ¢ (3%
53 = sinkcosPOu, + cos&by - sinp sina Sw,
v omzcosp[-n(cosg -gang) + Yang + geosg)lSic’ |
+ sind cosﬁ[-q(smgé *?éw‘?) - S(cosg -%;m%)] Sw,
+ Sm&cos{%["qw:coszf N 'sing ¢ Swl'sm;é + }u;'cosf;]
-cos:([q(smyg + geosg) + 5 (cosg - 5?“"?,5)] -
-smf;mn&[v,(cos;é -$sing) - T (sing +écos?’$)]}82 (#81
Sz = smfs&h + cosﬁgw; + smﬁ[-vl(cosg-;ésmg)a»
+§(snn;§ + ;écos;é)] Su’ + smﬁ[-q(smgj +@osg)
- S (cosz - ;{sm;é)] Sw,.’ + {sm ﬁ [-q w,,'cosyf + qVL'%M;é
+ Swisimg + K!&'Cosyf] + cosP [ 1(cosg - Bsimg)
- T(sing + gcosg)]} S;é (8 ;




Then the virtual work done by the inertia loading during

the above virtual change of coordinates §x , 83 ' Sz will be

= !/f{(-ax)sx +(‘°‘s>53 * (‘“Qg*}ﬁ,d"%“

Z /// (Casx + Cog)Sy + (a)selp drd3ds

al elements

Substituting equations (78a,b,c) into the above expression (or

the virtual work we will get

.
oW = Z { j [h5w +h 0% + g bw s clf Kaa A ] ds

all edements © 0
+°f clf;{ ag}

where the inertia loadings will be

b= [ (-ctecostcosh ~oqsmicosh - ctpsmp), 4143
A

(-ovent -agesidgenes

X //(OL,Smﬁcos& +aJs|nﬁsm& -OLECoSﬁ> ﬁd-v]dg

q-% = H{( v]wcos;é v]vsmgf Kwsm# S\rcosf!> ( o,

coSdcosP Ay smucosP oc;smp) [ (smyf t

t geosd) + S(cos}z.{ ?s:nﬁf)]- (-d,smd + a:cosé)
+ { q(cosg - 7$Sm§é) -3 (sz +}6cos2{)]. (a,‘sm‘%cosé‘( i
+aysinfsing - apcosf )l pdndl |

DA
i ]
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q J/{ v,(sm;é 5t<.os?$) S(COS¢ ﬁsm¢)] ( c:.,,,COSa(c,osp

A -assw\o{cosfa a;Smp)f dv,dg
2;. }/ r](cosf ySsm;ﬁ) S(smy + ySCosfa’ﬂ (-, cosa cosf
-ct.ﬂsmo(cosﬁ - X3z smﬁ)f d.b]cix
Substituting the expressions for i OL:, and O ;presented
in appendix I into equations (79) and deleting non-linear and

higher order terms we get the equations for the six loadings

which can be presented in the follfawing general form

(Loading) = (Coe@ Lo+ @o&)f}: + (Coe}lx * (C“ Q;i
Cud), T+ G+ G + (b
CC”S:)qW + <C°€£>|o¢ + (Cogj:)“U'I + CCoe.an/
) @« o @

(C“OHJ—} (cu;)lgv‘ii + (Cu&)'q

where

(Loading) = T’,L ) ﬁ‘ )f‘ ) i ‘j‘_) 7-!

Since in this report we invest:gated only the vibration
analysis of the non-straight elastic axis beam, all the damp-
ing and constant loading terms in the above loading equations
were not included. Thus, only the inertia and stiffness load-

ing terms are presented in appendix J.

o s Al WIS O

H‘Hﬂnm.‘w e e o
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3.4 Finite Element Formulation

The blade was discretised into a number N of finite
elements with straight elastic axis. 1In each element the
field variables were interpolated according to piecewise
continuous interpolation functions. Hence, in a similar

: manner with the straight elastic axis beam analysis, we

/
prescribe on each node W , UL, UL , v/, MQ', 95 or

"
U ' H, ]
A Hi

Wo H,

7 L H

- T
where (iu. = {U-L' u‘_z}
foo = {0 W wl )

= {92

and H, ' B. are defined as in equations (50).

(g, @)

substituting equations (80) and (8l) into equation (75a)

i
})
w0 O 0
S
—
oQ
(&)
S’

f

10
el

o
&
]

]

Setting

we get

ro D 49K -TF (82)

all N Cl(uuﬁ

d
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-

where _Kt. = Ks + ‘56

l'?'\'
"

s{‘ru.dura.l S"’n’gntsr matrx of the " elment

K(, = 3eome+n’c Sh'{'fness watrix oé the ™ edement
B, = loa.d. ucc+cr
and

w

ol
C
oI
[
o |

~

10 -~

w

-l'o—‘
!r "

- -
K = L b
N - -
L bl
SYM -
| E‘L‘.
ERNEEE |
Ka:‘.’ !:"\Q E;L—s‘ §
i 9\%L‘ |
; byl

To  is given in equation (75b)

s fLH B dx. | |
W ¢ [ W j&,:l"uﬂ’ﬂ 3
.ka"' B.d f"'H"p dx, + f‘Bi’qﬁtht 1

1
n

-r:‘}.{; ’df + [‘.H ?d§

3

L
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where the l‘.:t coefficients are DYtAne At
b = ETl.cos’¢ + EIL, 5‘”2fé

ol
»
n

ET, sm‘;{ « EI, cos’g’
(€I, - FI,) cosd szS
-EB, cosd (75’)

-EB, sm%(g')

G,]' + -E—B'(/d.)l

i
ol gl ol o Il ol
] §] 1] i
(1
»
3

O
1l
t
(4
)
o
o]

\

ao— _y—l
1 i

m x

I D

EAeAcos;é
EA e, sing

= -EAK:Zs’

and the l;; matrices are given in appendix C.

EaBa
\

0—-

-
w

Substituting the loadings presented in appendix J into

equation (82) we get

T - T4 K v ¢ 7Kg

Wl N deweds
where M. = mass matrix of the i* element
B... = Mags” ,<J~'Hn¢ss wmatrix of the L“" e&mwt
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and g
E| ,L_' \E‘Llo E; Lw 0 T
m = — EiLG + Kgl;‘, K, L,:a, O;L:
~ . "
Eile+ LL, 8L
S ~
- sTm 5, |
E Lg\:\E LQ "‘EnaLnoé EwLQ "EwLw 5 EuL, T
| Zth*Z;L; z L‘ Z L; Z..L:
M=— +KQL;+K|‘-§.+KL; KLA, .L

\'-\ :
H\oL6 * quL; H L

+I',°L + L. Lo+ L5
SYM PE e o,

@u l;_78

the E; ' Zi ' Hg ' @; ' K; ' I;_ coefficiente are given in

appendix J.

Since the coefficients of the mass matrix m._ are

much simpler than the ones of the stiffness matrix K"_ » they

are listed below

-m
W\CC,osé
me <.w.i$
-m ( Km str'@ + K:‘; c.os‘;é)
-m ( K,:, - K..:) 5m5é cosyf

mesmgS.'

- T T s sotr—t I O —

IR —————
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O, = -mecos @
-m ( K.:. coszé + K:., smx;ﬁ)
O‘, = -M K.:

From equations (70) and 71b) we have

H
l

T . (T
Lh -Cg
Hence we can write
et ] 1w
T

b T s
- v 94

-W: —r ..wl

\ v | | v

where W U W arnl f are nodal displacements and rotations

Ireasured along the xg 2 system of axes.

Rearranging the terms in eguation (84) and changing the

sign of w._' terms we get
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where “E; is a modified transformation matrix obtained from
equation (84) and is presented in appendix L.

Rearranging equation (85) to include both nodes of a

given finite element we get

L =T 1 (86)

where

) .
1 = {U.,LL,U:U:U;U;'W.W.'Wan’¢¢:}

It has to be noted that for this particular arrangement of
displacements and rotations in the Q'umxrix, the elements

of T; are related to the elements of~ 1-'“ by suitable rearrange-
men:. In appendix L a differently arranged q matrix is pre-

sented which lezds into a simpler tranrsfuimation matrix T, .

Substituting equation (86) into equation (83) and set-

ting the first variation of M to zero we get

Sw = ]l’_&‘i + Kcl-r = O (8})

oA bt



where

M

"
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3.5 Vibration Analysis
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Equation (87) can be solved in an exactly similar

manner as in 2.5 Vibtration Analysis, as a generalised eigen-

value problem of the following form

where
N

$-|

KE=M2A

2 e ..

-~ L

Be"nj the efﬁenva(uz matrix

f"‘] Lﬂ'ng '“\l. dﬂh&ucdw md’n‘g

for m degr--s of freedom (generalised coordinates).

“:
l‘ .

&
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{a) Uniform Cantilever Curved Beam

A curved ~untilever »eam with its elastic axis in the

shape of a citcular arc, was discretised into 7 finite elaments
~

A
with the following inclinations « and P .

Element & ﬁ
_ _Number
1 0° 0°
2 10° 0°
3 20° 0°
4 30° 0°
5 40° o*
6 50° 0°
2 60° 0°

The free v.i.bration mode shapes of the lowest 5 non-rotating

modes were obtuined using subspace iteration.

H
H
f

The same cantilever beam but with a straight elastic axis
was analyesed and the lowest 5 vibration modes and frequencies
were obtained. In appendix K a comparison between these fre-
guencies and the ones calculated theoretically, is shown. The
agreement is very good.

Figure 27 shows the first out-of-plane vibration mode shape
of both straight and circular elastic axis cantilever beanms.

This mode shape consists primarily of w dizplacement, the W

ORIGINAL PAGE 18
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and VU being almost zero. It can be seen that there is almost
nc difference between the straight and the circular elastic
axis beam mode shapes, the circular one having a slightly higher
frequency than the straight,

i.e., w = |.86 H:

crcalar

ws.},.dzj,t = lX‘l Hi

Figure 28 shows the first in-plane vibration mode shape
for both beams. This mode shape consists primarily of U displace-
ment (upper plot). The lower plot shows the W displacement
associated with this mode. (w=(0) It can be seen that the cir-
cular beam exhibits a little different mode shape than the

straight one and it has a higher frequency, too.
10800 wc:"(\ﬁeﬂ" - l.gqq Hz

Wepeaignt = -84 Hz
Figure 29 shows the second out-of-plane mode shape for both
beams. It consists primarily of w displacement (Ww=v=x=0).
It has to be noted that the circular beam, although it does not
exhibit a big change in the w mode shape, has a lower frequency

than the straight nne
UJ‘._‘-"“‘A‘_ Q. ?’6 Hi

Wstraigt = 11.53 Ha
Figure 30 shows the second in-plane vibratiorn mode shape

for both beams. It consists primarily of W displacement (lower

plot). 1b> upper plot shows the U displacement associated with
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VVn' Circular Beam
toyf = 2z m=m—==- Straight Beam
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First Out-Of-Plane Mode Shape

Figure 27
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1 Circular Beam
_!: 1 ...... Straight Beam
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R
X
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First In-Plane Mode Shape

Figure 28
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-0

Circular Beam

————— Straight Beam

~ . ©0

& @

Second Out-Of-Plane Mode Shape

Figure 29
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Second In-Plane Mode Shape

Figure 30
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this mode (wx0O). It can be seen that the circular beam has

a conskiderablx} different U mode shape than the straight one
and also a lower freguency

i.e., w““(“b’ - l0.0l Hz
Woraigm = 1-5% Ha
Finally, figures 31 and 32 present a picture of the vibration

pattern associated with the f.irst in-plane and second in-plane

mode of the circular beam, respectively.
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In this report, a straight elastic axis blade was repre-
sented by an Euler-Bernoulli beam, with generally non-uniform
properties. The Total Potential Energy functionalll was formu-
lated ir terms of in-plane and out-of-plane displacements and
cross-section rotations, based on linear theory of beams.

The blade was allowed to rotate and vibrate in a uniform
free air stream in general. T?e blade absolute acceleration
and absolute velocity vectors were found from which the linear,
inertia and aerodynamics loads were calculated.

The blade was discretised in a sufficient number of finite
beam elements along which the field variables were interpolated
according to the Firite Element Method. Static, Vibration and
Flutter Analysis were then performed by minimizing the functional
v .

n Vibration Analysis, a uniform cantilever beam was
analysed and the mode shapes and frequencies were compared with
theoretical ones. The agreement was very good. The lowest
three mode shapes and frequencies of the NASA/DOE MOD-0O blade
were obtained and compared with results from Lockheed-California
Company. The agreement was good. The direction of motion of
the NASA/DOE MOD-O blade, the McCauley Propeller and the North
Wind Turbine blade were investigated for the first out-of-plane
and first in-plane modes. All the three blades were found to
vibrate, during the first out-of-plane mode, along most of their

span in a direction normal to the chord at the section around
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30-35% of their span. This behaviour wa# not generally
exhibited during the first in-plane mode. Similar be-
haviour was encountered on a set of variable-pretwist
flat plates treated as cantilever beams and vibrating in
the first out-of-plane mode.

In Flutter Analysis, three comparison sets of cases
were examined, involving References (3), (6) and (8).

The agreement was generally good.

In this report, the Vibration Analysis of a non-straight
elastic axis blade was also forumulated, based on linear theory
of beams. The blade was modeled as an assembly of straight
elastic axis elements with different inclination with respect
to a common system of axes. The Vibration Analysis was then
reduced in a form similar to the straight elastic axis case.
Two, non-rotating, uniform cantilever beams with identical
properties, one having a straight elastic axis and the other
heving a circular arc one. were analysed and their lowest two
mode shapes and frequencies were compared to each other. It
was found that there was very little difference in the mode
shapes between the two cantilever beams for the first and
second out-of-plane modes, but generally more difference for
the in-plane modes. The frequencies were, in general, almost
the same betwesen the two cantilever beams for all the modes

examined.
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Appe.ndix A - Inertia Loadings

Second order terms are shown deleted.

t‘ ngc% v - 2Rmec9y(ﬂ-8)sm¢¢ -

-Szmsun(ﬁ+8)cas(ﬁ+g)w Schs).r(ﬁS)ws(p,S).
‘cosg @+ m% § cos (B+8) + m& ¢, cos(B+8)cosP

- m% esin(B+5) cos (B+S) sing - mSe cos'(B+8)-
-coszﬁ v’ - m&zecos'(p+g)sin£w' + MMJ'"

+ me 'ghr'v"

Pﬂ = -mvr ¢+ mesm;&¢ + lmS?,s.n(p+S) + 2»1&-
es|n(B+$ COS}J? + MISZU' - MszeSm}ﬁ}ﬁ
+ m&eusf + Imle ws(B+$)[U’cos,¢$ + wsmlé]

1:«2 = -mw -mccos;ﬁ;& - ZMSZsm(pfg)U' +

+ 2m52e,sm(ﬁ+g)smf$¢ + MW)W +
+ me&Mﬁos;ﬁ? - m&sm(ﬁ+g)cos(ﬁ+$

- m& e sin (B+§)cosB - MQW)W;; +

¥ messtos(ﬁ+$ \rc.os¢ + w5m7$]

piee l()%‘/ [
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q_g = meswazh'f - mecosgw - mK:.és. - Améle.

sm(ﬁ-f-g)sm;tw ~ 2mSee sin p-t-g)cosyhr -

- w8 ( Km, - Kn ) cos'(B#E)cos 28 ¢ - Rme -
s‘nitu' + m&wcoq&w + mSde$.
snn(ﬁfg)cos(p+g)s:n¢¢ + m&eeyep/g)cosp

sm¢7$ (K"‘z - )cos <P+8)51n¢Ccs¢

- m&e §sm(P+g)cos(P+5)c.os¢ - midee, .

sm(ﬁ-fg)cosﬁcosf - m@ecos(p-fg)[gcm\g-fg)

+ €,¢os ][wcosy& u-s.n,j] + 2m8sin(B+5) -
W.,Yuos,s(x Ku )W’ + m&L"
mWs(ﬁ-rﬂ[k (cos;é -sin'g) +

+ K (sm;‘ cos;é)]U' - 2»182()‘(..,-!( )

" ¢os ﬁ+g)COS¢$|n¢Lr - QMSZ(KMISM¢ +

+ K.., cos#)cos(ﬁﬂg)

qﬂ = ‘ZMSZCCOS(ﬁ-'»g)smiﬁU' + 2mt cos (B+8)-
(K s + K., cos;ﬁ)gb - w3 e ( §cos'(B+S)
+ ¢,cos (B+§) cosﬁ)cosf @ + MQW)

+cos ( ﬁﬂg Sm¢w + Ambl (K...“ K... )m
ws(an} sindcosg @ - mode ( §cog (BH‘;) +
+ c,cos(ﬁﬂg cosP)sm¢ + ms?v( n\aSm¢ +

+ Kuco'g) sin (BrBTcos(B+5) + mb2*(Ka,
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- K‘ )cMS:n¢COS¢U' + mS ( K..ﬁmﬁ
+ K.‘ cos ¢) (’p/g)w - W&n¢
COS¢U' = m (K, sin’ch ’F(..'.,c/lz)

q, = - LmSe cos (B+8)cosg v + 2mS (Kumy - Kav )
+cos (B+§) smﬁcos;é;d + mble ( § cos'(B+S)

+ e, cos(B+§) cmP)sm;éﬁ + M&}W)
+cos (B+6)cosgw + msz sm(P+5M‘

- cos (B+5) coszﬁ - m&e(§cos’(pré) +

+ €, cos(ﬁws)wsﬁ cos@  + MSZM

" Sin (ﬁ'rg) Cos (‘B+S)S|n¢ c.osf + MQZ( Km, -

- Ki )me;écosyw + mS (K, -
cosoS + Ka ‘”‘S”W - m Kz

-Km,spfho/s}ﬁw - M(Wsm‘d
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Appendix. B - Aerodynamic Loadings

second order terms are shown deleted.

Let

b = —Szcos(ﬁ'fg)ﬂ'n;ég - &emng + 'U'w(sm@{-
sing = Cos WS)cosg) + Vw(-wsa{ sing -
-sm&i)wf(ﬁrg)cosg) +(W, -m—) cos (B+$) cos g

§ = Qdcos(Bef)eosg§ + SdecosPiosg + U, (-sin2t-
cosg - cossagsw@{g)sing) + Vw(tOSSZéCOSQ
- SMQWSMQ) + ‘(Ww -tfi)cos (M}su’né

¥, = Uw ws&fcos(ﬁé)sing + \/ws"ngﬁws(}é)ss‘nyj

v (W, -v )y@(g) sing

Y, = U, cos St c.os(jBJ)r,c;a‘S + Vw sfnS?i:cas(&S)Cos,’K
4 ('Ww —u;-) ‘WI\“‘?,‘
F; = - %{vwa(us&tsfng + %s'm_Q{:.W)cosz!)

+ Vo Q(singﬁ‘ésc‘ng - CO‘SZ‘!’./S.M‘(&S) cosg)}

-448 + % M+S) 41

Ro= 8 - $SRodBS)E - Sy

2

then

K6k, __LL?/__msEm.o...tu,‘ AN




I TERE BN VR
114 S

ORIGINAL PAGE IS
OF POOR QUALITY

)P = A| U', + AQ_ W,

where

A = —cos?: f:—; + s.‘nfaﬁ f-:;
A, = _S'.”fé E -—cong

? = %,U‘ + Bl,;vj’, + 33;; + :Bl,!} + %5-\:/ +
L Bep e Bow s Byw + BB v Bol 4
4 B" \?V, + %lzv'l t BISW, + 3.9

where
B = -sing gpac(§eing).
B, = - sing "if’“"-('%“sﬁ)
’Bs = -iirg :‘z—)oac. (f’_-)z
B = o dpecl 2o, + §QutED)

sing = Zcosd %-61]
- sing, ypocl § Ramtpii)eog -(4
+ Y. (-4, sing + 6 cosg)]
Bg = %-‘i-fac.[zcosg@, - %Wﬁ:&)
cosg - 2sing e 4]
—iivﬁ 'Tf)ac[ -f; SBWMZ{ -
= (L+ S3) (bycosg +8,sing )]
B, = Eo:g 'ﬂ’“('%g')
~sing gpac (4.)
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B, = c.os;é }'-rac[ZSZs.‘n(B*S)cosyi 4 - -;-SZ‘sa)ﬁ(—sﬁ‘)mg
- 24, S5, (3+8) sings]
--s_u'nji %-faf-[ - (l%tgsfn(B*S)(@cosg + &sing)
-Ci S smdBe )s:’ng]
(isg 'Ifanc[ 262;,..(,3+S)Sm;5g - C_%”B/g)
sing + Ge 26 QsintpT) cosg]
-Sln¢ zfac[— l+%&s|n(ﬁ+5)(gzsm¢ gc.osf)
Q Wmsyf]
wsd fdc[ -2@@ + £4, Qsin(p+8) - 2% 4,4,]
-j_vz 2fa¢[ - —{U &(ws&tcosg - SJnSZRm([hS)-
singd ) + Vi, 58 (sinDlt cosg +
+ cos 0L sin (B+8) sings )} - {1+ &),
-(87-43) + ;-Sztsc'n(ﬁé)é,]

R
]

.Pd
1

Y- §QotER)y + Dby
-s{_y\g :!”)ac[ %{-S?, Uws|m&£cos(P+§)s.n£+

+ Viv cos Bt cos (ﬁ*g) Smyf

(LM@;& y,) - ¢
S'}M 2
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. N
vt t:"‘.-‘r‘ 1’""‘.‘*

By = co_syg é—f»ac[-zg,& + %— s +S)y2 - %Q@,
+ 24,y %‘z]
-i:ﬁ‘é -'z-fuc[ -< &{Vw smitt -V, m&é} cos (B+S)-
cos?! L+ Cdv’)/(gza/z *43’)
" 53)*«@/)(;/ + S84
B,,v = Cos ?_ch,[@ - ..SB/SM—(ﬁ/gg - Cdogz]
—smff ‘oac[ - < &{U (wsSEts.n¢ + sinddt .
sM(ﬁ-tS c.osyﬁ) + Vw(smSB{:sm,g -
- ws St s.n(ﬁ+§)cos¢)} - (L4 C"“)/
4,8, + —Sasm(ﬁé')@z]

F2=EG.+EW+E¥+E\}+EW+]—Zﬁ+
+r}U'+ I}w-o I}¢+ oV + [, w + v’ +
+ aw'+ T

where the r: coefficients can be obtained by replacing

COsg —~— Smg

-smg! 'f\..» Cos;e’

in the B coefficients.
LG = AV + Qv+ Asg + A+5+ASQ+A¢;3’
A e Agw v Beg v Ao+ A - ALy

+ A.;W' + Alq
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= - g poc (§) sing

- gpecls) o

j O-IP "(z,) %C

=0

= cppe(s) 26

- e (s) Lt s

= —%rac(%)z(-&w-"f)cosp)

= -’%f (%} [SZ),(M@ -U.,SZ(stfcos,f
- sw\gzw sm¢ -V, &(s:n&{.
-cos@ + cosSa)«(iﬁ sm;a

= -gpel§)Cy)

= -gpee 3y,

= -_%.fac(%)[ S?,sm(ﬁ*g)az R~V sinS2t.

us(B-rS)sm;ﬂ + Vi, cos S0t cos (+5)-

sM¢ )]

. cos ( B+$) cosd - Vi, cos Sot cos (RB+5)-

cos,é)]
- - gtec | ReilpeTh - VR (caRting

-+ smsawg cos;&) V Q(Sm&t-

- sing - ws&tyfﬁ-rg)wsfx)]

Lpac()] - s.,,gp+S)(y + R4 - R(Vosinblt.



119
PRECEDING PAGE BLANK NOT FILMED

Agoendix C

ki vatrices
12 64 -2 73
\‘tl‘ (L

, )

-e—‘;. S \l‘z\-“
| M W

(0 0]

i -L

3¢ 3¢ -3( 34
LN ;
"~ 306 LN
3 -34
SYM ,
L \ea-‘
(-1 1
116 0
Ly o
0 &)
b




'\St

[-30
-GZT\\O

-6l 30

-30

A

SYM

»
e L el Ce e

'}‘fzﬂ-smﬂ’w .

134 |
-34'
-228

\\\\94'_

20 S%
‘g

LA NG
1S¢

-6l
A

K

6. 30
K

6
L -6t

7 -2
2 -3k

6 -&
¢ &



N 121
ORIGINAL PAGE I8

OF POOR QUALITY

—
o
o
Y
Q_
]
]
O - O

L . '2/‘1
jg‘ dx = L |t/
' 2,

L‘&A2J

¢ T -1

fea - ]

s 3t e . sl Tt A MRS o 4



125 )
ORIGINAL PAGE IS A 4 IBRECEDING 'AGE BLANK NOT FILMED
OF POOR QuaAtrTYy ppendix

Uniform Cantilever Beam

Input (beam properties)

M = 1x107? inslugs/in. 4G = 3,52
EIL = 6x10° 1b in? A = 22,0 a
n
EI, =12x10° 1b in? Xy = 61,7
G = 4x10® 1b in? b = 1.571 }
. b
Km = 5.0 in by = 4.6 n
Kuy = 6.5 in e = 0.0
ani = 6.725x10" 2 inslugs-in? €& = 0.0
iln
Results Obtained
Q=0 Q = 4.191 rad/s
Theoretical l Numerical Numerical
Mode w (Hz) w (Hz) w (H2)
15%r1ap 2.66 2.66 2.76
15%1ag 3.76 3.76 3.78
2™p1ap 16.64 16.64 16.75
2™Lag 23.53 23.53 23.62
15%1orsion 26.85 26.85 26.93
39 1ap 46.70 46.70 46.76
N '9“)/ sprees
RO (11 4 AR




r_qimm 125 P RECEDING PAGE BLANK NoT FILMED
OF POOR ou“-ﬂ'e Appendix E

NASA/DOE MOD-0

x m EI, El. GJ
(in) {inslugs/in) (lbs in?2x10°%) (lbs in?x10') (lbs in%x10%)

0.0 0.0246 173 173 132
71.8 0.00829 144 232 150
143.6 0.00751 96 179 72
215.4 0.00699 62 143 40
287.2 0.00725 42 120 25
359.0 0.00699 29 97 16
430.8 0.00570 17 72 8.5
502.6 0.00466 8 44 4.5
574.4 0.00311 2.3 19 2.0
646.2 0.00181 0.4 9.5 0.9
718.0 0.00168 0.2 0.6 0.4
e ey EB, EB . oA

(in) (in) (1b in“x10'*) (lb in®x10'?) (degrees)

-8.2 -4.9 4.3 -0.85 24.5

-8.2 -4.9 6.3 -1.50 24.5

-8.2 -4.9 7.7 -1.65 16.G

-7.5 -4.5 5.¢C -1.35 10.3

-4.8 -4,1 3.95 -0.95 .5

-4.3 -3.7 2.25 -0.70 .5

-3.8 -3.3 1,28 -0.50 .0

-3.3 -2.8 0.8 -0.35 0.5

-2.8 -2.2 0.4 -0.25 -0.5

-2.3 -1.8 0.25 -0.15 -1.2

-1.8 -1.4 0.15 -0.10 -1.6

k‘m—-&&-}‘\fﬁmc:; R o
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K Km‘ sz
(in) (in) (in)
15.53 8,35 8.35
14.36 9.27 11.77
13.19 8.84 12.11
12.02 7.64 11.61
10.85 6.05 10.23
9.69 5.05 9,25
8.52 i.16 8.57
7.35 3.17 7.60
6.18 2,41 7.01
5.01 1.46 7.12
3.84 1.16 6.35

Yy
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Apoendix °©

Uniform Flat Plate

B L

Input (plate properties)

M = 0.777x10 * inslugs/in ?

EI, . 0.262xl10* 1bs in? e 0

EI, = 0.236x107 1lbs in? e,

G] = 0.4xlo* 1bs in? K, 0.866 in

ER = o0.l42x10° Ka, 0.029 in

EBy= o K = 0.866 in

& = 6 in €,

Results Obtained
Untwisted o° - 30° 0° - 60° 0* - 90°*
Mode w (Hz) w (H2) w (H2) w (Hz)

First Flap 90.26 90.55 91.39 92.75
First Torsion 345.4 664.7 1187.1
Second Flap 565.7 508.7 407.7
Second Torsion 1044.7
Third Flap 1584.3 1519.8
Third Torsion 1769.7
First Lag 1389.0 326.6
Second Lag 124%.6 :
Third Lag 1738.3 |
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om@“%'quh\-‘ﬂ Appendix G
Reference (6) Test Case
Input (blade =roperties)
8 = 4.191 raa/s
R = 718 in/s
M = 7.767x10 ! inslugs/in
EI, = 529.52x10° 1b in?
EI, = 971.19x10° 1b in? (soft-in-plane case)
EI: = 6.053x10' 1b in? (stiff-in-plane case)
GJ = 205.69x10° 1b in?
KM, = 0.0
K, = 17.95 in
e, = € =€ =
K, = 21.98 in
}? = P =% =0.0
a = 2
Cs, = 0.01
o = 0.1
¢ = 56.39 in

50.8857x10"? inslugs/in’®

-1.854 in/s (scft-in-plane cu.se)

-0.401 in/s (stiff-in-pla‘.e case)

o
Y rpntiowalLy BS
VNR.E£-JN
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Comparison of Results Ob‘’ained
Soft-In-Plane Case
QR t L w/Q

Mode This Report Reference (4)
15%Lag -0.00670 ¢+ i 0.6924 | -0.0011 * i 0.7014
15%Flap -0.3203 + i 1.0938 | -0.3245 £ i 1.0751
15%rorsion -0.3613 + i 4.966 -0.3622 ¢+ i 4.9875

Stiff-In-Plane Case
B/Q + L w/

Mode This Report Reference (4)
15%1ag -0.00365 * i 1.5089 | -0.001l = i 1.5002
15*Flap -0.3233  + i 1.0842 | -0.3246 = i 1.0741
15 Torsion -0.3613 : i 4.9661 | -0.3625 = i 4.9888
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Reference (8) Test Case

Input {(blade properties)
R = 718 in
§2 = 4.191 radss
M = 7.767x10"° inslugs/in
EI = s525.2123x10% 1b in?
EI, - 6.0515x10° 1b in’
GI = 33.5373x10°% 1b in?

K = 0

Km, = 17.95 in

€ = €, = €, =0 -
K, = 26.925 in

C = 56.391% in

B = 2.865°

S = o°

X = 6.0

Cp, = 0.0095

]o = 53.2859x10”’ inslugs/in’
o = 0.1

T———

T e
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For C&yér =0.1

w/f
Vibration Modes This Report Reference (6)
15%z1ap 1.145 1.121
15%tag 1.501 1.518
15t rorsion 2.632 2.4702

MR+ LY

Flutter Analysis

Modes This Report Reference (6)
15%F1ap ~0.325 * i 1.099 -0.31448 * i 1.10
15%Lag -0.023 *+ i 1.525 -0.03034 + i 1.58
15%morsion -0.333 * i 2.546 -0.35209 = i 2.38
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Appendix I - Inertia Accelerations

Let

= - cost(pr8) cosﬁc.oss + sm(Bes) cos (Bv»S)smﬁ
cos (B+d) cose smﬁ + s (B+8) cas (B+S) cosP
= sin(B+E) cos (B+5) co:&(.osﬁ - sm'(p+d) smﬁ
h' = sin(pe8) cos (B+8)cose Sonﬁ + 5w (B+$) cosﬁ

Then

a, = Qxhu + @‘cos‘(ﬁé) S v+ Szzhw

+ @:[-h(w'sfné rv'cos@) + cos'(p+8) s.‘né‘-(ws,:
°¢s|'n9f)) + h(sa‘nﬁ + #COSﬁ)]y] 4

+ Q‘[h (-w'cosp.' + Vising) + cos* (B+8) sing -
(-sing - geosgs) + fy (cosgi - psing)]3

- Q'x, cos*(p+8) + S?,‘H_g - 8%, cos (B+§)cosp

: Sz.zi.,Sln(pfS)cos(ﬂd-cS) + 2&( -us(ﬁ+8)3m§ -

-cosﬁ& - ws(BeS)cosa & + cos(B+8) simB sina vx'z)

+ 2&2[-cos($+$)snn3ws§<—§¢s.‘n¢ - Ueosg) +
+ cos (B+8) cos:(’;szné + cos(ﬁ-&g)smﬁcm:(;(.
c,osg]v] + QtQ.[-cos(B-og)s\‘n:cosﬁ(-V'V'cosé +
+ fr'su'nﬁ) + cos (B+§) cos:{y:(cosg - w;(ﬁ*g).

A
-smﬂsim‘\\'@sn‘nﬂ]x 4 cos:(wcﬁ&' - sina v

et AN 3 P LSR5 A 3113
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- Snn}% Cosd W+ [wsf cosé(-ws""zf - :;'COS;{)
+ Sind ;osa'np’ - smﬁcmé‘lgco:g]n + [cos&cOsB.

'(-\x'cos;&o + G’"sm?’) + S geosg + SMﬁcos;.

3 5"“?{] 3

Oy = -Szzsiu& cosﬁu. - Rosav + Szlsmﬁsm&w
+ Rz[-sin& cosﬁ(~W'sing -v'cosd) - us&(wsg -
-@sing ) + snfsimd (smgf + geosd )]y
+ Szz[‘s'h&\cosﬁ(- wosg + u'sing ) + o5 -
(sing + geosg ) + smBsina (cosg - y!sinﬁ)]s
- Szz\j - SzzsinQCosﬁf + ZSZ[(cos (B+68)cosd -
cosp - sin ﬁ+$) smp) w - cos(ﬁ-rS)SmdU‘ -
(gos(ﬁw) smpcosa + sm(ﬁ+5}cos§) ] +
+ ‘752[<cos B+8)c05dcosf3 -sin(B+8) smf3>
( sm;,( - Ucosﬁ) + cos(ﬁ*g) Sw\upsm;é -
- (ws(B«rS) Sanficosd + Sin (ﬁ-rS)cosB pcos ]
+ ?&[(cos(B*rS Losdcosﬁ - sin (B+$) smﬁ)
'(\:/'wsys + J"sl‘n;d) + cos(B+5) Smaﬁcos;é +
+ (u;(ﬁ«»g) smﬁc.o';a + sm(ﬁ+$)co'5]3 psm}{]g
+ sm«osﬁu + wsd U — smBsm«w
+ [Sm« cosﬁ( w sm;b; - u‘cos%) - ws&;b Su'm;{ -
- smpB sing Igwsg]v] + [sinQ cos]g (- Weosd +
+ (Jg’sin;é) -oos&;cosg + sm?sm:(ﬁsfnﬁ]"s
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SZ, }4 w - Rsing s n(B+S)cos(ﬁ+8)U‘ - SZ}A w
+ QU [ f« (w “ing + U'cosg@) - SmdSm(B*tS)cos(ﬁ-'J)-
é:.c[)s?f - 75su'tqg;) - h(s.'n;é t 7&0:,{)1 d
+ P\ (-w'cosd tv'sing) + sing Sly‘\(‘ﬁ-rg)COS(BTS) ‘
(sm¢ + ppeosd ) ~ }A (CO57§ fs:u;i) T

+ Rsm(?»o)cos(ﬁ+g Xo + SZI»‘g §2 'sin? (B+§)-
i P iJe, sin(B+8) cosP + 252[5m(3+§)
-St'm(rosﬁ % + sin(B+b)cosx v - Sm(ﬁ-rg)S\nﬁ'
cosa v@) + 2@[—51»1(13-»5)5“«3 cosﬁ (v'v's.'n;é +
+ G!iosjé) - sm (B+8) cosx ﬁsl‘n;é - sl‘n(ﬁq-g).-
-S:inﬁ“sinﬁ ﬁcosg]v] + QR[St'n(ﬁ-*S)sl'n;coss-
c(=wcosg + (’r’su‘ng) - sn'n(P-fS)cosQﬁcos?g +

+ sn‘n(ﬂﬁ«*S)sMEs.‘nQﬁsin;ﬂ} + SMIﬁfI +

+ cOSﬁ W +A sm%(— W's-‘nf; - leosg) +

+ ﬁcosg cosﬁ]vl + [Smé (- W’cosxﬁ + ff.gmg) -

- sing osB|3
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Appendix J - Inertia Loadings

Let

Ps = mRzK:.,[cos'(B-f-S)sin:(cossé + sting] -
~meSdx, cos’(B+8) + meSZ.‘s.-n(g+8)cos(3+8) 2o
-me e, cos (?ﬂ»g)cosﬁ + me@zk§

mSe K....z[-oosdc.os;é + s:aﬁsm«sm}é] - meSZg

- meSsing cosﬁg
“ & K,:,z[ - sine sin (B+5) cos (B+5) cosgh - hs.'ng]
+ megﬂ sin(B8)cos(B+8) x, - sin'(B+s) 2,
+ e, Sm(ﬁ‘*s)cosﬁ + }.«§]
mK @,[—cos (ﬁ+8)51no{5m75 + u.c.os;ﬁ]
m K, S0 [cos«smjzs + smﬁsmdcos}b]
mKa, 5 [smo( sin(B+§) cos(Pté)sing - u wsfs]
, —cos«cosﬁ[ Szc.os (§+S)smxcos;z$ mK
+ m&r&n;ﬁK + IMSB ( ~ X, CoS (P*S) t 25
+sin(p+5) cos (B+S) - e,cos(B+8)cosB + ﬁ§)]
- ang Cosﬁ[mszsz: (- cosat cos@ + S\H&Smﬁsfhz)
*me&\j - me&smdcosﬁf]
- smﬁ[ ml sind sin(B+b) cos(B+8) cosg K
-mS U sing Ku, + meS2 (sm([S+S)Cos (ﬁ*g)xo

g
]

=
i

N Ny I SO
o
T T N | B

R / ’5(, INTENTIONALLY: BLAK
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-sn'(B+8) 2, t €& sm(B+)cosP + §)]

- COSW COS ﬁ[ Q* K ( cos*(B+d) sm«sw? +
+ r«cos;ﬁ ] smetcosp{m@ K .(costmg
+ smﬁsm«cosg)] - Smﬁ[M\SZQK:.(SMQSM(?+S).
cos(B+8)sing - f cost)]

E oo \ 0- + E3 ' ; . 58'?'
+E‘“'+L‘_;u+ gu-+Ew
t EHU. + E.QW

.

+ to

- COSQCOS E(MCOSO’('\COSE) - §l‘4:COSE(M$ln;>
cosﬁ) - smh ms.nﬁ)
—cos«cos§ -ms:n«) - smxc.os}é(mcosu)
- 0% c.osE (-Ms»aﬁcosu; - sina cos§ (-m Smﬁ
sine ) -_Qﬁ mcosﬁ)

- cos o cosé me ( sina sing - $m}3 cos« cos;ﬁ)
- sing cosp me ( cos«smfg - smp Sanacosg)
-ﬂg me cos;!cosp

-coSdCosg mc( cos«cosﬁ cos¢) - Sinw

—————

CO$EMC(‘SMO(COSﬁCOSf3) -~ Sin me.(

fi.
-cosy{)
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E( = -cosa cosg me (-cos:l‘cosﬁsa'ng) - sm&cosé-
‘me ( —sm&«:osﬁs{n;{) "_S_lv_ﬂ?WlC(‘Smﬁ‘
-sfn;é)
E; = -cos&"cosé (mSZ }4.) - 5in xCOsP (-MQ‘SWI:.
cosfg) ~snP (S?.mu.)

Eg = -ws&‘cosé ( w32 Cos‘(ﬁ-ré')s:m?) - sm&cosé‘-

'(-52191(053) "ﬂ(* msmasin (B+S)-
cos(B+£)]
Eq = —cos&cosé(m@.rc -Snndcosg(gm smﬁ
smo() -ﬂ\j(-msz,}i)
E.o = -wstOSP[MQQ (- s»ng!Cos‘(ﬁfg)SmQ
+p cos;d)] - sin@cos p“[mcSZ‘(ms&s.'ng +
+ smﬁsmdcosﬂ)] - iﬂg[mc&z( Sine
©Sin (F+S)cos ﬁ+8)5un¢ - &cosg‘)]
E“ = -cosxcosB (- mesazhcosgﬁ) -sm&msé-
' (me.usz sun«cosﬁcosg) - sinB (-me.\ga'f

u.c.os )
13
N

E.z - -cos«cosﬁ( MCSZ’,(‘Sm¢) —Sm«c.osp-
(mcSZ Stn«cosﬁs»ny!) -ﬂﬁﬁ( meSZ.

r.asw\?)

w Uy W are given in appendix I.
)h' I g °P
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S L R e Bl Zalos B d e B
+ Z‘O’G’f Z;u_ + Z:U' + qu + Z'O'Szg' P
+ Z,u'+ 2w’

the EZg coefficients are obtained if the following
substitutions are made in the underlined terms of the

—

ti coefficients.

A Iy A
- oSy cosﬁ ———  Siug

A A A
-sing cosﬁ —~ — oS

~

-SIME — 9)

oe/

?2 = H& + H, + Hyw + H9;§+ He v
+ How'+ Hyu + Hzv + Hew + Ho @
+ Fh.UJ + +tz w’

~he HC coefficients are obtained if the following
substitutions are nade in the underlined terms of the
E; coefficients.
A A o A
_(osdcosp ——~t SIMP Coso
A A A A
- SNy cosé — smﬁ Sinol

~

A
- %N —~t -cosP



141

ORIGINAL PAGE IS
OF POOR QUALITY

Q = BF+OF 00 OFr QF
+66 oo¢ O}u + GJU‘ + GTW + ®,°¢
+@"U' + @(zwl

where

@‘ = me C._O_S$ [ Cose smé (ws& cos é)f sm&smé
(Slno( cosﬁ) —gﬁsmﬁ]
oA

esmib + megg_s_jé[cosxs:né( sina) +
+ sind sm@(cos«)]

MQM[COSQS,HEA<-s|nﬁcoS:{) + Sm&SmB.

-(—Smﬁsma) - cos B cosﬁ)]
_m( mySIN'G + K cos;b)

+ ﬂ[(ﬂ,{_sn_n_ﬁmkmz(smxsm;é - smP
coso(co.a;é) + MMK ,( cosk sing
- smﬁsm&cosg) - _gﬁ MK;z(WS%“Sﬁ)]

- s o[cosﬁs_@f mK,f.,(s.n?(cosg + Smﬁ-
-cos&smg) + 'stsm?\ MK;,(%OS;COW{
+ Smﬁ»s.n;' smyS) -&ﬁmk&(—sa’ngmsﬁ)]

@5- = cos¢[c05d5m§ W\‘K ( cosécosﬁcosg) +

+ Slndsm§ w K ( - sma Cosﬁcosﬁ)]

- sin .[ cosa SMﬁ MKm,<w$a(cosPSm;é)

Os

O,
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1&3\( i )

+ S\V\;SW\E m Kv:, (S\n;\cosﬁsmg )] + )
* cosp[-wsﬁ( MK:’ smﬁcosg)] - sind l--_co_sg
' (W\ K.‘. s»@m«;&)]
Q. = ( -smeSma + COSF(Cose(smB) m ‘:z :
- ( -sing coso cosﬁ) (SM?S cosa + cos g -

- smo(smg ) Kz ( —smﬁ.Smo(Cosﬁ)
+ ( - cosé sind - Slg‘é COSo(SmB)MKm, (‘ (OS}{'

.cos&cosﬁ) + (cos/g’cos& -MSMQsmB)-
- mKa, (- cosg sm&cosﬁ) +  cosg (-cosg)
-m.’(:‘z SMP( smy!) (- cos }3)

. m K:“ sm?( cos;!)

@; = 5m75[-$mo( meg —cos&me&zsm:casﬁ]

+ (.0555[6.050( Smpmcsa P Sined smﬁ meSL5inx -
smp - cosF: me ,4,3]

@ = sm?mesz[ smar(cos (Efg)sm&) + cosu:
( Cosu)] + cosg me.lgzz[c.osa Smé(cos (B+6)-
smw) + sm«smﬁ( cosd) -_gié( SInA -
-sin(p+d) cos ( ﬁﬂ?)]

Oq = Sm;ﬁ MQSB [—smo('u, + coscx( smas:np)]
+ ﬁgﬁ meS2? [cosxsmf}m - smasmé (sina -
smp) + oS u

G,o = Sm¢ MK SZ [ sm;((—-an%cos‘(P\*S)san+
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-rcosdrl.) + COS&(SM? + smﬁsm:fc.osy)]
+ Cosg MK SZ’[ Sm«(cos (P+-8)$Ma((-cosf)‘
- smiﬁ[.l.) + cosx (cosa cosd - s:npamdsmﬁ)

+ cos¢[ —sm«:,t + cos«u.] - sm?[ Swwu, +
+ cosas},] + cos MKNSB Lc.osdsmp( sm .
- cos (ﬁ*g)sm« + rCOS?) + SmxSMP(Sm;a’ +
+ s:nﬁSma’cosﬂ)] ~ m m K,‘SB [c.osuswxg

(cos? (ﬁ*s)smx(-cosp') PsMcb') t Sm«Smé-
-(cos«cosyﬁ -swapsmx sm/@)] - sinj[ smﬁ
cosd ’us + SMESmcxu. - _QE’A?] — cosg-
[smé s«’,t + smEsm«}L - _o_s_Eﬁo]

= Smp u + cos;élu. + Smf)[ SMO(MKmxSB
( rcosg() + COSQ’MK M(sma’cosPCOSﬁ)]
+ cosd[—smxml( .Q(u sm?f) + cosa(mK
SZ“( s|nqcosp5m¢)] + cos;ﬁ [COSdCoj mKu,
£ (-rtc.os;ﬁ) + sma(s,nﬁml\ Q(sm«cospcos}{)
-_o_s_ﬁme‘SZ( ycos;ﬁ)} - sin [cosa{mné
MK 6’ (r51n¢) + S|nd5m§mK Sa( sine -
Cosﬁsm¢) -_gﬁm@ K (nsm;é)]
= -cos;ﬁh.i-sm}z‘rt + smme SZ[

'(']‘SMSZ‘) + oS & smarwSBSnnf +




ORIGINAL
144 p
0200 g 8

AR N T S
4+
.-

+ cosd mK:‘ \S?.a[ -s,n[\?(-“cosz{) + Cotd sing.
CoSﬁCoS?S] ggsideBzK:,z[coM( rcos;‘)
+ s:nﬁsm«(SmaCOsﬁcosy() - _ogﬁ( rSM)ﬁ)]
- sing m& K, [cosds.nﬁ( Fcos;S) + s:ndsmé
.snnxcosﬁcgsg - oo_sé( ysc.osg)]

Lo+ IL,rsLiwe g+ I+
s Lew s Tou+s Liv v Low + L.g +
T I..U',-k IIIW'

the I; coefficients are obtained from the @;‘ coefficients
if all the products that DO NOT include undarlined terms
are set to zero and then the following substitutions are

made in the products which include underlined terms

~ a A
COSa Siu ~——— - osx cosp
Py a - A
Sine Sin i T - Smo(cosﬁ
A A
-COS@ ———y -SMP
—— 5‘" 2

K& + K,r + K3\'¢\; + K,,;S.q» str"
+ Kew' + Kyu + Kyv + Kew + K, &

y Kyv'+ Kpw'

1%~
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the choefficients are obtained from the & coefficients if
all the products that DO NOT include underlined terms are set
to zero and then the following substitutions are made in the
underlined terms
oS of COS é —~ -uo;:(oosﬁ
Sna sME —~ - SIng cosﬁ
—_co_sé_ — -smﬁ

fsg —~ - cos;é
- o

M — -Smg



Appendix K

Uniform Cantilever Bean

Inout (beam properties)

£ . EL
e = C..- e,\

fA -

0.7324x10""

= 0.3043x10° 1bs in?

EB. = EB; =0

lbs/in

Gl = 0.2318x10°¢ lbs in?

g-p-5 -
M
EA =
K

R

L = 140 in

A A
- a
= 0.7324x10° " inslugs/in
0.2968x107 1lbs

= K, = 0.32 in

0

Inner radius of the cross section = ¥ = .5 in
Outer radius of the cross section = G4 = .6 in

Theoretical data or {reguencies are hased on the

following formulae fcr circular tube cantilever

beams

First bending

Second bending

Third bending

First torsio»n

(Hz)

:}s\/
N

11,015 EI
e 1A (He)

30.85 (P

T \/fbA (2)
_2G] |

-rl. \/ Trfb(r r) (H“)

_,_...-J"mmo\*‘\“

L owis
T Y

ot —————

I ———)

U1 s
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Results Obtained
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Mode Theoretical Numerical
w (H2) w (HZ)
First bending 1.840 1.840
Second bending 11.531 11.535
Third bending 32.294 32.327
First torsion 164.0 164.0
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Appendix L

-Eu , T: Matrices

If instead of S

T ’ ¢ 4
qQ = {\L, w, UTU:'U';U; W, W, W, W, #}#,}

we use
r ’ ' ’ ’
q = {u.U:U.'W.W.?U-zUiU; szxé}
T - Y w/ V4 ¢
and q.,_ - u"» U, Ui' W L'ﬁ U.,_: U:'l U:" w"‘w"‘ %
- '} 1

I

then Q_T -I; Q

where
O
0 T.

T ——

and
[ cosa cos% -sm:rcosﬁ 0 Smé 0 0
-¢ina oS 0 0 0 0
0 . 0 . Cosg 0 A sm:rsmﬁ -cos:fs:n?
In = -ws;(s‘np -sm&sm@ 0 \cosﬁ 0 0
0 0 0 0 \Es:t Sing
L 0 0 5m$ 0 -sm:tcosf: cos;cosﬁ J
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//d»}dg = A //t]dv]dg = ACA
A

Fram-o  Jrpas -
|

1(q-ea)dqel = L, //S’dqu - L

A
f}/ e 3 ) dydd = AKy = T
A
E
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