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SUMMARY

This final report includes research results from the period February,
1981 through Nomembe:, 1982.

Two new results combine to form the final portion of our work. They are
the work by Hanna (1982) and Stevens to successfully test and demonstrate a
low-order spectral climate model and the work by Ciesielski et al. (1983)
to combine and test the new radiation budget results from NIMBUS-7 with
earlier satellite measurements. Together, the two related activities bring
us to a new research plateau and set the stage for future research on
radiation budget measurement/model interfacing. Such combination of
results will lead to new aplications of satellite data to climate problems.
The objectives of our research under the present contract ure therefore
satisfied.

Additional research reported herein includes the compilation and docu-
mentation of the radiation budget data set at Colorado State University and
the definition of climate-related experiments suggested after lengthy ana-
lysis of the satellite radiation budget experiments. Since both the pri-
mary studies noted sbove wer2 supported, in part, under other auspices we

include the abstracts of the related publications as an appendix.
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1.0 Improved Earth Radiation Budget Data Sets

Since the first satellite radiation budget experiment on Explorer VII
in 1959 (Suomi, 1959), we have obtained an increasingly detailed and
accurate depiction of the energy exchange between earth and space. For
climate study purposes a choice must be made when using the radiation
budget data for a specific study. The choice depends upon the goals of the
line of climate inquiry, which then dictates whether to use:

a) the longest (most extensive temporal) satellite data set
or b) the most accurate and consistent “*sample® of the seasonal (or
monthly) radiation fields from Earth.
Of course, since most of the existing data were obtained from wide field-
of-view sensors, a consideration of the spatial resolution requirements of
the climate study must also be made.

In order to assist the climate modeler we have prepared a special
report under this contract (Ciesielski and Vonder Haar, 1982) with an
accompanying data tape. See Appendix 1 for details. The report and tape
were prepared to aid our contract work and also in response to requests of
climate scientists around the nation and the world. A copy of the tape has
been provided to the technical monitor and to several other research
groups. An example of the analysis of a field 9f data from the archive
tape is shown in Figure 1. 1In the figure, nearly three annual cycles of
satellite radiation budget measurements are displayed.

The new radiation budget results were obtained after considerable
study of data processing and analysis methods in collaboration with NIMBUS

project scientists and engineers (Vonder Haar et al., 1981).
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Our preliminery analysis of NIMBUS-6é data has revealed some
interesting interannual differences in the earth’s radiation budget.
Figures 2 and 3 show the interannual differences in the zonal means fluxes
of emitted and net radiation, respectively, for the December-January
period. Especially striking in the figures are the differences in the
enitted flux between the 75/76 and 76/77 periods. For example, the emitted
flux in December 76 and January 77 was between 10-40 watts per square meter
larger at high latitudes (659N - 850N) and approximately 15 watts per
square meter less at mid-latitudes (350N - S5ON) in comparison to Dgcember
75 - January 76 period. It is also bf interest to note that the December
76 - January 77 period was characterized by strong and persistent
atmospheric blocking patterns in the Northern Hemisphere. The economic
dislocation in the United States was substantial.

Under such blocking conditions one might expect an lncrease in the ;

meridional circulation allowing anomalous amounts of warm alr to be

advected into higher latitudes, and in turn, increased longwave emission at
these latitudes. Of ‘course, the generally cloud-free conditions under the
high latitude ridge would also add to the increased longwave emission. The
weak solar radiation at high latitudes in winter cannot compensate for the
increased IR loss. Conversely, at mid-latitudes, an increase in the cold
air advection associated with the blocking flow would tesult in decreased
longwave emission from both cooler air and the increased cloudiness. The
enhanced net radiation gradient (e.g., 300 to 800 in Figure 3) would seem

to increase the required poleward energy transport by the ocean-atmosphere
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system during the blocking situation. It remains fof specific model stu-
dies to ascertain whether this radiation forcing causes positive or nega-
tive feedback into the blocking situation.

Through an application of the thermal wind equation, we know that the
thickness of an atmospheric layer is proportional to the mean temperature
of that layer. In view of this fact, one can roughly surmise from Figure 4
(taken from Vols. 104 and 105, Monthly Weather Review) the temperature dif-
ferences at high and mid-latitudes that existed between the 75/76 and 76/77

winter seasons.
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2.0 Numerical Model Experiment Definition and Tasts

Due to the large differences in atmospheric circulation and charac-
teristics of the radiation budget betwean the two winter seasons mentioned
gbove and observed by the radiation budget sensors, we suggest the %
following numerical expariment. By prescribing the diabatic forcing for f
the "linear balance® numerical model as given in part by the earth's
radiation budget, we suggest simulation of the circulation patterns
corresponding to each winter season. Of particular intersst will be the
amplitude and position of the standing eddies which rasult from each
winter's foreing.

After considerable study of varlous factors lnvolved, results of this
research have led to a description and prioritizaticn of somes sdditional
general short-term climate (arnual cycles) experiments that have been
suggested by the increasing accumulation of satellite radiation buriget
data. These experiments are discussed below and result from meny years of
study that has been capped for the purpose of this study with the prelimi-
nary results from NIMBUS & and NIMBUS 7 satellites. It is very important
to recognize that while a wide range of climate model experiments can be
done we dafinitely, in view of limited resources, have to determine which
of those many experiments should be done.

This report will also discuss the possibilities for actually doing
these experiments. Finally, the last step in the logic chain is to deter-
mine which experiments will be dona. This depends upon the avallability of

resources {e.g., computer models, access to computer time, personnel,
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salary coverage). It is the intent of this report to discuss the should
and can be done sequence tiised on the results of the last several months’
study.

As has been mentioned in preliminary reports, the identification of an
apparent three-wave pattern in the net radiation in the mid-latitudes of
the southern hemisphere has significant implications for impact on the
annual cycle. Three "heat sink"™ regions are found in our summaries of the
satellite measurements to exist over (a) the Australian Desert, (b) the
stratocumulus region west of South America, (c) the stratocumulus region
west of South Africa. These areas show relative minima in net radiation
for their latitude zone which results from the bright, relatively warm
cloud and/or surface features located at these positions. The specific
longitudinal centers of the regions are 10-200€, 1309E, 70-809W as shown in
Figure 5 (from 5tephens et al., 1981). We definitely believe this to be a
high priority climate modeling experiment, namely to impose the three heat
sink regions in a major way into the normal circulation pattern in a model
simulation. We hypothesize that thesse three heat sink regions will be
reflected in the dynamic circulation pattern of the southern hemisphere in
a way similar to that which might have arisen from orographic effects.
Since the southern hemisphere circulation makes demands upon the energy
from the northern hemisphere and also of course feeds certain cross
equatorial flow patterns, this southern hemisphere experiment might be
extremely important in looking at the interannual varistion of climate and

weather over the northern hemisphere.
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FIGURE 5. From Stephens, Campbell, Vonder Haar, JGR (1981)
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A third climate experiment has been suggested by the data shown in
Figure 6. Vonder Haar and Ellis, a number of years ago, and other
researchers in the course of our present study, have identified the semian-
nual comporent amid the more dominant annual cycle of global planetary
albede. Figure 7 shows the data sets as compiled by Ellis and Vonder Haar
(1976) and, in addition, indicates the extremely interesting results from a
model run a few years ago by Hansen (personal communication). The ordinate
showing absolute albedo percentage values demonstrates that during the
course of an annual cycle, the focus of climate study in the U. S. during
the next 5-10 years, the northern hemisphere snow-covered continent exerts
a pulse upon the entire global albedo pattern in the period March - July.
This example is for the “normal® case and we immediately hypothesized that
an abnormal wintertime circulation, bringing with it a low amount of
srowfall accumulation and/or an abnormal early spring situation (with large
amounts of warm air advection from lower latitudes), could give rise to a

particular year when the snow cover is not present at the time of

increasing insolation over the higher latitudes of the northern hemisphere!
This situation would represent a distinct anomaly for the earth, primarily
in these latitudes, and the response i3 yet to be determined. Satellite
observations of this situation will, of course, be continued with the ERBE
measurements. We believe a climate experiment to begin to study the poten-
tial impact on the important springtime and summertime northern hemisphere
circulations that might arise from such interannual variability is impor-
tant to consider at this time. A three-dimensional time-dependent climate
model would be required to complete this experiment by imposing and running

the situation with and without the satllite-observed effect.

-12-
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A fourth climate-related expariment suggested by our ressarch has lts
roots in the very esarly days of the satellite radiation budget measure-
ments. Data from TIROS IV in 1962, (House, F., personal communcation)
showad the Sahara Dasart to lose mora snexgy than it had galned during the
course of a year. Vonder Haax and Suami (1971) and Raschke et al., (1973)
verifled the earlier rasult with NIMBUS-3 data., This odturrencae places &n
abnormal pulse in the net radiation pattern at that latitude zone of the
northern hemisphexe (as s also shown In Figuce 5). The cansequence of
this net eneryy loss at rels tively low latitudes has not yet been fully
explalned but the work of Charney (1975) and others began to study it. We
axpect and hypothesize that sinking alr warmed adiabatically is responsible
for balancing the local reglon heat budget. The source of this descanding
atr (it must vise from somewhera) is yet to ba detexrminad. The activity of
this inferred reglonal clrculation pattern may influence the weather and
glimate in a much broader region than just the Sahara. Of course, the
sub=Sahara reglon, the Sahel, 1s a region of concern because of its margl-
nal food production capabilities and lts indigenous poulation, dependent
upon that food. We hypothesize that the net radiatlon heat sink observed
from the satallite Ls related to the upward clroulation in the Indian mons
soon area and also related in part to the extreme thermal heat low over the

Saudl Arabian Péninsula.
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A climate experiment to focus on this region would gain a great deal
from the recent MONEX experiment that has provided data from the 1979 mon-
soon season. Also, the global weather experiment (FGGE), has provided data
to examine the dynamic flow patterns near the Sahara much bettar than had
been possible earlier. Indeed, the principal investigator and a student
attempted to explore this radiation budget anamoly in the early 1970’s and
found the data set to be inadequate at that time. Now, however, the cli-
mate experiment to focus on this very important region of the northern
hemisphere with this possible impact on the food production all across
Africa and the Indian sub-continent can be carried out.

A fifth and by no means low priority cliamte experiment, yet one that
needs further definitlon, has to do with the region to the southwest of the
U. S. in the eastern central Pacific. Here, we find an extremely large
region of stratocumulus clouds that form a delicate radiative-dynamic
balance between ocean, atmosphere processes. The region is “upstream" from
the U. S. insofar as influencing our weather patterns which in the aggre-
gate give rise to the interannual variation of climate. This stratocumulus
region has been cbserved from the satellite to fluctuate rather largely
from one year to another and because of its stratus cloud cover may be
exceedingly important for climate (Vonder Haar and Stephens paper regarding
radiatively important clouds for climate, in preparation). We recognize it
to be a potentially major, yet variable, heat sink region near our shores.
A climate experiment to assess the impact of these clouds on the subsequent
development of circulation, particularly in the fall and winter periods of
the northern hemisphere is another that has been identified by the present

research.
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Recent results by Kutzbach and Otto-Bliesner (1982) have demonstrated
that study of past climate and the variations in radiational forcing which
we know have occurred due to orbital geometry can give rise to insights and
information pertaining to present and future climate situations. Their

work with a low order climate model focused on the monsoon situation, the

continent-ocean effect that is driven and amplified by radiational dif-
ferences. Thelr work is an example of the type of research we are empha-
sizing in our current project to fill the bridge between the observations
from radiation budget experiments on satellites and the climate model stu-
dies that they suggest and support. The experiments that they have carried
out using two different models have been very well received in the scien-
tific community and give further impetus to the continuation of the work
which has been begun in the present study.

AComparison of the models of Kutzbach and Otto-Bliesner, Hanna (1982; 3
see Appendix 2-2), Blackmon (the NCAR Community Climate Model) and others {

demonstrates that the ability for moderately sophisticated climate models

to simulate annual cycles is no longer limited by computer resources.
Insofar as the radiation budget experiments are concerned each model’s
parameterization (or specification) of cloud/radiation processes and sur-
face radiative processes is an increasingly important factor. Of course,
on the shorter time scales of a few seasons or years prevailing widsom
indicates that ocean energy intake/output may be specified. For longer
time periods the explicit heat transport provided by (often wind-driven)
ocean currents must be more deterministic. Fipally, the choice of models

for certain experiments must rest on information about the model’s sen-

17~




sitivity or “signal-tu-noise®. 7In the 1980’s models, just as instruments,

must be properly chosen for the task at hand.

-18-




3.0 Conclusions and Suggestions for Future Research

3.1 Conclusions from the Present Study

During this research project we have completed a two-phase
approach to the problem of use of radiation budget measurements in climate
modeling. First, we have updated and summarized the existing record of
satellite radiation budget experiments. Secondly, from this new archive we
have chosen and discussed specific climate experiments which should be
carried out as part of continuing research in accord with the U. S. Climate
Program.

In addition, we have reviewed the results of experiments with several
new low order spectral climate models, one developed locally. The initial
results from these models demonstrate that the radiation budget-related
climate experiments noted above can be done.

Finally, we propose to actually carryout some of the model experiments
under further research supported by and in collaboration with NASA. what
will be done in thls research area depends upon future funding.

3.2 Futqre Research

With the NIMBUS-7 radiation budget data sets now joining those
from NIMBUS-6, it is timely to close even further the gap between our more
definitive data sets and the improving climate models. Tests and experi-
ments completed in the next few years can be followed by the new, improved
Earth Radiation Budget Experiment (ERBE) data. This opportunity to con-
firm, deny or add to the data base in view of model experiments provides a

clear scientific path. Under a separate proposal to NASA we will seek to

B
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mursua such research along with other groups. The probabilities for suc-
cess are very high and the results will contribute to progress in the U.S.

Climate Program.
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1.0 INTRODUCTION

Our purpose in assembling and documenting an archive of earth
radiation budget (ERB) data is to make an extensive data base from earth
orbiting satellites available for research purposes. The data sets
discussed in this document are contained on a single magnetic tape in a
format that can easily be read on most computer systems. In addition to
the documentation for reading this tape, we have included pertinent infor-
mation about the ERB measurements with appropriate references for those

desiring additional detailed information.

2.0 SATELLITE DATA SOURCES

Table 1 summarizes the temporal distribution of the ERB data sets for
this archive. Listed in this table are 123 data sets which were assembled
from the 17-year period extending from 1962 to 1978. One hundred eighteen
of these data sets represent monthly or semi-monthly averaged measurements,
while the other five comprising data from TIROS 5 and TIROS 7 represent
seasonally averaged measurements.

Each data set is composed of the following radiation budget
components: emitted radiant exitance (i.e., longwav# flux), reflected
flux, incident flux, albedo and net radiation balance. Of these five com-
ponents, the emitted radiant exitance and the albedo at the top of the
atmosphere are the fundamental analyzed measurements of all ERB experi-
ments. From these two components one can derive the net gain of energy of
the earth-atmosphere system as shown in Equation 1.

NET = INCIDENT -~ REFLECTED - EMITTED

INCIDENT (1 - ALBEDQ) - EMITED (1)

"103-
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For consistency in calculating the average incident flux for each month, we
have used the NIMBUS-7 observation of 1376 watts per square meter (Hickey
et al., 19%0).

As shown in Table 1, eleven different experiments contribution to the
archive presented here. The orbital characteristics of these satellite
systems are illustrated in Figure 1 and listed in Table 2. Since the
radiation budget measuremenis from these satellites are of variable
accuracy and resolution, we have indicated in Table 1 which data sets we
feel provide the best estimates of the earth’s radiation budget. In
general, the absolute accuracy of an individual month of data is *+ 5%
(Ellis and Vonder Haar, 1976). The relative accuracy is better though,
probably being +3% for emitted and +4% for albedo. For more information
concerning error estimates and resolution of the data, one should refer to
Campbell and Vonder Haar (1980a).

The data sets in this archive are pomprised of measurements from two
fundamentally different types of sensors: scanning radiometers and wide
angle or flat plate disc sensors. The difference in these two sensors in
evident in Figure 2.

The scanning radiometer (SR) is a higher resolution instrument
measuring the radiant energy confined to a particular direction and to a
small but finite solid angle (Figure lb). These scanning instruments were
employed on board NIMBUS-2 and NIMBUS-3 (Raschke and Bandeen, 1970 and
Raschke, et al., 1973) as well as on NIMBUS-6 and the NOAA SR satellites
(Winston et al., 1979).

Emitted radiances from these scanners are analyzed with limb darkening

models, while upwelling solar radiation is converted to top of the
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OF POOR QUALITY

(b)

(a)

(d)

(c)

()

Orbital characteristics of
American weather satellites, namely
Tiros (a), Essa (b), Nimbus (c),
A.T.S./Goes (d), Itos/Noaa (e)

FIGURE 1. Modified from Barrett (1974)
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TABLE II

ANGLE OF ORBIT

LOCAL TIME OF EQUATORIAL

SATELLITE TO EQUATOR (°) CROSSING DURING DAYLIGHT HOURS
TIROS 4 48: VARTABLE
TIROS 7 58 VARIABLE
EXPERIMENTAL 60 VARIABLE (see Table 1)
NIMBUS 2 100 11:30
NIMBUS 3 100 13:40

4
ESSA 3 101 "14:30 |
ESSA 7 102 11:30
ITOS 1 102 15:00 é
NOoAA 1 102 15:00
Nimbus 6 100 11:45 ;
NOAA SR 102 9:00 é
Nimbus 7 104 12:00 %
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j” Schematic representation of the measured quantities by (a)a
5 flat plate and () scanning detector.
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Figure 2, From Stephens, et al. (1981)
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atmosphere albedo using complicated bi-directional and directional reflec-
tance models. The major disadvantage to using the NOAA SR data sets is
that these satellites measured the upwelling radiation in narrow spectral
region (0.5 - 0.7 u in the visible and 10.5 - 12.5 u in the infrared).
Thus, the total energy exchange between earth and atmosphere was not
measured.

All remaining satellite measurements were made with flat plate disc
sensors. Measurements from these sensors have two major advantages over
the scanner: (1) measurements are broadband (i.e., they measure the
upwelling solar radiation in the spectral region from 0.2 to 3.8u and the
infrared emitted flux in the 3.8 to >50u spectral range), and (2) measure-
ments represent radiant energy integrated over a broad variation of angles.
The full fleld of view of the flat plate sensor is ~ 600, but the effective
resolution is on the order of 100 for satellites with orbits of height
~ 600 km (Stephens et al., 1981). This feature of flat plate sensors
results from the fact that the radiation from the subsatellite point is
more heavily welghted than radiation from the limb. In contrast, scanning
radiometers have a far better spatial resolution varying from 50 km of
great circle arc distance to nadir to 110 km at an angle of 40° from nadir
(Raschke and Bandeen, 1970).

In order to give the data sets discussed here scientific utility, all
users are strongly encouraged to refer to the references llsted in Table 3
for further background information concerning the various satellite experi-

ments.
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TABLE III

SATELLITE

TIROS 4, TIROS 7
EXPERIMENTAL
ESSA 3, ESSA 7

Nimbus 2, Nimbus 3

ITOS, NOAA 1
'NOAA SR

Nimbus 6

-1.10-
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3.0 SPATIAL AND TEMPORAL SAMPLING BIASES

One major deficiency of the satellites discussed in this archive lies
in the fact that their sun-synchronous orbits result in serious spatial and
temporal sampling biases.

As one can note from Figure 1, satellites with sun-synchronous orbits
do not pass directly over the polar regions. As a result the earth’s
radiation viewed from those regions by flat plate sensors is at some
oblique angle. If the inclination angle of the satellite’s orbit is
extremely low as in the TIROS and EXPERIMENTAL series, then measurements
simply do not exist over the polar regions. In the case of the TIROS
satellites no measurements exist poleward of 62.50 latitude. For satellites
which orbit at higher inclination angles, the determiination of planetary
albedo poleward of about 700 latitude from flat plate sensors is subject to
some uncertainty. This results from the large angular corrections which
must be applied to these measurements, the validity of which is still
questionable. Other spatial sampling biases are included in the January 21
to February 3, 1970 period (shown in Table 1 as January, 1970) in which
NIMBUS-3 data were missing from eastern Asia to south of Australia.
Furthermore, NIMBUS-3 night-time infrared exitance samples are missing over
a large area of western Europe, western Africa and the South Atlantic
(Raschke, et al., 1973).

The major temporal sampling biases result from the local time sampling
inherent in sun-synchronous satellites. (See Table 2 for the approximate
local time at wh'ch the satellite crossed the equator on the daylight part
of the orbit). These satellites sample at the same local time (or nearly

so) each day, so that their measurements are representative at that time

-1.11-

i AT S Yok R 8




but do not account for diurnal variations in the state of the atmosphere
(such as cloudiness and radiating temperatures). Some attempts, as noted
in Table 1, have been made to correct for possible diurnal biases in
reflectance due to varying solar elevation. The seasonally averaged data
sets from the TIROS series do not contain this diurnal bias since their
orbital procession allowed sampling at all local times over a period of
less than three months (76 days for TIR0S-7). Finally, because of problems
with the recorders onboard NIMBUS-6, only daytime emitted measurements are

available from this satellite.

4.0 FORMAT OF TAPE

As mentioned earlier in this document, the data sets in Table 1 are
contained on a single magnetic tape. This tape has the following
characteristics: 1600 bits per inch, 9 track, unlabeled and written in
long-block stranger format. The data were written to tape using a CDC

60-bit machine.

5.0 FORMAT OF DATA

Table 1 lists the 123 data sets that are contained on the magnetic
tape mentioned above. Each data set contalns five records of information
corresponding to the five following fields: emitted flux, reflected flux,
incident flux, albedo and net radiation flux. In total, there are 615

records on the tape. The constituents of each record are a field of data

-1.12-
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in the form of a 36 by 18 array preceded by six integer labels which iden-
tify the field. Appendix A lists the identifier labels for all the records
on the tape along with the code for interpreting these labels. For
example, the labels for the first record on the tape are: RN =1,

LOA =1, SS =3, M\ = 7, YEAR = 1964 and TOF = 1. These labels signify
that this field of data is on the first record of the tape, the data were
averaged on a monthly basis, the field was obtained from the EXPERIMENTAL
satellites for the month of July, 1964, and finally, the type of field is
emitted flux.

Each record was written to tape using a “buffer out® statement with an
add parity, which allowed the data to be written in a binary mode. To make
reading the tape universal to all systems, each data value in the (36,18)
arrays was converted to a positive integer. To convert the integer data
arrays (I) read in from the tape back to the actual data values (ADV), each
user must employ the conversion shown in Equation 2.

ADV = (FLOAT (1) / 1000.) - 1000. (2)
A sample program and printout for reading and converting values from the
tape back to their actual values is shown in Appendix B for the first
record on the tape.

Each (36,18) array on the tape represents a global grid of data with
109 resolution in both latitudinal and longitudinal directions. The first
index of this array is a longitudinal indicator which increases towards the
east, while the second index, being a latitudinal indicator, increases in a
southerly direction. Therefore, as shown in Figure 3, point (1,1) is asso-

ciated with 50, 850N, while point (36,18) corresponds to 3550E, 850sS,
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Each data value represents an average over a 100 x 100 area centered at

that point. Missing data were assigned the value - 999.999.
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APPENDIX A OF POOR QUALITY

Record Number on Tape
Length of Average (1l-Monthly, 2-Seasonal)

Satellite System (1-TIROS 4, 2-TIROS 7, 3-Experimental,
4-NIMBUS 2, 5-ESSA 3, 6-ESSA 7, 7-NIMBUS 3, 8-TIROS 1,
9-NOAA 1, 10-NDAA SR, l1-NIMBUS 6, 12-NIMBUS 7)

Month or Season Data were Taken (l-January, 2-February,
3-March, 4-April, 5-May, 6-June, 7-July, 8-August,
9-September, 10-October,. 11-November, _l2-December,
13-Winter Igec, Jan, Febl,_14-Spring PWar, Apr, Nhy]
15-Summer [June, July, Augl, 16-Fall LSept, oct, Nov])

Year Data were Taken

Type of Field (l-Emitted, 2-Reflected, 3-Incident,
4-Albedo, 5-Net)
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APPENDIX 2

The following sections provide information about other reports sponsored in
whole or in part by Contract NAG-1-150. (Contact the Department of
Atmosphgric Science, Colorado State University, Fort Collins, CO 80523 for
copies.
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"Analysis Of NIMBUS-6 And NIMBUS-7 Data As It Pertains
To The Earth Radiation Budget (ERB)"

by

Paul Ciesielski, Tom Vonder Haar,
Garrett Campbell (NCAR), and David Randel

Department of Atmospheric Science Paper No. 364, 1983

Colorado State University
Fort Collins, CO 80523

1.0 Introduction
2.0 Updated earth radiation budget data from NIMBUS-6

2.1 Zonal and global averages

2.2 Interannual variability in ERB

2.3 Normalization of zonal averages

2.4 NOAA SR data compared to NIMBUS-6 data for same time period
3.0 ERB analysis from NIMBSU-7

3.1 Our resolution enhancement scheme vs. conventional analysis
(distance squared correction)
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Appendix 2-2

Abstract

for

“Short-term Climatic Fluctuations Forced by Thermal Anomalies®
by
Adel Hanna

Department of Atmospheric Science Paper No. 360, 1982
Colorado State University
Fort Collins, CO 80523

The aim of this research is to study the response of the atmosphere to
thermal anomalies using a low-order spectral model. Thermal anomaly pat-
terns may exist either in sea and land surface temperatures or in the tro-
pospheric diabatic heating.

A two-level, global, spectral model using pressure as a vertical coor-
dinate has been developed. The system of equations describing the model is
nonlinear and quasi-geostrophic (linear balance). Static stability is
variable in the model. A moisture budget is calculated in the lower layer
only. Convective adjustment is used to avoid supercritical temperature
lapse rates. The mechanical forcing of topography is introduced as a ver-

tical velocity at the lower boundary. Solar forcing is specified assuming

-2. 3-
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a daily mean zenith angle. The differential diabatic heating between land
and sea is parameterized. On land- and sea-ice surfuces, a steady state
thermal energy equation ls solved to calculate the surface temperature. On
the oceans, the sea surface temperature is specified as the climatological
average for January. The model is used to simulate the January, February
and March circulations.

Experiments are designed to study the response of the atmosphere to
thermal anomalies at the lower boundary or in the midtroposphere. The
“"memory" in the atmosphere of such anomalies, after they have decayed, is
also studied. Three patterns of sea-surface temperature anomalies are
tested. The first pattern represents a cold anomaly in the North Pacific,
the second a warm anomaly in the equatorial Pacific and the third pattern
contains both of the two anomaly patterns acting together. The results

suggest that the coupled pattern is the only one that produces the type of

et oat

geopotential anomalies associated with the negative phase of the Southern i
Oscillation. In contrast to the results of linear models, warm sea-surface %
temperature anomalies in the equatorial Pacific cannot produce such geopo-

tential response on their own. In the case of this tropical anomaly pat-

tern the variance of temperature resulting from transient eddies tends to

Increase, whereas in the case of the coupled anomaly pattern the variance

of temperature resulting from stationary eddies increases. This behavior

suggests that with both anomalies acting together the atmosphere is

inclined to produce quasi-permanent responses, such as blocking, in

contrast with the other case, in which the transient activity increases.
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The mid-tropospheric anomaly is introduced as an easterly propagating
wave over the equatorial Pacific and over the Gulf of Bengal. The ampli-
tude and memory of the response is larger than for the sea-surface tem-
perature case. The mid-tropospheric thermal anomalies show continuous
large areas of long memory in the subtropical and middle latitude regions
of the Northern Hemisphere.
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