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SUMMARY

This final report includes research results from the period February,

1981 through Nomembej, 1982.

Two new results combine to form the final portion of our work. They are

the work by Hanna (1982) and Stevens to successfully test and demonstrate a

low-order spectral climate model and the work by Ciesielski et al. (1983)

to combine and test the new radiation budget results from NIMBUS-7 with

earlier satellite measurements. Together, the two related activities bring

us to a new research plateau and set the stage for future research on

radiation budget measurement/model interfacing. Such combination of

results will lead to new aplications of satellite data to climate problems.

The objectives of our research under the present contract ire therefore

satisfied.

Additional research reported herein includes the compilation and docu-

mentation of the radiation budget data set at Colorado State University and

the definition fi of climate-related experiments suggested after lengthy ana-

lysis of the satellite radiation budget experiments. Since both the pri-

mary studies noted above were supported, in part, under other auspices we

Include the abstracts of the related publications as an appendix.
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1.0 Improved Earth Radiation eudoet Data Sets

Since the first satellite radiation budget experiment on Explorer VII

in 1959 (Suomi, 1959), we have obtained an increasingly detailed and

accurate depiction of the energy exchange between earth and space. For

climate study purposes a choice must be made when using the radiation

budget data for a specific study. The choice depends upon the goals of the

line of climate inquiry, which then dictates whether to user

a) the longest (most extensive temporal) satellite data set

or	 b) the most accurate and consistent 'sample" of the seasonal (or

monthly) radiation fields from Earth.

Of course, since most of the existing data were obtained from wide field-

of-view sensors, a consideration of the spatial resolution requirements of

the climate study must also be made.

In order to assist the climate modeler we have prepared a special

report under this contract (Ciesielski and Vonder Haar, 1982) with an

accompanying data tape. See Appendix 1 for details. The report and tape

were prepared to aid our contract work and also in response to requests of

climate scientists around the nation and the world. A copy of the tape has

been provided to the technical monitor and to several other research

groups. An example of the analysis of a field of data from the archive

tape is shown in Figure 1. In the figure, nearly three annual cycles of

satellite radiation budget measurements are displayed.

The new radiation budget results were obtained after considerable

study of data processing and analysis methods in collaboration with NIMBUS

project scientists and engineers (Vonder Haar et al., 1981).

-2-
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Our preliminer)t analysis of NIMBUS-6 data has revealed some

interesting interannual differences in the earth's radiation budget.

Figures 2 and 3 show the interannual differences in the zonal means fluxes

of emitted and net radiation, respectively, for the December-January

period. Especially striking in the figures are the differences in the

emitted flux between the 75/76 and 76/77 periods. for example, the emitted

flux in December 76 and January 77 was between 10-40 watts per square meter
F

larger at high latitudes (65ON - 850N) and approximately 15 watts per

square meter less at mid-latitudes (35 oN 550N) in comparison to December.

75 - January 76 period. It is also of interest to note that the December

76 January 77 period was charadterized by strong and persistent

atmospheric blocking patterns in the Northern Hemisphere. The economic

dislocation in the United States was substantial.

Under such blocking conditions one might expect an increase in the

meridional circulation allowing anomalous amounts of warm air to be

adverted into higher latitudes, and in turn, increased longwave emission at

these latitudes. Of'course, the generally cloud-free conditions under the

high latitude :ridge would also add to the increased longwave emission. The

weak solar radiation at high latitudes in winter cannot compensate for the

increased IR loss. Conversely, at mid-latitudes, an increase in the cold

air advection associated with the blocking flow would result in decreased

longwave emission from both cooler air and the increased cloudiness. The

enhanced net radiation gradient (e.g., 300 to 800 in Figure 3) would seem
f

to increase the required poleward energy transport by the ocean-atmosphere
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4

system during the blocking Situation. It remains for specific model stu-

dies to ascertain whether this radiation forcing causes positive or nega-

tive feedback into the blocking situation.

,.	 Through an application of the thermal wind equation, we know that the
r	 w

thickness of an atmospheric layer is proportional to the mean temperature

of that layer. In view of this fact, one can roughly surmise from Figure 4

(taken from Vols. 104 and 105, Monthly Weather Review) the temperature dif-

ferences at high and mid-latitudes that existed between the 75/76 and 76/77

winter seasons.
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2 	 Numerical Model Experiment Definition and Tests

Due to the large differences in atmospheric circulation and charac-

teristics of the radiation budget between the two winter seasons mentioned

above and observed by the radiation budget sensors, we suggest the

following numerical experiment. By proscribing the diaba lLic forcing for

the "linear balance" numerical model as given in part by the earth's

radiation budget, we suggest simulation of the circulation patterns

corresponding to each winter season. of particular interest will be the

amplitude and position of the standing eddies which result from each

winter's forcing.

After considerable study of x, dvious factors involved, results of this

research have led to a description and Prioritization of some additional.

general short-term climate (annual cycles) experiments that have been

suggested by the Increasing accumulation of satellite radiatlan budget

data. These experiments are discussed below and result from many years of

study that has been capped for the purpose of this svidy with the prelimi-

nary results from NIMBUS 6 and NIMBUS 7 satellites. It is very Important

to recognize that while a wide range of climate model experiments can be

done we definitely, in view of limited resources, have to determine *hich

of those many experiments should be done.

This report will also discuss the possibilities for actually doing

these experiments. Finally t the last step in the logic chain is to deter-

mine which experiments will be done. This depends upon the availability of

resources (e.g., computer models, access to computer time, personhel,

_j
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salary coverage). It is the intent of this report to discuss the should
x

and can be done sequence based on the results of the last several months'

u	 study.

As has been mentioned in preliminary reports, the identification of an

+ apparent three-wave pattern in the net radiation in the mid-latitudes of

the southern hemisphere has significant implications for impact on the

i

^r
annual cycle.	 Three "heat sink" regions are found in our summaries of the

satellite measurements to exist over (a) the Australian Desert, (b) the

stratocumulus region west of South America, (c) the stratocumulus region

west of South Africa.	 These areas show relative minima in net radiation

for their latitude zone which results from the bright, relatively warm

cloud and/or surface features located at these positions. 	 The specific
n

longitudinal centers of the regions are 10-200E, 1300E, 70-80OW as shown in

Figure 5 (from Stephens et al., 1981).	 We definitely believe this to be a

^ high priority climate modeling experiment, namely to imposeY 	 the three heatp

sink regions in a major way into the normal circulation pattern in a model

simulation.	 We hypothesize that thesse three heat sink regions will be

reflected in the dynamic circulation pattern of the southern hemisphere in

a way similar to that which might have arisen from orographic effects.

Since the southern hemisphere circulation makes demands upon the energy

from the northern hemisphere and also of course feeds certain cross

equatorial flow patterns, this southern hemisphere experiment might be

extremely important in looking at the interannual variation of climate and

weather over the northern hemisphere.

d
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A third climate experiment has been suggested by the data shown in

Figure 6. Vonder Haar and Ellis, a number of years ago, and other

researchers in the course of our present study, have identified the semian-

nual component amid the more dominant annual cycle of global planetary

`	 albedc. Figure 7 shows the data sets as compiled by Ellis and Yonder Haar

(1976) and, in addition, indicates the extremely interesting results from a
6

model run a few years ago by Hansen (personal communication). The ordinate

showing absolute albedo percentage values demonstrates that during the

t

	 course of an annual cycle., the focus of climate study in the U. S. during

the next 5-10 years, the northern hemisphere snow-covered continent exerts

a pulse upon the entire global albedo pattern in the period March - July.

This example is for the "normal" case and we immediately hypothesized that
f

an abnormal wintertime circulation, bringing with it a low amount of

snowfall accumulation and/or an abnormal early spring situation (with large

"	 amounts of warm air advection from lower latitudes), could give rise to a

3 	 particular year when the snow cover is not present at the time of

increasing insolation over the higher latitudes of the northern hemisphere!

This situation would represent a distinct anomaly for the earth, primarily

in these latitudes, and the response Ii yet to be determined. Satellite

observations of this situation will, of course, be continued with the ERBE

measurements. we believe a climate experiment to begin to study the poten-

tial impact on the important springtime and summertime northern hemisphere

circulations that might arise from such interannual variability is impor-

tant to consider at this time. A three-dimensional time-dependent climate
t
i

model would be required to complete this experiment by imposing and running

the situation with and without the satllite-observed effect.
t

s
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A fourth climate-related experiment suggested by our research has its

roots in the very early days of the satellite -radiation budget measure.

manta. Data from TIROS IV In 1962, (House, F.,

showed the Sahara Desert ICU lose Moto one-ray the

course of a year. Vander Haar& and Suomi (1971)

verified the earlier result with NIMUS-3 data.

personal communcation)

in it had gained during the

and Raschke et 21., 0973)

This occurrence places an

abnormal pulse In the not radiation pattern at that latitude zone of the

northern hemisphere (as Is also shown In Figure 5). The consequence of

this net energy loss at rela tively low latitudes has not yet been fully

explained but the work of Charney (.1975) and others began to study it. We

expect and hypothesize that sinking air wormed adiabatically is responsible

for balancing the local region heat budget. The source of this descending

air (it must rise from somewhere) is yet to be determined. The activity of

this inferred regional circulation pattern may influence the weather and

climate in a much broader region than just the Sahara. Of course, the

sub Sahara region, the Sahel, Is a region of concern because of its margi-

nal food production capabilities and its indigenous poulation t dependent

upon that food, We hypothesize that the not radiation heat sink observed

'from the satellite Is related to the upward circulation In the Indian mon-

soon area and also related in part to the extreme thermal heat low over the

Saudi Arabian Peninsula.

-15-



A climate experiment to focus on this region would gait: a great deal

from the recent MONEX experiment that has provided data from the 1979 mon-

soon season. Also, the global weather experiment (FGGE), has provided data

to examine the dynamic flow patterns near the Sahara much better than had

been possible earlier. Indeed, the principal investigator and a student

attempted to explore this radiation budget anamoly in the early 1970's and

found the data set to be inadequate at that time. Now, however, the cli-

mate experiment to focus on this very important region of the northern

hemisphere with this possible Impact on the food production all across

Africa and the Indian sub-continent can be carried out.

A fifth and by no means low priority cliamte experiment, yet one that

needs further definition, has to do with the region to the southwest of the

U. S. in the eastern central Pacific. Here, we find an extremely large

region of stratocumulus clouds that form a delicate radiative-dynamic

balance between ocean, atmosphere processes. The region is "upstream" from

the U. S. insofar as influencing our weather patterns which in the aggre-

gate give rise to the interannual variation of climate. This stratocumulus

region has been observed from the satellite to fluctuate rather largely

from one year to another and because of its stratus cloud cover may be

exceedingly important for climate (Vonder Haar and Stephens paper regarding

radiatively important clouds for climate, in preparation). We recognize it

to be a potentially major, yet variable, heat sink region near our shores.

A climate experiment to assess the impact of these clouds on the subsequent

development of circulation, particularly In the fall and winter periods of

the northern hemisphere is another that has been identified by the present

research.

-lo-



Recent results by Kutzbach and Otto-Bliesner (1982) have demonstrated

that study of past climate and the variations in radiational forcing which

we know have occurred due to orbital geometry can give rise to insights and

information pertaining to present and future climate situations. Their

work with a low order climate model focused on the monsoon situation, the

continent-ocean effect that is driven and amplified by radiational dif-

ferences. Their work is an example of the type of research we are empha-

sizing in our current project to fill the bridge between the observations

from radiation budget experiments on satellites and the climate model stu-

dies that they suggest and support. The experiments that they have carried

out using two different models have been very well received in the scien-

tific community and give further impetus to the continuation of the work

which has been begun in the present study.

Comparison of the models of Kutzbach and Otto-Bliesner, Hanna (1982;

see Appendix 2-2), Blackmon (the NCAR Community Climate Model) and others

demonstrates that the ability for moderately sophisticated climate models

to simulate annual cycles is no longer limited by computer resources.

Insofar as the radiation budget experiments are concerned each model's

parameterization (or specification) of cloud/radiation processes and sur-

face radiative processes is an increasingly important factor. Of course,

on the shorter time scales of a few seasons or years prevailing widsom

indicates that ocean energy intake/output may be specified. For longer

time periods the explicit heat transport provided by (often wind-driven)

ocean currents must be more deterministic. Finally, the choice of models

for certain experiments must rest on information about the model's sen-

-17-



sitivity or "signal-to-noise", J'n the 1980's models, ,just as instruments,

must be properly choson for the task at hand.
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3.0 Conclusions and Suggestions for Future Research

3.1 Conclusions from the Present Study

During this research project we have completed a two-phase

approach to the problem of use of radiation budget measurements in climate

modeling. First, we have updated and summarized the existing record of

satellite radiation budget experiments. Secondly, from this new archive we

have chosen and discussed specific climate experiments which should be

k	 carried out as part of continuing research in accord with the U. S. Climate

Program.

In addition, we have reviewed the results of experiments with several

P

	 new low order spectral climate models, one developed locally. The initial

results from these models demonstrate that the radiation budget-related

climate experiments noted above can be done.

Finally, we propose to actually carryout some of the model experiments

under further research supported by and in collaboration with NASA. What

will be done in this research area depends upon future funding.

3.2 Future Research

With the NIMBUS-7 radiation budget data sets now joining those

from NIMBUS-6, it is timely to close even further the gap between our more

definitive data sets and the improving climate models. Tests and experi-

ments completed in the next few years can be followed by the new, improved

Earth Radiation Budget Experiment (ERBE) data. This opportunity to con-

firm, deny or add to the data base in view of model experiments provides a

clear scientific path. Under a separate proposal to NASA we will seek to

-19-



faursu,; such research along with other groups. The probabilities for suc.

cess are very high and the results will contribute to progress in the U.S.

Climate Program.
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1.0 INTRODUCTION

Our purpose in assembling and documenting an archive of earth

radiation budget (ERB) data is to make an extensive data base from earth

orbiting satellites available for research purposes. The data sets

discussed in this document are contained on a single magnetic tape in a

format that can easily be read on most computer systems. In addition to

the documentation for reading this tape, we have included pertinent infor-

mation about the ERB measurements with appropriate references for those

desiring additional detailed information.

2.0 SATELLITE DATA SOURCES

Table I, summarizes the temporal distribution of the ERB data sets for

this archive. Listed in this table are 123 data sets which were assembled

from the 17-year period extending from 1962, to 1978. One hundred eighteen

of these data sets represent monthly or semi-monthly averaged measurements,

while the other five comprising data from TIROS 5 and TIROS 7 represent

seasonally averaged measurements.

Each data set is composed of the following radiation budget

components: emitted radiant exitance (i.e., longwavt. flux), reflected

flux, incident flux, albedo and net radiation balance. Of these five com-

ponents, the emitted radiant exitance and the albedo at the top of the

atmosphere are the fundamental analyzed measurements of all ERB experi-

ments. From these two components one can derive the net gain of energy of

the earth-atmosphere system as shown in Equation 1.

NET = INCIDENT - REFLECTED - EMITTED

= INCIDENT (1 - ALBEDO) - EMITED 	 (1)

-1.3-
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For consistency in calculating the average incident flux for each month, we

have used the NIMBUS-7 observation of 1376 watts per square meter (Hickey

et al. , 1950) .

As shown in Table 1, eleven different experiments contribution to the

archive presented here. The orbital characteristics of these satellite

systems are illustrated in Figure 1 and listed in Table 2. Since the

radiation budget measurements from these satellites are of variable

accuracy and resolution, we have indicated in Table 1 which data sets we

feel provide the best estimates of the earth's radiation budget. In

general, the absolute accuracy of an individual month of data is * 5%

(Ellis and Vonder Haar, 1976). The relative accuracy is better though,

probably being t3% for emitted and ±4% for albedo. For more information
f

concerning error estimates and resolution of the data, one should refer to

Campbell and Vonder Haar (1980a).

The data sets in this archive are comprised of measurements from two

fundamentally different types of sensors: scanning radiometers and wide

angle or flat plate disc sensors. The difference in these two sensors in

evident in Figure 2.

The scanning radiometer (SR) is a higher resolution instrument

measuring the radiant energy confined to a particular direction and to a

small but finite solid angle (Figure 1b). These scanning instruments were

employed on board NIMBUS-2 and NIMBUS-3 (Raschke and Bandeen, 1970 and

Raschke, et al., 1973) as well as on NIMBUS-6 and the NOAA SR satellites

(Winston at al., 1979).

Emitted radiances from these scanners are analyzed with limb darkening

models, while upwelling solar radiation is converted to top of the

-1.5-
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TABLE II

' ANGLE OF ORBIT LOCAL TIPS OF LQUATORIAL
SATELLITE TO EQUATOR ( 0 ) CROSSING DURING DAYLIGHT HOURS

TIROS 4 4& VARIABLE

TIROS 7 58 VARIABLE

EXPERIMENTAL 60 VARIABLE (see Table 1)

NIMBUS 2 100 11:30

NI11BUS 3 100 13:40

ESSA 3 101 14:30

ESSA 7 102 11:30

ITOS 1 102 15:00
A^

NOAA 1 102 15:00

Nimbus 6 100 11:45

NOAA SR 102 9:00

Nimbus 7 104 12:00

-1.7-
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b N

b,

Schematic representation of the measured quantities by (a) a
flat plate and (b) scanning detector.

Figure 2, From Stephens, et al. (1981)
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atmosphere albedo using complicated bi-directional and directional reflec-

tance models. The major disadvantage to using the NOAA SR data sets is

that these satellites measured the upwell.ing radiation in narrow spectral

region (0.5 - 0.7 N in the visible and 10.5 - 12.5 u in the infrared).

Thus, the total energy exchange between earth and atmosphere was not

measured.

`

	

	 All remaining satellite measurements were made with flat plate disc

sensors. Measurements from these sensors have two major advantages over

s	
the scanner: (1) measurements are broadband (i.e., they measure the

upwelling solar radiation in the spectral region from 0.2 to 3.8u and the

infrared emitted flux in the 3.8 to >50N spectral range), and (2) measure..
^IF

merits represent radiant energy integrated over a broad variation of angles.

The full field of view of the flat plate sensor is - 600 , but the effective

resolution is on the order of 100 for satellites with orbits of height

600 km (Stephens et al., 1981). This feature of flat plate sensors

results from the fact that the radiation from the subsatellite point is
T

more heavily weighted than radiation from the limb. In contrast, scanning
w

radiometers have a far better spatial resolution varying from 50 km of

great circle arc distance to nadir to 110 km at an angle of 40 1 from nadir

(Raschke and 8andeen, 1970).

In order to give the data sets discussed here scientific utility, all

users are strongly encouraged to refer to the references listed in Table 3

for further background information concerning the various satellite experi-

ments.

N

-1.9-



SATELLITE	 REFERENCE

TIROS 4, TIROS 7	 Bandeen, et.21., 1965

EXPERIMENTAL	 Vonder Haar, 1968

ESSA 3, ESSA 7	 MacDonald, 1970

Nimbus 2, Nimbus 3 	 Raschke and Bandeen, 1970,
Raschke, et. al., 1973

ITOS, NOAA 1	 Flanders and Smith, 1975

NOAA SR	 Winston, et. al., 1979

Nimbus 6	 Campbell and Vonder Haar, 1980b



I

3.0	 SPATIAL AND TEMPORAL SAMPLING BIASES

f^ One major deficiency of the satellites discussed in this archive lies
i

# in the fact that their sun-synchronous orbits result in serious spatial and
.v

-, temporal sampling biases.

As one can note from Figure 1, satellites with sun-synchronous orbits

do not pass directly over the polar regions. As a result the earth's

radiation viewed from those regions by flat plate sensors is at some

j
oblique angle.	 If the inclination angle of the satellite's orbit 	 is

extremely low as in the TIROS and EXPERIMENTAL series, then measurements

simply do not exist over the polar regions. In the case of the TIROS

m
satellites no measurements exist poleward of 62.5 0 latitude.	 For satellites

r which orbit at higher inclination angles, the determi^^ation of planetary 	 _

albedo poleward of about 70 0 latitude from flat plate sensors is subject to

some uncertainty.	 This results from the large angular corrections which x

must be applied to these measurements, the validity of which is still

questionable.	 Other spatial sampling biases are included in the January 21n,

to February 3, 1970 period (shown in Table 1 as January, 1970) in which
I	

F

k NIMBUS-3 data were missing from eastern Asia to south of Australia.

Furthermore, NIMBUS-3 night-time infrared exitance samples are missing over

a large area of western Europe, western Africa and the South Atlantic

(Raschke, et al., 1973) .
{

n
The major temporal sampling biases result from the local time sampling

,y

inherent in sun-synchronous satellites. (See Table 2 for the approximate

local time at wf'ch the satellite crossed the equator on the daylight part	 y

Y
of the orbit).	 These satellites sample at the same local time (or nearly

so) each day, so that their measurements are representative at that time

4
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but do not account for diurnal variations in the state of the atmosphere

(such as cloudiness and radiating temperatures). Some attempts, as noted

in Table 1, have been made to correct for possible diurnal biases in

reflectance due to varying solar elevation. The seasonally averaged data

sets from the TIROS series do not contain this diurnal bias since their

orbital procession allowed sampling at all local times over a period of

less than three months (76 days for TIROS-7). Finally, because of problems

with the recorders onboard NIMBUS-6, only daytime emitted measurements are

available from this satellite.

4.0 FORMAT OF TAPE

As mentioned earlier in this document, the data sets in Table 1 are

contained on a single magnetic tape. This tape has the following

characteristics: 1600 bits per inch, 9 track, unlabeled and written in

long-block stranger format. The data were written to tape using a CDC

60-bit machine.

5.0 FORMAT OF DATAt.

Table 1 lists the 123 data sets that are contained on the magnetic

r	 tape mentioned above. Each data set contains five records of information

corresponding to the five following fields: emitted flux, reflected flux,

incident flux, albedo and net radiation flux. In total, there are 615

records on the tape. The constituents of each record are a field of data

-1.12-
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in the form of a 36 by 18 array preceded by six integer labels which iden-

tify the field. Appendix A lists the identifier labels for all the records

on the tape along with the code for interpreting these labels. For

example, the labels for the first record on the tape are: RN = 1,

LOA = 1, SS = 3, MN = 7 9 YEAR = 1964 and TOF = 1. These labels signify

that this field of data is on the first record of the tape, the data were

averaged on a monthly basis, the field was obtained from the EXPERIMENTAL

satellites for the month of July, 1964, and finally, the type of field is

emitted flux.

Each record was written to tape using a "buffer out' statement with an

add parity, which allowed the data to be written in a binary mode. To make

reading the tape universal to all systems, each data value in the (36,18)

arrays was converted to a positive integer. To convert the integer data

arrays (I) read in from the tape back to the actual data values (ADV), each

user must employ the conversion shown in Equation 2.P	 Q

ADV = (FLOAT (I) / 1000.) - 1000. 	 (2)

A sample program and printout for reading and converting values from the

tape back to their actual values is shown in Appendix 8 for the first

record on the tape.

Each (36,18) array on the tape represents a global grid of data with

100 resolution in both latitudinal and longitudinal directions. The first

index of this array is a longitudinal indicator which increases towards the

east, while the second index, being a latitudinal indicator, increases in a

southerly direction. Therefore, as shown in Figure 3, point (1,1) is asso-

ciated with 50E, 850N, while point (36,18) corresponds to 355 0E, 850S.

.
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Each data value represents an average over a lo o x loo area centered at

that point. Missing data were assigned the value —999.999.
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4
APPENDIX A	 OF POOR QUALITY

RN	 - Record Number on Tape

LOA	 - Length of Average ( 1-Monthly, 2-Seasonal)

SS	 - Satellite System (1-TIROS 4 9 2-TIROS 7, 3-Experimental,
4-NIMBUS 2, 5-ESSA 3, 6-ESSA 7 0 7-NIMBUS 3, 8-TIROS 1,
9-NOAA 1 9 10-NOAA 9Z, 11-NIMBUS 6 1 12-NIMBUS 7)

MN	 - Month or Season Data were Taken (1-January, 2-February,
3-March, 4-April, 5-May, 6-June, 7-July, 8-August,
9-Septembe

tune,

 10-October, 11-November, 12-December,
13-Winterec, Jan, FebJ, 14-Spring	 r, Apr, May]

tt,15-Summer 	 July, Aug), 16-Fall	 Oct, Nova)

YEAR	 - Year Data were Taken 	 x

TOF	 - Type of Field (1-Emitted, 2-Reflected, 3-Incident,}
4-Albedo, 5-Net)

^p

x

Y

k

Itl

t

j
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i%ucord 	 :umber un 'tape
ORIGINAL PAGE ESLOA - Lengch of Average

SS — Satellite System OF POOR QUALITY
MN - Month or Season Data were Taken
YEAR - Year Data were Taken
TOF - Type of Field

* RN 1j0A SS MN YEAR TOF * RN LOA SS MN YEAR TOF

* 1 1 3 7 1964 1 * 69 1 3 8 1965 4
► 2 1 3 7 1964 2 * 70 1 3 8 1965 5
* 3 1 3 7 1964 3 * 71 1 3 9 1965 1
* 4 1 3 7 1964 4 * 72 1 3 9 1965 2 #

1964* 6 1 3 8 1 * 74 1 3 9 1965 4
* 7 1 3 9 1964 2 f 75 1 3 9 1965 5* 8 1 3 8 1964 3 * 76 1 3 10 1965 1* 9 i 3 9 1964 4 # 77 1 3 10 1965 2* 1.0 1 3 8 1964 5 * 78 1 3 10 1965. 3
* 11 1 3 9 1964 1 * 79 1 3 10 1965 4
* 12 1 3 9 1964 2 * so 3 3 10 1965 5

13 1 3 9 1964 3 * 81 1 3 11 1965 1
* 14 1 3 9 1964 4 * 82 1 3 it 1965 2

15 1 3 9 1964 5 * 83 1 3 11 1965 3
* 16 1 3 10 1964 1 * 84 1 3 It 1965 4
* 17 1 3 10 1964 2 * 85 1 3 11 1965 5

18 1 3 10 1964 3 * 86 1 4 7 1966 1
* 19 1 3 10 1964 4 * 87 1 4 7 1966 2
* 20 1 3 10 1964 5 * Be 1 4 7 1966 3
* 21 1 3 It 1964 1 * 89 1 4 7 1966 4
* 22 1 3 it 1964 2 * 90 1 4 7 1966 5

"? * 23 1 3 11 1964 3 * 91 1 5 12 1966 1
* 24 1 3 11 1964 4 * 92 1 5 12 1966 2
* 25 1 3 11 1964 5 * 93 1 5 12 1966 3

26 1 3 12 1964 1 * 94 1 5 17. 1966 4
* 27 1 3 12 1964 2 * 95 L 5 12 1966 5

28 1 3 12 1964 3 * 96 2 1 14 1962 1
* 24 1 3 12 1964 4 * 97 2 1 14 1962 2 «* 30 1 3 12 1964 5 # 9'8 2 1 14 1962 3

31 1 3 1 1965 1 * 99 2 1 14 1967 4
* 32 1 3 1 1965 2 * 100 2 1 14 1962 5
* 33 1 3 1 1965 3 * 101 2 2 15 1963 134 1 3 1 1965 A * 102 2 2 15 1963 2
* 35 1 3 1 1965 5 * 103 2 2 15 1963 3 t
* 36 1 3 2 1965 1 * 104 2 2 15 1963 4

1963 5
* 39 1 3 2 1965 3 * 106 7 2 16 1963 1
* 39 1 3 2 1965 4 * 107 2 2 16 1963 2
* 40 1 3 2 1965 5 * i08 2 2 16 1963 3

4t 1, 3 3 1965 1 109 2 2 t6 1963 4
* 42 1l 3 3 1965 2 * 110 2 2 16 1963 5
* 43 1 3 3 1965 3 * 111 2 2 13 1964 1* 44 1 3 3 1965 4 * 112 2 2 13 1964 2

45 1 3 3 1963 5 * 113 2 2 13 1964 3
* 46' 1 3 4 1965 1 * 114 2. 2 13 1964 4
* 47 1 3 4 1965 2 * 115 2 2 13 1964 5
# 48 1 3 4 1965 3 * 1161 2 2 14 1964 1

49 1 3 4 1965 4 * 117 2 2 14 1964 2 #
50 1 3 4 1965 5 * 118 2 2 14 1964 3
51 1 3 5 1965 1 * 119 2 2 14 1964 4

* 52 1 3 5 1965 2 * 120 2 2 1 4 19645
G" * 53 1 3 5 1965 3 * 121 1 10 6 1974 1
` * 54 1 3 3 1965 4 * 122 1 10 6 1974 2
4. * 55 1 3 5 1965 5 * 123 1 10 6 4974 3# ' 56 1 3 6 1965 1 * 124 1 10 6'1974 4

57 1 3 6 1965 2 * 125 1 10 6 1974 5
'r * 58 1 3 6 1965 3 = 126 1 10 7 1974 1

* 59 1 3 6 1965 4 * 127 1 10 7 1974 2
# 60 1 3 6 1965 5 * 129 1 10 7 1974 3
* 61 1 3 7 1965 1 * 129 1 10 7 1974 4* 62^ 1 3 7 1965 2 * 130 1 10 7 1974 5 #

63 1 3 7 1965 3 * 131 1 10 8 1974 1
* 64 1 3 7 1965 4 * 132 1 10 8 1974 2
* 65 1 3 7 1965 5 IF 133 1 10 8 1974 3

67 1 3 H' * 1965 2 * 135 1 10 8 1974 5
68 1 3 8 1965 3 * 136 1 10 9 19 74 1 #R#*ts** ss: ss**ss**ssssss:s* ss **sss *sssstt *s:*sstsasss:*'et



S

RN LOA SS 4N YFAN TOF * RN ttQA SS 4N YKAR '1OF

tot	 * *	 «	 *	 w * T * * T *	 T T T * T !	 T * T * T * T * * ^ * * T * T * * * *	 T T T T * * * p;^W'
y,M	 * t '17 1 10

10
O
9

1974  2
4

•
*

217
219

1 10
10

1 19 76 

1976
 2

4
Of PO	 Q0 "1 139 t 1974 l 1

140 1 10 9 1974 5 0 220 1 10 1 1976 5
* 141 t 10 10 1974 1 « 221 1 10 2 1976 1

142 1 10 10 1974 2 4 222 1 10 2 1976 2
# 143 1 10 10 1974 3 * 223 1 10 2 1976 3 +
* 144 1 10 t0 1974 4 * 224 1 10 2 1976 4 *
* 145 1 10 10 1974 5 M 225 1 10 2 1976 5 *.
* 146 1 10 11 1974 t * 226 1 10 3 197E I

147 1 10 it 1974 2 >K 227 1 10 3 1976 2
* 140 1 10 11 1974 3 * 224 1 10 3 1976 3
* t49 1 10 It 1974 4 * 229 1 10 3 1,976 4 1< r
* 150 1 10 11 1,974 5 * 230 1 10 3 1976 S * b

t51 t 10 12 1974 1 * 231 1 10 4 1476 1
* 152 1 10 12 1974 2 * 232 1 10 4 1976 2
* 153 t 10 12 1974 3 * 233 1 10 4 1976 3 #
* 154 1 10 12 1974 4 * 234 t 10 4 1976 4

155 1 10 12 1974 5 * 235 1 t0 4 1976 5
156 1 10 1 1975 1 * 236 1 10 5 1976 1
157 1 10 1 1975 2 * 237 1 10 5 1976 2

* 158 1 10 1 1975 3 * 238 1 10 5 1976 3
* 159 1 10 1 1975 4 * 239 1 10 5 1976 4
4 160 1 10 1 1975 5 * 240 1 10 5 1976 5
* 161 1 10 2 1975 1 * 241 1 10 6 1976 1 +^

162 1 10 2 1975 2 * 242 1 10 6 1976 2
4 163 1 10 2 1975 3 « 243 1 10 6 1976 3

164 1 10 2 1975 4 * 244 1 10 6 1916 4 M
165 1 10 2 1975 5 * 245 1 10 6 1976 5 4'
166 1 10 3 1975 1 * 246 1 10 7 1976 1
t67 1 10 3 1975 2 * 247 1 10 7 1976 2
168 t 10 3 1975 3 248 1 10 7 1976 3 !

* 169 1 10 3 1975 4 * 249 1 10 7 1976 4
* 170 1 10 3 1975 5 * 250 1 10 7 1976 5 4

171 1 10 4 1975 1 251 1 10 8 1976 1
* 172 1 10 4 1975 2 * 252 1 10 8 1976 2
* 173 1 10 4 1975 3 * 253 1 10 9 1976 3
R 174 t 10 4 1975 4 * 254 1 10 8 1976 4 0
w 175 1 10 4 1975 5 * 255 I 10 8 1976 5
4 176 1 10 5 1975 1 * 256 1 10 9 1976 1 4
« 177 1 10 5 1975 2 * 257 1 10 9 1976 2 4

178 1 10 5 1975 3 * 254 1 10 9 1976 3
4 179 1 10 5 1.975 4 259 1 10 9 1976 4

180 1 10 5 1975 5 * 260 1 10 9 1976 5
* 181 1 10 6 1975 1 * 261 1 10 10 1976 1

182 t 10 6 1975 2 * 252 1 10 10 1976 2
* 183 1 10 6 1975 3 * 263 1 10 10 1976 3 ,*
* '184 1 10 6 1972 4 4 264 1 10 10 1976 4

195 1 10 6 1975 5 * 265 1 10 10 1976 5 '*
1 266 1 1 1976 1

« 197 1 10 7 1975 2
 

* 267 1 10 1976 2
188 1 10 7 1975 3 268 1 10 11 1976 3
189 1 10 7 1975 4 # 269 1 10 It 1976 4
t9O 1 10 7 1975 5 * 270 1 10 11 1976 5 * a

191 1 10 A 1975 1 4 271 1 10 12 1976 1
192 1 10 H 1975 2 * 272 1 10 12 1976 2
193 1 10 8 1975 3 * 273 1 10 12 1976 3
194 1 10 8 1975 4 274 1 10 12 1976 4
195 1 10 8 1975 5 * 275 1 10 t2 1976 5

u 196 1 10 9 1975 1 * 276 1 10 1 1977 1

10 9 1975 279 1 1977 3t' 4 19R 1 3 M 1 10

9 280 1 1977200 1 10 1475 5 10 1 5
M 201 l t0 10 1975 1 # 281 1 1 0 2 1977 S

202 1 10 10 1975 2 1' 282 1 10 2 `'^77 2
* 203 1 10 10 1975 3 * 293 1 10 2 1977 3
IF 204 1 10 10 1975 4 * 294 1 10 2 1977 4

1 205 1 10 10 1915 5 * 285 1 10 2 1977 5 * ,	 1
4 206 1 10 11 1975 1 * 286 1 10 3 1477 1
IF 207 1 10 it 1975 2 * 297 1 10 3 1977 2
4 208 1 10 11 1975 3 4 288 1 10 3 1177 3 «

^?

210 1 10 11 1975 5 290 1 10 3 1977 5r
# *
4 211` 1 10 12 1915 1 * 291 1 10 4 1977 1

712 1 10 12 1475 2 * 292 1 10 4 1977 2 4
* 213 1 10 12 1975 3 * 293 1 In 4 1977 3
f 214 1 10 12 1975 4 # 294 1 10 4 1977 4

215 1 10 12 1975 5 295 1 10 4 1977 5
10 1 1976 1 * 296 I 10 5 1977 1 4
iaf R/xif aY 0ff if ♦ tt li *a Y al•# t f 6 a t Itfftfrt

y	 y
R



* H N 60A SS MN YRAR TOF # IAN I,OA	 SS MN YEAR TOF

* 297 1 t0 5 1977 2 0 377 1 it 1 1976 2
299 1 10 5 1977 3 * 378 1 It 1 1976 3 1

* 299 1 10 5 1977 4 * 379 1 it 1 1976 4
* 300 1 10 5 1977 5 * 380 1 11 1 1476 5
* 301 1 10 6 1977 1 * 381 1 11 2 1976 1
* 307 1 10 6 1977 2 * 382 1 11 2 1976 2

ORIGINAL: PAGI; iS 	 * 303
1 10 6

1977
4 *

383
1 11 Z

1976
 4

OF POOR QUALITY	 # 305 t 1.0 6 1977 5 * 385 1 11 2 1976 5 «
# 306 1 10 7 1977 1 V 3R6 1 11 3 1976 1 #
* 307 1 10 7 1977 2 * 387 1 11 3 1976 2 #
* 308 1 10 7 1977 3 * 388 1 11 3 1976 3
* 309 1 10 7 1977 4 K 3R9 1 11 3 1976 4

310 1 10 7 1977 5 10 390 1 It 3 1976 5 +^
* 311 1 10 8 1977 1 * 391 1 11 4 1976 1 4

312 1 10 R 1977 2 • 392 1 11 4 1976 2 *	 r
M 313 1 10 8 1977 3 * 393 1 11 4 1976 3 #
* 314 1 10 8 1977 4 * 394 1 11 4 1976 4 #
# 315 t t0 R 1977 5 * 395 1 11 4 1976 5
* 316 1 10 9 1977 1 * 396 1 11 5 1976 1
* 317 1 10 9 1977 2 * 397 1 11 5 1976 2 #
* 31R 1 10 9 1977 3 * 39R 1 It 5 1976 3
f 319 1 10 9 1977 4 * 399 1 11 5 1976 4 t
* 320 1 10 9 1977 5 * 000 1 11 5 1976 5 #

321 1 10 10 1977 1 * 401 1 11 6 1476 1
* 327 1 10 t0 1977 2 # 402 1 11 6 1976 2

373 1 10 10 1.477 3 # 403 1 11 6 1976 3
* 324 1 l0 10 1977 4 0 404 1 t1 6 1976 4,

325 1 10 10 1977 5 * 405 1 11 6 1976 5
# 326 1 10 11 1977 1 * 406 1 11 7 1,976 1
* 327 1 10 11 1977 2 * 407 1 it 7 1976 2 R

;,	 * 32R t 10 11 1977 3 # 408 1 11 7 1976 3
# 329 1 10 11 1977 4 * 409 1 11 7 1976 4
4 330 1 10 11 1977 5 * 410 1 it 7 1976 5 #
* 331 1 10 12 1,977 1 # 411 1 11 R 1976 1 •
* 332 1 10 12 1977 2 * 412 1 11 8 1976 2
* 333 1 10 12 1977 3 * 413 1 11 8 1976 3 #
* 334 1 10 12 1977 4 414 1 11 8 1976 4
* 335 1 10 12 1,977 5 * 415 1 It 8 1976 5

336 1 10 1 1978 1 * 411 1 11 9 1976 1 0
337 1 10 1 1978 2 417 1 .11 9 1976 2 f

* 338 1 10 1 1978 3 418 1 11 9 1976 3 #

1 420
2

* 340 10 1 1978 5 * 1 11 19764 5
* 341 1 10 1978 1 * 421 1 it 10 1,976 1
* 342 1 10 2 1978 2 * 422 1 11 10 1976 2 #
* 343 1 10 2 1978 3 * 423 1 11 10 1976 3
# 344 1 10 2 1978 4 * 424 1 11 10 1976 4
* 345 1 10 2 1979 5 * 425 1 11 10 1976 5 4
* 346 1 11 7 1975 1 426 1 11 It 1976 1
* 347 1 11 7 1975 2 * 427 1 11 11 1976 2
* 348 1 11 7 1975 3 * 428 1 11 11 1976 3

344 1 11 7 1975 4 # 429 1 it 11 1976 4 #
* 350 1 11 7 1975 5 430 1 11 It 1976 5
* 351 1 11 8 1975 -1 * 431 1 11 12 1976 1 #	 k

352 1 11 8 1975 2 # 432 1 11 12 1976 2
4 353 1 11 8 1975 3 * 433 1 11 12 197b 3
* 354 1 11 8 1975 4 • 434 1 11 12 1976 4

355 1 11 8 1975 5 435 1 11 12 1976 5
* 356 1 11 9 1975 1 * 436 t It 1 1977 1
# 357 1 11 9 1975 2 * 437 1 11 1 1977 2
* 358 t 11 9 1975 3 * 438 1 It 1 1977 3 «
* 359 1 11 9 1975 4 * 439 1 11 1 t977 4

°'	 * 360 1 11 9 1975 5 * 440 1 11 1 1977 5
* 361 1 11 10 1,975 1 * 441 1 11 2 1977 1
*

'
362 1 11 10 1'975 2 * 442 1 11 2 1977 2

* 363 1 11 10 1975 3 * 443 1 It 2 1977 3
4 364 1 11 10 1975 4 * 444 1 It 2 1977 4

E 366 1 11 it 1975 *
1 9 7 5

* 1 446 1 11 3 1 #
* 367 1 11 1.1 1975 2 447 1 11 3 1977 2
* 368 1 11 11 1975 3 * 44R 1 11 3 1977 3

369 1 11 11 1975 4 # 449 1 11 3 1977 4 4
* 370. 1 It 11 1975 5 4 450 1 11 3 1977 5
* 371 1 11 12 1975 1 * 451 .1 11 4 1977 1
* 377 1 It 12 1975 2 * 452 1 11 4 1977 2

373 1 11 12 1975 3 * 453 1 11 4 1977 3
* 374 1 11 12 1975 4 * 454 1 It 4 1977 4
* 375 1 It 12 1975 5 4E 455 1 11 4 1977 5
* 376 1 It 1 1976 1 # 456 1 11 5 1977 1 #



^'	 # RN LOA SS MN YEAR TOF * RN LOA SS MN YEAR TOF

#** #*#***#***# #** ***#********* ***##ass * *** ***^*#*#*******
* 457 1 t 1 5 1977 2 * 537 1 8 4 1970 2
* 45R 1 It 5 1977 3 * 538 1 A 4 1070 3
* 459 1 11 5 1977 4 * 539 1 8 4 1970 4

'	 # 460 1 11 5 1977 5 * 540 1 8 4 1970 5
* 461 1 11 6 1977 1 IF 541 1 8 5 1970 1

JPAGV.	 # 452 1 11 6 1977 2 542 1 8 5 1970 2 #
pR1GiNA1-

464 1 11 6 1977 4 1 5 1970 4^oVk	 * * 544 8
^F	 * 465 1 11 6 1977 5 * 545 1 8 5 1970 5

# 466 1 6 10 1968 1 * 546 1 8 6 1970 1
* 467 1 6 tO 196R 2 * 547 1 8 6 1970 2

468 1 6 10 1968 .3 * 54R 1 8 6 1970 3
* 469 1 6 10 1968 4 * 549 1 8 6 1970 4
* 470 1 6 10 1968 5 * 550 1 8 6 1970 5
* 471 1 6 11 1968 1 * 551 1 9 3 1971 1

472 1 6 11 1968 2* 552 1 9 3 1971 2
* 473 1 6 It 1968 3 * 553 1 9 3 1971 3
# 474 1 6 11 1968 4 * 554 1 9 3 1971 4
* 475 t 6 It 1968 5 * 555 1 9 3 1971 5
* 476 1 6 12 1969 1 * 556 1 9 5 1971 1
* 477 1 6 12 1968 2 * 557 1 9 5 1971 2
* 478 1 6 12 1968 3 * 558 1 9 5 1971 3
* 479 1 6 12 1968 4 * 559 1 9 5 1471 4
* 480 1 6 12 1968 5 # 560 1 9 5 1171 5
* 481 1 6 1 1969 1 * 561 1 11 7 1,977 1
* 4R2 1 6 1 1969 2 * 562 1 it 7 1977 2
* 483 1 6 1 1969 3 * 563 1 11 7 1977 3
* 484 1 6 1 1969 4 * 564 1 11 7 1977 4 #

*
^'

486 1 6 2 1969 1 * 566 1 11 8 1977 1
* 487 1 6 2 1969 2 * 567 1 11 8 1977 2
* 488 1 6 2 1969 3 * 568 1 11 8 1977 3 #

489 1 6 2 1969 4 # 569 1 11 8 1977 4
* 490 1 6 2 1969 5 * 570 1 it 8 1977 5
* 491 1 6 3 1969 1 * 571 1 It 9 1977 1
* 492 1 6 3 1969 2 * 572 1 it 9 1977 2
* 493 t 6 3 1969 3 * 573 1 It 9 1977 3

1°	 * 494 1 6 3 1969 4. * 574 1 11 9 1977 4
J	 * 495 1 6 3 1969 5 * 575 1 11 9 1977 5

* 447 4 577 19771 6 1969 2 * 1 11 10 7
* 498 1 6 4 1969 3 * 578 1 11 IT 1977 3
* 499 1 6 4 1969 4 * 579 1 11 10 1977 4
* S00 1 6 4 1969 5 * 580 1 it 10 1977 5•
* • 501 1 7 4 1969 1 # 581 1 it it 1977 1
* 502 1 7 4 1969 2 * 582 1 11 11 1977 2

°	 * 503 1 7 4 1969 3 * 583 1 11 It 1977 3
504 1 7 4 1969 4 * 584 1 It 11 1977 4
505 1 7 4 1969 5 * 585 1 11 11 1977 5

* 506 1 7 5 1969 1 * 586 1 11 12 1977 1 #
# 507 1 7 5 1969 2 * 587 1 11 12 1977 2
* 508 1 7 5 1969 3 * 588 1 It 12 1977 3 #
* 509 1 7 5 1969 4 * 589 1 11 12 1977 4
* 5t0 1 7 5 1969 5 * 590 1 It 12 1977 5

511 1 7 6 1969 1 * 591 1 11 1 1978 I
* 512 1 7 6 1969 2 * 592 1 11 1 1974 2
* 513 1 7 6 1969 3 * 593 1 it 1 197© 3

514 1 7 6 1969 4 * 594 1 11 1 1918 4
* 515 1 7 6 1969 5 * 595 1 11 1 1978 5
* 516 1 7 7 1969 1 * 596 1 11 2 1978 1

f	 * 517 1 7 7 1969 2 * 597 1 it 2 1978 2
a	 * 518 1 7 7 1969 3 * 598 1 It 2 1978 3

* 519 1 7 7 1969 4 * 599 1 11 2 1978 4
* 520 1 7 7 1964 5 * 600 1 It 2 t9'19 5
* 521 t 7 8 1969 1 * 601 1 11 3 1.978 1
* 522 1 7 8 1969 2 * 602 1 11 3 1978 2

523 1 7 8 1969 3 * 603 1 11 3 1978 3
* 524 1 7 8 1969 4 * 604 1 11 3 1978 4

c̀	 # 525 1 7 8 1969 5 * 605 1 It 3 1978 5
* 526 1 7 10 1969 1 * 606 1 11 4 1978 1
* 527 1 7 10 1,969 2 * 607 1 11 4 1978 2

528 1 7 10 1969 3 * 609 1 11 4 1978 3
4 529 1 7 10 19'69 4 * 609 1 11 4 1978 4 rt ,
* 530 1 7 10 1969 5 # 610 1 11 4 1978 5 #

r	 * 531 1 7 1 1970 1 * 611 1 11 5 1978 1 #
* 532 1 7 1 1.970 2 * 612 1 11 5 1978 21+	
# 533 1 7 1 1970 3 * 613 1 11 5 1978 3

535 1 7* 1 1470 5 * 615 1 fl 5 1978 5
# 536 1 8 4 1970 1 #

:^	 t 1t t t i d t ♦ d 1 1 t t• d ♦ t f t f t d d t ♦ 1 1 t d ► t d d t t t Y d d t t t t t t td 1 1^^ ♦ • 1 1 ^

ti
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The following sections provide information about other reports sponsored in
whole or in part by Contract NAG-1-150. (Contact the Department of
Atmospheric Science, Colorado State University, fort Collins, CO 80523 for
copies.)
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"Short-term Climatic Fluctuations Forced by Thermal Anomalies"

by

Adel Hanna

Department of Atmospheric Science Paper No. 360, 1982
Colorado State University
Fort Collins, CO	 80523

The aim of this research is to study the response of the atmosphere to

thermal anomalies using a low-order spectral model. 	 Thermal anomaly pat-

terns may exist either in sea and land surface temperatures or in the tro-

pospheric diabatic heating.

A two-level, global, spectral model using pressure as a vertical coor-

dinate has been developed. 	 The system of equations describing the model is

nonlinear and quasi-geostrophic (linear balance. 	 Static stability is

variable in the model. 	 A moisture budget is calculated in the lower layer

only.	 Convective adjustment is used to avoid supercritical temperature

n lapse rates.	 The mechanical forcing of topography is introduced as a ver-

tical velocity at the lower boundary. 	 Solar forcing is specified assuming
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a daily mean zenith angle.	 The differential diabatic heating between land

and sea is parameterized.	 on land- and sea-ice surfaces, a steady state

thermal energy equation is solved to calculate the surface temperature. 	 On

the oceans, the sea surface temperature is specified as the climatological

average for January.	 The model is used to simulate the January, February

and March circulations.

Experiments are designed to study the response of the atmosphere to

thermal anomalies at the lower boundary or in the midtroposphere. 	 The

"memory" in the atmosphere of such anomalies, after they have decayed, is

also studied.	 Three patterns of sea-surface temperature anomalies are

tested.	 The first pattern represents a cold anomaly in the North Pacific,

the second a warm anomaly in the equatorial Pacific and the third pattern

F	
r contains both of the two anomaly patterns acting together. 	 The results

suggest that the coupled pattern is the only one that produces the type of

geopotential anomalies associated with the negative phase of the Southern

i Oscillation.	 In contrast to the results of linear models, warm sea-surface

temperature anomalies in the equatorial Pacific cannot produce such geopo -

tential response on their own. 	 In the case of this tropical anomaly pat

tern the variance of temperature resulting from transient eddies tends to

increase, whereas in the case of t 	 t	 t	 variancen	 he	 c	 he coupled anomaly pattern	 he va	 ance

of temperature resulting from stationary eddies increases. 	 This behavior

suggests that with both anomalies acting together the atmosphere is

inclined to produce quasi-permanent responses, such as blocking, in

contrast with the other case, in which the transient activity increases.



The mid-tropospheric anomaly is introduced as an easterly propagating

wave over the equatorial Pacific and over the Gulf of Bengal. The ampli-

tude and memory of the response is larger than for the sea-surface tem-

perature case. The mid-tropospheric thermal anomalies show continuous

large areas of long memory in the subtropical and middle latitude regions

of the Northern Hemisphere.

tY
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