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LIST OF 2RINCIPAL SYMBOLS a ‘.
a lift curve slope “
B = Bt + Sp . see sketch 9.2, p.71 ‘
C lift deficiency function
Cij damping matrix coefficients
Cao profile drag coefficient
c chord
c = ¢/L
D = Cdo/a §

drag per unit length

£

modulus of elasticity

tr

undersling, see sketch 9.3, p. 73

4]

distance aero center is forward of E.A.

19
g

blade root offset, see sketch 3.1, p. 21

L

@ distance C.G. is forward of E.A. %
e s blade C.G. locations, see eq. (3.8)

e i€, blade C.G. locations, see eg. (3.9)

éﬂ,és,éq nondimensional gquantities, see eg. (3.21) .
éA'éI nondimensional quantitcies, e, , ., e /1L i
a gravity

Hy, Hy blade mass integrals, see eg. (9.3)

viii




blade moments of inertia, see eqs. (3.8),(3.9)

blade inertia about C.G., = IE - Mbeg

blade mass integrals, see eg. (9.8)

blade mass inteagrals, see eq. (9.9)

nacelle moment of inertia in yaw and pitch
nondimensional gquantities, see egs. (3.21),

(6.1).

inertias, see egs. (12.1l1) and (12.12)

unit vectors along inertial axes X,Y,2, see
sketches 3.1, 3.2, 9.1, pp. 21, 24, 70.

unit vectors along shaft axes, XS,YS,ZS, see
sketches 9.1, 2.2, 9.3, pp. 70, 71, 73.

unit vectors along undeformed blade axes
X,Y,2, see sketches 3.1, 3.2, 9.2, 9.3,
pp. 21, 24, 71, 73.

stiffness matrix coefficients
blade stiffnesses, see egs. (9.13), (9.14)
blade hinge stiffnesses in flap, lag, pitch

nacelle stiffness in yaw and pitch
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Length of blade

aerodynamic integrals, see Appendix C
circulatory and noncirculatory lift
nacelle length, see sketch 12.1, p. 136
= ln/L

blade mass

_ 2

= MbL /Ib

mass matrix coefficients

mass ot .lade per unit length

aerodynamic moment per unit length

external forces on wind turbine, see egs.
(10.14) to (10.25).

roots of characteristic egquation, = a + iv

loads per unit length on blade, see sketches
4.1, 10.1, pp. 35, 97.

loads per unit length on blade, see sketch
10.2, p. 98.

generalized forces, see eqs. (4.10) to (4.13)

external moments on wind turbine, see egs.
110.14) to (10.25).
generalized force

steady-state generalized force

perturbation generalized force
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[T,1.1T,]

Ty [Ty ]2 (T, 10 [Ty]

[Ty]. (Ty]

generalized coordinate
generalized coordinates for blade, see eqs.

(7.1), (9.6).

symmetric and antisymmetric coordinates,
see egs. (9.15), (9.16).

translations of rotor hub, see sketch 9.1,

p. 70.

harmonic balance coordinates, see eq. (11.7)

torsional moment per unit length on blade,
see sketch 4.1, p. 35,

blade mass integrals, see eq. (9.8)

blade mass integrals, see eq. (9.8)

blade mass integral see eq. (9.9)

= SbL/Ib

kinetic energy

transformation matrices defined by egs.

(3.1), (3.6).

transformation matrices defined by eq. (9.1)

transformatio; matrices defined by eqgs.
(9.1), (10.2)

time %

relative wind velocity

relative wind components along n,; axes
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UX,UY.Uz relative wind components along x,y,2

u o wind inflow velocity in -2 direction

Uip wind crossflow velocity in -Y direction

u,v,w blade displacement in x,y,z directions,
see sketch 9.2, p. 71.

v potential energy

W work done

X,¥,2 fixed inertial axes, see sketches 3.1, 3.2,
9.1, pp. 21, 24, 70.

Xg Ys zs shaft axes, see skztches 9.1, 9.2, 9.3,
pp. 70, 71, 73.

X, Yo 2 undeformed blade axes, see sketches 3.1,
3.2, 9.2, 9.3, pp. 21, 24, 71, 73.

angle of attack

2 flap angle, see sketch 3.2, p.24

Sp precone angle, see sketches 3.1, 3.2, 9.2,
9.3, pp. 21, 24, 71, 73.

St teeter angle, see sketch 9.2, p. 71

Sg built-in, flap spring angle

So steady~state flap angle

3 perturbaticn flap angle about steady-state

Y Locke number = pacL‘/In

YorYw' Ty blade mode shapes, see egs. (7.1), (9.6)
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axial mode shapes, see aq. (9.6)

small quantity

critical damping ratio

blade pitch angle, see sketch 3.2, p. 24
built-in, pitch spring angle

steady~-state pitch angle

perturbation pitch angle about steady-state

built-in, distributed blade pretwist angle

unit vectors along deformed blade axes 3, n,
7, see sketches 3.2, 10.1, pp. 24, 97.

= uin/QL

u

o)
cr/d‘L

nondimensional frequency ratios mi/g in flap,

-

lag, pitch, see eq. (3.21).

nondimensional frequercy ratios mi/Q in yaw,
pitch, teeter, see eq. (12.12)

deformed blade axes, see sketches 3.2, 10.1,

24, 97.

PP.
air density
linear wind sﬁeat coefficient, sze eq. (10.26)
yaw alignment angle
lag angle, see sketch 3.2, p. 24

built~-in, lag spring angle

xiii




o]
¢
3xl°!0¢z
6
¢p' y
Y
Y
Q
:ua ,mn,w;
() =
(o]

()

~teady-state lag angle

perturbation lag angle about steady-state

rotations of rotor hub, see sketch 9.1,
p. 70.

nacelle pitch and yaw, see sketch 12.1,
p. 136.

angular rotation coordinate of blade, see
sketches 3.1, 9.2, pp. 21, 71. |Note,
v o= Qt,

=y 40,

rotation speed of wind turbine
angular rotation velocities of blade about
£, n, ; axes, see sketches 4.1, 10.1,
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Chapter 1], INTRODUCTION

Rising energy prices over the last decade have made
large wind energy conversion machines an attractive option
for electric wutilities. Still, such machines must be
carefully designed to compete with the cost of energy from
other resources. The capital cost, longevity, and
maintenance costs of the machine determine the cost of wind
energy produced, and these factors in turn are strongly
influenced by the dynamic 1loads and vibrations of the
structure. Thus, knowledge of the aerocelastic behavior of
these machines 1is essential to reducing the cost of the
energy they produce.

This thesis examines certain aspects of the aeroelastic
modeling and behavior of the horizontal axis wind turbine,
or HAWT, Some problems of HAWT aeroelasticity are simply
new applications of rotary-wirig aeroelasticity, while others
are uniquely inherent to these systems, Wind turbines
operate efficiently at relatively large thrust coefficients
and high inflow angles, and gravity loads are important in
some analyses. The rotor is subject to a sheared airflow
due to tl: earth's boundary layer and the blades must pass

through the tower wake if the rotor is downwind,




The first modern generation of large wind turbines is
typified by the 100 kW NASA MOD-0 series [1). The MOD-0 is
characterized by:

1) Relatively stiff, cantilevered blades.
2) Rotor downwind of the tower.

3) Root pitch change mechanism and highly
twisted blades.

4) Yaw drive and brake system to align the
machine axis with the wind direction.

This configuration was also characterized initially by large
dynamic overstresses, but subsequent measures taken reduced
this problem substantially [2].

The 2.5 MW NASA MOD-2 wind turbine [3] embodies various
advanced features intended among other things to reduce the
cyclic loading of the blades:

1) More flexible blades with a teetering hub.

2) Rotor upwind of tower.

3) Tip pit:h control and less severe blade twist.
In this machine, the upwind teetering rotor reduces the
dynamic loads, but the MOD-2 has not been without dynamic
problems.

A teetered, tip-controlled rotor has also been fitted
to a MOD-0 wind turbine for evaluation of these proposals
[4, S). This rotor was tested both upwind and downwind of
the tower, and further tests with a more flexible tower arce
being conducted., Statistical data on blade bending moments,

teeter response, and yaw moments are presented in these




references. Further proposals for advanced HAWTs {nclude
free yaw, more flexible tower, and soft drive train to
isolate the rotor from the generator (6].

Although HAWT aercelasticity is a relatively nev (tfield
of study, a considerable body of literature exists. Brief
reviews of the literature and methods of HAWT aerocelasticity
are presented at appropriate junctures in this thesis. A
good critical review has been presented by Friedmann (7).
See also his survey of rotary-wing aeroelasticity (8].
Literature in the related field of helicopter aercelasticity
has been extensively catalogued in a book by Johnson [9].
See also his study of proprotor aircraft dynamics [10].

Wind turbine aeroelasticity is conveniently divided
into two areas of concern: stability and response, The
designer's first task is to assure that the machine is free
of aeroelastic and mechanical instabilities throughout the
operating envelope. Nonlinear effects are important for the
stability problem, and the -equations of motion must be
derived consistent with thic fact. Generally, the equations
of motion are then linearized about some equilibrium state
of the system.

The designer's second task is to assure that the
machine is structurally sound and will be long lived. The

response of the wind turbine to the various unsteady inputs
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such as gravity forcing, wind gusts, tower shadow, and wind
shear must be calculated. Nonlinear effects are generally
less important for the response problem.

The equations of motion and external locad expressions
of vind turbine systems are extremely complex. AsS the
derivation of these egQuations progresses, it Dbecomes
apparent that some method must be used to sort ocut and Kkeep
only the most significant terms. Following the practice of
rotary-wing aeroelasticity, an assumed ordering scheme for
the various parameters and coordinates is usually
established. This ordering scheme is based on typical wind
turbine parameters and is therefore different from its
rotary wing counterpart.

Many aspects of HAWT aeroelastic behavior can be
studied by modeling an isclated blade with fixed hub. This
implies that interactions with the tower motion or between
blades are negligible, an acceptable assumption for the
MOD-0 configuration. The isolated blade has important
degrees of freedom in flapping out of the plane of rotation,
lagging in the plane of rotation, and pitching about the
blade axis.

Much less research has been done in modeling the
rotor-tower system. The tower may have side-to-side and
fore-and-cft bending, twisting about its vertical axis, yaw
drive flexibility, and generator drive system degrees of

freedom. The rotor may have a teeter or gimbal degree of

e ————— N




freedom. Each blade has flapping and lagging, but blade
torsion has usually been neglected in examining rotor-tower
interaction.

Both MOD-0 and MOD-2, and most other large wind
turbines have two blades, a configuration forced by the
economic considerations alluded to earlier. As & result,
the equations of motion for the coupled rotor-tower system
involve periodic coefficients which demand proper
mathematical treatment.

There is a temptation to utilize the digital computer
and numerical methods to construct an all-encompassing model
of the HAWT system. In this way the issues of nonlinear
terms, ordering schemes, and periodic coefficients may be
sidestepped. Indeed, the equations of motion and external
loads need not be derived explicitly., While this approach
is useful in the final stages of design, it is unwieldy and
expensive for initial design or basic research. The
essential physics of a phenomenon may be overshadovwed by
lesser details of the model, and the source of a phenomenon
may be untraceable,

An example of this approach is the MOSTAS computer code
for wind turbines [1l1l, 12, 13]. This is a very complete
package which has roots in various helicopter codes., MOSTAS
has been built up over the years to model most aspects of
HAWT aeroelasticity and many different machine

configurations,




A general review of MOSTAS has been made by Dugundji
and Wendell ([14]. Based on'that study, eight specific
recommendations were made. Four were suggestions to improve
the MOSTAS package; four others were rec-mmendations for
further basic research. These four are summarized here with
the original numbers in parentheses:

1) Develop simpler models to investigate the
main origins of aeroelastic phenomena (1).

2) Examine aeroelastic and mechanical
instabilities more closely, especially for
the proposed more flexible systems (3).

3) Study teetering effects and propellor
whirl type instabilities (4).

4) Look in detail at generator drive train
interaction with other system components (7).

The two parts of this thesis address each of these four
recommendations to a certain degree. The contents are
summarized below.

Part I concerns modeling the 1isolated wind turbine
blade of a MOD-0 type wind turbine. Modeling technigues are
reviewed briefly, followed by a detailed development of a
simple three degree of freedom equivalent hinge model of an
isolated rotor blade for §eroe1astic stability. This
derivation introduces parameters, coordinate systems, and
concepts of modeling such as linearization of nonlinear
equations, ordering schemes, and unsteady aerodynamics, all

of which are common to many of the modeling technigues. A
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stability study which identifies the important parameters
and phenomena is presented. Finally. the equivalent hinge
model is compared to a simple modal model.

Thus, Part I addresses recommendation one, and, to some
degree, recommendation two cited above. Onc criticism of
the computer codes has been their inability to calculate
stability boundaries [7]. This part of the thesis addresses
that need with an extensive stability study.

Part Il concerns modeling the coupled rotor-tover
system of a MOD-2 type wind turbine, Models in the
literature are reviewed, followed by the development of two
building blocks for modeling the rotor-tower system. The
first of these is the derivation of equations of motion and
external load expressions for a two-bladed, teetering rotor
on a flexible support. Blade bending modes in flap and lag
are included, and hub degrees of freedom are used for
generality. The final equations are in eleven degrees of
freedom. The second building block is a general harmonic
balance method to solve systems of second order ordinary
differential equations with periodic coefficients.
Stability, steady-state response, and transient response are
included.

A simple three degree of freedom model with nacelle
yaw, nacelle pitch, and rotor teeter demonstrates the use of

these building blocks. Whirl flutter and divergence are




examined, and the effect of teeter, preconing, and support
stiffness is studied. Transient and forced response are
calculated for several cases.

Thus, Part Il addresses mainly recommendations one and
three cited above. Some aspects of recommendation two are
studied , and tools are developed for recommendation four.
Thresher, Dugundji, Hohenemser, and Walton have reviewed the
state of the art of HAWT structural dynamics analysis tools
{15]. They reiterate the need for simple models and
experimental measurements to validate the complex computer
codes and to foresee dynamics problems, They also cite the
need to study the effects of teetering and of more flexible
systems. Dynamics problems encountered in full scale tests
confirm these recommendations [12, 4, 5; see also 6].

In summary, this thesis aims to contribute to two
general areas of HAWT aeroelasticity: modeling methodology

and the understanding of structural dynamics problems,




Chapter 2. MODELING TECHNIQUES
FOR THE ISOLATED BLADE

The HAWT blade is essentially a rotating beam which |is
twisted and tapered. Usually, it does not have coincident
center of gravity, shear center, or tension center, and it
may have dicontinuities in various properties. 1In addition,
the blade may be preconed &nd its root may be offset from
the hub. Thus, there are complex structural and inertial
couplings between torsion, bending in the plane of rotation,
and bending out of the plane of rotation.

Houbolt and Brooks derived the 1linear differential
equations of such a »zam without precore [16]. In
rotaiy-wing and HAWT aeroelasticity, it has been recognized
that some nonlinear effects are important, and several
researchers have derived related equations which include
ordered nonlinear terms as well as precone [17, 18, 19, 20].
The most important nonlinear effects have been identified,
although there is a current controversy about
torsion-stretching coupling [21, 22).

The solution method of choice in these studies has been
the Galerkin modal approach., Hodges and Ormiston developed
the associated aerodynamic loads for stability of a uniform
helicopter blade in hover [23]. They solved the equations

using coupled rotating modes. Wendell developed aerodynamic




loads appropriate to wind turbine blades and used uncoupled,
nonrotating modes to examine aerocelastic stability [20].
Kottapalli, et al., studied both stability and response of a
wind turbine blade using uncoupled rotating modes [24]. Of
special interest is their assertion that the equations for
stability should be 1linearized about a time-dependent
steady-state response of the wind turbine blade rather than
a time-averaged steady position.

An alternate, mixed displacement and stress formulation
of the equations of motion for a helicopter blade in hover
has been advanced by Stephens, et al. [25). They solved
the nonlinear steady-state equations using a collocation
method, and the linearized stability equations were solved
by numerical integration techniques.

The finite element method has also been wused to
formulate the problem. Hodges has developed a method based
on the Ritz approach [26]), and Friedmann has developed a
method based on the Galerkin approach [27). Sivaneri and
Chopra have presented an épplicaticn of the method to a
helicopter blade in hover [28]. The nonlinear steady-state
equations were solved by iteration directly from the finite
element analysis; the vibration modes were then calculated
based on this steady-state deflection, and used for the
stability analysis. Kamoulakos has applied a similar

technique to HAWT rotor blades [29].




A simple model of a rotor blade vwhich may be proposed
is to replace the flexible, cantilevered blade vith an
equivalent articulated blade with springs at the root to
represent the structural stiffness. This "equivalent hinge"
model has been used extensively to study helicopter rotor
blades [e.g. 30, 31, 32, 9].

Miller, et al., used an equivalent hinge model to study
the aeroelastic stability of a wind turbine blade [33].
However, no ordering scheme was used to consistently retain
nonlinear and higher-order terms. Chopra and Dugundji
developed a nonlinear equivalent hinge model to study blade
response and stability [34, 35]. This model was
consistently derived, but ignores center of gravity and
aecodynamic center offsets, and the feathering axis was
assumed to be in the plane of rotation, Liebst used a
derivative of this model to evaluate active control
strategies for dynamic load alleviation [36].

The chapters that follow present a complete derivation
of the equations of motion and aerodynamic loads, an
aeroelastic stability study, and a comparison of the
equivalent hinge and modal models. Nonlinear and
higher-order terms are consistently derived, cross-sectional
offsets are included, and the important distinction betveen
blade preconing and feathering axis coning is maintained.
Gravity, vind shear, and tover shadovw effects are ignored

for this simple stability study.




A e Th

P E i oL
N VL T .

Chapter 3. EQUATIONS OF MOTION -~
EQUIVALENT HINGE MODEL

The equivalent hinge model is proposed as a simple
approach to studying the aerocelastic stability of an
isolated wind turbine blade. The model is wuseful for
parameter studies and preliminary design., This chapter
presents a derivation of the equations of motion without
aerodynamic loads, which are derived in the next chapter.

Some nonlinear effects must be retained, but the gocl
is to create a simple model and to avoid over dressing the
simple mechanism proposed. First, the nonlinear eqQuations
of motion are derived. Second, the equations are linearized
in perturbations of the blade motion about a steady-state,
deflected blade position. Finally, the equations of motion
are simplified by applying an assumed ordering scheme for
the parameters and the steady-state coordinates. An energy

approach is followed in the derivation,

3.1 KINETIC ENERGY OF A GENERAL ROTOR BLADE

Two coordinate systems are used to describe the
deformed position of the HAWT blade, as shown by Sketch 3.1.
The X Y Z system is fixed in space. T.e blade is located in

the x y z system which is rotating at a constant rate 1 so
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that y = Qt. The blade root is offset ¢, from the hub axis

and has a built-in precone aane ;p out of the plane of

rotation.
X
4
x%r.—i
N\
\ \\
e
y H
y = —
Q
p 2
A
Sketch 3.1 Inertial and Blade Coordinates

The unit vectors associated with the inertial system
XYZarelJ ﬁ respectively, and those associated with the
A A

A
blade system x y z are i j k. The transformation between

these unit vectors is




(13K =13 KT

where [Tll -

. . -
cosﬂp 0 sinpp1 cosy siny O
) 1 0 -giny cosy O

;sinpp 0 cosﬂp 1l 0 0 1‘

In terms of the blade coordinates and the hub offset,

the

blade position components in the inertial system are then

X = x cospp cosy - y siny - 2 sinﬂp cosy

+
e, cosy

Y =x ccspp siny + y cosy - 2 sinpp siny
+ ey siny
7 =x sinﬂp + 2z cospp

The corresponding absolute velocity components are

X = (x coss, - z sing, - Qy) cosy

- (y + Ox cosp_ - Oz sinpp + Qe,) siny

8
P
Y = (x cosﬂp -z sinﬂp - Qy) siny

- (y + Ox cosﬂb -z sinpb + Qo) cosy

z-.' +. s
X sxnpp Z Co ﬂb

vhere (') = d/dt,

(3.2)

(3.3)

f
i
£
;
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The kinetic energy of the rotor blade is given by the
integral over the blade of the kinetic energy of each
particle dm

T . f K(X)2 + ()2 + (2)?) am (3.4)
blade

In terms of the blade coordinates this becomes
T | (a2 (902 + (2)%] + 0l(xy - xy) cosA
blade P
.. . 2¢.2 2
+ (yz - yz) sxnpp + eH9l + K0°(x° cos ﬁp
+ y2 + 22 sinzpp - 2x2 sinpp cosﬁp

- 3 2
* 2e.x cosﬁp 2e x sxnpp + e ]} am (3.5)

This expression is valid for any coordinate scheme used
to describe the deformation of the blade within the blade
coordinate frame x y z, for example normal modes and

generalized coordinates or equivalent hinge rotations.

3.2 NONLINEAR EQUATIONS OF MOTION

In the eqQuivalent hinge model shown by Sketch 3.2,
three degrees of freedom, and three hinge axes, are used to
represent the HAWT blade: b{pde pitch 8 about the pitch
control =2xis; flapping 2 roughly perpendicular to the plane
of rotation; and lagging ¢ roughly in the plane of rotation.
Furthermore, the rotations are assumed to be in this same
order. Spring moments about each axis represent the blade

stiffnesses, ’
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Sketch 3.2 The Equivalent Hinge Model

The deformed blade coordinate system ¢ 5 { deflects

with the blade. The transformation between the deformed

blade unit vectors ‘?

A A A
vectors i j k is

RSN UERII N
vhere [T,] =

~ ar

cosy sing 0 [[cosf 0 sing ||l

-sing cosy O 0 1 0 0

0 0 1 |-sing 0 cosg |0

. o o

y # and the undeformed blade unit

(3.6)

0 0

cosf siné

-sind cosé |

Finally, the blade position components in terms of the

deformed blade coordinates are

- ~ PO

ORI




X = fcosjfcosy - scospsing - (sing

y = ¢(singcosd - sinpcosgsing)
+ y(cosgcosd + singsingsing) (3.7)

- {cospsinéd

z = ¢(singsingd + sinpgcosgcosd)
+ y(cospsind - singsingcosé)

- {cospsiné

The associated velocity components are omitted for the sake
of brevity.

To simplify the model, the blade is considered to be
thin and untwisted, that is, approximately in the ¢ 3 plane.

Then, { = 0 and the following definitions can be made

S dm = M J § dm = M e f n dm = M e
blade b blade ”b,f blade by
f{zdm-l jqzdm-l fg,,dm..x
blade ? blade f blade ( ;z

3.8

Furthermore, it is convenient to lump together the
blade moments of inertia and products of inertia and make

the following definitions




sin2y

Il . I’cosz; + x)sinzp - I”

12 - I,sinzp + I’ coszp + I;ysinzp

I,,= (I’ - {’) sin2y + {,,coszp (3.9)
e, " g,cosp - e,sinp

e, " ﬁksinp + e,cosy

These can be recognized as the corresponding inertial
properties of the blade about a set of axes rotated an angle

p about the { axis. Note the useful properties:

a1 /dp = -21 , a1 /dp = 21, ar /8p = 1, - 1,
1,+1,= I; + I7 del/dp = -e, dez/dp =e
(3.10)

The blade position components (3.7) are substituted into the
general kinetic energy expression (3.5), and the above

definitions are applied to yield

I
\
L




T e W1 A2 e WD) ¢ 1,082 4 B(I, « 1;8in M4
+ 1,,cosp A6 - (1, + 1,)sing Y

4

Qﬁ[llisinpcosacosp * cosgsingy)

- Ilsxnecospp - Mbaleacosﬁs1n0]

+

09[(11 + 12)(cospc050cospp - sinpsinpp)

+ Mb°1°ﬁ°°se + Mbezeasxnpsznal

Qé(Il(sinzﬂsinpp - Hsinzpcosocospp)

+

+ Izsxnpp - -l:cospsxnacospp

- Mbeleasxnpcoso - Mbezeasxnel

knz[ll(coszpcoszpp + sinzpcoszasinzﬂp

+

+ sinzpsinza - ksinZﬂcososinzpp)
+ 12(c0528 + sinzosinzﬁp
. . 2 . .
- I,,(singsin2dcos Ao * cospsinfsin2jy,)
- ZMbezeHsinosinﬁp

+ ZMbeleH(cospcosﬂp - sinﬂcososinpp)] (3.11)

As previously stated, spring moments are used to uaodel
the structural stiffnesses. The strain energy of the

deflected springs is
- 2 - 2 - 2
Vs g(k,(ﬂ B+ kgl = 9 )7 ¢ ke(o 6,)°1 (3.12)

vhere 5‘,
equivalent stiffnesses respectively, and the built-in angles

k,, and k‘ are the flap, lag, and pitch

ﬂs, - and es allow for blade "droop", "trail", and "pitch
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setting". To clarify, pp is the built-in precone angle of
the pitch axis, and Aq is the built-in droop angle of the
blade in relation to the pitch axis.

The equations of motion are obtained by substituting
the kinetic energy (3.11) and strain energy (3.12) into

Lagrange's equations

AT . 2V

) Y Y I

( - AT ?..!:Q
d¢ ¢ ¢ (3.13)
AI AV =

( 90 T8 9

where the Qns are applied moments about the three axes
arising from external 1loads, generally functions of blade

position and velocity. The # eguation is

(1] s _ . 02- ., )

Ilﬂ + Ilzcosﬂ 8 gIls1n2ﬂ 8 2112 Ay + ZIlcosp '1
+ Q[ZIl(sxnﬂcosacosﬂp + cosﬂsxnﬂp) + 211251n0cosﬂp] ¢
- 0[Il(cosocos,8p + sin2ﬂsin,ep - cosZﬂcosecosﬂp)

+ 2Ilzsxnpsxnocospp] 6
+ gQZ[Il(sinZﬂcoszocoszﬂp - sinZﬂsinzpp + cosZﬁcos&sinZﬂp)
. 20 o o: . .
+ Ilz(cospsxnzocos ﬂp s:nﬂsznesanﬂp)
+ 2M e e (sinﬂcosﬂp + cosﬂcosasinﬂp)] + k,ﬂ

b 1 H
= KA+ Q, (3.14)

The ¢ equation is

20
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(1,+1,)9" = (I,+1,)8ing § + Ilzﬁz - Ilzcoszﬁ §2 - 21,cosp 26
- Q[ZIl(sinpcosecosﬂp + ccsﬂsinzp) + lezsin0cosﬁp] 2
- 0[212cosﬂsi00cos;p + 21,,(cos Asinﬂp + ksinzpcosacosﬁp)] [
. 502[(11-12)(sinﬁsin20coszpp + cospsindsin2g)
- 2,.: 2 « 2, 20 2. _ _: 2. 2
lez(cos Asin pp + sin“scos“dcos Ap sin“dsin ;p
+ ksinz;ccsasinzpp)+ 2Mbeleasinasinﬁp
+ 2™ ezen(cospcospp - sinpcosasinpp)] + Kk,

b
=k, *Q, (3.15)
The § equation is

. 2 o TS - R .e
(Ilsxn A+ 2?)0 *+ 1,,c088 4 (Il+12)sxg; )
- Ilzsinp AT+ (Il-Iz)cosp B$ + 21,,co8"p 48
+ Q[Il(ccsOcospp + sinzﬁsinpp - coszpcosaccsﬂp)
+ ZIlzsinpsinOCOSﬂp] A
. 2, . .
+ 0[212cosﬂsxn0cospp + 2112(cos ﬂsxnpp + 551n2ﬂcos€cosﬁp)] ¢
+ 40 [- Il(sinzpsin20coszﬁp + asinzpsinOSinZﬂp)
+ Izsin20coszﬂ + Ilz(Zsinﬂcoszacoszﬂp + cospcosesinzﬂb)
-ZMbelestnﬁsansxnﬂp + ZMbezeHc05031npp] + k,0
-k, 0+ Q, (3.16)

Equations (3.,14-16) are the complete nonlinear
equations for large deflections and vibrations., The
solution of these equations with all time derivatives set to

zero is the steady state position of the rotating loaded

blade, which will be designated ﬁo ’o 00.
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3.3 LINEARIZED EQUATIONS
For investigating small vibrations, the equations of
motion are generally linearized in perturbations g ¢ 6 about

the steady position A, ¢, § The aeroelastic stability is

°.
very sensitive to the steady position due to the relatively
large centrifugal effects [33]. Each equation takes the

form

F(B, ¢, 8, £ #, 8, B, 9, 08) = Q (3.17)

Here, F represents the left hand side of the equation of
motion, and Q the right hand. This form can be expanded in

linear Taylor's series as follows

P+ GE/0) F+ oo+ QF/34) § % oo v (3F/00) 6
= QO ¢+ 6 (3.18)

where the subscript ( ), denotes evaluation at the
steady-state position: g = g,, ¢ = g, 0 = 6,. Note that
the applied moment is expressed as a sum of a steady load Q,
vhich is generally a function of the steady-state
displacements and a perturbation load @ which is generally a
function of the perturbations. By definition, the

steady-state equation is

FolByr #o0 85) = QulBor #or 85) (3.19)

Therefore the associated perturbation equation is
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GGE/ F o oo e QEAH G+ v R0 F = 8 (3.20)

The perturbation equations are further simplified by
comparing and discarding higher order terms according to an

ordering scheme vhich is reasonable for HAWTs., First define

x‘ - 1’/1, T” = 1”/1,
§, = ML/, €, = ML/l e = e, /L
2 2, 2 2 2
w - k’/ﬂ y e " k*/ﬂ I, v, " k’/ﬂzl’

(3.21)

vhere L is the blade length defined by Sketch 3.2. Then

assume orders of magnitude

'é‘ 0(40)

I

ﬂo' ’S' pp' aoo os 0(e?)
e, 0(01)

- 3

for bs! Ly & 0(.:)
I’ 0(¢c)

These relative orders of magnitude are based on typical HAWT
parameters, The steady-state deflections depend on the
other parameters, and their order is determined by examining
the steady -equations (Section 5.1). From another
perspective, the assumed orders of magnitude define the

range of validity for the model.
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The terms in each coefficient of the equations of
motion are compared to one another, and terms which are
smaller by one or more povers of ¢ are discarded to simplify
the equations. Finally, the ordered perturbation equations
are divided through by 021,. In these equations (") = d/dy
= (1/0)d/dt. The  equation is

FoQ, s+ 2lagrn)) + 605 - 28,00,08,)8

+[V’2 + 1 + E;EH - 2(ﬁo+pp)2];+ ao;'-r [T y*Po " (Zﬂo-tﬂp)eclg
. 2

The ¢ equation is

o0
144 ~r

£ - 8.8 - 20(s 48 + 0 15 - 2(1,, +po)(,eo+pp)é"
N ARG ER (B*2 )25 + (B +p )T
- 6,/021, (3.23)

The § equation is

- 2 s
o Myt ? "o]o
e 20 (p 4BV F+ 2T 49 V(A +8)F
o0 ’p 37 %o’ o P,
M ST M (2ﬁ°+ﬁp)eolﬂ + (ﬂo*ﬂp)f
+ [T, (v2+1) - e e, - po(po+,ep)]a

f I
= g, /%1, (3.24)

(Tyy 0508 = B8+ [Ty + £

These are the important inertial terms for the equivalent

hinge model of a HAWT blade.
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Chapter ¢&. AERODYNAMIC LOADS --
EQUIVALENT HINGE MODEL

Applied moments about the equivalent hinge axes which
arise from aerodynamic forces are derived in this chapter,
based upon unsteady aerodynamics and strip theory. The
development of linearized aerodynamic loads is similar ¢to
the development of equations of motion in Chapter 3, Pirst,
expreasions for the aerodynamic moments are derivad which
are nonlinear in the blade deflections. These expressions
are then linearized in perturbations about the steady
position, and simplified by wusing an assumed ordering
scheme, Furthermore, the final linearized moments given
assume quasisteady aerodynamics, a uniform inflow of air,
anl a uniform, untwisted blade.

Theodorsen first developed an unsteady aerodynamic
theory for a pitching, plunging airfoil in 3 uniform flow
{37]. His theory used a 1lift deficiency function to
represent the integrated influence of the shed wake. A
rotary wing has a much more ‘complex wake structure, but
Loevy showed that its effect could be included by using a
modified lift deficiency function [38]. These theories are
not strictly applicable to a rotor which has chordwise
motion of the blades, although they have been utilized.




R CER He ORIGINAL PAGE 18
e At OF POOR QUALITY

Greenberg developed an unsteady aerodynamic theory for
a pitching, plunging airfoil in a pulsating flow, thus
extending Theodorsen's theory to helicopter rotors in
forward flight [39]. Hodges and Ormiston adapted
Greenberg's theory to study the flap-lag-torsion stability
of a hovering rotor by using the pulsation to represent the
lag motion [23].

Friedmann and Yuan modified several strip theories for
use with rotary wings, including Thecdorsen's and
Greenberg's (40]. They compared the various theories with
and without modification, and studied the gquasisteady
assumption. Recently, Johnson suggested a convenient
grouping of terms in the 1ift and pitching moment
expressions, which is used here [41, see also 42].

Pertinent velocity components of the blade axis
relative to the inflowing air U, and U;, and the pitch rate
o , are shown in Sketch 4¢.la. Expressions for these are
derived later., U is the total velocity as shown. Also note
definitions for the angle of attack ¢, the blade chord ¢,

and the aerodynamic center offset e from the elastic axis.




Sketch 4.1 Aerodynamic Nomenclature

The nencirculatory lift L ., the circulatory lift ¢,
the drag d, and the pitching moment m,,  are defined by
Sketch 4.1b. In terms of the present nomenclature, these

distributed loads are

lnc = %;acztﬁ: —(%c-eh)ék]
L. - %,.cc[u, - (%c-cA)->]U
d = Lpec, v’ (4.1)
LI %plC(%C['(%C'CA"’J; + %c-‘u + (s%cz—fcchni)é,l

+ 2,00, - (Fe-e,))epl0)
vhere » is the air density, a is the lift 'curve slope
ac‘/aa, C is some lift deficiency function, and C,, is the

&
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profile drag coefficient. The resultant distributed loads

of Sketch 4.1c are

q, = -m

] ea
p = L sine - d cosa (¢4.2)
’ c .
p == - Ll cose - d sine
4 nec ¢
All other components are zero. Since sine = U; /U and

COSs = U’ /U,

- 1 lc[(lec-e )U, - dcu, U - (3 c2-ic 2)e
q 2,03C{4C[(4¢ eA)U; %c 3 U (32c zre;eA)«#]
+ eAC[-tJ: + (%C"CA)n" Jul
p, = %pac{ctuf - (%c-eA)u’Ugl - pu, U} (4.3)
1
p = -z-pac{C[-U;U7 + (§c-eA)¢‘U‘]

1 ] 1 .
- DUzU * zc[-U; + (zc-eA)u; 1}

where D = Cy /8. For small angles of attack «, U may be

replaced by 07 whereever it appears hece.

4.1 TLLATIVE VELOCITY OF A GENERAL ROTOR BLADE

The relative velocity of the blade is the difference
between the blade absolute velocity X YZ and the inflow
velccity of air at the turbine disk Y;,r which is assumed to

be in the -2 direction. That is,

Uy X
Uy ! = Y (4.4)
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The absolute velocity components were expressed in terms of
blade coordinates by equation (3.3). These are substituted
into equation (4.4) and equation (3.1) is used to transform

the relative velocities into the blade coordinate system.

=
]
e

" - Qy cosﬁp + uinsin;p

y + Ox cosp, - Oz sing, + Qey (¢.5)

c

~
" »
N-

z + Oy sing, + u; cosp,

These relative velocity components, like the kinetic energy
of a general rotor blade (3.5), are valid for any
coordinates used to describe blade deformation within the

x ¥y z coordinate system.

4.2 EQUIVALENT HINGE AERODYNAMIC MOMENTS
For the equivalent hinge model the position of the
blade elastic axis is given by eguation (3.7) with 5 = 0 and

(-00

X = ¢ cosjg cosy
y = ¢(singcosf -sinfcosgsing) (¢4.6)

z = ¢(singsind + sinpgcosgcosd)

These are substituted into equation (4.5), and equation
(3.6) is used to transform the relative velocities into the
deformed blade coordinate system. The pertinent components

are

29
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07 = ¢ ¢ - ¢sing 6 + Oel-sinppsinﬂ + cosppcosﬁcoso]
+ Qe [cosgcosd + singsingsing]
+ uin[-sinpppospsinp + cospp(cosysina - sinjgsingcosd)]

(4.7)

Uy = écosp A+ écospsing 6 - e cospsing
+ Qe[sinﬂpcosﬂsinp - cospp(cosysino - singsingcoséd)]

+ uin[-sznppsznp + cosﬂpcosﬂcosﬂ]

Acosé //7 |

= d

‘stine

Sketch 4.2 Resolution of Flap Angular Velocity

Four angular velocities contribute to the total angular
velocity of the blade: ¢ is about the { axis; 4 is broken
down into components about the y and 2z axes as shown by
Sketch 4.2; § is about the x axis; and Q is about the 2
axis. These angular velocities are transformed to the
deformed blade axis system using the transformations of

equations (3.1) and (3.6), and they are added to give

PI——

et e B,
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c; 0 [ 0
wyp = {0 + [T,1({-cos8 4) + [T){0) (4.8)
0; ¢ L -sind ﬁ 9] ‘

The only component reqQuired is

f;

- Qtsinﬁpcospcosp +rcosﬂp(sin,sin0 + gingcosgcosd)]

- sing # + cosp 6 (4.9)

The work of the external forces can be expressed both
in terms of the equivalent hinge rotations, and in terms of

blade motion as follows

W = Q38 + Qi + Q00

L .
- g (qyae) + pong, * B 3C,} de (4.10)

where Tea and {ca are the motions of the blade elastic
axis in the 5 and { directions, and tf is the rotation of
the blade about the elastic axis ¢. These two families of
variations are related in the same way as their
corresponding velocities. First, set Q=0 anduy =0 in

equations (4.7) and (4.9).

U, = ¢ ¢ - ¢ésing §

Ny

= ¢cosy f + cospcosy 6 (4.11)

= -sing § * cospcoss §

Then notice that
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38 = B st | Se, =
8 p ‘ v Bt
ép = ¢ St and S1go = Uy dt
36 = 9 st dlgq = Uy it

Substitute these into equation (4.11) and vrite

6"&& = ¢ dp - ésing 36
8l = €coOsp 3p + fcospsing 36 (4.12)

‘e« = -sing §8 + cospcosy &4

These expressions are substituted into the work expression
(4.10) and coefficients of each variation are separately

equated to give
[¢écosy p. - sinp q ] d¢
¢ }

¢ P, a¢ (4.13)

O
h
L]

[¢cospsing p - ¢sing p + cospcosg q 1 d¢
; y s

Finally, the distributed loads (4.3) are substituted into
equation (4.13). .

Q, = ? 1 ac{-lclecos + (3c-e.)sin 10
p T g 2%t $ T RgeTe, ) sing il

+ %c[(%c-eA)ecosp + (fzcz-%ceA*ei)sinylé;
+ [C(%c-eA)écosp + (1-1-6 2-%‘CceA + Cei)sinp]u‘U’

- [(c+D)¢cosy - CeAsinp]U;tJ’} d¢ (4.14)
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%pac{'C(%‘c-eA)h’U{ . c‘m;2 - nw;"} de (4.15)

1 1 ) S d
Q = z ipac[;c[~£cospsinp . (Ic eA)cosﬁcas¢]2;

%c[(%c-eA)ccospsinp - (slzcz-%cehﬂi)cospco”li’

+

+ (c(%c-ea)ecospsinp - (f;c2-§CceA*Ce§)cospcos¢lﬁbu'
+ [C(%c-eA)esinﬁlﬂ’U, - [Cesinp]qé + [DesinﬁlU§
- [(C*D)¢cosssing + CeAcospcosﬂ]qu’} d¢ (4.16)

Equations (4.14-16) are the nonlinear aerodynamic
moments for large blade deflections (although the angle of
attack has been assumed small), given in terms of the
velocities, pitch rate, and their derivatives. With all
time derivatives set to zero, they are the steady
aerodynamic moments, which will be designated Q’o QQ: qu.
These steady moments are required to solve the steady part
of equations (3.14-16) for the steady blade position
po ' 00. It is of interest that some effects of wunsteady
aerodynamics remain in these steady moments due to the
steady pitch rate 0[sinﬁb...] in equation (4.9). The

resulting “apparent camber" . terms are important for a

preconed rotor,

e e S s e
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4.3 LINEARI ZED MOMENTS
The aerodynamic moments are expanded in perturbations
about the steady blade position in the same manner as the

equations of motion.
Q=0+ 3 =0+ (3/38) F +..uv (3Q/20) 8 (4.17)

Because of the multiplicity of aerodynamic terms, it is wise
to establish the ordering scheme for aerodynamic parameters
now, and apply it to eliminate terms as this expansion of
aerodynamic moments proceeds.

The quasisteady assumption will be made, C = 1, and the
blade will be approximated as being uniform along the span,
with uniform inflow velocity. Actually, only an ideally
twisted blade would have uniform inflow, A flat blade would
not, but if 95 is taken as the twist at x/L = 0.75, the
aerodynamic coefficients are practically identical. Now,

define

A= uin/ﬂL ¢ =c¢c/L
y = pacL4/17 . EA = eA/L (4.18)

Note that here the inflow angle )\ and the lock number y are
defined in terms of the hinged length of the blade L. Then,

assume orders of magnitude as before (Section 3.3)

34
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The velocities (4.7), the pitch rate (4.9), and their
derivatives are substituted into equations (4.14-16), which
are then expanded and ordered, and divided by 0217 to give

the linearized aerodynamic moments

’df/ozx7 . -5%76 g - %y i- ;z,(4x-3oo)f .
+ LRy (3-30 ) = dyp, ¢ F0E # 1yde-g,018
+ [Ay(82-38 ) (8 )+ 3,3e-8,) - 19 )7 - %y(ﬂo'ﬂp);
+ [%r + %75H - fgrﬂ fgr(ﬂo*ﬁp)z +
- !3,(3x2-3xo +302)18 (4.19)

& L4
~

§,/0%1, = Ly(ar-38 )7 - 31D § .
+ L, (4x 30) - (388, (3220 )14
+ [-gyx(ﬂ°+ﬁp)(3x zoo) - ia,(%‘-éA)(ax-zoo)ll'
+ 127(4x-3o°)(p°+pp); - f3y(4x-3oo)5 (4.20)

g, /021, = (- 1 7h_(42-30 ) - s" 5’5 Yi
+ [ _.7¢ (cx 36 ) - 127° (3x-26 )]9

. [-1 o2 . 3 - 1l.82 + L 3n-20 )15
(- 57° 167ce A 2-7cp ( 8, )18

- 1 22-8)4 +38°2 - 31 A=
247(6 8 00 30°)ﬁ 247(4 30°)f
+ [l + 1 + 1 - 3 ,21)
[6731\ 87,0 127,60(4\ 300)]0 (4.21)
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These are the important aerodynamic moment terms for the

equivalent hinge model of a HAWT blade.
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Chapter S. THE COMPLETE EQUIVALENT HINGE MODEL

This chapter summarizes the results of the preceding
two, and presents the steady-state equations, When the
linearized aerodynamic moments (4.19-21) are substituted
into the linearized equations of motion (3.22-24) and
subtracted from both sides, the complete perturbation

equations take the form:

) 4 F
IMI(FY « [c) ($) + (K1 () = {0} (5.1)
¥ 4 §

The coefficient matrices of equation (5.1) are given on the

following pages.
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5.1 STEADY EQUATIONS

The steady blade position }o o Ao is the solution of
the equations of motion (3.,14-16) including the applied
aerodynamic moments (4.14-16), with all time derivatives
zeroed. In their present form the equations of motion are
quite complex and the steady aerodynamic moments more 8o,
However, the trigonometric functions can be expanded and the
ordering scheme applied to keep the most important terms.

Furthermore, the 00 equation need not be considered.
This is because 6° will be prescribed for the desired power
gsetting, which is related to ) and ao as vell as y, ©, and
Cdo/a. The power coefficiert is not constant if any of
these parameters is varied without adjusting the others.

Also, y and T are not independent.,
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After some algebra, the ordered equation for ’o is

found to be quadratic, but uncoupled with ¢ .

1 2
[2,arp - ny(sx-seo)]ﬂo
R X AR UL R A 2,(38-8,) 14,
2 2 3 2
Y s (18 e - 0008, - Ty 0, - Fi7(42-36,) (1-43) +

C\ID-‘

S M EICTVIRT S (% -&,)8, - H:(34-26,)26,)

=0 (5.5)

The ordered equation for s is linear and dependent on 4.

[v: - (ﬂ "‘ﬂ )2]f
(2 rg + T, (Borh, )2 VAT RN eH - $1C5. /8 ¢
24,(612-&9 +3e ) - I-zy(ﬂ *A, )2 (3= 26 ) +

+ lyﬂz(ék -3 )8

o 12y

y(3r-26 )6 €] (5.6)

l=r3 -
(5 )(#o*#p)(:’r)c 200) +

O\\&-‘O

In practice, 80 is prescribed, and these equations are
solved sequentially “er 4 and ¢ . After caiculating the
blade steady position, the stability of the blade is
examined by extracting the eigenvalues of equation (5.1).
These occur as complex conjugate pairs, e t ij or as real
roots ey Both the damping g and the frequency ; are
expressed as ratios per revolution because nondimensional

time y = 0t is used.
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Chapter 6. AEROELASTIC STABILITY
OF THE EQUIVALENT HINGE MODEL

No complete parametric study is attempted due to the
number of parameters, and the fact that any sgi:cific blade
design can be easily studied as necessary. Rather, a
standard case similar to the NASA MOD-0 wind turbine is used
[1). Two subcases are studied: a rotor preconed downwind
and a rotor without precone. Table 6.1 1lists the
parameters. (Tables and Figures appear together at the end
of this thesis for convenient comparison to one another.)
The effects of key parameters are examined in relation to
the standard case by holding all parameters at their
standard value except the parameters being plotted.

For the purposes of this section, the blade is assumed
to be uniform. It 1, is the pitching moment of inertia
about the center of gravity and e; 1is the distance the
cross-section center of gravity is forward of the elastic

axis, it can be shown that

- - -l - 3.
{’ =1, + 38 I” - 58 (6.1)
where
T = - 1 2 a =
Io IO/I, IOIEML € eI/L

and

These definitions allow direct comparision of EI to &,

to other studies.

a3




OF POOR QUALITY

Two representations of stability which appear often in
the literature [e.g. 30, 9] are stability boundaries
(cj = 0) on the plane of v, versus 51
Their advantage is that they show the

and on the plane of
vg versus v,.
interaction of two parameters and much information is
conveyed by comparing two such plots with one other
parameter changed. However, a shortcoming is that the
strength of the instability is not indicated. Such
information would be needed to assess a faulty blade design.
Thus, plots of the damping ratio versus the parameter of
interest, and root locus plots, are both useful as well.
Some general statements serve to introduce the

discussion of aeroelastic stability trends and phenomena.

1) The flap damping is relatively large.

2) The lag damping is relatively small.

3) The pitch damping can approach zero
under certain circumstances.

4) Lift couples flap to pitch in a strongly
unsymmetric manner,

The resulting behavior divides the following discussion into
two parts. First, classical flutter with frequency near v

or classical divergence may occur. Second, a weak
instability with frequency near vy Mmay occur. The flap

degree of freedom always remains well damped.
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6.1 CLASSICAL FLUTTER AND DIVERGENCE

Stability boundaries of the first type on the plane of
Yo versus 31,
parameters & and g, are adequate for the discussion of

and on planes of v, versus related

A
classical pitch-flap flutter and torsional divergence. For

wind turbines the flexibility of the pitch change mechanism
reduces the blade torsion natural frequency. The combined

frequency ratio v is important because of its connection

o
with the cost of a wind turbine system,

Figure 6.1 defines the minimum v, required for
stability of the preconed blade, which increases as the
center of gravity is moved aft of the elastic axis. Figure
6.2 is the corresponding plot for the flat rotor. The .1:67
(EI) coupling of pitch and flap in the mass matrix and the
stiffness matrix can give rise to flutter or divergence
respectively, although the divergence is not prominent here.
The motivating force is the large unsymmetric lift term (“%7
in Kl3) wvhich couples flap to pitch but not pitch to flap.
Note that the independent lag instability is insensitive to
EI and completely enclosed within the flutter boundary for
these cases.

Flutter also occurs when the elastic axis is moved back
from the aerodynamic center as shown by Figure 6.3.

Comparing Figures 6.1 and 6.3 shows that for €, > -.005 or

EA‘ < 0.005 their effects are similar. This again
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demonstrates that what is importantﬂii‘ the.tctal distance
that the center of gravity is Att of the aerodynamic center,
at least for EA - EI < €/4. When EA approaches ¢/6, the
pitch damping approaches zero. This gives the apparent
asymptote of Figure 6.3 at e, = 0.0066. However, cases
such as this do stretch the quasisteady assumption.

Inspection of the coefficients of the perturbation
equations (5.1) shows the split personality of o vhich is
proportional to ¢ and moves both the aercdynamic center
and the center of gravity forward of the pitch axis. Figure
6.4 shows that, like a fixed wing, sweep forward gives
divergence while sweep back gives flutter, at least if v,
is low enough.

In all of these cases the flutter boundary encloses the
boundary of the indepenaent 1lag instability which proceeds
at the lag frequency ratio e This suggests the idea of
separating the three degree of freedom model into several
two degree of freedom submodels., These would retain the
steady blade position terms. Their advantage 1is that the
new fourth order characteristic equation can be solved by
hand calculation. The v, Vversus EI stability boundaries
of Figure 6.1 were reproduced in Figure 6.5 by this
technique with the pitch-flap and lag-pitch submodels. As

could be expected, the flap-pitch flutter boundary compares




Quite well., The lag-pitch instability boundary is not as
good an approximation since the system is deprived of the

flap damping.

6.2 LAG INSTABILITIES

Stability boundaries of the second type on the plane of
ve versus Vs show the extent of unstable regions and how
they are expanded by the various parameters, but must be
supplemented by root locus plots showing the subtle
interaction of the roots and the severity of the
instabilities. The pitch frequency s is still a key
parameter, but so are pp and Bgr X and oo.

Figure 6.6 clearly shows three regions of instawmility
for the preconed rotor. The familiar pitch-flap flutter and
divergence is due to the increase in $, as Yo is reduced
(see Figure 6.4). _ here is a region of flap-lag instability
associated with the matched stiffness case v " "s vhich
may occur when all three frequency ratios are reduced as in
the case of an overspeeding rotor. The third region, near
the ve ordinate, is of most interest. This "stiff

in-plane” region 1is very sensitive to the parameters

mentioned above.
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The couplings are much more subtle than those of the
flutter region:
1) A, couples ¢ and § in the mass matrix.
2) (ﬂ°+ﬂp) couples ¢ and # in the stiffness matrix,
3) Coriolis terms couple g and j¢.

4) There are unsymmetric damping terms due
to A and oo.

S5) There is unsymmetric stiffness coupling
of 9 and 4§ due to ) and 00.

The last of these is associated with the torque component of
the 1lift which is the prime mover of the lag-pitch
instability.

The three degree of freedom character of these
instabilities is emphasized by another look at the two
degree of freedom submodels. In Figure 6.7 as before, the
flutter boundary so calculated compares well with that of
Figure 6.6. But while the flap-lag region 1is poorly
represented, the lag-pitch submodel predicts no boundary at
all.

Figure 6.8 corresponds to Figure 6.6 for the flat rotor
with pp = 0, Especially noteworthy is that the lag-pitch
and flap-lag regions have merged. They are related in
proceeding at the frequency Ve

Figure 6.9 shows the effect of increasing the inflow
angle )\, which greatly enlarges the lag-pitch instability

region. 1In this particular plot, the power coefficient |is
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not the same as that of Figure 6.6. A case such as this
represents a situation vhere an increased inflow is not yet
compensated by the pitch setting. This is the only type of
variation presented in vhich the povwer is not held constant.

Halving the pitch frequency ratio v also enlarges
this region as shown by Figure 6.10. This plot should again
be compared to Figure 6.6.

Changing p; can have a drastic effect on these
stability boundaries, as Figure 6.11 demonstrates. Here the
rotor blade has been drooped downwind on the preconed rotor,
This built-in flap angle has a direct influence on the
steady flap angle g,. Part of the effects of ﬁp and of
and 6, also come through the steady flap equation (5.5),

The leading terms are

2 1l 2
By ~ [vf B - ﬂp - 3ar(4x=36 )1/(1 + v/) (6.2)

The couplings of ¢ and 4 are all influenced by 4, vhich
also increases the Coriolis coupling between ¢ and 4.

The resulting complicated effect of 4 through g, is
shown in Figure 6.12, a plot of the damping of the lag-pitch
mode a versus the built-in flap angle Ag- Had g, been
picked as -.15 or -.05, the lag-pitch instability region in
Figure 6.11 would not have extended to the standard MOD-0
point at v

Y
unstable is small for negative ﬂs and the instability is a

= 2.5 and e " 3.6. The range of A vhich s
veak one, vwhile positive Aq is generally destabilizing.
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The complex interaction of parameters through the steady
equations thwarts a more specific general statement about
the lag-pitch instability.

To examine this instability more closely, root locus
plots on the iv versus s plane are useful. Only the upper
half plane will be shown, since the « axis is a line of
symmetry. The three branches will be labeled conventionally
as B, ¢, and 6 with respect for their origins, even though
this may not always represent the nature of the
corresponding eigenvector.

The preconed case of Figure 6.12 for the ps variation
is replotted in this manner in Figure 6.13. The
corresponding root locus for the flat rotor is presented in
Figure 6.14. These plots show the ¢ branch crossing and
recrossing the & = 0 line in a relatively weak fashion.
They clearly show the sympathetic participation of the #
degree of freedom while the eigenvalue of the ¢ mode |is
dominated by ¢ and 4.

The migration of the roots as v, is reduced is plotted
for both the preconed and flat rotor in Figures 6.15 and
6.16. In both cases, the § branch (flutter) precedes the ¢
branch into the right half plane, though only slightly for
the flat rotor. The # branch also finishes near the lag
frequency "4 while the ¢ branch continues to retreat as v
is reduced. It is the frequency of this branch which

coallesces with that of the g branch. In fact both the
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and § eigenvalues are dominated by the § degree of freedom.

The ¢ instability also can no longer be characterized as
veak,

The similar root locus of Fiqure 6.17 for the preconed
rotor but with =g " 2.5 shows the weak nature of the
flap-lag instability. The stability boundary is just less

than v, * S, confirming Figure 6.10.
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Chapter 7. COMPARISON OF EQUIVALENT HINGE
AND MODAL MODELS

To conclude the discussion of the equivalent hinge
model, it is illuminating to compare and contrast it with a
simple modal model derived by this author [20]. For
convenience, this model is reviewed in Appendix A, The
equations of motion of an isolated HAWT blade were reduced
to a three degree of freedom modal model using Galerkin's
method. One mode each was used for out-of-plane bending
(w), inplane bending (v), and torsion (4). Many details of
the blade were modeled, including built-in twist, taper, and
blade cross-section properties all varying along the span.
All of these entered the :quations as averages weighted by
the mode chape functions.

The modal model is a three degree of freedom
mathematical model of the blade. In contrast, the
equivalent hinge model 1is a three degree of freedom
mechanical analog of the blade, and the equations of motion
derived here are those of this analog. Comparison of the
two sets of equations reveals many differences, which this
chapter will discuss. Their sources are:

1) The deflection shapes.
2) The coordinates.

3) Structural couplings.
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Also, the modal model is less general, vith a narrover
ordering scheme. In particular, squares and products of the
steady deflections such as Ag and A0, appear in the
equivalent hinge equations, but their counterparts do not
appear in the modal equations.

In the modal model, the deflection of the elastic axis
in the z and y directions, and the torsional deflection,

respectively, are

W= yw(X) qw(t)
v e yv(x) qv(t) (7.1)
= y’(x) q’(t)

where Th is the mode shape and q, is the generalized
coordinate. Whereas the deflection shapes for the modal
model were taken as the nonrotating natural mode shapes, for

the equivalent hinge model the deflection shapes are

x/L 0 <x <L
e
w v 0 elsevhere
(7.2)
1 0 <x <L
e |

0 elsevhere

That is, the blade is a straight line and all of the torsion
is at the root. Many small differences between these models
arise because the equivalent hinge deflection shapes weight

spanvise averages of cross-section properties differently.
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Modeling the blade with all torsion lumped at the root
is justified for the common case where the root torsion
predomirnates. In other cases a model with the pitch
equivalent hinge outboard, such as one developed by Chopra
may be more satisfactory [34].

The modal generalized coordinates were expressed as
sums of steady deflections and perturbations in the same
manner as the equivalent hinge coordinates. When the above
deflection shapes were utilized, there is a straightforward
relationship between the ¢two coordinate sets. For the

puroses of this chapter, this relationship can be expressed

as
QWO = A
vo i P ’oao (7.3)
q o 60
and
~ ‘V+9~+ 5
AR AR AR
vy Y _ o - 3
q, : Joﬂ poa (7.4)
PY]
= §
9

Many apparent discrepancies between the equations dissclve
when the deflection shapes (7.2) 2ze substituted into the
modal equations and these transformations are applied.
Structural couplings which arise in the modal model
because of built-in twist and nonuniform cross-section

stiffness properties do not arise in the equivalent hinge

OFPOORQ““""
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model: Their mechanisms are not present. The most
important structural coupling is between flap and lag
bending. The form of the terms in the modal eqQuations
suggests that an average structural coupling angle 6, can
be used which {s introduced into the equivalsent hinge

stiffness matrix (5.4) as follovs

K,, = Ufc°’20b + 2fsin20b + 1+ ,.,

K,* - (nf-vf)sinabcosob * Ot e

Kpg = (.‘,z-v,z)sinobcosab SR (7.5)
Kﬁ = v’zccs?‘ﬁb + v,zsinzab tee, * ...

This form vas also used in reference [33]., The structural
coupling angle ab can be approximated by the blade twist at
one third span [29). Similarly, the twist angle at three
quarters span 1is generally taken as an approximate blade
pitch setting 8,

In principle, this comparision could be carried one
step furcher by using it to relate the integrals of the
modal model to the parameters of the equivalent hinge model.
This would perhaps better define these parameters, but if
such detailed information about the blade is known, it would
prpbably be better to use the modal model.

The tvo models exhibit good numerical agreement, even
though overall or typical section parameters are used to
calculate equivalent hinge paramecers, Both models have

been applied to the MOD-0 wind turbine blade to demonscrate
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this point. The modal model results are taken from
reference [20]. Figure 7.1 shows the effect of reducing the
torsional stiffness of the control system, thus reducing v .
The two models predict the same minimum v reqQuired, but
give divergent results vhen the pitch frequency approaches
the lag and flap frequencies., Figure 7,2 shows the effect
of increasing the inflow angle )\, again without holding the
power constant., Figure 7.3 shows the effect of changing the
precone angle ﬂp.

The real usefulness of the egquivalent hinge model is in
understanding the effects of the various psrameters and in
simplifying the complex physics of the HAWT blade. This
model can be used to test concepts, to begin d«uign Dbefore
details of a proposed blade are known, or to check the
results of more complicated analyses. In short, the
equivalent hinge model is a rotary-wing counterpart to the

"typical section®™ of fixed-wing aeroelasticity.




Cuapter 8. MODELING TECHNIQUES
FOR THE ROTOR-TOWER SYSTEM

The HAWT system is liable to various aeroelastic and
mechanical instabilities and resonances vwhich involve
couplings between the main dynamic elements: the flexible
tover, the yaw drive, the generator drive train, and the
rotor consisting of several elastic blades and a hub of some
configuration. Much less research has been presented for
the rotor-tower system than for the isolated blade.

Several studies of mechanical instability and the
effect of static imbalance without aerodynamics have been
made. Dugundji developed such a model for a two-bladed
rotor in connection with an experimental study [43]. He
used an equivalent hinge representation with flap and lag
for each blade, and two generalized coordinates for tower
side-to-side and fore-to-aft motion. Sheu used a similar
but more restricted model with blade lagging and tower
gside-to-side motion only [44]). He investigated ground
resonance type instabilities for both two and three blades.

Several studies of aeroelastic stability and response
have also been presented. Warmbrodt and Friedmann derived
nonlinear equations of motion and loads for the rotor-tower
system (45]. Galerkin's method was applied to study a MOD-0

type wind turbine with ¢two blades. They used one lag and
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one flap mode per blade, and one mode each for tower
torsion, side-to-side bending, and fore-to-aft bending.
Hultgren and Dugundji developed a similar linear model for
the three-bladed case [46]. They studied mechanical
stability and forced vibrations due to imbalance, gravity,
and wind shear. Thresher, et al., examined the response of
a three-bladed rigid rotor on a flexible tower to
atmospheric turbulence [47]). Bousmann and Hodges presented
an excellent experimental study of the aeromechanical
stability of a three bladed hingeless rotor on a flexible
pylon [48]. Bundas and Dugundji have conducted some
experiments on the yaw behaviour > a model wind turbine
with two blades [49].

Recently, Janetzke and Kaza presented an analytic
rotor-tower model with a two-bladed teetering rotor
applicable to the MOD-2 [50]. They used a teetering rotor,
one flap mode for each blade, and a kind of equivalent pivot
model of the tower nacelle with yaw and pitch degrees of
freedom., Whirl flutter was investigated by numerically
integrating the equations in time, This is quite similar to
an approach used by Hall to study whirl flutter of a
teetering proprotor [51].

Finally, it should be noted that various computer codes
have been applied to the rotor-tower problem [e.g. 2, 12].
However, documentation of the theory used is generally poor,

and very few parameter variations are given,
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In the chapters that follow, a linear aeroelastic
modeling methodology is developed for the MOD-2 type wind
turbine. Equations of motion and loads are derived in
closed form for a two-bladed teetering rotor with elastic
blades on a flexible support. One lag and one flap mode are
used for each blade, and six general hub degrees of freedom
are assumed. A solution method for the resulting periodic
coefficient equations is presented which is applicable to
stability, steady-state response, and transient response
calculations.

The methodology developed is demonstrated with a simple
yaw, pitch and teeter model similar to that of Kaza and
Janetzke. A limited study of the effect of imbalance |is
made. Whirl flutter and divergence, as well as other
instabilities are examined, and the effect of teeter,
precone, and support stiffness are discussed. Some
steady-state and transient response results are presented.

Thus, while Part I mostly concerns the MOD-0 type wind
turbine with cantilever blades, Part II mostly concerns the
MOD-2 type with a teetering rotor. ~“lutter, divergence, and
lag instabilities 1li“e those discussed in Part 1 are
possible for the teetered rotor as well, but are modified by
the interaction of the blades. For the helicopter case,
Shamie and FPriedmann have analyzed the tl#p-lag-torsion
stability of a teetering rotor on a rigid support [52].

This problem is not addressed by this thesis.
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Chapter 9. EQUATIONS OF MOTION -~
ROTOR-TOWER MODEL

A mathematical model of a teetering rotor on a flexible
support, once derived, is a valuable building block for
investigating HAWT aeroelasticity. The development
presented here allows flap and 1lag modes for each blade,
teetering motion of the rotor, and six general hub degrees
of freedom -- eleven degrees of freedom in all. Thus, the
new information given by this derivation is essentially a
description of the interacrtion between rotor modes and hub
motion. The hub degrees of freedom can then be used to
match the rotor to any kind of tower or support model, from
simple to complex. This approach is taken by other analyses
as well (10, 11].

The equations of motion are derived in this chapter
with gravity 1loads but without aerodynamic loads. The
latter are developed in the following chapter. An energy
approach similar to that of Part I is followed, but only

linear terms will be obtained for the rotor-tower model.

9.1 COORDINATE SYSTEMS

Three coordinate systems are used to describe the
deflected position of a rotor blade as shown by Sketches 9.1
and 9.2. The inertial coordinate system X Y 2 is fixed in

.
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space and has unit vectors ? 3 ﬁ. The shaft coordinate
system X, Y, 2 (?s 33 ﬁs) détines the deflected position
of the shaft axis and hub, but does not rotate. PFinally,
the blade coordinate system x y 2z (3 5 ﬁ) locates the
rotating, teetering blade with x eas the unbent position of
the elastic axis., Elastic motion of the blade is described

within this blade coordinate system.

X s
i
®
Q | Y
|
{
3
4y }
a, |\l
Displaced Hub
P NS
// ~ Deflected Axis
- ™~
~ . ™~ ¢,
7 ~N Q0
Y e ~N
e N v/ 2
s
# >

Sketch 9.1 Inertial and Shaft Coordinates

A 1
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Originally, the hub is at the X Y 2 origin, and the
shaft axis is at the Z axis. The displaced hub is located
by three Cartesian deflections gy, gy, and q;, as shown by
Sketch 9.1. The shaft axis i, is deflected in three
rotations Py Py and ’, about X, ¥, and 2, respectively.
Also, the rotor spins about zs at a constant rate Q0. This
is not a restriction on the model however, since

perturbations in rotation speed can be included in y,.

X
X
t %s »51:/ d

/Bladel\x\/—-——
B ¥
A |
N\

Vs
[ 1

—— Blade 2 — \ o

Be
(side) (front)
Sketch 9.2 Shaft and Blade Coordinates
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i nbladeione is arbitrarily chosen as the reference blade
in Sketch 3.2. The azimuth angle of blade one is y = Ot,
It should be .oted that equations of motion and loads need
be derived only for blade one. The results apply to blade
two as well, but with y =Qt + « and ‘tz = -‘tl
contributions from both blades are then summed as a final
step in the derivation. The subscripts 1 and 2 are dropped
from this point except where required for clarity.

The blades have an instantaneous teeter angle A in
opposite directions, and a built-in precone angle pp in the
same direction as shown by Sketch 9.2. Both By and ﬂp are
positive in the upwind direction for blade one.

As previously mentioned, elastic motion of the blade
occurs in the x y z coordinate system: Flap bending w is in
the z direction and lag bending v is in the y direction.
The blade is also foreshortened by the bending, which gives
rise to a deflection u in the x direction (not shown for
clarity). Torsion and blade stretching are ignored in this
analysis, because they are generally modes of much higher
frequency for HAWTs,

To simplify Sketch 9.2, a small offset was omitted. A
preconed rotor as shown is not balanced in teeter and flops
forward under its own weight, Practical preconed rotors
might counteract this by using a small undersling e as shown
in Sketch 9.3. Thus, the teetering axis is actually

situated in blade coordinates at (e sinﬁb, 0, e cosﬂb).
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Sketch 9.3 Rotor Undersling

To summarize, the displacements and rotations in going
from the inertial system to the blade system are, in order ;
of appearance: !

Three Cartesian deflections qy Qy Qz. |
Three rotations g, g, ¢,.
Shaft rotation y.
Precone ﬂp and teeéering By
Undersling e.
Elastic blade deflections u v w,
The rotations are taken in the order #y+ then ¢., then

$, and y, then pp and 4,. Thus, the transformation

between blade unit vectors and inertial unit vectors is
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where [T,] = [TY][TxlltvltTB] -
PCOSQY 0 sinyJ 1 0 0 osV¥ -sinV¥ 61;038 0 -sinB

0 1 0 |[0 cosgy -singy sin¥ cos¥ 0} O 1 0

-sing, 0 cospy sing, cospy 0 0 | EinB 0 cosB

here, ¥ = y + ¢, and B = pt + ﬂp for convenience.

9.2 KINETIC ENERGY
With all this information, the radius vector in the
inertial coordinate system can be written for a point x on

the rotating, deflected blade. For blade one, it is

X
'ﬁ-[iii]ﬁ!

Z

\

! ’
+ -

qx u X e 51nﬁp

A A A A A
- (1 3RI{q,y ¢ 1i3 k) v (9.2)

w - e cos

(92 %o

And, by substituting equation (9.1) in, this becomes

( )
q u+x-e sinpp

X
+ [Ta] v ) (9.3)

E)
| ]
-
-
Ca>
x

[ == ]
y -

W - e COSs
pP
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The corresponding velocity vector is
(2" . )
R s Qg . u+x-esxnpp u
V= [1JKK {4,3+(T,] v [T, KV} »  (9.4)
L dz w - ecospp w ‘

Recall that _blade torsion is neglected in this
analysis. Torsional moments are also assumed to have little
effect on the blade bending or the other degrees of freedom,
particularly when contributions from both blades are added.
Specifically, torsional moments which arise from inertial
sources are neglected by assuming that the blade is a 1long,
slender beam with all its mass m(x) concentrated along the

elastic axis x. The kinetic energy of the blade is then
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W - ecos w - ecosj
pP P,

\

T
u+x-esing

+ ] v (17T, ]

W - ecosp v

G

mdx (9.5)

Qe

Equation (9.5) must be expanded by substituting the
coordinate transformation (9.1) into it. Kinetic energy
terms which are quadratic in the displacements produce terms
vhich are linear in the final equations of motion. Elements
in the transformation matrix, ‘its time derivative, and their
products must be kept to adequate order to retain all
quadratic terms, but need not be kept beyond that. These
matrices are relegated to Appendix B.

A simple modal model is assumed for inextensional

bending of the blade, as follows




il
!

W= yw(X)qw(t)

v = 7v(x)qv(t) (9.6)
us= -4 q kawqw
vhere
X a X \ a
3y = é (y,) dx and 3, = g (yy) dx

This form of elastic deformation and the various
matrices are substituted into equation (9.5). With all

quadratic terms, the kinetic energy of blade one is

ML UL I ST WAL M- R A
* . L4 . . -~ - .
- 5, [qy (B, cosy - gy) + qy(A, siny - px)]
+ Sbcosﬂp[it + g,siny - gcosylq,
+ QS;[éxsiny - éYcosy]ﬁt - nsbcosﬂp[éxsiny - éYCOSy]
+ 0S,cosp [gycosy + #y8inylq,
- 0s_[q,cosy + q sinylq, + S sinﬂ [éxsiny - qycosylq,

-S [s;nﬂ (qchSy + quzny) cosﬂ ]qw
+ [(p )2 24 yxsiny - 24 chOSy *('x) +(,Y) ]
- gI ,COS p [(ﬂ )2+ 25 pxszny - 24 chosy +(px)zsin y ¢

- 2px¢ _sinycosy +(pY) cos?y]
- Sv[éxsiny - éycosylév + le [;xcosy + stxny]pt
- coszﬂp[(;xcosy + iYsiny)ﬂt + ;Y’x]

» <

+ QI [it + ¢,siny - gicosylq,

v

» K

- Q1 cospp[}xccsy + iysiny] + HQZIbcoszﬂpll - pi] + ...

o
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Poo‘:"""f Is

+ Q1 ; sinp t, o3y * pysiny]q + 302!** ;i
- OI o8 ﬂ (p xCosy * pysinqu - 0?1} cosﬁ A,
* qn I q, * kﬂ stxn AP q + 0%1" < sinp A.q,
- Qzlx sin;pccspp q, - I:v[’xco:y + ;Ysiny]qv
. I;w[j . }xsiny - }Ycosyl&v - knzcoczlpluquv+ uvqij
+ 01 So8A, 4, - 1 v A é + 01 sing [qvé" - q,9,)
- Qs cosﬂ [qxcosy + quxny]pz - 201 cosp fz‘
- S, coss [qxsxny - qYCOSylpz + %I, cos ﬂ "z
+ 01 cosi [pxszny - chosy];z + 01 cos ; ’z
- Ibcospp[pxcosy + stiﬁy]pz vacospp 'zqv
- 201stin;pcosﬁp ;Zé“
(9.7)

In this equation, the following definitions are used:

M, = { mdx

wn
]

Ixmdx S = jyvmdx S

; y:mdx I

v jyvywmdx 1 s 5 7v:md: I

f&vmdx R, = f&wmdx

f& xmdx + H = f& xmdx (9.8)
v w v

J ywmdx
5 y:mdx
J 7"XMX

-
L]
"
)

Si‘mdx I v

e
[ ]

Xxw

and

* L
S, * sboin/p - Me I, = Ibsinlp - S,e
*

*
Iv"® vasxn;p - S,e lew® xchinpp - §,e

L 2 ] * *®
I, = Ibsinpp-sbe (9.9)
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These latter definitions reduce to zero for the cas¥” with

neither precone nor undersling.

9.3 GRAVITY POTENTIAL ENERGY

In this analysis gravity is assumed to act in the
negative X direction. The effect of built-in rotor axis
tilt is not included. The potential energy of the blade is

L
Ve gg Xmdx (9.10)

From equation (9.2) and equation (9.1), the height of a

point x on the blade is given as

X=q,* [cosyxceascosv + sing sing cosBsin¥ +
+ cospxsinB](u+x-esinﬂp)
+ [-cos,Ysinv + sin,ysin,x]v
+ [-eos,YsinBcosv - sing _sing sinBsin¥ +

+ siancospxcosB](w-esinﬂp) (9.11)

As vith the kinetic energy, the potential energy is expanded
in terms up to quadratic in the displacements and

velocities. Thus, the potential energy of blade one is

VegMqg ¢ gsbcosﬂp[cosy - ¢,8iny -&yf cosy + AtpY]
-agcosppcosytavqi + qu:] - ¢S [siny + ¢, cosylq,
+ gs"[cospp(,bY + B cos;) - sinpp(cosy - ¢,8iny)q,

+ gSE[;Y - A.cosy + ﬂtyzsiny] (9.12)
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The spanwise integrals in this equation are defined as

before (9.8-9).

9.4 STRAIN ENERGY

The elastic model vt the blade is taken directly from
reference [20) and is reviewed in Appendix A. However, only
linear lag bending and flap bending are used; torsion and
all nonlinear terms are ignored. A teeter spring is
included, cnd structural coupling due to built-in twist of
the blade Ob(x) is allowed. Sketch 9.4 shows the principal

axes defined by ob.

Z, W

'4 \\\\ 7
/////// - Y,

Sketch 9.4 Built-In Twist and Principal Axes

v

The strain energy of the blade is
2 2
U=4Kq’ +K _qq, *4Ka + LKA (9.13)

Kere, Kt is one half of the teeter spring rate, and the

stiffness coefficients are defined as follows
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]

(EIzcoszab + EIlsinzab)(yc)zdx

<

(E1, - EI,)sind cosé, (ygrg)dx (9.14)

=
L]
Ot O O

. 2 2 w2
K, =] (B1,8in"4, + EI,cos 6,)(y5) dx
where
EI, = f Es2dydl and EI, = [ B¢’ dsde
x—-sect x-sect
9.5 EQUATIONS OF MOTION

With the kinetic energy (9.7), gravity potential energy
(9.12), and internal strain energy (9.13) of the blade in
hand, Lagrange's Equations are used to develop the equations

of motion

473T 5T 3V 3U
SE) -5 % -2 e e

where the q are the generalized cocrdinates Qyr Qgreesr

q, and the Qn are corresponding generalized loads.
Lagrange's equations are.applirj first to blade one

withg =q ,andg =g in T, V and U. Then they are
v vl w wl

applied to blade two with q, - qu, q, =9, ﬂ: = -pt, and

y =y + ». The contributions from both blades are added to

give the equations of motion in eleven degrees of freedom:
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stx hub deflections and rotations, teeter, lag bending of
each blade, and flap benéing of each Dblade. No
contributions from the tower or other system components até
yet included.
Some simplification is wrought by utilizing elastic

modes for the complete rotor instead of separate modes for

each blade. Consider the transformation

q, =klgq, + 1

s v - Ty
t ] (9.15)
q. = klq -
Ya Y1 q"z
Then q,, indicates motion symmetric about the rotor
centerline and q, indicates antisvmmetric. Opposite
definitions must be used to give 1lag modes which are
symmetric ("C" shaped) and antisymmetric ("S" shaped) in the
usual sense.

q = 4%[q ¢ ]

Vi q"z

v
a

( ] (9.16)
q, = hlq -

Vs V1 q"z

These sets of equations ‘are multiblade <coordinate

transformations of a kind for two-bladed rotors. Their

implications are made clear in Chapter 11.
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The vector of generalized coordinates and the vector of

corresponding generalized loads are defined as

. r N\
qu Px
9y Py
q, P,
?x Qx
y Qy

{q} = < ,Z \ {Q} = < Qz > (8.17)

A, Q
v PV

a a

qu pvs

qws p"’s;
q P

\ waJ \ waJ

The equations of motion in these variables take the standard

form

(Ml{g} + [cl{q} + [Kliq} = {¢} (9.18)

The periodic-coefficient matrices of these equations are
given on the following pages. .For convenience in comparing
them to the aerodynamic derivatives of Chapter 10, they are
also given in individual coefficient form. These equations
are left dimensional wuntil the tower contributions can be

added.
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Chapter 10. AERODYNAMIC LOADS --
ROTOR-TOWER SYSTEM

Applied forces and moments which arise from aerodynamic
forces on the blades are derived in this chapter in parallel
fashion to Chapter 4. As with the rotor-tower equations of
motion, torsion and torsional moments are neglected. This
assumes that the aerodynamic cente: is at the elastic axis.
The quasisteady assumption is made and apparent mass effects
are ignored. However, preconing, blade twist and taper,
vwind shear, and crossflow over the rotor are included here.
As in Chapter 9, the contribution of one blade is derived
first. Then, 1loads from both blades are summed and the
symmetric and antisymmetric coordinates are used.

A cross-section of the deflected blade is shown in
Sketch 10.la which defines the deformed blade coordinate
system ¢ 5 (. The corresponding unit vectors are i ? L.

The blade has a built-in pretwist Bb(x), followed by

deflections v and v as before.
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(a)

(b) ' (c)

Sketch 10.1 Aerodynamic Nomenclature

Pertinent velocity components of the blade axis

relative to the inflowing air U, and U;, and the pitch rate

a} are reviewed in Sketch 10.l1b., The distributed loads of

interest here, p’ and pg as shown in Sketch 10.lc, are

distilled from eguations (4.3) with the simplifications

outlined above. They are




2 | 2
P, * ‘spac{C[U; - c«,t)‘] DU;}
P = “pacicl-t,u -+ CU}U’] - DU,U;} (10.1)

where p is the air density, a is the lift curve slope, ¢ is
the blade chord at station x, C is some lift deficiency
function, and D = C, /a.

It is actually more convenient to work with velocity
and distributed load components in the x y z system for this
development. These are shown in Sketch 10.2a and b,
respectively. Note that the pitch rate ﬁ! is retained in

the deformed system; its transformation produces no

simplification.

Sketch 10.2 Components in the x y z System
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The transformation between the deformed blade unit
vectors ! y < and the undeformed blade unit vectors i j kis

taken from reference [20]. It is

4 4
tf 74 - 1i 3 ke (10.2)
vhere [Tb] -

f [ 1 -y -
- , oy et

v cosob w sineb cosab s:neb

* : [] *
? smob + v cosob sxnob cosab

When this transformation is used for the velocities and
distributed loads in equations (10.1), the distributed loads

become

P, * Y pac{ [-(C+D)sin0bcosab w' - (Csinzob-nsinzob)v'10§
+ (C+D)[c0520b w' o+ sinzeb v']UyUz

+ [(C+D)sind cosé, w' - (Ccos’6, -Dsin?6, )v' v’
- l:cC[sinob v' o+ c:oseb w']-’Uy
+ %cC[cosab v' - sirwb \\v']«f,uz } (10,.3)

a : 2 ' ’
P, wpac{ 2[(Csin 8, +D)v Dsind, cosd, v ]Uny
- [ ] 2 (]
2[Csinabcosob v' + (C+Dsin ab) w ]UxUz
- Dcosd. U? - (C+D)sind U U + Ccosd U°
b ¥y b y =z b 'z

+ gcC[sinob v' o+ cosé, "]fkux -KecC .?U* } (10.4)
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P, = Ypucl 2[;c;inobcosob v' o+ (C+Dccszob)w'10x0,
+ 2[(Ccoszab+n)v' + bsinabcosob v'iu b,
+ csing, U2 - (C+D)coss, U, - Dsing, U

- kcctcosob v' + sind, v'le U, * kcc-’uy } (10.8)

Thus, the velocity components U_ Uy U, and the pitch
rate “ are required to formulate the distributed loads.
For this purpose terms nced be kept only up to linear in the

displacements.

10.1 RELATIVE VELOCITY OF THE BLADE

The relative velocity of the blade U is the difference
between the absolute velocity of the blade V and the
velocity of the air at the turbine disk. An inflow velocity
v, in the -2 directicon and a crossflow velocity U in
the -Y direction are assumed. The absolute velocity of the
blade V is given in inertial coordinates by equation (9.4).

The relative velocity in inertial coordinates is then
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qy u+x-esinpp u
« [ J KX éY*ucr + [&a] v + [T KV $
\ éz+uin v - ecosp v ‘
(10.6)

This is transformed by equation (9.1) to give the relative

velocity in blade coordinates

U
X
A A
Us=[i3j kU
y
U
F4
( 3

. dy u*x-esmﬂP u

- [1 5 1) Trn '

(i3 k]ﬁ[Ta] qtu_ ¥ [Ta] [Ta] v + (v

\ 32" n ¥ T ecoss, )

(10.7)

Elements in the <transformation matrix and in the
product of the transformation matrix and its time derivative
must be kept to adequate order to produce qQuadratic terms in
equation (10.7), but only those quadratic terms which
involve time derivatives of displacements. While only

linear terms are required for the distributed 1load
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expressions, these particular quadratic terms are required
for the vwork expression in Section 10.3. The matrices are
relegated to Appendix B. The required velocity components

are then

U, = ugsing, +u  cosp siny + cosp cosy qx * coss_siny Qy
+ sinﬁ qz + ecosp siny yx

- ecosp oCOS? pY + ecosﬂ ; (10.8)

Uy = Qxcospp + uin[pxcosy + ¢Ysiny] + ucr[cosy - ¢zsiny]
- n(xsinpp-e)pt - Osing v - [siny + p sinylq,
+ [cosy - p:siny]éY + [g,cosy + stiny]&z
- [(xsinpp-e)(cosy - ¢, 8iny) + £ xco8f cosy + wcosppcosy]ix
- [(xsinpp-e)(siny + pZCOSy) + ptxcosppsiny * wcosppsiny]p’Y

+ [xcosﬁP - (xsin;p-e)pt - usinpp]pz + v (10.9)

Uz = - ucelsing siny + (py ¢ yzcosy)sinpp + ptcosppsiny]
um[cosﬂp - (py8iny - g cosy + At)sinpp]
+ QsinpP v - [sinppcosy - pzsinppsiﬂy + ﬂtcosppcosy]qx
- [sinﬂpsiny + (g, fzcosy)sinpp + ﬁtcoupsiny]qY
+ [cospp = (g siny - g.cosy + ﬂt.sinﬂplﬁz
+ [(x-osinlp)(liny + y,c08y) - vcosﬁpcosvlﬁx
- [(x-esinﬁp)(cosy - p;:iny) + vcoupsinyliY
- vsin;p $, * (x-uinﬁp)ﬁt ¢V (10.10)

These expressions contain all necessary terms for the
distributed loads (10.3-5) and for the wvork expression
(10.1).
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10.2 PITCH RATE OF THE BLADE

Various angular velocities as detailed in Chapter 9
contribute to the pitch rate o - ;Y is about the Y axis,
#, is about the X axis following the y, rotation, §, and
Q are about the Z axis, and v' is about the z axis, all in
the righthand sense., Finally, it and v' are about ilhe y
axis in the opposite sense. Equation (9.1) is wused to
transform each of the angular velocities as required., The

total angular velocity of a point on the blade elastic axis

in the deformed coordinate system is

¢ . . . \
“ 0 #x 0 0
o) = (2, e, Fling Ftm, Kgd o Qo) |+ {0 p| + {-A=5pp
“ \ | 0 0 Q+y J v' )
(10.11)

Linear terms are adequate in the expansion of the angular

velocity. The only component required is

“ " Qsinpp + 0<:<>s,ap[ﬁt + sind v' + cosé, v')
+ cosﬁp[cosy s, * siny I sin}P ’, (10.12)
10.3 WORK OF EXTERNAL FORCES

The variation of work done by the aerodynamic forces
can be expressed both in terms of blade deflections, and in
terms of the generalized coordinates. In terms of

variations of the blade elastic axis deflections it is
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span

vhere Xea' Yea! and t,. ore deflections of the elastic axis

a
in the respective directions. 1In terms of variations of the

generalized covrdirates this is

W = P.iqy + Pydqy ¢ P,iq,
+ Quipy ¢ Quépy *+ Q,i9,
+ Q.88 + Piq, +PIq, (10.14)

vhere the P and Q, are the geners.iized loads of equation
(9.14). Recall that v = y q  and v = y g ; if more bending
modes ar: required, more generalized loads would be used at
this print.

Now, if the two sets of coordinate variations can be
related, the generalized 1loads can be calculated. The
variations are related through the velocities as in

Chapter 4. Define the operator
As th(a/aqx)+an(a/an)+...oaq"(alaqw) (10.15)
Then the relationship between the two sets is given by

sx_, = Alu.])
ly.‘ = A{Uy} (10.16)
sz, = AU}

Equation (10.15) is applied to the velocity components
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(10.8-10), and the result is substituted into the first work
expression (10.13). Then, coefficients of each variation in

the two work expressions are separately equated. The i

gencralized loads which result are i
Py = S{pxcesﬂFCOly - py(siny + p,c08y] - pz[sinﬁpcosy + %
- yzsinppsiny + ptcos;pcOSy]}dx (10.17)

P, = S{pxcosppsiny + py[cosy - #,8iny) - pz[sinppsiny +
+ sinpp(,x + pycosy) ¢+ ﬁtcosppsinyl}dx (10.18)

P, = j{pxsinpp + py(fxcosy + stiny] + pz[cospp +
- sinﬂp(pxsiny - pycosy +4 )]}dx (10.19)

Q, = j{pyecosﬂpszny - py[(x-esinpp)(cosy - 9,8iny) ¢+

+ ﬂtxcosﬂpcosy + wcosppcosy] - pz[vcosﬂpcosy +

- (x-esinﬂp)(siny + pzcosy)]}dx (10.20)

Q, = 5{~pxecosﬂpcosy - py[(xsinpp-e)(siny + ,zcosy) +

+ ﬂtxcosﬁpsiny + wcosﬂpsiny] - pz[vcosﬂpsiny +

+ (x-esinﬂp)(cosy - yzsiny)]}dx (10.21)
Q = f{p [xcosp - g (xsinp -e) +
z Y P t p
- wsing ] - p vsing }dx (10.22)
P z P
Qt " 5{pxecosﬂp + pz(x-esinﬂp)}dx (10.23)
P, = J{pyyv}dx (10.24)

P, = Jlp,y, ldx (10.25)
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A note is in order at this point. Almost all of the

r.xpressions in this chapter are given in terms of v and w,
- i order to facilitate their erpansion to include more
bending mod~s. The last two equations are given in terms of
y, and V' and give generalized loads for these particular
moces; entirely analogous expressions could be written ¢£or
any additional modes. Then, each occurence of v or v would
be expanded in the appropriate modes. Here, a simple one

mode model is used for each.

10,4 GENERALIZED LOADS

To recap, at this point the aerodynamic 1loads
(10.17-25) are expressed in terms of the distributed loads
(10.3-5). The distributed loads in turn are xpressed in
terms of the velocity components (10.8-10) and the pitch
rate (10.12). This substitution process is too complex to
be reported in detail here. Only an outline of the algebra

and the results are given,

First, a simple form is assumed for the inflow and

crossflov as follows

u, ® AL ¢+ rmcoupcosy

u__ = 0L (10.26)

vhere ) is the average inflow ratio, r is a linear wind

rp-mmmm«mmmmmmmmmmmwnmmmwww R RO~
i
4




' wm i V

shear coefficient, and 4, is the crossflow ratio. The use of
mode shapes y and y , and the definitions of A, r, and ,
facilitate the integration of the generalized loads.

For a yaw alignment angle ¢ off the wind, momentum

theory gives

1 1
A= (EVCOSQ - 16ca)
+ [(%VCOSQ - f%ca) + féaaa ]% (10.27)
and
p = Vsin® (10.28)

where V = Vv_/QL (at hub height), ¢ is the solidity (rotor
planform area/ disk arcea), and 90 is the reference pitch
setting., If the reference chord leng:h is C e then the Lock
number may be defined as y = pacona/lb.

Chopra has given a simple formula for the wind shear in

terms of a power law exponent p [35]. Rearranged, this is
r = plr + %ca)h/ﬂ (10.29)

where H is the hub height and p is between 0.15 and 0.4
depending on the terrain.

Unlike the derivation of the equations of motion, this
development of the aerodynamic loads requires an ordering

scheme., Reasonaible orders of magnitude for HAWTsS are

R ——

O 0 T




%NAL P

‘r"‘t({.,;; . OrF pm AGE s
/Ly g0 vy Yyr yor. v/8 O(co)
\, 8, ole™)
C/Lo e/t'v ’p' T: O(ll)

vhere ¢ is of the order of q /L. In any coefficient, only
the largest terms and those one half order smaller are
retained. Coelficients of like harmonics are also compared,
and those more than one half order smaller are discarded.
Also, all r?, rs, and ,* terms are ignored, effectively
eliminating higher harmonics of the airloads.

The contribution to the aerodynamic loads made by blade
one is calculated by setting qQ =9, and q, =9, Then,
the contribution to the aerodynamic loads made by blade two
is calculated by setting qQ, =9, 9, *=9," pt = -pt and
y =y + ». The contributions from both blades are added to
give the eleven generalized loads. Here again, the
multiblade coordinates (9.15,16) for symmetric and
antisymmetric elastic rotor modes are used.

Finally, the generalized loads are substituted into the
equations of motion (9.18). Many terms in the loads involve
generalized coordinates or their time derivatives., These

are subtracted from both sides of the equations and thus

augment the C and K matrices, The remainder are added to

the forcing vector Q.




These aerodynamic coefficients are given below with the
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degrees of freedom in the same order as in equation

In these coefficients, various aerodynamic integrals are

used, L, and D . These are defined in Appendix C.

in understanding the aerodynamic coefficients,

arranged so that they are all equal to one for an

blade:
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Chapter 11. HARMONIC BALANCE SOLUTION OF
EQUATIONS WITH PERIODIC COEFFICIENTS

The equations of motion and aerodynamic lcads derived
in the preceding chapters form a second order system of
ordinary linear differential equations with periodic
coefficients. A solution may be pursued using any of
number of techniques presented in the literature. Several
of these are introduced briefly, followed by a Jdetailed
development of a general harmonic balance method useful for
stability, steady-state response, and transient response
calculations.

Perhaps the most straightforvard approach i3 direct
numerical integration of the equations beginning at some
chosen initial conditions, Stability is determined by
inspecting the result for growth or decay. In a stable
case, the steady-stite response is found if the calculatior
is carried far enough, or if the correct initial conditions
happen to be chosen. This method ignores Floquet-Liapunov
Theory [53, 54, 55] which éevdhls the mathematical form the
solution must take. PFloquet theory has spawned three

general families of solutior techniques:
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1) Perturbation methods.

2) Calculation of the Floguet transition
matrix by numerical integration.

3) Harmonic balance methods.

The perturbation method was first developed by Hsu
[56]. These methods are 1limited to cases where the.
periodicity of coefficients can be expressed in terms of a
small parameter. Inspection shows that this is not the case
for the equations in question.

Calculation of the Flogquet transition matrix can be
accomplished by a number of numerical schemes [57, 58, 59,
60). In general, integration proceeds over only one period
in thesc methods., They come highly recommended for systems
with many degrees of freedom.

Hill's method of infinite determinants is a classic
harmonic balance method [55, 61]. Bolotin applied this
method to problems of mechanical stability, but without the
aid of the digital computer he sought only limited
approximate solutions to the unwieldy determinants [55].
Recently, Takahashi has updated the harmonic balance method
for the stability problem [62]. The method to be developed
in this chapter is clinsely reléted to Takahashi's method and
to a similar method used by Sheu [44]. Peters and Ormiston
have derived a general harmonic balance operator for the
steady-state response problem [63]. See also reference

(64].
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11.1 THE HARMONIC BALANCE TRANSFORM
The equations of motion and aerodynamic forces are in

the general form
(M(p) Q) + (C(p I} + [K(p)}{qQ) = {Q(p)} (11.2)

where ncw y = Ot and (°) = 4/dy. The periodic coefficient

matrices may be written as

"
=
+
™M
x

M(y) ¢ Sinny + M_ cos ny) (11.2)

ns=1 n n

[
(¢]

+
™M
o~
lg]

cly) sin ny + C_ cos ny) (11.3)

n=1 n n

"
~

+
™M
]

K(y) sin ny + K, cos ny) (11.4)

n=1 n n

Q(y)

]
0©

+
™M

(Q. sin ny + Q_ cos ny) (11.5)
n=l 5p n

Floguet theory gives the form of the solution as [55)

q = exp(py) {l,bo + mEx [am sin my + b cos myl} (11.6)

Here, the vectors bo, a and b- are independent of time.

A more general solution form is [see 44]
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q-= 5q°(y) + X [qs (p)sin mp + q (y)cos my] (11.7)

m=] o -
Now, as indicated, the vectors q, qs and q, are
] ;m
functions of time so that
q=%§ + I [(qg -mq_ )sin my
° m=1 Sm ‘m
+ (@ +mq )cos my) (11.8)
‘" °m

and

q=khq ¢ z l(qs

I -Zméc -m q_ )sin my

m m m
+ (q +2mq -m q@ )cos my) (11.9)

m Sm m
Equations (11,2-5) and (11.7-9) are substituted into
equation (11.1) and simplified using the following

trigonometric identities.

sin my sin ny = x[cos(m-n)y - cos(m+n)y]
sin my cos ny = k[sin(m-n)y + sin(m+n)y] (11.10)

cos my cos ny = i[cos(m-n)y + cos(m+n)y]

The resulting double series equation is rearranged to expose
the sum over harmonics, and the series are truncated at some
harmonic, P. Because this equation in harmonic series must
be satisfied for all time y, the coefficients of each

harmonic must balance independently. Thus, separate
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equations can be written for constant terms (zeroth
harmonic), for sin y and cos y terms (first harmonic), and
8o on, up to the Pth harmonic. Generally, it will not be
possible to balance some terms of harmonic greater than P
vhich occur in the sums; such terms are discarded.

This process transforms the periodic-coefficient system
(11.1) into an approximate constant-coefficient system which
is 2P + 1 times larger. A new vector of coordinates is

defined by stacking the harmonic coefficients,

Q

qsl
q

{§} =4 c1} (11.11)

chP‘
Then, the transformed equations are given in the form
[(M1(q) + (E){q) + (K){g} = {Q) (11.12)

Each of the barred matrices is a matrix of smaller matrices.
For periodic coefficients up to'second harmonic (N = 2) and
truncation at P = 3, these constant-coefficient barred
matrices are given on the following pages. A pattern
emerges vhich may be used to extend these n~trices for

P> 3.
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These equations a?pégéiyikcgui?ng standard techniques
for constant coefficient equations, and the perlodic
solution is reconstructed using equation (11.7), The
equivalence of the two forms (11.6 and 11.7) may be seen Ly

realizing that the solution must be in the form
{q} =~ {(8}exp(py) (11.17)

wvhere 3 is a vector of amplitudes. Thus, the stability of
the periodic-coefficient system is approximately determined
by examining the stability of the transformed equations.

For a stable system, the steady-state response is simply
G = (K1) (11.18)

The steady-state periodic response is then determined from
equation (11.7). It should be noted that it may be possible
to calculate a steady response for unstable cases as well,
The steady portion of the present method is analogous to the

method of reference [63].
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11,2 INITIAL CONDITIONS ANﬁ TRANSIENT RESPONSE

Application (f the harmonic balance method to the
transient response problem {s somevhat more complicated.
The initial conditions on q and § are not sufficient to
determine initial conditions on q and é because there are
2P + 1 times as many. However, assuming that they can be
established, standard techniques again apply and the
response can be reconstructed using equation (11.7).

To review, the constant-coefficient equations can be

recast in state vector form as

{x} - {R){%X} = {R} (11.19)

p—
)|
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x
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n
[]
(N
o
L |
11
]

The eigenvalues of the system pj, and the corresponding
eigenvectors Vj are easily computed using standard
eigenvalue routines, The general solution of equation

(11.19) is a superposition of these solutions,
{x} = [61 32 ...GJ ...l{cjexp(pay)} (11.20)

where the cJ

determined from the initial conditions x(0),

are arbitrary constants which may Dbe

(e} = lv; v, coovy ol )7HE(O)) (11.21)

3
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Note that the second half of each eigenvector, which
corresponds to the velocities, is no longer required once
the initial conditions have been applied, The eigenvectors

are partitioned in the same manner as q, that is

{v}] =<4 C1¢ (11.22)

cp,

Eigenvalues pj occur as either complex conjugate root
pairs or as real roots, and the corresponding eigenvectors
likewise, Since the initial conditions are real numbers, it
can be shown that the constants cj also follow the same
pattern, As a result, it is convenient to combine the
contributions from conjugate pairs when reconstructing the

periodic response. Consider a set of conjugate pairs:

Eigenvalue a + Av e = 4v
Eigenvector U+ iw g - iv
Constant a + 4b a - 4b

The combined contribution of such a generic conjugate pair

to the response is
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m qmm
aq = expley) {(au_-bw )cos vy - (bu +aw )sin vp
P
+ I [(-au_ +bw_-bu_ -aw_ )sin (v-n)
n=l 'n» *n °n  °n Ty

+(nu.n-bw.n-bucu-avcn)sin (ven)yp

+(lucn-bwcn-bu.n-aw.n)cos (v=n)yp

+(au_ -bw_ +bu  +aw  )cos (v¢n)yl} (11.23)

n n n n
Here, the imaginary part of the exponential in the
solution has been expanded and combined with the harmonics
in the solution. The contribution of a generic real root is

simply

Aq = a explay) {lu <+ § [u sin ny + u_cos nyl} (11.24)
° n=l *®n “n

The question of initial conditions is ansvered by
considering the implications of applying initial conditions
to various harmonic coefficients. An initial condition
applied to a zeroth harmonic coefficient (qo and 60)
implies an initial displlconept or disturbance. But any
non-zero initial condition applied to a first or higher
harmonic coefficiant implies an on-going periodic motion,
wvhich would have to satisfy t'.e eqguations of wmotion.

Indeed, such is the case for a transient response which
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begins at one steady-state condition and equilibrates again

at a second. Except for this type of problem, the initial

conditions are applied to q, and io as follows

)
) ("".28)

o0 = q = o (11.25)
sl €1 cp 51 ¢p

e

Several notes are in order at this point. In some
cases, the constant-coefficient system (equation 11.11) may
uncouple into several smaller subsystems. A rotor with two
identical blades, as presented in the preceding chapters,
has two such subsystems:

1) Even harmonics of support motion and of
symmetric rotor modes with odd harmonics
of antisymmetric rotor modes.
2) 0dd harmonics of support motion and of
symmetric rotor modes with even harmonics
of antisymmetric rotor modes.
When elastic modes of the blades are included in the
equations, these two sets are possible only if the
multiblade coordinates are used (9.15 and 9.16).

For stability and transient response problems, it can
be shown that the two sets bécome equivalent as the number
of harmonics P goes to infinity. One form of the solution
is included within the other, and it is tempting to drop one
or the other of them, Howvaver, the two subsystems are not
equivalent vhen the series are truncated at some finite P,

The subsystems will generally have different orders and
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different distributions of harmonics to the various degrees

of freedom. The system may be partitioned and each
subsystem studied separately, but each subsystem must be
studied 214 the results must be combined. These points are
illuminated in the application of the method in the

following chapters.
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Chapter 12, THE YAW-PITCH-TEETER MODEL

A simple rotor-tower model which may be proposed for a
MOD-2 type wind turbine involves only yawing and pitching of
the nacelle and teetering of the rotor. 1In this chapter,
the model equations of motion are extracted from the eleven
degree of freedom expressions derived in Chapters 9 and 10,
and tower contributions are added. The equations are
arranged to make use of the harmonic baiance method
described in Chapter 11. Also, the response of the
yaw-pitch-teeter model to imbalance is calculated in closed
form for a restricted case. In the next chapter, an
aeroelastic stability study 1is presented for the complete
yaw-pitch-teeter model.

Thus, the yaw-pitch-teeter model 1is developed with
several aims. First of all, the development demonstrates
the transformation or reduction of the six hub degrees of
freedom to those chosen for the tower portion of a model.
The same process would be used to extract other models,
simple or complex, from the eleven degree of freedom parent.
Secondly, the yaw-pitch-teeter model 1is wused to give
rudimentary results for aeroelastic stability and response.
These will help explain the aercelastic behavior of wind

turbines with teetering rotors.
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Sketch 12,1 The Yav-Pitch-Teeter Model

Sketch 12.1 gives a schematic of the proposed model.
The elastic motions of the tower, yawv drive, and nacelle are
represerted by an equivalent pivot of the nacelle located a

distance Ln dovwnstream Zrom the hub point. The nacelle has
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degrees of freedom in yaw 'y and.fimpitéh o vhich are
constrained by springs ky and kp, and by dampers Cy and <,
as shown, It also has moments of inertia Iy and 1

n pn
about the respective axes.

The rotor has only the teeter degree of freedom g,
wvhich is constrained by a spring 2k, and a damper 2c, . It
spins at a constant rate (2 and otherwise has all the
attributes introduced in Chapters 9 and 10. Tip pitch

control is a desirable feature, and it may be included

through the aerodynamic integrals of Appendix C.

12.1 REDUCTION OF HUB COORDINATES

The first step in formulating the yaw-pitch-teeter
model is to recognize the relationship between the six hub
deflections and the tower deflections chosen, here py and
pp. This relationship is then used to transform the
equations of motion and aerodynamic loads. Quadratic terms
are required to transform the Q matrix, since this will

produce terms which are moved to the K matrix.
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Sketch 12.2 Hub and Tower Deflections

Both hub and tower deflections are shown in Sketch
12.2., These two sets are easily related by using the
transformations of Chapter 9. The rotations are taken in
the same order, that is 'p then py and then y = Qt. In

this case yy and pp are analogous to Py and $ye

PR
’, ° pp (12.1)
$, =0

A

The vector from the pivot to the hub is given in

inertial coordinates as (see equation 9.1)
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i 0 anospysxn¢p
¢t - [T T, K0 )= ~Lnsinpy (12.2)
Ln anos,ycospp

Note that yy and ,p are substituted here, This vector |is

also

Ln - qy (12.3)
ln * qZ

Equations (12.2) and (12.3) are compared to give

q, - lncospysznpp = lnpp
Ly . (12. 4}
n'y

"

qY = -Lnsxn¢y

q, = -8 (1 - cosp cosp ) & 0
n y P

(X

The hub deflections qx,..., 'z are now all expressed in
terms of the tower deflections ¢ and 9 . The approximate
expressions given last in equetizns (12.2) are adequate only
to relate the coordinates,

The corresponding generalized loads can be related

through the variation of the work done by them.
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an,y + Qp;,P = Péq + P, *...t Qs (12.5)

but
6qx = L“Jpp 3px = 6,y
dq, & -L“6¢y i, = 6pp (12.6)
iq, = -Ln(yyapy + pp&pp) i, = 0

These are substituted into equation (12.5) and coefficients

of $ and 3 are separately eqguated to give
'y ’P

Qy = Qx - LnPY - ansz
Qp = QY + Lan - anpPz

These results could perhaps be written by inspection from
Sketch 9.2, but the preceeding method would be valuable for
more complex models,

One way to use equations (12.1) and (12.4), and
equation (12.7) is to set up transformations between the
deflections and between the loads. Only the first seven of
the eleven degrees of freedom are used in this model,
qx...pt. These are related to py, pp, and pt by using
(12.1) and (12.4).
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qy -Ln o o0
q, o o0 © ’y
{ogp= |2 0 o]y (12.8)
$y 0 1 0}}4A
¢, c 0 0
s Lo 0 1

The corresponding loads are related by using (12.7).

o)
: : Py
J ot cts, 1 o0 o ofe,
o=t 0 -t 0 1 0 ofal (2.9
o| b o o 0o o o 1o
QZ
2]

Equation 12,8 is substituted into the eqguations of motion
and aerodynamic terms, which are then premultiplied by the
transformation of equation (12.9). This reduces the seven
by seven equations to three by three. The terms -Lnyy and
‘lnfp need not be used when M, C, and K are premultiplied,
but they produce linear terms when Q 1is premultiplied.

These are subsequently moved into K.
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This is a convenient place to note an addition to the

ordering scheme. A reasonable order of magnitude for HAWTs

is

L/ o(")
Terms of differing magnitude are combined vhen the equations
are reduced, and the ordering scheme must be applied to the

aerodynamic terms as before in Section 10.1.

12.2 EQUATIONS OF MOTION

All that remains after reducing the hub degrees of
freedom is to add the tower contributions to the equations
of motion. These are very simple diagonal mass, damping,
and stiffness terms. Without the rotor, the nacelle

equations of motion are

1 ¢ +c¢4 +k =0
yn,y Y’Y Y'Y

I ¢ + s+ k = g$ 12,10
Pn'p cp'p p?p 9%q ( )
All loads on the nacelle are ignored except for its mass
imbalance sn. It is assumed that the system is statically
balanced so that S + 2M £ = 0 and S = 0,
n bn . b
It is convenient to define total moments of inertia

about the yaw and pitch axes vhich include the rotor mass

2 2
1= 1, v M8 I =1, %t (12.11)

Further, the following nondimensional parameters are defined
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YTy e

¥ 2 - .
Mb MbL /Ib Sb SbL/Ib

I = T =1

Iy Iy/2§b 0 p/21b

2 . e Llci/k 1

vy ky/nzly (y Lict/ Iy

2 = = 2 k .
vp kp/ﬂzlp :p 3 cp/ pIp (12.12)
2 o 2

o2 ek /071, ¢, = whki/k 1,

I =2 /L € =c/L

n n

The reduced equations of motion with aerodynamic terms
and tower contributions are made nondimensional by dividing
through by ZQZIb, and all of the preceeding definitions are

applied. The equations are in the familiar form

; ’ $
y y y
(MK p* ) + [CXg \ + [RWp V= {Q} (212.13)
oF R P
A A B
t t t

where now () = d/dy. The coefficient matrices are given on

the following pages in a form compatible with Chapter 11.
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(M] =
[ = 2 _u2 = 2
Iyﬂgcos ﬂp*(l Sb/ub)sin pp 2 0 : 0}
0 Ip*hcos pp+(1-§ /ﬁb)sin .c 0
0 0 1
0 0 1- (§2/ﬁb)sin s
+ 0 0 siny
b1-('S§/)'ib)sin2,ap 0 0
r -
0 0 0
+ |0 0 -1*(S§/ﬁb)ainzﬁP cosy
- 2 . 2
0 1*(§b/&)sm pp 0
0 -l,coszﬂp 0
+ -t,coszpp 0 0 | in2y
0 0 0
-l,ccszp 0 0 '
+ 0 i cos’ pp 0 | cos2y (12.14)
0 o 0
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VAU
(c] =
L.y +20 T 2 0 1
re7™1 iy y'y , cos 4,
0 0 EyLl*Z(tvt
0 0 %7!;1
225 veinl ,
+ 10 0“ 2Q1 sb/Mb)sm pp siny
%,Ll 2¢:os‘ﬂp 0
22 /3 Veinlg |
0 0 2(1 Sbfxb)sm pp
+ 0 0 -§yr..l cosy
LZcoszﬂ “37L, 0
[, o2 -1 ]
cr8’sh, 6"
+ | -1 -cos? ;
16,2.1 cos pp 0| sin2y
{ 0 0 0
---l- L -coszﬂ 01
167™1 P
-cos? L
+ | =cos pp vl 0| cos2y (12.15)
I 0 0 0
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1 -
ﬁy(ﬂ;sl ‘L"Uc)l 0
(1 v;--l- yla;l[ 0

{v2+cos2y +(§:/ﬁb)sinzﬂ;
lzy[L c¢3(L3x-L20°)Ap
-(sb/nb)(zr.sx-ar.‘ao );Pll

.

-

{cos2s +(§2/Mb)sin A
0 1zy[(ansx 2L40°)lb*
c+3(L31-L200)IP*

--(sb/ub )(2L,2-3L 8 )pp]}

1 -
0 {57 (3L, A-4L, 68 )2 siny

l -
0 127(3L5X 4L‘.9°)X

(*cosZﬁP-(§:/ﬁb)sin2pp

0 -fgy[(ansx-znkao)i;+ cosy +
-L8°E+3(L3 X-Lz 0° )lp*

-(8, /M )(2L2-3L, 0 4,11

1
$7LA, 0

137




ORGINAL PAGE I3
OF FJOR QUALITY
(1 (3L-4L,8 ) L 0]
AR LA 2rl3r4,
. R RVE & (3La-en, e, 0| sinzy
L 0 0 0
i 1 . 1 )
G7L A, -5y (3L -1, 8,00 0
o | Fr(3La-an,0 - 3rL3MA, 0| cos2y
| 0 0 0
(12.16)
{Q} =
r
o) (1 0

0
l -
f§7[2L37+(3L5X 4L40°)pk» 1

0

0]

- {0)cosy - O(sinz,r + { 1)cos2y
2 0} 0
(12.17)
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12.3 AN APPROXIMATE SOLUTION FOR IMBALANCE

This section is a digression from the main development.
The response of the yaw-pitch-teeter model to a small rotor
imbalance is calculated in an approximate fashion. While
the closed form solution presented is possible only for a
restricted case, it is nonetheless ¢  some interest. In
this section only, the rotor is assumed to have no precone,
no teeter spring or damper, and no aerodynamic loads. The

in vacuo equations of motion are then

?y + k(1-cos2y) -lsin2y siny ;;
-i8in2y TP + ¥5(l+cos2y) ~cosy ;;
siny -cosv 1 ﬁ:
-
2¢T.v._ + sin2 1-cos2 ol (¢
ty 'y sin2y cosly 'y
+ -l-cos2y ZCPIpvP + sin2y 0 {p
2cosy isiny 014,
0 1
Iy'y 0 sSiny fy
+ |0 7 v? -zosyl¢ ¢ )= {0} (12.18)
PP p
0 0 1|2,

Imagine a small imbalance mass f located on blade one
at L.. Besides adding negligible increments to the mass and
momeric of inertia terms, general imbalance terms are
introduced which augment K and Q. These terms are quoted
here without docusientation. They can be derived from the

kinet!: and potentiol energy expressions (9.7 and 9.12) by
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replacing M, withm, S, with m{,, and 1, with mL: and
applying Lagrange's equations &and the transformations of

this chapter. The resulting imbalance terms are

0 0 0
AlR] = (Sg/0’L) |0 -cosy 1 (12.19)
0 1 COS{
and
-siny]
a{Q} = 82_( cosy (12.20)
0

vhere S =m{ L/2I,.

These results demonstrate what occurs whenever the
blades are dissimilar. Compare equation (12.19) with K in
equation (12.18). The pattern of coupling between tower
degrees of freedom and teetering discussed in Chapter 11 has
broken down. However, the Mathieu type terms are very small
compared to the other stiffness terms. A small amount of
damping would eliminate any instability they may produce,
and they are neglected henceforth.

The periodic excitation introduced by equation (12.20)
is also small, but may produce resonances under some
circumstances. These imbalance terms excite the opposite
set of harmonics from those excited by the aerodynamic

forcing terms (12.17).

wee——
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An approximate sdlution to the in vacuo equations of
motion (12.18) with imbalance forcing (12.20) is pessible.

First premultiply the equations by

i, 0 -siny/T,
M7} - 0 llfp cosy/I,
. -3 t . 2 - 2 -
b-smy/ly cosy/Ip 1 + sin y/Iy + cos '/IE

(12.21)

For the restricted case of this section, $y and $, are

completely uncoupled and the equations become simply

e e 2 .--. = .
F, YA s vl (sln/Iy)szny

v . 2 = st /1 .
’. + 2(p ottt (sln/Ip)cosy (12.22)

B+ B, = WL L(/T, + 1/T) - (/T - 1/T )cos2y)

L4 . L ) » 2 .,
- - + n -
2cosy ’, 2siny 'p vysx y py vpcosy 'y

These equations are easily solved in sequence for ¢

nd th . If = = 0
anc f en 2 o5

;y = -aysxny
pp = apcosy ‘
g = [a+a )+ [a -a ]Jcos2y (12.23)
t P Yy Py
vhere
ay = Eih/tfy(v;-l)]
ap = 32;/[Ty(v;'1)]

This response demonstrates an interesting mode of the
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system. As the hub follows the imbalance, it describes an
ellipse with radii ayln and aan. The nacelle rotations
are counteracted by the teetering in such a way that the tip
path plane remains always the same,

The results of this section apply only for the rotor
which has no airloads, is not preconed, and has no teeter
spring or damper. However, the rotor-tower system would

exhibit similar behavior if these attributes are not too

large.
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Chapter 13. AEROELASTIC BEHAVIOR

OF THE YAW-PITCH-TEETER MODEL

Various aeroelastic instabilities of the teetering
rotor-tover system are possible depending on the parameters
of the machine and its operating condition. Several kinds
of solutions of the yaw-pitch-teeter equations (12.13-17)
are presented in this chapter for a range of parameters.
First, transient response results are given for several
unstable cases in the manner of Janetzke and Kaza [50]. The
results of the present study are compared to theirs as a
means to verify the yaw-pitch-teeter model. Second, a
stability study is nresented which displays the effects of
some key parameters: support stiffness, damping, inflow
angle, and preconing. Finally, the steady response to wind
shear is briefly discussed.

In each solution, the NASA MOD-2 is used as a base
case, and one or two parameters are changed at a time. The
base case parameters are adapted from reference [50), and
are given in Table 13.1. (Tables and Figures are placed at

the end of this thesis for ready comparison.)

13.1 COMPARISON OF TWO MODELS

A more complete description of the model presented by

Janetzke and Kaza is in order here to point out similarities
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and differences [50]. The present model is physically
similar to their model, although pitch is defined in the
opposite sense. They used a flap bending mode for each
blade in addition to the yaw, pitch, and teeter motions used
here. They did not include preconing, but they did include
a delta-three angle of the teetering axis. The present
analysis assumes that the teetering axis is perpendicular to
the blade axis.

The aerodynamics of reference [50] included nonlinear
expressions for the lift and drag coefficient, and so were
not given in explicit form. This was consistent with the
solution technique used there, which was a straightforward
numerical integration of the eguations of motion. The
aerodynamic forces were apparently calculated numerically at
each time step.

The results presented by Janetzke and Kaza  were
transient response time histories, given an initial
disturbance of the system. Stability was determined by
examining these time histories for growth or decay, and the
nature of the behavior was shown as well. The standard
MOD-2 case was examined with and without damping; a case
with reduced yaw stiffness, (vy = 2) was examined without
damping; and a case with both yaw and pitch stiffness

reduced (vy v, " 2) was examined with and without damping.
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The stability of these same standard cases may be
examined by applying the techniques of Chapter 11 to the
yaw-pitch-teeter equations. The harmonic coefficient
matrices (12,14-16) are calculated and substituted into the
barred harmonic balance matrices (11.6-8). Then, the
eigenvalues of this transformed system are extracted and
examined. Roots are presented in Appendix D for all of the
cases of reference [50). The conclusions are the same for
the two analyses, except that the present analysis predicts
that the standard MOD-2 case wvithout damping is slightly
unstable (a = .0015). Reference [50] had this case as
neutrally stable.

Appendix D gives the roots for the standard cases at
three different truncations of the harmonic series: P=1,
P =2, and P = 3. These results show the rapid convergence
of the harmonic balance method for the stability problem.
As P is increased, the real part of root converges and may
repeat with an imaginary part which is different by an
integer amount. The roots are also divided into the two
sets discussed in Section 11.2. As P is increased,. roots
jump from set to set, but no new roots arise at P = 3,

Transient response time histories such as those in
reference [50] can also be calculated using the techniques
of Chapter 11. The eigenvalues and eigenvectors of the

transformed system are calculated, and the initial
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conditions applied (11,21). Then, the contributions of all
conjugate pairs (11.23) and reél roots (11.24) are added to
give the transient response.

The two reduced st!ifness cases without damping, both
unstable, are arguably the most interesting and are used
here to compare the two models. Appendix E preseqts the
eigenvalues pj, the eigenvectors vj, and the combination
constants cj for the "y = 2 case without damping. Figure
13.1 presents the transient response results from the
present analysis for this case., The initial conditions and
all other parameters are the same as those used by Janetzke
and Kaza, whose results are given in Figure 13.,2. These are
transformed to match the conventions used here, the bending
mode responses are omitted, and the scale is changed.

Figures 13,3 and 13.4 make the same comparison, but for
the vy =V, ® 2 case. Perhaps the most startling fact about
these plots is that only harmonics up to the second are used
(P = 2),

The initial conditions used in reference [50] are
apparently designed to excite the forward whirl flutter mode
of the system. The initial conditions used in the results
of Figures 13.1 and 13.3 are placed on the zeroeth harmonic,
based upon the guidelines of Chapter 11. I1f similar
whirling initial conditions are used but placed on the
second harmonic, an slightly different picture emerges.

Figure 13.5 shows this result for the vt " 2 case,

o i e
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A number of unstable roots are given in Appendix D for
the Yy v " 2 case. A root with « = 0,0104 is largely
responsible for the phenomena in Figure 13.3, and a root
with « = 0,0125 is culpable in Figure 13.5. This points
out a difficulty with using transient response histories to
examine stability, since the initial conditions must be
carefully chosen to assure excitation of the unstable modes

of interest. Thus, transient response time histories are

.used here only for comparison to reference [50], and are not

continued in the following stability study.

13.2 AEROELASTIC STABILITY STUDY

Both stability maps and plots of damping versus a
parameter of interest are used in this section to give a
rudimentary understanding of the aeroelastic stability of
the model. Figure 13.6 shows the basic instability regions

for different combinations of support stiffnesses. The

locations of cases from the last section are shown.
Generally, reducing either stiffness too much, or having
them too close together can cause instability. This plot
does not show the strength of the instability, and although
the plot indicates that MOD-2 is unstable, a very small
amount of damping suppresses the whole matched stiffness
region.

Note also that a portion of the boundary was calculated

with both P = 2 and P = 3, This is another check of the
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convergence of the harmonic balance method. The periodic
coefficients contain harmonics up to second, and it appears
that P = 2 is adequate for these calculations.

The regions shown also must not be regarded necessarily
as being one particular mode. Rather, many different roots
(for P = 2 there are fifteen pairs)‘ dVeriQp to weave this
pattern, This fact is demonstrated by Figure 13.7 which
plots the real part « of wvarious roots which are active as
the support stiffness is reduced along the line vy * Ype
Here again, the branches are separated into the two sets
discussed in Section 11.2. This plot shows the weak nature
of the instability near the MOD-2 base case. Note also the
very strong instability near vy = v =1,

A less confused and more rewarding picture of the
instabilities involved 1is produced by decreasing the yaw
stiffness while maintaining the pitch stiffness, as shown by
Figure 13.8. Three general instability regions are shown:
one at matched stiffness vhich is weak at least for this ~
another beginning around vy " 2 which involves yaw and
teeter as previously shown in Figure 13.1; and a divergence
near g = 1, Figure 13.8 will be wused as a basis for
comparison in the following plots.

A reasonably small amount of damping applied equally to
yaw and pitch suppresses the flutter instabilities as shown

by Figure 13.9. Several of the roots from Figure 13.8 are

completely off scale.
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Increasing the intlow through the rotor disk s
destabilizing to both the matched stiffness and reduced
stiffness instabilities, as shown by Figure 13.10. This
plot applies to the case of an increase in the inflow
without a corresponding change of the pitch setting. A
change in the inflow which is counteracted by the pitch
controller so that the power output is constant has only a
minor influence on the stability.

Finally, Figure 13.11 should be compared to Figure
13.8, which shows the effect of a practical amount of
downwind preconing on the stability. The matched stiffness
instability is hardly affected, while the reduced stiffness
instability is somewhat broader and more intense.

The divergence region is also broadened slightly by
precone. This last observation is perhaps a little
surprising, and it hints at the different nature of the
freely teetering rotor. Precone would ordinarily stabilize
the wind turbine in yaw, but this divergence involves teeter
as well, In this regard, see reference ([65]. Stiffening
the teetering degree of freedom changes the aerocelastic
behavior of the machine appreciably, as shown by FPFigure
13.12, vhich should be compared ¢to Figure 13.6. Here, a
large teetering spring has been applied, and the divergence

boundary is at a much lower yavw stiffness.

LW 7.1



To conclude this discussion of aeroelastic behavior,
Figure 13.13 is included. The steady response to wind shear
(r = ,03) is indicated for two cases of support stiffness
with damping. The yaw and pitch response for the standard
MOD-2 case is actually too small to be seen on this scale.
The teeter response is the same for both the standard case

and the v+ = v = 2 case.
y p
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Chapter 14. CONCLUSIONS

As outlined in the introduction, this thesis has
addressed four specific recommendations made in reference
[{14). These same recommendations serve as an outline for
these thoughts and are therefore repeated here.

1) Develop simpler models to investigate the
main origins of aerocelastic phenomena (1).

2) Examine aeroelastic and mechanical
instabilities more closely, QSpecia11¥ for
the proposed more flexible systems (3),

3) Study teetering effects and propellor
whirl type instabilities (4).

4) Look in detail at generator drive train
interaction with other system components (7).

Two simple aeroelastic models have been ceveloped in
accordance with 1) above. The first, a simple equivaient
hinge model of an isolated rotor blade, was intended to meet
some of the requirements of 2). The second, a simple
rotor-tover model with a teetering rotor, was intended to
fulfill some of the requirements of 3). 1In the process, a

ramework was established whicg facilitates the development

of other simplified models. including possibly a model to
address 4).
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In Part 1, an equivalent hinge model was proposed as a
kind of typical section approach for the isolated HAWT
blade. The blade was assumed to be rigid, but hinged near
the root and constrained by springs. Three degrees of
freedom vere used: flapping out of the plane of rotation;
lagging in the plane of rotation; and torsion about the
pitch control axis. The model derived includes oilsets of
the center of gravity and the aerodynanic cent ., radial
offset of the equivalent hinges from the hub, and both
precone and droop angles of the blade.

First, the zomplete nonlinear equations of motion were
derived, then they were linearized in perturbations about a
steady-state blade position. The linearized equations wvere
“further simplified by applying an assumed ordering scheme
reasconable for HAWTSs, In particular, the ordering scheme
allowed moderately large out of plane deflections, pitch
setting, and inflow angle,

Quasisteady aerodynamic loads were derived in a similar
process. Nonlinear aerodynamic loads were written assuming
only that the angle of attack was small. These too vwere
linearized and csimplified as before. Finally, the nonlinear
steady-state equations were written. The ordering scheme
vas also applied to these equations, vwhich reduce to
quadratic for flap deflection and linear for lag. The
steady-state torsion is assumed to be prescribed by the

pover setting.




The resulting system of linearized equations and their
associated steady-state Qquations vere implemented on a
digital computer. An extensive parameter variation was
conducted using the NASA MOD-0 HAWT as a base case. The
stability wvas also calculated for several tvo degree of
freedom submodels extracted from the three degree of freedom
system. These two degree of freedom models were acceptable
for predicting flap-torsion flutter and flap-lag
instability, but stiff inplane instabilities were only
predicted by the three degree of freedom model. Finally,
the model showed good agreement with results from a modal
model previously derived by the author.

In Part 1I, several tools vere £first Jeveloped which
have broad application to rotor-tower j;.ohlems in HAWT
aeroeiasticity. An eleven degree of freedom linear model of
a teetering rotor on a flexible support vas derived using
six hub degrees of freedom: three Cartesian deflections and
three Euler rotations. The use of hub motions allows the
rotor model to be adapted to any tower model chosen, from
simple to complex.

Besides teetering, the rotor blades were modeled using
symmetric and antisymmetric bending modes in both flap and
lag bending; inextensional bending was assumed. Torsion of
the blades and all torsional moments vere reglected because

of the high torsional stiffness vhich characterizes most
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HAWT blades. The rotor model derived includes preconing of
the blades as well as a small undersling of the rotor, and
the blades were assumed to be twisted and tapered.

The aerodynamics were again assumed to be quasisteady.
Whereas the in vacuo equations of motion were derived
without an assumed ordering scheme, the aerodyuamic loads
could not have been derived conveniently without one.
Unlike some other analyses, the aerodynamic terms were
derived in explicit form as coefficients of the eqguations.

Next, a harmonic balance method was developed to solve
the equations of motion, which form a second order system
with periodic coefficients. The method as outlined is
useful for stability, transient response, and steady-state
response calculations. The form of the harmonic balance
method employed is quite convenient for small systems of
equations, and the convergence has proven to be rapid.
Thus, it would be useful as well for other problems with
similar egquations,

The model of a teetering rotor on a flexible support
was intended to serve as a parent from which a number of
simpler models could be extracted. This was demonstrated by
developing a simple rotor-tower model which includes only
nacelle yawing, nacelle pitching, and rotor teetering. The

resulting equations of motion were solved using the harmonic
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balance technique. Solutions were implemented with several
computer programs for stability, transient response, and
steady state response,

Transient response time histories were calculated for
several cases taken from a study published by Janetzke and
Kaza [50]. Their model included flap bending modes of the
blades, but did not include preconing, and they solved the
equations of motion by direct numerical integration wusing
finite time steps. The comparison between their model and
the simple rotor-tower model developed is very good, even
though the harmonic balance was truncated at the second
harmonic of the rotation spee for the present analysis.

The simple yaw-pitch-t.-eter model was used to examine
the effect of key parameters on the whirl stability and
divergence of a teetering HAWT. These included support
stiffness, support damping, inflow increase due to a gust,
and preconing. Finally, some implications of wusing a
teetering rotor were investigated by including a teeter
spring.

In s'mmary, the thesis contributes to both the modeling
methodology and the understanding of aercelastic behavior of
wind turbines. The general rotor model shows promise for
the development of other models which can contribute to

understanding new aerocelastic problems which may arise.
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Appendix A, MODAL MODEL SUMMARY

The modal equations of reference [20] are reviewed here
with some nomenclature changed. to match that of Part 1.
Coordinate systems are the same except that, because the
blade is twisted an angle ob(x), so are the principal axes

and {. The perturbation eguations are

qw aw qw
MI{q ) +[c){q ) *[KI{q ) = {0} (A.1)
3, 3 e

Only the inertia and stiffness terms in the coefficient
matrices of equation (A.l1) are quoted below. Here, Ry is
the torsional stiffness of the control system, Py is the
blade materizl density, E is the Young's modulus, and G is

the shear modulus.
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Appendix B, MATRICES FOR PART II

This appendix contains the transformation matrix (9.1),
its time derivative matrix, and matrices vhich are products
of either or both., All are expressed to adequate order for
the expansion of the kinetic energy (9.5) and the blade
relative velocity (10.7). The latter task is generally more

demanding. A zero indicastes that no terms significant to

this study exist in that position of the matrix.
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Appendix C. AERODYNAMIC INTEGRALS

This appendix contains the integrals used in the
aerodynamic terms of Chapter 10. Ordinarily, both the
reference pitch setting ¢, and the reference chord ¢,

would be chosen at x/L = 0.,75.

L
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(2/c,) J cey!y cos?s  ax

(3/c L) f CCyvy;x dx

(2/c°) j CCyvy' dx

w
(4/c°L2) f Cc75x g:osob dx
(4/c_1*) fceylx(sing /6 ) ax
(3/c,L) SCCinOSOb dx
(4/c°l:.2) SCc,v",y"xz dx
(3/c°L) yCC)r‘;y“Z dx

(3/cot.3) 5 cc?x? dx
2 2
(3/¢ L )jCc y, % dx
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(2/c§L) SCczyv dx

(3/c§L2)S Cczywx dx

(3/C:L2) FCczy;xz(sian/Oo) dx
(2/c§L) SCcZy;x(sineb/oo) dx
(3/c§L2)3 Cczy;xzcoseb dx

(2/c§L) SCczy;x cosd, dx

(2/ci)§ Cczy;yv(sinab/ao) dx
2 2, :
(3/coL)5 Cc®y, v, x(sind, /8 ) dx
2 2 '
(3/c°L)S Cc®y,v,%x cosf, dx
(2/c§) SCCZyVy;COSBb dx

(3/c§L) SCczy;ywx cosd, dx

(4/coL4) (cx3coseb dx

2

3
(4/coL ) cy,x"cosd, dx

4
(4/c L2)§ Cyzx cosf, dx
) ; v b
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Appendix D. EIGENVALUES FOR MOD-2 CASES

This appendix presents the eigenvalues calculated for
the five MOD-2 standard cases of reference [50].
Eigenvalues from the first set discussed in Chapter 11 are
given in the first column, and those from the second set are
given in the second. The convergence of the harmonic
balance method is demonstrated for each of these cases by
giving the roots for truncation of the harwonic series at

P=1,P=2, and P = 3,
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o _ORIGINAL PAGE 18
' OF POOR QUALITY ?
- s
STANDARD MOD-2 WITHOUT DAMPING
v = 7,77, v = 7,41, ( = {( =0
y P y p
P =1
~-0.00001 ¢+ 7.75776 i -0.00278 + 8.53409 i
-0.00000 + 7.40553 i -0.27690 + 0.95124 i
-0.27673 + 1.95111 i -0.16108 = 2.62089 i
-0,27709 + 0.0489%90 i 0.00098 + 6.51995 i
-0.22098 ¢+ 6,00436 i
P = 2
-0.00208 + 9.52309 i -0.00001 + B8.89645 i
-0.00001 = 7.75776 i -0.00000 + 8.34185 i
-0.00000 *+ 7.40553 i -0.00001 + 6.87721 i
-0.22221 + 6.97674 i -0.00000 + 6.33560 i
0.00146 + 5.,52122 i ~0.,27673 + 2.,95111 i
-0.27691 + 1,95124 i -0.27691 + 0.95123 i
-0.27690 + 0.04875 i -0.27709 =+ 1.04891 i
-0.16103 + 1.59245 i
P = 3
-0.00001 + 98.75776 i -0.00208 + 10.52309 i
-0.00000 + 9.40553 i -0.00001 + 8.89649 i
-0.00001 « 7.75776 i -0.00000 = 8.34185 i
-0.00000 + 7.40553 i -0.00001 =+ 6.87721 i
-0.00001 + 5.75775 i -0.000090 + 6.33560 i
-0,00000 + 5.40553 i -0.22221 * 7,97674 i
~0.27691 + 0.04876 1 0.00146 + 4.52122 i
-0.27673 + 3.95111 i -0.27691 + 2.95124 1
-0.27691 + 1,95124 i -0.27691 + 0.95123 i
-0.27709 + 2.04890 i -0.27690 + 1.04875 i
-0.16103 =+ 0.59245 i




ORIGINAL p
R GINAL page
", POOR QuaLsry

STANDARD MOD-2 WITH DAMPING

Vy = 7,77, 'p = 7.41, (y = (p = 0,01

P =1
-0.07768 =+ 7,75737 i -0.07788 *+ 8,.53374 i
-0.07410 = 7.40516 i -0.27690 ¢+ 0,95124 i
-0,27673 ¢+ 1.95111 i -0.18084 + 2.61980 i
-0.27709 = 0.04890 i -0.07416 £+ 6.51962 i
-0.24842 * 6.00322 i .
P =2
-0.07730 ¢+ 9,52272 i -0.07764 =+ 8.89611 i
-0.07768 ¢+ 7.75737 i -0.07414 + 8.34148 i
-0.07410 * 7.,40516 i -0.07765 + 6.87683 i
-0.24952 + 6.97564 i ~0.07413 + 6.33523 i
-0.07377 + 5,52084 i -0.27673 + 2,95110 i
- 1,27691 ¢+ 1,95124 i -0.27691 + 0.95123 i
-0.27690 + 0,04875 i -0.27709 =+ 1.04891 i
-0.18071 + 1,59136 i
P =3
-0.07768 + 9,75737 i -0 07730 + 10.52272 i
-0.07410 + 9.40516 i -0.07764 + 8.89611 i
-0.07768 =+ 7.75737 i -0.07414 + 8.34148 i
-0.07410 + 7.40516 i -0.07765 + 6.87683 i
-0.07768 + 5.75737 i -0.07413 + 6.33523 i
~0.07410 + 5.40516 i -0.24952 + 7.97564 i
~0.27691 + 0.04876 i -0.07377 + 4.52084 i
-0.27673 + 3.95111 i -0.27691 + 2.95124 i
-0.27691 + 1.95124 i -0.27691 + 0.95123 i
~0.27709 + 2.04890 i -0.27690 + 1.04875 i
-0.18071 + 0.59136 i
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" . ORIGINAL PAGE 1S
OF. POOR QUALITY

YAW STIFFNESS»FQQUGEQ WITHOUT DAMPING

-0.00000

0.00596
-0.28103
-0.27876

-0.03390
=0.00000
-0.01321
-0.24415

0.00594
-0.28256
-0.27915
-0.09065

-0.00000
-0.00000
-0.00000

0.00596
-0.28103

0.00594
-0.28286
-0.27876
-0.28285

J.00594

v

I+ 1+ 1+ 4+

1+ 1+ 1+ e

MO I

= 200' Vp - 7'41' cy - (p = 0

7.40552
1.95806
1,95780
0.04758

8.67816
7.40552
4.52008
3.97586
1.95805
1.95953
0.04774
1.25030

9.40552
7.40553
5.40552
3.95808
3.95780
1,95807
1.95919
2.04758
0.04081
0.04194

Moo pde pte pde

Ple gde pde pbo pde pube pde Pde

Ple de fte Bbe e pube pde b fude fde

P s

1

-0.03208
-0.01272
-0.2333)
-0,27835

0.12322

-0.00000
-0.00000
-0.00045
-0.27534
-0.00067
-0.27605
-0.27822

-0.00000
-0.03390
-0.00000
-0.24415
-0.00045
-0.01321
-0.27690
-0.00068
-0,27605
-0.27860
-0.09065

+ 4+ H

I+ I+ I+ e

H M

7.64394
5.49133
3.23414
0.95216
0.00000

8.34673
6.34439
3.46171
2.95392
1.26217
0.95513
1.04742

8.34673
9.6781S
6.34439
4.97586
3.46166
3.52008
2.95573
1.26217
0.95513
1.04758
2.25026

piu pde pie fbe fube

e pde pde Ppde fuie pbe Pite

oo pbe pbe (e fule Jde pbn Pfe pbe phe pole
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ORIGINAL PAGE 13

OF POOR QUALITY

YAW AND PITCH STIFFNESSES REDUCED WITHOUT DAMPING
= 2.0, (y = (p = 0

-0.27950
-0.28272

0.01037
-0.00198

-0.00568
=0.29435
-0.28517

0.01035
-0.00199
-0.08900
-0.28434

0.01250

-0.28272
=0.002090

0.01039

0.01035
-0.00200
-0.28527
-0.27950
-0.28527

0.01034
-0.00198

v

I+ 1+ 014

4 04+ 0% 14 0 1+

19 048 86 18 UF 014 0 00 0 1

= 200, 4

0.04702
1.96065
1.96065
1.97835

3.97709
3.97982
1,96263
1.96065
1.97838
1.40584
0.03866
0.02982

3.96065
3.97838
3.96067
1.96065
1,97838
1.96253
2.04702
0.03747
0.03936
0.02165

P

$de Pde pube pie

§Pe e plo pde Ppbe gude Pie pie

Pdo pite gube Gude Juie Pde pbe fube gdn pde

179

-0.16625
-0.12678
-0.28603

0.01005
~-0.09175

-0.00048
-0.27856

0.00421
-0.00024

0.00349
-0.28016
-0.27901

-0.00568
-0.29435
-0.00048
-0.28101
0.00417
-0.08900
-0.00021
0.00350
-0.28016
0.00350
0.01250

+ 1+ W

14 4+ 0+

4

3.26713
2.82080
0.95799
0.85183
0.32810

3.51848
2.95428
2.71537
1.28150
0.53595
0.95583
1.04660

4.97708
4.97982
3.51841
2.95639
2.71531
2.40583
1.28147
0.53599
0.95583
0.53599
1,02982

Pbe P pube pube Pube

Pde pde Phe Pbe pie Pbe pubbe

Pde fbo pde pbe pde fute Pubis pube Pbe pdo pbe




YAW AND PITCH STIFFNESSES
Vy - 2.0' Vp

-0.27953
-0.28523
-0.06641
-0.08266

-0.08572
-0.33236
-0.28769
-0.06647
-0.08265
-0.10007
-0.28634
-0.06548

-0.28523
~0.08267
-0.04640
-0.2878C
-0.06647
-0.08265
-0,27953
-0.28779
-0.06648
-0.08264

+ 1+ 4+ I+

I+ 14+ 1+ 1+ I+ 1+ 1+ 1+

H I+ 4+ 1+

0.04700
1,96393
1.95587
1.97653

3.97545
3.97705
1.96583
1,95598
1,97656
1.40859
0.03569
0.03441

3.96393
3.97656
3.95588
1.96573
1.95598
1.97656
2.04700
0.03427
0.04404
0.02347

Pie pbe pae Pubs

Pbe Bbe Pbe pie fulie pbs Jube pbe

Pete Pube pbe Pde Pde Ppde poe Pie Pde pie

v UYL PRUR
.+ OF POOR O!'at 7Y

21 304

A e ting

YT 1p $i0

REDUCED WITH DAMPING

= 2.0, (y = tp = 0.04

-0.21808
-0.19259
-0.28890
-0.06583
-0.10447

-0.08082
-0.27890
-0.07509
-0.08079
-0.07640
-0.27958
-0.27917

-0.08572
~0.33236
-0.08081
-0.28136
-0.07515
~-0.10007
-0.07640
-0.08075
-0.27953
-0.28601
-0.06548

1+

I+ 1+ 1+ 1+ 1+ 1+ i

H e

3.2769S
2.80653
0.95825
0.84968
0.33195

3.51725
2.95369
2.71404
1.27986
0.53372
0.95552
1.04652

4.97545
4.97705
3.51718
2.95584
2.71396
2.40358
0.53377
1.27982
0.95551
1.03525
1.03440

Pte Pbe Pde pube Pobe

Bhe Pie Pbe pbe pube pube Pbe

Sude phe pbe fde b pbe fubs pbe Pube Bube fule




ORIGINAL

QuALrTy

Appendix E. EIGENVECTORS FOR A MOD-2 CASE

This appendix contains the eigenvalues Py eigenvectors
vy and combination constants <, calculated for the vy ® 2
case of Figure 13.,1. Only one half of each conjugate set is
given. The eigenvalue is given first, followed by the
associated eigenvector which is broken into harmonic parts.
Finally, che combination constant is given at the bottom of
the column. These constants were calculated vwith initial

conditions placed on the zeroth harmonic coefficient as

follows (in radians)

- 0.068
,P

r, = =136

All other initial conditicns vere zero.




ORIGINAL PAGE IS
OF POOR QQALHW’

-0.03390

8.67815

sl

cl

s2

0.00081
-0.00171
0.0000C

0.00000
0.00000
-0.00744

0.00000
0.00000
0.77039

-0.54368
-0.00000
-0.00000

-0.02864
1.00000
0.00000

-0.001C4
-0.00128
0.00000

-0,00000
0.00000
=0.77072

=0.00000
0.00000
-0.00767

0.02864
-1.00000
0.00000

-0.54368
0.00000
-0.00000

s R S D TS D e TR AR SE N En G G DD W D O

-0.00001

-0.00000

0.00001

7.40552

- ap e S D S D ED D ED SN ED D SR NP O Oh D WS M Eh OB D WD GRS em e

sl

cl

82

0.00074
1.00000
-0.00000

0.00000
-0.00000
-0.00583

0.00000
0.00000
0.50002

0.00018
-0.00025
-0.00300

0.60.007
0.00026
0.00000

-0.00000
0.00000
-0.00000

~0.00060
0.00000
-0.00072

=3.00000
0.00000
-0.00179

0.00018
"0 000056
0.00000

=0.00012
-0.C0051
~5.00000

D RGP R D ER I AP TGS D S OB LGP S G YD TR S S SR SR ER A AL R




sl

cl

s2

-0.00000

-0.00000
0.00000
-0.01692

0.00954
1.00000
-0.00000

0.00033
0.00053
0.00000

0.00000
0.00000
0.5G007
-0.00000

-0.00000
0.01188

0.00000

-0.00000

-0.00000
-0.00000
0.94607

0.00024
-0.00000
-0.00000

0.93706
0.94741
-0.00000

-0.00000

0.00000
-0.0252¢
-0.00000

0.00000
0.47400

-0.00000

6.344239

sl

cl

s2

-0.00000
0.00000
0.99866

0.00094
-0.00073
-0.00000

0.07845
1.00000
-0.00000

0.00000
-00 00000
-0.04402

-0.00000
-0.00000
0.49923

0.00000
0.00000
0.01303

-0.02614
0.93285
-0.00000

0.00103
-0.00000
0.00000

-0.00000
0.00000
0.46616

0.00000
0.0000C
-N.v0985

-0.00000
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sl

cl

s2

sl

cl

82

ORIGINAL PAGE IS
OF POOR QUALITY
-0.01321 4.52008 i
0.00410 0.00473 i
0.00106 -0.00090 i
-0.00000 -0.00000 i
-0.00000 0.00000 i
-0.00000 -0.00000 i
0.02073 0.84350 i
-0.00000 -0.00000 i
-0.00000 0.00000 i
0.84629 -0.02336 i
-0.68990 0.01434 i
-0.00000 1.00000 i
0.00000 0.00000 i
0.01438 0.68995 i
1.00000 -0.00000 i
-0.000C35 0.00000 i
0.00002 0.00001 i
-0.24415 3.97586 i
0.00420 0.00285 i
-0.00052 0.00050 i
-0.00000 -0.00000 i
0.00000 0.00000 i
-0.00000 -0.00000 i
0.49543 0.03729 i
-0.00000 0.00000 i
-0.00000 -0.00000 i
-0.03904 0.49773 i
0.00001 -1.00000 i
-0.00025 0.00842 i
0.00000 -0.00000 i
1.00000 -0.00000 i
-0.00843 -0.00025 i
0.00000 -0.00000 i
-0.00004 -0.00005

e N




ORIGINAL PAGE (3
OF POOR QUALITY,

0.00594

1.95805

- e e D D R S G D D WP D A R ER AR WD YR R

sl

cl

s2

1.00000
0.00052
0.00000

-0.00000
-0.00000
-0.74625

-0.00000
0.00000
0.00498

0.00466
-0.00046
0.00000

-0.00659
-0.00039
0.00000

0.00000
-0.00019
-0.00000

-0.00000
-0.00000
-0.03842

0.00000
-0.00000
-0.25452

0.00662
-0.00008
-0.00000

0.00477
0.00006
0.00000

- e L T Eh b D WS R D D R R G D

-0.00269

-0.28256

0.03305

1.95983

sl

cl

82

-0.09115
0.00082
0.00000

-0.00000
0.00000
0.04296

-0.00000
0.00000
1.00000

-0.00990
-0.00021
0.00000

-0.01209

0.00051
-0.00000

-0.02576

-0.06131
0.00069
0.00000

-0.00000
0.00000
-0.96580

-0.00000
-0.00000
-0.00000

0.01208
-0.00043
0.00000

-0.00991
-0.00022
0.00000

[V vyen

Do gbe poe e oo pie

oo poo




ORIGINAL
JF POOR

-0. 27915

QUALITY

0.04774

R Y T T R R Y Y T

sl

cl

s2

sl

cl

s2

-0.02050
0.00077
0.00000

-0.00000
0.00000
0.04161

-0.00000
-0.00000
1.00000

0.00357
-0.00065
0.00000

0.00177
0.00090
-0.00000

0.00041

-0.00045

0.00000
0.00000
-0.07248

-0.00221
-0.00037
0.00000

1.00000
-0.02647
0.00000

0.00000
0.00000
-0.59104

0.00000
0.00000

=0.16022

-0.00000
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0.02340
0.00064
-0.00000

-0.00000
-0.00000
-0.98270

0.00000
-0.00000
-0.00000

-0.00187
-0.00086
-0.00000

0.00345
-0.00067
0.00000

-0.00509

3.46171

0.00000
0.00000
0.74632

-0.75562
-0.00482
-0.00000

0.00000
0.00015
0.00000

-0.00000
0.00000
0.14121

0.00000

-0.00000
-0.46922

0.00000




T sl

cl

s2

sl

cl

¥

c2

ORIGINAL PACE IS

Pbe pube Pl pbe pbe e pbe ple Pbe Poe pbe phe pbe Pie Plie pbe pbe

e

Pbe pbe pie Sbe poe pbe oo pbo poe Gbe pie pbe

OF POOR QUALITY
-0.2753¢4 2.95392
-v.00000 -0.00000

0.00000 -0.00000
0.01762 -0.00429
-0.01690 0.00698
0.00033 0.00038
-0.00000 -0.00000
-0.01244 -0.023813
-0.00009 0.00103
0.00000 -0.00000
-0.00000 0.00000
-0.00000 0.00000
1.00000 0.00000
-0.00000 -0.00000
-0.00000 0.00000C
0.00366 0.99770
0.00000 0.00000
-0.09065 1,25030
0.00€02 -0.02858
-0.00058 -0.00007
0.00000 0.00000
0.00000 -0.00000
0.00000 0.00000
0.29449 0.47728
-0.00000 -0.00000
0.00000 -0.00000
-0.46408 0.29915
1.00000 -0.00000
0.00163 -0.02834
0.00000 -0.00000
0.00001 0.99999
0.02834 0.00164
0.00000 -0.00000
0.00007 0.00018

c
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OF POOR QUALITY

P -0.00067 1.26217
-0.00000 0.00000 i

0 0.00000 -0.00000 i
1.00000 0.00000 i
-0.80329 -0.14241 i

sl -0.00007 -0.00007 i
-0.00000 0.00000 i
-0.07444 0.39271 i

cl 0.00182 -0.00801 i
-0.00000 -0.00000 i
-0.00000 0.00000 i

§2 0.00000 0.00000 i
-0.00660 -0.26469 1§
-0.00000 -0.00000 i

c2 -0.00000 0.00000 i
-0.31905 -0.15022 i

c 0.00000 0.00000 i
P -1,27605 0.95513 i
-0.00000 0.00000 i

0 -0.00000 0.00000 i
1.00000 0.00000 i
-0.01742 -0,01847 i

sl -0.00034 0.00002 i
0.00000 -0.00000 §
-0.01443 0.00256 i

cl 0.00071 -0.00003 i
0.00000 0.00000 i
-0.00000 -0.00000 i

s2 -0.00000 -0.00000 i
0.01789 0.00208 1

0.00000 -0,.00000 §

c2 -0.00000 -0.00000 i
-0.01054 0.00095 i

c 0.00000 -0.00000 i
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OF POOR QUALITY

1.04742

0.00000
-0.00000
-0.01527

0.00863
0.0003¢4
0.00000

0.00231
0.00036
0.00000

-2.00000
~0.00000
0.00000

0.00000
0.00000
0.99952

b Pbe pbe

Poe pbe pebe Sdo pbe puide

e poe

eGSR D M@ R n - e

i I8 e
YTUIAL Y o0 0
Bl dre22
-0.00000
0 -0.00000
0.04326
-0.02479
sl 0.00038
0.00000
-0.00781
cl -0.00016
-0.00000
0.00000
s2 -0.00000
1.00000
0.00000
c2 0.00000
-0.01346
c -0.00000
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Table 6.1

(2]
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ORIGINAL PAGE I3
OF POOR QUALITY

STANDARD MOD-0 BLADE PARAMETERS

0.001

2.5

12

0.04

= 3.6

= 0.1
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201-
FLUTTER 4

[

§ STABLE FLUTTER
101
o« — - /’

LAG INST.
b 02 504
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Table 13.1
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c
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0.1619

7.767

4.777

0.047

0.9275

0.9787

1,0248

-
ome‘““% -

oF POOR

7) IAR

STANDARD MOD-2 PARAMETERS

= 1,805

= 0,3502

= 7.41

= 0.129

= 0.03

A

[ o)
"

>
]

@ L, = 0.0951 + 0.
0 2

6 L, = 0,1059 « 0,
o 4

LBO

= 1.0139

is the tip pitch control setting.
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