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Preface

Computer Visiont

Computer Vision -- visuval perception employing computers --
shares with "Expert Systems" the role of being one of the most
popular topics in Artificial Intelligence today. Commernial
vision systems have already begun Lo be used in manufacturing and
robotic systems for inspection and guidance tasks. Other systens
at various stages of development, are beginning to be employed in
military, cartograhic and image interprctation applications.

This report revieus the basic approaches to such systens,
the techniques utilized, applications, the current existing
systems, the state-of-the-art of the technology, issues and
research requirements, who is doing it and who is funding it, 2and
finally, future trends and expectations.

The computer vision field is nultifaceted, having many
participants with diverse viewpoints, with many papers having
been written. However, the field is stiil in the early stages of
development--organizing principles have not vel erystalized, and
the associated technology has not yet been rationclized. Thus,
this report is not as smooth and even as would be desirazble.
Nevertheless, this overview should prove useful to engineering
and research managers, potential users and others who will be

affected by this field as it unfolds.

¥This report is in support of the more general NBS/NASA report,
An Overview of Artificial Intelligence and Roboties.
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Cewputer Vision

I. Introduction

Following the lead of Conen and Feigenbaum (1982, p. 127) we

may consider computer vision to be the information-processing

task of understanding a scene from its projected images. Other
;;;lds such as image processing and pattern recngnition also
utilize computers in vigion tasks. However, we can distinguish
the fields by categorizing them as followus:

Image processing is a signal processing task that transforms

an input image into a more desirable output image through
processes such as noise reduction, contrast enhancement and
registration.

Pattern rccognitior is a classification tazk that classifies

images into predetermined categories.

-

Computer vision is an image understanding task that

automatically builds a description not anly of the image itself,
phahdide

but of the three dimensional scene that it depicts. The tern

scene analysis has been used in the past to emphasize the

distinction between processing two dimensional images, as in

pattern classificiation, and seeking information about three-

—

dimensional scenes.

In this report, we will emphasize the Artificial
Intelligence (AI) aspects of vision and therefore will dwell on

image understanding. Image understanding includes among its

techniques, many of the methods found in image processing and

pattern recognition. However, it also includes geometrig
I
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modeling, and AIX knou'a:~e represcntation and cognitive

processing techniques.

Hiatt (1981, p. 3) observes, “For praétical purgoses,
investigators of computer vision often define seeing as gathering
visual data for the purpose of making complex decisions;
Computer vision is accordingly, 2 major adjunct to the study of
artificial intelligence.® Arden (1980, p. 482) adds, "A view
widely held by psychologists is that perception is an active
process in which hypotheses arc formed about the nature of the
environment and sensory information is sought that will confirm
or refute these hypotheses. This view of perception, as a fornm
of problem-solving at least at some stage, is held by many
researchers in artificial intelligence." Thus, computer visgien
with its many current and potential applications is a majo-
Artificial Intelligence (AI) topic today. The follawing chapters
are an attempt to provide an overview of this imnportant and
growing fiz2ld. In addition to reviewing the conceptual basis for
computer rision and its asscciated techniques, we will also
review their implementation in visior systems, baoth recearch and
commercial.

Chapters II, III and IV further define computer vision,
reviewing its origins and its relation to human vision, Chapter
V briefly indicates applications of compute visian.

Chapters VI outlines a basis for a general purpose computer
vision system, in the process providing a structure for

comprehending systems with lesser aspirations.
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Chapter VII revgeﬁs the basic control structures suitable
for vision systems. Chapter VIII erxamines the successive levels
of representation found in computer vision systems.

Vision systems, both research and industrial are covered in
Chapﬁers IX and X. Information on who the principal participants
are in the computer vision field is given in Chapters XI dnd X11.

The state-of-the-art, current problems and issues, research
requirements and future trends are presented in Chapters XIII to
XVI,

Reviews of the representation methods and processing
techniques used in computer vision are given in the appendices.

Appendix A reviews representations for low level image

features such as pixels, edges, regions, etc.

Appendix B reviews techniques (such as filtering and

threshnlding) for extracting edges and regions.
—————

Appendix C discusses methods for symbiotically combining
image segmentation with interpretation.

Appendix D provides an overview of methads (such as
statistical features, boundary curves, primitive forms, and
relational graphs) for succinctly representing image features and
utilizing the resulting representation for recognition.

Appendix E reviews the various methods for extracting
intrinsic image characteristics such as surface shapes, ranges

and orientations from 2-D images. Also included is a discussion

of extracting shape and velocity from successive images of

objects in motion.

Appendix F provides an overview of nigher levels of
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representation--both volumetric and prooedural models, and

symbolic descriptions such as relationazr graphs.

Yy

Appendix G reviecws how intrinsic images can be given higher
level interpretations by s.dmenting intrinsic surface
characteristics into objects (either by meodel ar symbolic
description matching) yielding cebject recognitions or scene
descriptions.

Appendix H reviews real-time visual tracking, needed for

ot

guidance, assembly and other tasks.
A glossary of terms in coumputer vision is given in Appendix

K. Publications sources for further information are listed in

Appendix L.

ey s g 1 g v e 4
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II. DPefinition

Computer (compututicnal or machine) vision can be defined as
et s W

m——e = —————)

perception by a computer based cn visual sensory input.

Horn (1979, pp. 70-71) characterizes machine vision (from a
robotic orientation) as follous:

An optical system forms an image of some three-
dimensional [3-D] arrangement of parts. The two-
dimensional [2-D] image is sensed and converted into
machine readable format. It is the purpose aof the
machine vision system to derive information from this
image useful in the execution of the given task. In
the simplest case the information sought will concern
only the location and orientation of an isolated
object-~-more commonly, objects have to be recognized
and their spatial relationships determined. This_ ¢
be viewed as a process in which a description of the
scene being viewed is developed from the raw limage.
Tir—aescription has to be appropriate to the particular
application, That is, irrelevant visual festures
should be discarded, while needed relationships between
parts of objects must be deduced fram their optical
projection.

Barrow and Tenenbaum (1981, p. 573) enlarge on this fren a
more general viewpoint, stating:

Vision is an information-processing task with
well-defined input and output. The input consists of
arrays of brightness values, representing projections
af a three-dimensicnal scene recorded by a camera or
comparable imaging device. Several input arrays may
provide information in several spectral bands (color)
or from multiple viewpoints (stereo or time sequence).
The desired output is a concise description of the
three-dimensional scene depicted in the image, the
exact nature of which depends upon the goals and
expectations of the observer. It geuerally involves a
description_of objects and their interrelationships,
bTt may also include such information as the thiree-
dimensional structure of surfaces, their ph231cal
chiracteristics (shape, texture, color, material), and
the locations of shadows and light sources...

nadows

In this report, we will follow the lead of Ballard and Brown

(1982, p. 2) and define Computer Vision as "the enterprise of

automating and integrating a wide range of processes and
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representations used for vision perczption.® The emphasis will
Cve

be on generating a description or an unprp&aﬁding of the scene

from which the image was cbtained. The next chapter will enlarge

on this point of view.
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III. Origins of Computer Vision

Camputer vision ig bascd largely an ldezs from three related
Sypm— —————————  ————

——

fields: image procescing, patitern recognition and scene

analysis.

e e

Rosenfeld (1981, p. 596 states that, "In image processing,
the input and the output arc both images with the output an
improved version of the input."™ 1In preprocessing we have gray-
scale mndification (usually to normalize scene brightness and
contrast), sharpening (to restore the weakened high spatial
frequencies) and smoothing to remove noise in the image. If two
images have to be compared, they may have to be registered (i.e.,
geametrically transformed to make then congruent) before matching
them.

In pattern recognition the input 1is the image, but the
output is a description of the image based on a priori knouledge
of expected patterns. The computer usually starts with a list of
brightnz2ss values associated with the array of hundreds of
thousands of pointc corresponding to the image. Recagnizing a
pattern means replacing this mass of undigested data with a much
simpler more useful description., Houwever, it is wusually
impractical to search directly for examples aof the patterns we
are interested in this array of intensity values. Instead, it is

often more convenient to first search for examples of simpler

patterns (such as edges and regions), referred to as features. A
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simplified dcsceription of the imsge constiructed from these
features can then ve used 23 the basis for nattern recognitionb.

Scene @gg&gﬁif_is concerned with the transfarmation of
simple features into abstract descriptions relating to objects
that cannot be simply recognized based on pattern matching.

Brady (1981A, pp. &-5) referring to scene analysis as inmage
understanding (IU) expands on the differences between pattern
recognition and iU, observing that %ypically pattern recognitien
systems are concerned with recognizing the input as one of @

usually small set of possibilities. Pattern recognition systems

are nostly concerned with images of basically two dimensional

objects. When the images are of three dimensional objects, such.

as engine parts, they are effectively treated as two dimensional,

by considering each stable position as a separate object. In.

contrast, IU has dealt extensively with three dimensional images.

S SIAL PAG S T

More significantly, pattern recognition systems typically

operate directly on the image. 1IU approaches to most visuzl

processes (e.g., stereo, texture, shape from shading), cperate

not on the image but on symbolic representations that have been

computed by earlier processing such as edge detection.

Arden (1980, pp. H482-U483), taking a historical perspective,

contrasts the pattern-recognition ard the IU or AX apprbach as

follows:

® Pratt (1978, pp. 568-569) indicates that in many cases for
simple objects in uncluttered imagery, it is feasible to extract
needed features by transformations of the images (e.g., using a
two dimensional Fourier transform). The resulting feature space
can be partioned into regions for classification into objects,
based on prototypes.
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Sinc: the carly sixtics there has been a marked
divergence betwaeen the pabttern-recognition and AL ap-
proaches to computer anzlysis of images. The former
appraach has cantiauad to stress the use of ad hoe
image features in combination with statistical
classification techniques. More recently, use has becn

made of "syntactic" methods in which images are PR
A ——— S vt q s
recngnlzed'éy a u arsing’ process as being built up
hTeérarchically of primitive constituents. By contrast,

the AT approach has employed problemwsr)lvingA'I
methodologies based on extensive use of knowledge about

the class of images, aor "scenes," .o be analyzed...

Much of the work on conmputer vision has dealt with
images of scenes containing solid objects viewed from
nearby. These are the sort of images with which a
robot vision system must cope in using vision to guide
its motor activities, including manipulation and
locamotion. The analysis of such images 1is usually
called "scene analysis," to distinguish it from the
analysis of 1mages that are essentially twuo-
dimeénsional, such as photomicrographs (which show
¢rass-sections), radiographs (which shew projections),
satellite imagery (in which terrain relief is
negligible), documents, diagrams, maps, and so on. The
methods of computer vision, however, apply equelly to
these latter classes of images; the term nced not bhe
restricted to three-dimensional sceéne analysis.

In this report we will only treat image processing and louw-
level vision to the extent needed for image understanding.

Pattern recognition, which has broken off from AI and has also

become a separate field, will also be given minimum treatment.

To a large extent, the terms scene analysis, inmagse

understanding, and computer vision have become synonymous. The

more advanced vision systems have a strong AI flavor, being
heavily concerned with symbolic pracesses fqr representing and
manipulating knouwledge in a probfém solving mode. Though vision
systems that primarily depend on paticrn recognition techniques

are also treated in this report, the intent is to concentrate on

the knowledge-based scene analysis (IU) approach which is the

major focus in AI computational vision.

——
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will Bricfly-1ddk at the relation

that human vision has to the AI approach to computer vigion.

10




¢

Lo
-

AT

IV. Relation to Huwman Visio
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MITfe Marr and Nishihara (1978, p. 42) take the view that
"Artificial Intelligence i3z (or ought to be) the study of infor-
mation pracessing problems theb characteristically have their
roots in some aspect of tilelogical information processing. They
developed a computational theory of vision based on their study
of human vision., Figure 1 represants the transition from the raw
image through the primal sketch to the 2-1/2D sketeh (indicated
in Figure 2), which contains information on local surface
orientations, boundaries, and depths. |

The primal sketch, reminiscent of an artist's hurricd
drawing, is a primitive but rich description of the way the
intensities change over the visual field. It can be represented
by a set of short line segments separating regions of different
brightnesses. A list of the properties of the lines segments,
such as location, length, and orientation for each segment can be
used to represent the primal sketch.

The late Dr. Marr and his associutes® developmentbnf a
humin visual infarmation processing theorv (Marr, 1982} has had a

substantial impact on computational visian.

1
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A Framework for Early and Intermediate States in
A Theory of Visual Information Processing

;o] Disparities Stereopsie Local
in a Stereo Depth
N‘ Pair
- Structure
5 Disparitiec |} From Hotion Local
=M in Succeaeivi ' Depth
3 Twages d P
Raw Primal Surface . 2-1/20
o Orientation
: Inage . Sketch | Local e Shading Conetraints Sketch
. Intensity on Local
Gradients Orientacion
I T TT T 1
N — Tl :— cewr,  comemmy  womed, o :
tH ] [}
S b e : !_ ——,— o d
o
- e et
— :_ o mes smwa | ‘,: :
b | R
i Intensity Representations Vigible Surface Reprosentaticns

The computations begin with representations of the intensities in
an image-~first the image itself, (e.g., the gray-level intensity
array) and then the primal sketch, a representation of spatial
variations in intensity. WNext comes the operation of a set of
modules, each employing certain aspects of the information
contained in the image to derive information about local
orientation, local depth, and the boundaries of surfaces. From
this is constructed the so-called 2-1/2 dimensional sketch. Note
that no "high-level"” information is yet brough to bear: the
computations proceed by utilizing only what is available in the
image itself. '

Source: Marr and Nishihara, 1978, p. u2.
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A candidate for the so-called 2-1/2-dimensional sketch, which
encompasses local determinaticns of the depth and orientation of
surfaces in an image, as derived from processes that operate upon
the primal sketch or some other representation of changes in
grayv~level intensity. The lengths of the needles represent the
degree of tilt at various points in the surface; the orientations
of the needles represent the directions of tilt... Dotted lines
show contours of surface discontinuity. No explicit
representation of depth appears in this figure.

Source: Marr and Nishihara, 1978, p. 41,
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Barrow and Tenenbzum (1981, pp. 579-580) alszo seék"fhéights
inte the organization of a high~performance, general-purpose
visual system from observations of the behavior of the human
visual system. They observe that a person looking at a natural
scene, such as the landscape, is aware of many intermediate
levels of desceription, such as surfaces, volumes, and shadows.
Over a2 wide range of viewpoint and illumination, a persan can
readily estimate quite accurately such local surface

characteristics as reflectance, color, texture, distance, and

orientation, as well as such glébal characteristics as size, and

fﬁﬂﬁf' Boaundaries are seen not merely as intensity
discontinuities, but as physically significant events--
discontinuities in distance, orientation, reflectance, incident
illumination, and so forth. Humans also experience imnediate
global perceptions: the type of scene (landscape), the dominant
orientations of the support blane and the gravitational vertical,
the direction of illuminaticn, and the viewpcint with respect to
these. Thus, what a person sees are intrinsic characteristics
of three-dimensional surfaces, not transient features of a two-
dimensional image as observed under a particular set of viewing
conditions.

They also note that perception by humans of surfaces and
surface dboundaries does not appear to depend critically upon

contrast nor familiarity with the specific objects depictsad.

There are stroag indications (c.f, Gevarter, 1977) that the

interpretative planring areas of the human brain set up a context

o ———

for pracessing the input data. (This is captured by Minsky's

(1975) AI "frame" cancept for knowledge representation). The

14
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brain then uses visual and other cues from the environment to
draw in past knowledge to generate an internal representotion and
interpretation of the scene. This knowledge-based expectation-
guided approach to vision is now appearing in the advanced AI
computer vision systems (discussed in later Chapters).

Barrow and Tennenbaum suggest that insights gained by
studying human vision, coupled with experience resuliing from
building machine vision systems, can provide the hasis for a
computational model of visual processing. Their zpproach to a
general purposc computer vision systenm Qill be pursued in Chapter
Vi, but now we pause to motivate this pursuit by bricfly
reviewing applications of computer vision already underwvay in

this rapidly growing field.

15
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V. Applications

Brady (19814, p. 2) statec that, "There is currently a surge
of interest in image understanding on the part of indust.y and
the military." Current computer vision applications, primarily

taken from Brady (1981A, pp. 3-4), are listed in Figure 3.
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Examples of Applications of Computer Vision Now
Underva
AUTOMATION OF IHDUSTRYAL PROCESSES

Object acquisition by rabot arms, {or example scrting
or packing items arriving on conveyor belts.

Automatic guidance of seam welders and cutting tools.

VLSI-related processes, such as lead bonding, chip
alignment and packaging.

Monitoring, filtering, and therecby containing the
flood of data from oil drill sites or from seismographs.

Providing visual feedback for automatic-assembly and
repair. :

INSPECTION TASKS

The inspection of printed ciruit boards for spurs,
sharts, and bad connections.

Checking the results of casting processes for
impurities and fractures.

Screening medical images such as chromosome slides,
cancer smears, x-ray and ultrasound images, tomography.

Routine screening of plant samples.

Inspection of alpha-numerics on labels and m. .uracturad
items.

Checking packaging and contents in pharmaceutical and
food industries.

Inspection of glass items for cracks, bubbles, etc.

REMOTE SENSING

Cartography: the automatic generation of hill-shaded
maps, and theregistration of satellite images with
terrain maps.

Monitoring traffic along roads, docks, and at
airfields.

Yanagement of land resources such as water, forestry,
soil erosion, and crop growth.

Exploration of remote or hastile regions for fossil
Tuels and mineral ore deposits.

17
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Figure 3 {ccnt.) :
. MAKING COMPUTER FOWEK MORE ACCESSIBLE
Management information systems that have a
conmmunication channel considerably wider than current
systems that are addrszazsed by typing or pointing.
Document readers (for those whe still use paper).
Design aids for architects and mechanical engineers. :
. MILITARY APPLICATIONS
Traciking moving objects.
Automatic navigation based on passive sensing.
Target acquisition and range finding. |

. AIDS FOR THE PARTIALLY SIGHTED

Systems that read a document and speak what they read.

Automatic "guide dog" navigation systems.
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al Purpos» insge Understanding System

Barrew and Tenenbaur {1981, p. 573) observe that in going

from a scene {o an image (an srray of brichtness values) that the
Tpem—— A
“imdfe ericodes much informotion aboubt the scene, but the
Y= )
information iz confounded in the single brightness value at_ each

point. In projecting onte the two-dimensional image,

——————

information about the three-dimensicnal structure of the scene is

lost. In order to decode brightness values and recover a scene

description, it is necessary to enploy a priori knowledge

embodied in models of the scene domain, the illumination, and the

imaging process.

Scene models can be devised tc describe the three-

dimensional world in terms of surfaces and objects.

Illumination models can be utilized to describe the primary

————,

light sources, their positions, spatiazl extents, intensities,
colors, and so forth.

Sensor models descrive the photometric and geometric

properties of the sensor, which can be used to predict how a
particular scene, observed frem a particular viewpoint and under
parbiculér illumination conditions, is transformed into the two-
dimensional array of brightness values that constitutes the
input.

As indicated by Figure &, computer vision is an active

e

prccess that uses‘these models to interpret the sensory data. To

-—

accommodate the diversity of appearance found in real imagery, a

high-performance, general-purpose system must embody a great deal

—

of knowledge in its models.

ORIGINAL PAGE i3
OF FOOR QUALITY
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Source: Barrow and Tenenbaum, 1981, p. 573.
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The next three chapbors revicw the work inm devising compuier
vision systons. Chaptc? YIT discucsos paradigms for cempuier
vision systems. Chapter VIII presents the levels of
representation apprapriate to high performance systemns. Chapter

IX revieuws resecarch efforts in bullding such systems.
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VII. Basie Porodipns for Sumﬁ"te? Yiniond
X .

In broad Seras, ua fuags understanding systen storts with

thoe arrgy of pixel amplitudes thot defing the somputer inage,

——

and using storad wmeodols (eithor speeific or gencric) determinec

Lhe con%tent of a neceno. Typically, various syvcbolic features

such as lines and arces are first determined from the image.
These are then conparcd with similar feoatures associated with
stored models to find » nateh, when specific objects are belng
sought. In more, generic cezes, it 1s necessary to deterﬁine
various characteristics of tho scene, and using generie nodels
deternine f{ron geonetric shapes and other factors (such a3
2llowable relationships between objects; the nature of the seene
content.

A variety of paradigms have been preposcd to accopplish

these tasks in image uvnderstanding systeuws. These paradigms are

based on & conmon 3¢t of broadly defined processing snd

manipuliating celements: feature ex trac.xon, syabe
o IR _’_,...—-—a-—-—-’

representation4 and qemantic interpretation.w_xhe poradigne

e 7 e R D i L L

\ o e A T

differ priamarily in how these elenents (defined below) are

SV

——— s A 1 o7 s i e 5 et

organized and controlled, and the decpgree of artificianl
intelligence and knowledge employed.

A. Hierarchical-Bottom-up Approach

Figure 5A is a block diagram of a hierarchical paradign of
an image understanding system thaet employs a bottom-up processing
approach. First, primitive features are extracted from.the array

of plcture element intensities that constitute the observed

“This chapter is primarily based on Pratt, 1978, pp. 570-5TH4,
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Source: Pratt, 1978, pp. 570-574.
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image. Examples of such featurecs are plcture elemcnt ("pixelM)
amplitudes, edge point lacations and textursl descriptors.

8 Next this set of featurcs is passed on to the semantic
L interpretation stage where the {eatures are grouped inte symbolie
representations, For example, edge points are grouped into line
segments or closed curves, and adjacent reglon segments of commen

attributes are combined., The resultant symbol set of lines,

3 M e
e 2 g e PTG R T

regions, etc., in combination with a priori stored models, are
then operated upon (i.e., semantically interpreted) to produce an
application dependent scene description.

Bottom-up refers to the sequential processing and control

i operation of the system starting with the input image. The key

g to success in this approach lies in a sequential reduction in

AT

dimensionality from stage to stage -- vital &3 the relative
processing complexity is generally greater at each succeeding
stage. The hicrarchical bottom-up approach can be developed

successfully for domains with simple scencs nade up of only a

iR e G i J e hes

limited number of previously known objects.

B. Hierarchical Top-down Approach

3 This approach (usually called hypothesize and test), shown
- in Figure 5B, is goal directed, the interpretation stage being
guided in its analysis by trial or test descriptions of a scene.

An example would be using template matching -- matched filtering

~= to search for a specific object or structure within the scene.

Matched filtering is normally performed at the pixel level by

T
it tveounitis oA MW IIN-SIRORCRUR

crass correlation of an object template witn ar abserved image
field. It is often computationally advantageous, because of the

reduced dimensionality, to paerform the interpretation at a'higher

24




level in the chain

rather than pizels,

br correlating image features or symbols
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C. Heterarchical Anproazsh

Hierarchical {image understanding sgystems are normally
designed for specific applications. They thus tend to lack
adaptability. A large amaunt of sraceszsing is alse usually
required. Pratt (1978, pp. 572-573) observes that often nuch of
this processing 1is wasted in the generation of features and
symbols not required for the analysis of 2 partiéular scene. A
techniqus to aveid thig problem is to establish a central monitor
to observe the overall performance of the image understanding
system and then issue comﬁands to the various system elements to
modify their operation to maximize system performance and
efficiency.

Figure 5C is a block dlagram of an image understanding
system that achieves heterarchical operation by distributed
feedback control. If the semantic interpretation stage in the
model experiences difficulty in working with its input symbol
set, control can be fed back to the symbolic representation stage
to request a new set of symbols. This action in turn may result
in a2 command to the feature extraction stage requesting a
madified set of features. When required, direct feedback control
is also possible between the semantic interpreter and feature
extractor. This paradigm provides an important auxiliary benefit
in addition to flexibility. That is, the dimensionality of the
feature and symbol sets can be kept at minimum levels because the
sets can be restructured on command.

D. Blackboard Approach

Another image understanding system configuration called the

blackboard model has been propoesed by Reddy and Hewell (1975).

26




Figure 5D is a simplified reprosentetion of this approach in
which the varioua systen elewents comntunicate wilth each other vis
a conmmon working deta storage cailed the blackboard. Whenever
any element performs a task its output is put into the conmnmen
data storage, which i3 independently accesasible by all other
elements. The individuzl aelements coan be directed by a central
cantrol, or thev can be designed to act sutanomously te further
the comman system gonal as required. The blackboard system is
particularly attractive in caces whera several hypotheses must be
considered simultaneously and their components need to be kept

track of at various levels of representation.

27




VIII. Lavels of Repru:

A computer vigion gvaeten, like'humnn visicn, i3 comnonly
considered to be noturally structured as a succession of levels
of representction. Tencnbaun ¢b al. (1279, pp. 242-243) suggezts
the following levels {lizted Iroc low to high):

Inages

Pictorial features

Intrincic surfaces and bodies
3-D surfaces and bodies

Speece map

Syubelic relationships

Tenenbaun et al. contrast thias with currcent industrial
vision systems relying heavily on detailed nodels of particular
objects to accomplish tasks, cmploying levels of:

Images .

Pictorial features (Edges & Regiong)
2-D feature attributes

Objects (specific 2-D views)

Current industrial systems usually begin by thresholding the

original gray-level image to obtain 2 binary arrey. Pictorial

features (regions or edges) are then extracted from the gray-
level or binary image and equated with surfaces or surface
boundaries. These 2«D attributes of these pscudo-surface
featuras are then symbolically matched against 2-D models
(represcenting specific views of expected objects) to achieve

recognition. As these industrial systems rely on prototype 2-D

representations of'anticipated objects, they are very limited for

use in more general environments.

Barrow and Tenenbaum (1981, pp. 580-581) suggest the levels
given in Figure 6 as those appropriate to a general-purpose
vision system. The processing steps in the figure that transform

each level of representation to the ncxt require Kknowledge from

28




models;aﬁ:ﬂhe'ﬁh§piés of ¢he imaging proceseg, the {llunminction

PRI

1)

and the‘gécnb.. At the lewer levels; these medels help resolve
the ambigulity associated with going from a three dimensional
world to a two dimensional inage. At the higher levels, these
models provide a foundatien for eorganizing surface fragments into

recognizable objects.
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., The dnput madels reguired to do ¢he proceysing ab each level
'g?g%ﬁﬁgé;rﬁ;!the right. On the 1lzf¢ are shoun the tasks for
which vision can be used af each lavel of processing

Tenenbaun, ¢t al., (1879, pp. 25/1=255}), aketch in Flgure 7
another way in which te vieuw an ercaﬁization of a vision gystem.
They divide the figure inte two partu. The first is image
oriented (iconie), domsain independent, and based on the image
data (data driven). The second part of the figurs is symbolie,
dependent on the domain and the particular goal of the vigion
pt acess.

The first portion tskes the image, which consists of an
array of intensity of picture elements ("pixels," e.g.,
1000x1000), and converts it into image featurcs such as edges =nd
regions. These are then converted into a set of parallel
"intrinsic images"™, one each for distance (range), surface
orientation, reflectancef; etc.

The second part of the system segments these into volumes
and surfaces dependent on our knowledge of the domain and the

goal of the computation. Again using domain knowledge and the
constraints associated with the relations .among objects in this

domain, objects are identified and the scene analyzed consistent

with the system goal.

®Fraction of normal incident illumination reflected.
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Revieus of the rerrazentetion uethods and techniques for

.

perfaorming the eperations indicated in Figure 7 are given in the

appendices,
The next chapter (Chapter IX) provides an overvieuw of

research in model~bazed visien gystams. These systems endeaver

to start with an image and produce, using a prieri models, a

desired description of the original scenc, thereby spanning the

complete hierarchy of Figure 7. The svstems are constructed

using the varicus representations, techniques and models reviewed

in the appendices.
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iX. Reacarch in Hodel-based Vision Svatens

Host research efferis 1o visien have been directed at
explering various aspacis of visien, or teward generating
particular processing medules for a step in the vision process

rather than in devising gencral purpose vision systeams. However,

there are currently two majer U.3. effortz in general purpose

vision systems: The ACRONYM system at Stanford University under
‘ - - ————

>

L

the leadership of T. Binford, ond the VISIQHS system at the
University of Massachusebtts at Amnerat under A. Hanson and E.
Riseman.

The ACRORYM system, outlined in Table II-1, is designed to
be a general purpose, modcl-based gysten that dees its major
reasoning at the level of voiumea rather than images. The system
basically takes a hierarchicel %top-dewn approach as in Figure 5Sc.
ACRONYM has four essential pavta: modcling, prediction,
description and interpretation. The user provides ACRONYM with
models of objects (modeled in terms of volume primitives called
generalized cones) and their spatial relaticnships; as well as
generic models and their subelass relationships. These are both
stored in graph form. The program automatically predicts whien
image features to expect. Description is a bottom up-~process
that generates a model-independcnt description of the image.
Interpretation relates this description to the prediction to
praoduce a three-dimensional understanding of the scene.

The VISIONS syatem outline in Table II-2, can be considered
to be a working tool to test various image understanding modules
and approaches. Rather than using specific models, its high

level knowledge is in the form of framelike "schemas" which
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reprecgent expectations and eupecited relationships in particular
scone situaticns. VISIORS is based on monocular images and does
its reasoning at the level of images rather than volumag::~v

Other research efforts in model-based vision systéméiéhe.
summarized in Tables III in Appendix I.

It will be observed that ezch system is individually crafted
by the developer to refiect the developer's backpground, interests
and domain requirements. All, except ACRONTH (and to an extent
MOSAIC), use image (2-D) models and are vieuwpoint dependent.
Models are mostly described by semantic.netuorks, though feature
vectors are also utilized. The systems capitalize on their
choice to limit their observations to only a few objects, by

using predaminantly a top-down interpretation of images, relying

heavily on predictian.




Developer: Brocks et 2. (1979), Brooks (1581)
System: FLRTATH
Purpsose: General Purpose Yigicon Systen

Exsaple Domaing:

Table 1I1-1
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Fodel-2ased Vistcn Systeas

Idzntifying Alrplenes cn & Rumay in Aerfal Imyges

Stz3lation for Pebot Systens &nd for Jutocated Crasping of (Dlzcts

Arproech

zdeling

Tcage Featere
€xtrsction & Ronrosentaticn

Y e

HENAR ¢SmO

Search & Fatehing

T e 3 e i P T B R T m‘w"?f.’"

Reasris

Hiearchkeltop down aporosch.,

Resscns betrmen different lesels of representation
bssed on 3 hierarciyof representations.

High Teval mcdeler provides a high level language
to manfrulate sodels using sy=bolic nezes,

Predictor gnd Plenner Fodule 3 a rale-bssed systea
to gererate 2n fservablility Graph from the
Ghiect Graph (3-0 obfect representaticn consisting
of ncdes and relational ares).

Azkss pradictions (which are viexsolint Insensitive)
fn the forn of syubolic censtraint expressions
with yarigbies.

Rakes & projective transformatfon from sodels,

Predicts apprararces of madels tn ‘xiqes In terms
of ribisns end ellipees,

Incerporates translaticn snd rotatfon {nto observe
ehle representations,

Searches for §nstznces of models in s.
exploys gesmrtric reassning in the forz o7 3 rule
based pretles-solving systen.

It fnterprets (mstches) in 3-D by eaforcing
constraints of the 3.0 modal,
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frea which su*~Tasses snd
spzcific cdjoets sro reore
sented by maioric
constraints

Fadals 3-D chjects using
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1224 con2s 50d ritions.
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generie volums elements
ard r2latices botwzeon then
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rather thun viczor-centered
pricitives.
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Surfsces shtalncd from o
sterco Rapeer.

—
Sodes of the Plcture Graoh
(sy=lolfc versicn of frage
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surfcces end curves,

Arce snd relatisrt indi-
cete spatfal riistions
botucea rodes.

Fatshor docs 2 intercretn-
ticn matehing by moppiag
the Giscrvatlifty Graph
§nto tio Picture Sreph.

fatcher warks iR 2 Cosrse
to fire ordeor.

Corbings Yozl matchey of
riblons fsto clusters.
Srarches for maxiza? sub-

sragh catchos 1n the

Ciservebiifty Gragh.

Perforzs oajor interprola-
tisn at ¢~ Tcge] n§
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Developer: Hznson & Riseman (1978b,c)
Sjstcms: YISI0H3
Purpose: Interpreting static monocular scer2s

Kouse scenes from ground Tevel

Exsmple Domains:
Road scenes from ground level

kpproach

Modeling

Tatla 1f-2

ficdel-Based Vision Systans

Can be considered to be a working tcol to test various imsge understanding modules and spproaches

Irage Fosture
Extraction A feprescrtatien

(oMo
A
e
G2
0 %
%
o
(ol
» @
- m
’1-.'
<&

4

tses a hierarchical modular approach to represents-
tion and control.

Tries to be as gensral as possible to allow both
tottom-up and top-down soluticn hypotheses &3
viell as varjous intermediete combinations

Inzorporates the flex{bility to utflize varfous
feature extraction rodules and multiple knowiedge
seurces &5 required

Allcws for the oosstbilfty of generating and
verffyfing hypothzses along many paths

Hierarchical structura

Scene schezas (ke frezes)
sre the highest represents
tiun

Hierarchyis:

~schifmas

-chiects

~voluzes

~surfaces

Proposed representatfcns
of 3D surfaces and volines
include:

-gencralized cylinders
-surfece patehes with
cubfc 8B-splines
to represent
boundary and
blernding functions

tmploys semantic netiworks

-nzdes represent
primitive entities
tobjects, concepts
situations, etc.)

-tabeled arcs re-
present relation-
ships betwzen
then

Uses both edqe firding and
reqgion qrosing to seguzat
the fecge ints 2 layered

directed gragh of reglorns,
1ne seguents end vertice:

ses a Kfarsrchical pvo-
cassfrg cona (mrosid) to
Y2 ghie to herdle juege
4ata atl verinus Tovels
of resciuticn

Uses a relaxaticn approsch
to orginfze cdyrs Into
toundaries, and pixel
clusters fnto rzglore,
using high-Tevel systen

" guidenca ({nterpretaticn
quided seqzentation)

a wost probable soluifen.,

Sesrch & Exteting Rezaris
generates a2 storis Systez {(Faros,
sartfal wolals In 1633y did erazonall

terte? {of ths € w2l 4o srking 2

prograssing Yangjuage} ¢rude segrontalisn
which provide a histery of a louse s2eae
of declsfons to b2 used

sshan Lacktracking iz Yiexpatnt Cepondent

nezesrery

Seiema uned danenis

Yses o meltiplo tooxladse | os spocific wmung,

source katerarchicad
sprrosch xhich generates
particl ood2ls in the
search spoce of models.
Attazots, vsing tep-duwm
and tottzm-up reloxation
techniques, to converge on

lses rules for fccussing
on an element of & task,
expanding that eleaent
by gererating new
hypotheses and verifying
new hypotheses.
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X. Industrial Vision Systeos

A. Ceneral Characterigticu

The prominent zspect of industirial vision systems , in

distinction to wore general vision syctenms, is that they cperate

in a relatively known and structured environment. In addition,

the situation (such as placcment of cameras and lighting) can be

configured to simplify the computer vision problem. Usually, the

number and nature of possible cbjzety will tend to be restricted,

and the visual system will be tailored to the function perforned.

Thus many of them are based on a pattaera recagnition, rather than

an image understanding approach. Industrial vision gystenms are
L

P m——————

characteristically used for such activities as inspection,
manipulation and assembly.

In an inspection taslk, the fccus i3 on deviations from a

standard, and usually little or no information is needed for
>Lbandert

identification. A manipulator controller, designed to pick parts
off a conveyor, needs to be able to deternaine the identity,
orientation and position of parts, hut needs to know little of
their precise shape except, perhaps at the grasp peint. A visual
controller for an arc welder will have its focus on the sean
properties and needs little information aboui the appearance of
the parts.

Kruger and Thompson (198%, p. 1525), in discussing the
design of industrial vision systems, state:

The complexity of moast perceptual tasks requires
that the problem be decaomposed into manageable
subunits. Thus major design decisions include the
function of each module, the computational techniques

and data representations imbedded in each module, and
the control structures that relate modules and transfer
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infermation betucan the

. Host computer vigion systems
use a hierarchlcal ergan

ization...

A popular organization for indushrial conputer vision is a
two-stage hierarchy with a bottom-up cantrol flow. The lower
level segments the imége into regibns corresponding to abject
surfaces. The higher level vuses this segmentation to identify
oblects from their surface descripﬁions.

In practice, most successful systems incorporate aspects of
both bottom-up and top-down control. The bottem-up processing is
used to extract prominent feaotures of a part to determine its
position. Then, top~-doun control is used to direct a search to
determine if the part satisfies an inspection criterion.

Industrial inspecticn and assembly operations are well
suited to model-based analysis, because of the well-defined
geometric descriptions associated with manufactured itens.
CAD/CAM technology allows the specification of objects using
either volumetric or surface-based hodels. These geometrically
based mndels are particularly appropriate to the hypothesis-
verify approqch, in which low-level image features are extracted
and matched to an appropriate computer generated 2-D
representation.

In addition to geometric models, objects may also be
represented by graph;. In this case, recagnition becomes a
graph-matching process.

More commonly at present, rather than using geometric models
or graphs, industrial vision systems are taught by being
presented sample parts to be reccgnized in each of their expected

stable states. Aspects of the resulting images are typically
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stored as templatee, and recoegnition beeomes template matching.
The objeéts can aiso be trenrescnted in terms of thelr
characteristic features, such ag area, nunber of holes, etc., and
the resulting featurg_vector stored to be matched (via a scarch
pracess) to the corresponding extraected feature vector of the
image during system operation.

To simplify industrial vision aystems, the {EEEE_EE,BEEELAV
reduced to a binary (black and white) image, so that objects

—

appear as silhouettes. Sinmplicity is imporitant in industrial

vision systems because the computaiion time is limited, as most
systems are expectod to operste in near real time.

B. Examples of Efforts in Indusirial Visual Inspection Systems

Table IV (based largely on Kruger and Thompson, 1981) lists
some example efforts of vision systems designed for inspection.
The systems listed are primarily for the inspection of printed

circuit boards and IC chips, with template matching being the

predominant inspection_ approach.

i

Kruger and Thompson (1981, p. 1529) note that: "Automated

visual analysis has also been applied to the inspection of
surface properties such as roughness, scratching and other
potential defects. The best successes have come with highly
specialized illumination and sensing systems, specificaily
tailored for a particular application. Recently, greater
sophistication in the modeling of the imaging process has lead to
prototype surface inspection systems with the prodise of
increased generality."

Chin (1982) has recently published an extensive bLibliography

on automated visual inspection techniques and applications.

4o
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Deveiopar
Purpose
Sample Dowains

-

Tetla IV

Exannle £fforis  In irdustrial Visual Inspection Systems

Appruach

praw

icdgiing end
Renresentatie

Baird (1573)

Inspecticn

Automated manufscture

of power transistor-pair
1€ chips

GM

Inspection process consists of
1) Detectica of thz 1€ lucetion and orieatation on the heat-sink

substrate
2} CQuality control zscescment avter zcquisition

A gradient edge detector is used to compile the histogrem of all edge
directions {n the inspection ¥ield. Peak of this histogrem indicates
the spproxicete orientaticn of the chip

Hext the cornars cf the IC zre tocazted by tomplate matching.
corners not located, the IC rejected

Crocked, fractured chips are clininated by o simple contrast threse
hblding operation .

If eny

Inspaction field
consists cf a S
pixel region
digitized to 16
gray levels

Templates for IC
corners

Chin, Harlow & Dwyer (1977)
Inspection
PCB's

U. of Maryland

Training Phase

Use an cuerator-intaractive model-building graph proccdure to train
the {nspaction systen

Using en fnteractive cancra/dispiey system, the binery {mage edges of
of a prototype PCY board gre detected, cmoothed to reduce nofse, arnd
encoded into a compact data structure.

Inspection Phase
Hatching (sgtinst prestored edges end the grach model){s used to detect
flaws in tzst images .

Edges, Graph ¥od

Krakauer & Pavlidis (1973)
Inspection
Mass-Produced PCB's

Princeton University

Ingenfous use of binary template matching using a Vimited rumber of
well-chosen templates accessed via a rapid Yoskup technique

Rinary Templates

Jarvis (1980)
Inspection
HMass-Produced PCR's

Bell Labs

1) Local pattern matching to stored hinary temnlates
2) Supplomental tests for susp’cious reqfons

-Computation of conductor area
-Length of the conductor-substrate boundary
-ratio of area to length

Processing done with simple 1o ical operations

List of Sx5
pixel birery
templates

Hseih & Fu (1979, 1930)
Inspection and wirebonding
guidance

Multi-layered IC chips

Purdue University

Inspection paredigm for proposcd systoa fs{for the most nart)top-down
land model~ériven using a tree-1{ke syntatic approach

arfous inspection algeritims are called for based on the actions of a
centroller, which monftors the whole vision process

First, the {mage goes thru a serfes of task and context-dependent filters
to reduce ambiguities

Then, 8 special purpose defect detectors are used, 35 required

Dasfgn and
{nspecticn
specification
the form of &
descriptive da
base

Six subpattern
masks
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C. g of Efforts in Industrial Visual Recognition and

Examples of
'L E“ Syatens

Table V (again largely derived from Kruger and Thonpson,

1981) listz zome cxample efforts of vision sysctems designed for
industrial part reccogniticn and location. &ll thease systems use a
bottom~-up appreach. It will be cbserved that (except for Vamos
1979, and Albus et al., 1982) these systcms utilize template or
feature vector matehing. Vamos does work from s 3D wire frame
mod2)l which utilizes ccmputer graphics type techniques to
transform a model projeeticn into alignment with observad lines
in the image.

Albus' Machine Vision Group in the WBS Industrial Systems
Division is using simplificd 3D surface models of machined parts
to generate expectancy images {rcm necded viewpoints. The group
is sceking to achieve real-time, hierarchical, nulti-sensory,
interactive raobet guidance.

D. Commercially Available Industrial Vision Systems®

Table VI in Appendix J lists many of the Industrial Vision
Systems that are currently commercially available. Most of the
systems require special lighting.

It will be observed that many of the systems designed for
verification and inspection use pattern recognition, rather than
Al techniques. The systems tend to be bottom-up because of the
speed requirements to achieve real time operation. Often unique
edge and feature extraction algorithms are programmed in hardware

or firmware.

¥iddditional information can be found in Gevarter (19824).
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" Developer
oy Purpose
- Sampie Domains

Table V

Example Efforts in Industrial Visual Recogniticn and Location Systems

Approach

Hodeiing and
Representaiion

e - B i bare -

Agin (1980). SRI
SRI Vision Module

?ﬁ Locate, identify and quide
»2 manipulation of industrial
parts

Engine Parts

Bottom-up approach
Uses thresholding to convert to a binary image

Each 1ine is sequentially scanned and edge points (where pixels change
form 1 to 0 or 0 to 1 recorded). Each resulting segment on a Tina
is matched to the previous line to determine their overiapsing
relationships. Using these relationships, the program traces the
appearance and disappearance of blohs (regions) as the image is
processed from top to bottem.

Using blob descripters, the system can recognize parts regavdless of
their position or orientation. The descriptors are matched using
either a binary decision tree or a normalized nearest-neighbor
method.

The system is trained by repeatedly showing the object to the TV camera
resulting in al11 potentially useful shape descriptions beir auto-
matically calculated and stored )

Blob descriptors
include:

~-max. and @in.
% and ¥y values

-Holes

-Area

-Moments of inertiz
-Peringter Yengih

~-Linked 1ist of
cocvdinates an
the perimeter

Kashioka et al (1976), Hitachi
Central Research Lab

Location and Bonding Guidance

‘Transistcr wire-bonding .

Template matching

Locates appropriate base and emitter leads on a semi-conductor chip
so that wires can be stretched and bonded between them )

Initially trained by man-machine interactive solection in the universe
of templates

Multiplexed computer architecture tu accommodate separate cameras on up
to 50 bending machines on a time-shared basis N

Local 12112 pixel
binary templates
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Daveloner
furpate
Saaple Cousing

Teble v (eanttruza)

Txezple Evvorse (o lezestrisl ¥ivue) Rscoonftfon and Locatfom Syttens

Apoeach

ORIZINAL pPage 13
e85 28 #
CF PoGH JUALITY

¥adeling and
Ceprezentation

HoVlend Rosso) & Berd {1979)
Consight 1

Industriel rart locsttfon,
recognition and wartpulation

fngine parts
&)

Tro Vineor TiGit sevrces supcrinpsie o 1ine of Yight oa & zenvayor belt
perprndiculer S0 fiz direction of rotion, The two lire: tertrats,
prorertionsl to tha pert p3ezing by. Paint of separatioa dotermines
part bourdary; degree of 1casratinn deternines part thickness.

The szene 12 tasged »ith a lfaser arr2y cencre and & silhoustte
cutenstizally generzted.

Uses I e YoaZupe vIIDT &Xorlodh 29 SRY Hodule.

Feature vecter of nart
{250 charzcteristicec

M8S: Albus ot o1, (1582)

Visual servoing for rotot
?uidancc (real-time

ocation and tdentification
for menfpuletion)

Machined parts
Hatfonal Eureau of Standard;

Eploys ¢ poins YIcht source, & sheets-of-structured-1igint generator
srd 8 comrre, 211 rountsd on tho wrist of & rotol ems,

Uses olterrats roses of:
Y. A regular point sourca Vlunination of the entira chiect, and
2. T paratiel plenes of structured tight,

Systen determirias location end crientavion bared ¢ triznculation
(essozieted with reletive Ralght o7 Interzaction of Tight sheets with
cart), end rezopnition based cn tnape and sizo of oSserved liresthat
the plenes of 1ight mekes as 1t {atsisects part, Uses this fnforestion
to tnterprat cutiina scon {n foegy poodeced by the pafat tourcs
f1lsatrazion,

Anslysis of vision input is porforned with a blererchicslly craentzed
group of microprocessors. At edch Tevel of the hisrarchy, and emalytic
process s guided by en eapacisncy~saneriting modaling process. Tha
rodelirg precess 13 in tum driven by a store of o priort kiowledge, by
knowledoe of the robat's tovesoats, end by featdock Trom the snalytic
procass. Each such lsvel of the hieraichy provides output to gulde 2
corraspending lavel of the rotot's hierarchicel control systea.

Uses quadratic
epproximations to
surfaces of {desidzec
3-D cbjects.

Perkins {(1$78)
Industria) parts recogniticn
Engine cemponents

[r]

Cperates on 32 gray levels
Lattom-ud sceno segnentation epprosch

1. Reduce 256x2%6 pixe) fusge to an “edge gredient® {ogge

2. Link cdges with statlar gradfant niagaftudes to form cheins

3. Craracterize chains as eithge stratght 1ines or circuler ercs.
(This reduces 65,009 pixel i=ag2 to abcut 36 conturves.)

Systen satches observed corcurves with medel csnirated concurves usfng:

1. A preset control structure o select the order in which
ccmbinstions of mcdal end scene conturves tro to by mitched,

2. Starts by ratching one model gnd ORe 3CEne CONCUFv

3. The stored mode) 1s spattally trensformed ond rotated to fit
associated scens concurves

System fntercctively trafned ty‘a nerating comturvas of saeple ports
Can tdenttfy parts partfally ncclused by other farts

Concurve cadals of
sa=ple ports

Yachida &nd Tsuji (1973)
Industrial Parts Recognition

Ronoccluded parts of a
small gassitne engine

Osaka Univ,

Uses & boundsry detection ard tsolation of parts ta
approach sin{lar to SRI Viston 'bdule‘ ’ @ Binary tmage

Recognitfon system based on a structyred step-b
the previously stored models Priratep analysis vith

Use a serfes of spectsl featurs detectors
nole detector
«1{ne finder
-texture detector
~smaull hole detector

System training involves Interacts -
Taentitrcanind dnvo ve pan-michine wxaminstion of the

Stable crientstion
sodels of parts

-ptrt razs

-orfientsticna

<143t of primitive
features

=polar ccordirate
boundary
representation

Yamos (1979)

Recognition of 30 Objects
Bearing housings
Assendly

Sheet metal parts to be
painted

Neural nets in microscopic-
section {n neural research

Hurgarian Acad, of Science

Finds edges using a simplifind virston of the Huectel-
only twa 1inaar templates " ¢ toscselmperator ustng

Lires ar2 then fitted to edges

Wire-frame model transformed (and hidcen 1ine eli=tngt
: 2instfon used) to
corressond to image — ylelding recosnition and part t;rlenteuon

Objects are fnterzctively teught to lystem either by £y -1ding @

geometric molel or by a computer-
Tt y bJ] afded transtormation ¢f viewed

33 Mire Frazme Hodals
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Tho mare scphisticated systens tonc to utiliza variations
and improvements on the HRI Vislea Hadulae doseribod in Table V.
A few syatons nake gecd use of structured light for 3D

v en Yo

sgnsing. A nuaber of cffeorts in guidance aof aro walding takle

this form.
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XI, ¥ho i Doing I%
Resenfeold, ot the Universizy of Barylaud, 155000 6 yearly
bitliography, arranged by sublest nalitor, releted to the camputer
processing of platorisl infornation. The {ssuwe covering 1981,
(Rosenfaold, 1982) includss aearly 1000 reforences.
The follouing {8 ¢ list by category af the U.S. "principal

players® in camnuter vision.

A.  Research Oricnted

1. Univoraition

Thase are shoun in Table VII.
2. Hon«Profits

SRI International, a4l Centor
JPL

3. U.S. Govarnnant.

NBS, Indusatrial 3yctems Div., Galthoersburg, MD
NOSC (llavel Ocoanh Systems Cantar), San Diego.
NIH (National Institutes of Health)

B. Commercial Visiou Syatems Devalopors

A partial listing is given In tablo VIII. It hag been
reported thot hundrads of companies are now {nvolved in

vision systems.
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Toblio VIT

University Orcenizations Enszcad ip Cemsutor Vision Reseavch

Artificicl Intzlligence and Comnuter Seienee Lzboratories Fundad Under DARPA IU Program

C.s. tzbs A1, Labs Other
il Robotics Institute
U of D X
MIT . X
U of Hass. Comp. & Info. Sci. Dept.
Stanford U _ X
U of Rochester X
usc . Information Processing
Institute
U of Rhodz Island Robotics Res. Lab

Other Active Universities

‘U of PA

U of Texas X
at Austin

VPl
Purdue

U of IL
Wayne State U
JHU E. E. Dept.

X X > > >

RPI Elec. & Sys. Ergr. Dept.




Industrial Yision Cempanies

Machine Intelligence Corp.

Robot Vision Systems
Videometrix

Object Recognition Systems
Octek, Inc.

Cognex

Spectron Engineering Inc.
Ham Industries

Guantomat

Image Recognition Systems
Colorado Video

Everatt Cherles
Inspection Technology
Yiew Engineering

Vanzetti

Autcrmatad Yision Systems
Perceptron, Inc.

Vicem Systems, Inc.
Lyberanimation, Inc.
Reticon

Table VIII

Commercial Vision System Developers

Large Diversified Manufacturars*

General Electric

Chrysler Corporation

General Hotors

Industrial Business Machines

Texas Instrurents

International Harvester
Kestinghouse -

Hughes

Lockhkeed - Palo Alto Pesearch Lcb.
Fairchild Camera and Imstrument Corp.
Martin Marietta

ticDonald Douglas Autcmation Company
Cheesebrough Ponds

*Some Systems are for in-house use only

Robot Manufacturers

Cepparweld Robotics
Unimation
Automatix, Inc.



XII. Hho Is Funding It

s

Te date, the priceipal souree of funding for compuﬁer viasion

researceh has been ohe U.S. Goverwment, which is estimated to

spend in the order of $10 nillion & year in this area.

The major U.S. Government program haa bean the DARPA Inmage

Understanding Program. Other governnent agencies funding vision

—

research are:

NSF {National Science Foundation)

NIH (Katicnal Inctitutes of Heoalth)

NBS (National Buraau of Standards)

ONR (Office of MNaval Reccarch)

DMA_  (Defense Mapping Agency)

WASA (Hational Aercnautics and Spaca Adminjiatration)
USGS (U.S. Geolegical Survey):

AFOSR (Air Force Office of Scientifio Roescarch).

It is estimated that DARPA (Defence Advanced Research

Projects Agency) spends in the order of $§L§ million dollars a

vear in computer vision research. DARPA thrusts include

automatic stereo and terrain mapping, autonomous navigation,

r——

rabat vision, symbolic reprogentction, autonomous expert image
RASMLLLALLE.

systems, and photo analysis aids. DARPA helps support a number

e
of Iimage Understanding laboratories at universities where I.U,
work at all levels is performed,

DMA has entered into a very active program in image and

scene analysis. Their goal is to achieve "fully automated"

productian for mapping, charting and geodesy by 1995, in which

the primary role aof human beings i1l be to validate the inputs
and the output extracted Infarmation. They intend to commence by
furrishing computer visiaon «.ids to the cartographer and achieve

the desired high-level autamation via an evolutionary route.

Their current approach ia to facus a portion of DARPA's image




understanding effort on producing en Imags Underztandiné Testbed
for Integrating and @ﬁaluating ourrent and energing computer
viglon techniques and czystensa. Au initial version of this
Testbed has been constructed at SBY in Menle Park, CA (Hanson and
Fischler, 1982). The future ecnphasis of the Testbed will be on
expert systems that facilitate the application of IU reasearch
results to cartographic problems.

NSF spends roughly $1.5 million 2 year on a variety of
mm————

p—

research topics in compubter visien.

| _ﬂ;ﬂ_spends a substantial sum in obtaining and evaluating
images for a varietv of medicsl resaesrch applications. This has
includod efforts in semi-automatic cancer screening, ccmputore
assisted photonetry, tomography, image formation and imaging
equipment end various other medical application related arcas.
As the focus is application oriented, rather than computer vigion
oriented, it is difficult to pinpoint the portion that can be
cansidered computer vision research. Hawever, a rough guess

might put the figure at one tc two million dallars a year.

It has been estimated that NASA apending onh image processing

and eval iation approaches one hundred millicn dollars a year. To

help support this effort, NASA funds somewvhat less than one

million dollars a year on research in computer vision#. NASA

spends rougnly nalf this sum to support research at JPL in vision
\

systems to guide raobot manipulation.

¥Additional funds have been spent on image processing and
analysis hardware cuch as the HMassively Parallel Processor (MPP)
at the NASA Goddard Space Flight Center,
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The Hational Burecaou of egapndards hes at engoing in-house

robotics visien vesearch coffort,; uhiak ourrently iz in the order

of one half million dellavs o yeal.

Collectively, other goveranend agencies probably spend

another one to twe million dellsrs per year for reasarch in this

area. It is estimated that perhans an additional one to tuo

million dollars a year is spent by goverament contractors using

IRAD (Independent Research and Devslopment) funds assoclated witt

amm———
their prime contracts.
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- XIII. Summary of the S:istoesf-thawing

A. Humuan Visien

leble cusnple eof a general

5~

Huran vision i3 the aonly ava
purpese vision Systém. Hovever, thus far not many AI rescarchers
have taken an interest in the coapubations performed by natural
visual systems, but this situation is chenging.

The MIT vision group {(ameng othera) believes that, to a

first approximation, the human visusl system is subdivided into

-

modules specializing in visuzl tasks. There i3 also evidence

gamm——

that people do global processing first and use it to conatrain

local processing.

———

Considerable information now axists aboubt lower level visual

processing in humans. However, &s we progress up the human
g

visual conmputing hierarchy, the c¢xact nature of the appropriate

representations becomes subject to dispute. Thus, oyersll human

=

visual perception ig a ztild) very far {rom bzins undsritand,

P

B. Low and Intermediate Levels of Praocessing

Though methods for paowerful highelevel understanding visual
analysis are still in the process of being determined, insights
into low-level vision are emerging. Alan Hackworth, frem the
University of British Columbia observed at IJCAI-81 that there isl
an exciting convergence in the theory of low level vision from

\Y
the major vision centers, such as HMIT, CMU, SRI and Stanford.

The basic physics of imaging, and the nature of constraints in
vision and their use in computaﬁion is fairly well understood.
Detailed programs for vision ﬁodules, such as "shape fron
shading" and "optical fleow," have begun to appear. Also, the

representational issues are now better understoaod.
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However, even for uwell understood leu-lgavel operations such
as edge detection, there as been no convergence among the nmany
techniques proposad, and no method stands out as the best. In.
general, ecdage detecters are still unreliable, though Marr and
Hilbert's approach, based on the zero crossing of the second
derivative of the intensity gradient, appesrs promising., Brady
(1981B, p. 3} states that operators designed to extract the
"important® intensity changes in an image are still more an art
than a seience. A&pproaches to edge detection consist mostly of
cénvolving inages Qith lacal coperators tuned to particular

applicaticns. These aperators fare badly outside their limiteg

domain or in the prescnce of nelse.

Barrow and Tenenbaum (1981, p. 576) note that the dircct
approach to image segmentation s inherently unreliable., A
number of research groups successfully circumvented this problem
by integrating segmentation and interpretation. However, this
approach is net suitable for a general purpese vision systen as
it is based on advance knowledge of the obJects te be expected.

In industrial vision, the primary technique for achieving
robust edge finding and segmentation is to u3e special lighting
and convert to a silhouette bLinary image in which edges and
regions are readily distinguishable.

At intermediate levels, edge c¢lassification and labelling

have been very successtully used in the blocks world. Barrow and

Tenenbaum (1981, p. 573) believe that the various techniques
—
developed for decling with the blocks world could be integrated

inte a complete, nighly competent vision systenm for that
e
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ggggih, Thus far, houvever, nog zuch 3ysierm has actually been
built. -

Binford (1982) in reviewing existing rescarch in medel-based
vision systens observed that mest systems first segrent region:
then describe their shapae. lHene of tha systems malkkes effective
use of téxture for segmentation and descriptioen. In general,
shape description i3 primitive and interpretation asystems have
not yet made full use of evan these limiﬁed capabilities.

As vet, the extraction of useful iaformation from color i3

extremaly rudimentary. The pereeptual use of nmotion {(opbleal
p—————— -

££353 lias becen a focus of attentlion recently, but findings are
preliminary.

For low level processing, many reccont slgorithms take the
form of parallel computations involving local interactions. One
popular approach having this character is Yrelaxatien."® These
locally parallel architectures are well suited to rapid parallel

processing using special purpose VLSI chips.

c. Industrial Vision Svstens

Barrow and Tenenbaum (1981, p. 572) observe that:

Significant progress has been made in recent years
on practical applications of machine vision. Svstems
have been developed that achieve uszeful levelsof
performance on complex real imagery in tasks such as
inspection of industrial partz, interpretation of
aerial imagery, and analysis of chest X-rays. Virtual-
ly all such systems are special purpose, being heavily
dependent on domain-specific constraints and
techniques. For example, industrial vision systens
usually require high contrast to cbtain binary images
and use overhead canmeras to minimize variations in
object appearance,

A nmuch more pressimistic view is taken by Kruger and
Thompson (1981, p. 1524) who state that:
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- Despite substantisl rezearch offorts, the study of
e ' - computer vision is still in it3 infancy...
! Significant reductions in eccnplexity are possible if
5 avtonated perception is llmited to an industrial
environment. Even here, however, we still lack a clear
g _ understanding of the fundamental oroblems that must be
5y ‘ addressed i compuber visicun is to have a major impact
g © on manufacturing.

'?f : Hiatt (1081, vp. 2, 3) observes thaet in industry, robot

vision systems are limited to simple repetitive processes, and

that the clagsic bin of jumbled parts problem still evervwhelus

industrial vision systems. However, Birk and Kelley at the

University of Rhode Island have devised algorithms to
succesefully pick out parts from a bin on up to 90% of the
camputer-vision robot's machine cyeles.

Krueger and Thompsen (1981, p. 1537) observe that, "The

current state of the art precludes the construction of one

general-purpose computer vision system with applicability to all

: industrial vision tasks.... Current systems use no conmon

§§ | primitives for formal representations of object properties.
[

There is also no common programming language for these

applications., {Current industrial vision systems are limited in
;§ their flexibility in allowing users to reprogran the system to

new situations.] This situation will likely improve as computer

§ : vision becomes more integrated into the production process.”

3 In adapting concepts gencrated in the research laboratory to

industrial vision applications, many important additional factors

come into play such as speed, cost and complexity. It has also
é» been found that the lighting and optics play a key role in the
robustness of an industrial system. Most potential industrial

vision applications cannot be reduced to working with binary
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gilhoucttes, due to tégiﬁée and ctﬁef real~1ife environmental
factors. Thus, systems cngincering is an important 1ngrédient.
Unfortunatcly; at prescnt many prospecetive users have inadsquate
inhouse capadility te do the aystems planniﬁg er:d integration
needad to cuccegsfulily adépt compﬁter visien to their operations.
This has inhibited the industrial use of sophiasticated visicn
systems. The vision menufacturers are now.beginning to try to
renedy this situation by starting to provide ecasier user
progranning, friendlier user interfaces, and systems engincering
support to prospective useors.

it hag been estimated that as of mid-1982, though less thean
50 sophisticated industirial viszion systems were actually in use,
approximately 1000 einple line-scan inspectlion asystems were in
regular operation. Though speeial purpose systems have thus far
been the most effective, successful vision applications are nou
becoming commonplace and are expanding. Many firms are now
entering the industrial vision field; with technical leap-
frogging being comnon due to rapidly changing technology.

D. Gen:.ral Purpose Vision Systems

1. Introduction

Though many practical image recognition systems have been
developed, Hiatt (1681, pp. 2, 8) observes that, "In current
vision applications, the type of s=cene to be proceésed and acted
upon is usually carefully defined and limited to the capability
of the machine... General purpose computer vision has not yet
been solved in practice.® This domain specificity makes each new
application expensive and time consuming to develep. Thus, there

is a ciear need for computer vision systems capable of dealing
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with a variety of industﬁial applications, particularly thoze
with less structured environments. |

Barrow and Tenenbaum (1981, b. 572) note that "Developiag
general=-purpose computer vizion systems has proved surprisingly
difficult and complex. This hsa been particularly frustrating
for vision researchers, who daily cxperience the apparent case

and spontaneity of human perception. Rescarch in the last few

years, however, has provided nevw insights into the computational

p—

nature of vision that could lead to systems3 capable af high

performance in a brozad range of visual domains."

Brady (1981A) cbserves that there has been a research shifg
toward topics corresponding to identifiable modules in the human
vision systems, and away from particular domains of application.
The consequence has been a sharp decline in the construction of
entire vision systems.

2. Difficulties

Barrow and Tenenbaum (1981, p. 574) ecimphasize that

Model-based interpretation of image data is an
enormously complex computational task. The variety of
possible scene configurations and viewpoints 1is so
great that an exhaustive search through the space of
possible interpretations is out of the question. Only
the most promising or most important alternative
interpretations can be pursued. Selection of candidate
interpretations depends both upon information derived
from the input image, and upon the observer's goals and
expectations. A delicate balance must be struck
between data-directed and goal-directed search to aveid
aoversight (not seeing things that are really present)
and hallucination (seeing things that are not). -

Gennery et al. (1981, pp. 10-1, 10-3, 3-6) observe that

The statement "Vision is hard" is found often in
the computer vision literature. There are several
reasons for the difficulty., In the first place, an
image contains an enoarmous amount of information, much
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of it irrelevant te the tasl at hand, and it is an
imperfect projceotion of the real world, containing
noise and digtaertion. Frowm ¢this the reicvant
information must be extracted. In the second place,
the transformation from the image to the real world is
highly ambiguous. Thus world knowledge must be relied
on to resolve the ambiguities. (This i3 especially
true in monocular vision of Chree-dimensional scenes,
but it is also true to a lescer extent in stereo
vision.) In the third place, an object seen may only
vaguely rescmble others of its generic type or even
itself at other times or under other conditions., In
the fourth place, in a powerful vision system an
object must be recognized out of & large number of
pessible objects or generic types.

These factes appear to manifest themselves in two
ways in practice. First, vizion requires an enormous
anount of computing. Second, it seemsz that the
conmputational methinds needed are very complicated, and
it is unknown teodcy what the right metheds will be...

Some cxperimental systens held promise for
recognition of generic three-dimensional objects,
although they require a large amount of counputing tinme
on existing conputers. Some special-purpose hardware
is becoming available, which einables some very lov-
level) computations to be performed rapidly. Even in
these cases, however, a variety of techniques are in
use, with no consensug about which are the best. This
becomes even truer as we nove to the hisgher-level, more
general, on more advanced areas, Furthermore, many of
the approaches that have been used are ad hoe, with
little promize of generality.

..two tasks that are beyond the capability of any
existing computer vision svsvepm are the recognicion of
parts in a jumble in a bin and the operation of a
rooot vehicle in a complicated outdoor environment.

Rosenfeld (1981, p. 3) observes that "Image processing and

scene analysis nhave definitely saturated the capacity of

computers,”
———— o
In relation to earth observation imagery for resources

management, Alan Mackworth of UBC stated at IJCAI-81 that it will

be necessary to alter the papular current multi-spectral paradigm

that pixel meaning can be determined by intensity alone -- it

doesn't work. It is necessary to understand spatial

e
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organization, meaning and context. The spatial coustraints are

very important. There is no chance of getting a gonoral purpaese
___—-___“_______—‘

vision gysten to understand satellite iwmagery alone -~ it is

necessary te use a system-generated “sketch mép" to interact with
the scene.
3. Technigues

Brady (1981B, p. 4’ observes that, "Most Al workers have...
abandoned the idea that visual perception can profitably be
studied in the context of a priori commitment te a particular
program or machine architecture." Binford (1982) bhelieves
"...that building a vision system is 1% 2 system effort of the
sort which are familiar in computer science, aad 99% basie
science,®

The research emphasis has moved to developing ;echniques
(vision modules) for extracting intrinsic images (shape fron
shading, shape from texture, etec.,). Brady (1984, p. 6) observes
that, "Representations have been developed that make explicit,
the information cemputed by a module... [This] leads to a view of
visual perception as the process of constructing instanceﬁ of a
sequence of represcntations.”

Gennery et al (1981, p. 3-1) note that at higher levels of
descriptions it becomes difficult to judge what are the best
appreoaches. As a result, a wide variety of techniques have teen
used.

Brady (1981, p. 99) observes that though it appeafs that the

most difficult visual problem is the perceptian or planning of

L



novements through eluttered spmew, & s0lid start hes boen made on
this problem by Lazano~Perez (1561). o
a, Conclusions

Binford (1982) in reviewing current model-based research
visio. systems ccncludes that most syztoms have not attompted to
be general vision systems, though ACRORYH doos deomonstrate some

progress toward this goal. Existing vision systems performances

—

are strongly limited by the performance of thelr segmentation

S

modules, their weak use of world knouledge and weak descriptions,

S

making little use of shape. The systema prinarily relate inage

relations to image observables; in general lacking the ability to

—

relate three dimensional space models to images. Ezxisting

T

systems show little emphasis on basic visicn problens in systems
building.

Binford observes tha2t until recently, syatens efforts have
been small and short-lived, generally only a few man years
effort. Focussed and continuous efforts are necessary but not
sufficient for system building. The system programming effort
alone in building a vision system is enornous,

With the exception of ACRONYM (and to an extent MOSAIC), the
systems surveyed depend on image medels and relations, and
therefore are strongly viewpcint-dependent., To generalize to
viewpoint insensative interpretations, would require three-
dimensicnal modeling and interpretation as in ACRONYM.

Binford found that the systems jump te conclusions based on
flimsy evidence which would probably not distinguishk many objects
in a complex visual environment. The systems typi:zlly use the

hypothesis~verification paradigmn. Hypothesis generation is the
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crucial paré, made eisy in the top-down case. The systens
Succeed best with‘qu&éi;a&'acénes, for éxample aerial
photographs, industrial scenes ironm a fized viewpoint, x-ray
images; and ground lecvel photoa from a fixed viewpoint. Even
ACRONYM, which incorporatcs vicupolnt-insensitive mechanisms, nas
been demonstrated oniy on aerial images, although it appcars
applicable te ground ievel photographs as weill.

Binford concludes that though that the results of these and

other oefforts are encouraging aa first demonstrations,

‘nevertheless as general vision systems} they have a long way to

go.
Tenenbaum and Barrow (1981, p. 594) in discussing the
general computer visicn problem conclude that:

We are beginning tae understand the computaticnal
nature of vision at a fundamental level, independent of
implzmentation. This understanding provides new
insights into limitations of early scene analysis
systems and a 380lid =zcientific foundation upon which
future general-purpose high-performance computer vision
sycdtems can be built...

The competence of a vision system ultimately
rests upon the representations it uses te describe the
world and the models available for manipulating and
transforming descriptions. Hany levels of description
are necessary to achieve human performance requiring
models of scene domains, objects, surfaces,
illumination, sensors; and the geometry and photometry
of imaging.

A vision system is naturally structured as a
sequence of levels of representation. The initial
lev2ls are primarily iconic (edges, regicns, gradients)
because that is the nature of the information available
directly from an image. The highest 1levels are
primarily symbolic (surfaces, objects, scenes), because
that is the nature of the information that is sought,
Intermediate levels are constrained by the information
available fron preceding levels and that required by
subsequent levels. In particular, physical and three-
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dimensional surface chzrasteriatics provide a critical
transition fronm 1con1c to ayubalic representaticns,

arly levels of procceasing in a vision system are
primarily data dF;VCh, witllia ighaer lgvels are

controlled by goals aund ev p\»tuC¢uuu. AL internediate

levels, some combination of data-driven {(bottom-up) and
goal-driven (top-down) operation is needed both to
compensate for errora, and to avoid computational
overload. Although the detailed nzture of processing
is dependent on representation and therefore
considerably different at low and high levels, it is
significant that at virtually all levels processing
appears to be inherently parsllel, and thus amenable to
implementation by networks of computational nlennnts
(ec.g.; neurons or VLSI chips)...

While no such {[general-purpose computer vision]
system yet exists, nost of the ploces have been
crperimentally demonstrated., Thugs it vould not bhe
unreasenable to attempt teo construck one within the
current state of the ars. Of course, umany details
still remain unresolved, aspecially at the higher
levels of processing.

E. Visual Tracking

Real=tinme tracking of oblects is {uportant to maninulation

and guidance. The statc-cef~the-art in viazausl tracking is

reviewed and Appendix H. Though soma success hes been achieved

undar limited conditions, it remains a8 an importanc area for

F. Overview
In conclusion, we might observe that computer vision can be

viewed as a set of very difficult problems., However commercial

vision systems are available and are operating successfully in

specialized environments on low level prediems of verification,
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inspection, weasuremcnt, reesguiticn, nnd deterainction of
abject location or orientaticw.

There i now & mech botier understandlng of the conputer
vision problem than there was just a faw ycars ago. 4 major
foous of the ourrent resecarch effors is in extracting 3D shape
from intrinasie inage charecteristics.

Though quite a numbor of nigh lovel recearch vision systens
hove been explored, no general visioen systen i¢ available teday

or is imminent. Majer current efforts in this arca are ACRGHYM

at Stanford U. and VISIOHS et the U. of Masa.
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Some of the general issues are

Current Problems and lasues

General

Can generel vision be reduced to computer analysia?

- What assumptions about the wuerid are restrictive
enough? . :
- How much data is required?

Need to incarporate generic aspects of perception
(Binford, 1982)

- Similarity, no% spatial congruence is the paradign
of interprctation in nature.

- Humans arce always seeing things they haven't seen
before.

3D interpretation of images veraus 2D

- Binford (1982) believes that general vision
systems depend on building three dimensional
descriptions--that prediction, description and
interpretation take place largely in three
dimensions.

How necessary is it to follow the central paradigm
(Figure 6, in this report) to achieve high level
vision? I3 it essential to enmploy a key intermediate
representation such a3 the 2-1/2D sketch or Intrinsic
“‘mages? 11t is possible to obtain these using only
local constraints?

Is the hierarchical vision paradigm (Figure 6), vhich
implies complete segmentation and 1labeling
inappropriate for natural scenes? Is a more isomorphic
representation needed, such as a map which implicitly
captures the detail and relations and is more
appropriate for natural computations? For such
!sonorphic representations, 1is the serial digital
conputer inappropriate and another calculating medium
such as a network needed? (See Fischler, 1978, 1981.)

Methods and hardware to reduce the seftware generaticn
costs and processing time for computer visiont,

¥Nudd (1980) provides a good overview of computer processing
requirements for computer vision and appropriate architectures
and hardware to implement them.
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y Lack of interfsce standards for connceting computér
vision svstenms to robots and industrial machines.

. Active vs péssive senéing in vision ayateoms.

. Relative merits of binary versus gray-scale imagery.

* . Host igssues are still peorly understoad.

Technigues

1. Low Level Processing

Many of the unsolved problens in computer vision
are at this level.

ng whole issue of constructing the primal sketch
from zZero crossinags of chne secona derivative or
the Intensity is far from resolved.

Direct edge finding and region segnentation are
still unreliable for general vision.

A key insight 1is that local information is usually
inadequate to pguide segmentation and
interpretation in a general 3cene. Global
structure such as the shading gradient 1is
required. To what extent can medeling and using
physical contraints in scene analysis provide
global restrictions which can guide segmentatien
and assist in classification? Possible exampi=s
inelude 1) utilization of shadows to locate
lighting sources anc¢ to pinpoint objects casting
shadows, and 2) use of sky-land boundaries as a
global constraint. Another global approach for
man-made scenes is to employ the camera model and
geometric perspective to detect vanishing points
associated with parallel lines in an urban scene.
Fishler et al. (1982) indicate that the detection
of clusters of parallel lines by finding <cheir
vanishing points can be used to automatically
screen large amounts of man-made structures.

How to best utilize and avoid difficulties with
texture in natural scenes is still unsolved.

Rectification of images prior to stereo matching
remains a problem.

2. Middle Level Processing

A key problem remaining in computer vision is
bridging the gap between pictorial features (e.g.,
edges and regions) and 3D objects.
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3.

. Techniques {or analyuing Stims-varylag imegory.

. Limits of the intringic image epprosch: It is not

elear that woe can rellabiy obtain intrinaic imeagss
fron images of reonl secnes via the methods
outlined in thig report. Alteraative approaches
whon available, such s stereo or acktive ran
sensors, way De ptsferable feor extrocting
intrinsic characteristics.

N How best to deal with shadows and occlugions.

Higher Level Procesaing

’ Relation 6? higher lsvel visioen te A

. ﬁodules that operate on the sur?acd orientation
nap to produce object representatiens,

. "Generic intcrpretation in terms of objoct classes.

. Senmantic interpretation. -

. Sezmantic secarch techniquee for use in matching

schemes using zemantic segmentations and iadexing.

. Identificetion for interpretation of which
geonetric paramcters are casually (functionally)
roather than statiztically deoternmined (Biaford,
1982).

Representaticen and Modeling

Jepresentations for complex and anmorphous shapes (e.g.,
a tree, a crumpled sweater, a flouwing stream).

Proper level for the divicing line between iconic
representations at the lower levels and symbalic at the
higher levels, and how much these representations
should overlap.

How to index efficiently into a2 database containing a
large number of models.

What sort of features should bLe extrected from the
scene (edges, corners, regions, surface oriention,
ete.) and how should aobjects be modeled (wire-frame
models, generalized cylinders, etc.)

Systen Paradigms and Design

Is the relaxaticn process the most attractive approach

at the lower levels where global aspects. are not

directly considered?
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How far can peraillel methods (like ralaxation) be
puahed abt sl “h»'ls?

Is o combin:ticﬁ of toep-douwn and betton-up the
preferred neproash for complex visioen toaoka?

Under what eircumstances is the blackboard approach to
be preferred? ifote that hilerarchical image
understancing systems suffar Srom lack of adaptability
shd also requlre a large amount of processing.

Knowledse fcquisition - Tcachins and Programming

.

Methods for knowledge acquisitien at all levels.
Hetheds for learning and tracking of generic types.

How to make the system versatile by having it
programmable at a very high level.

Design of a very-high-level progranaing language
especially for vision. Little has been done to date in
this area.

Sensing

.

hetive vz passive sensing.
Best methods for using structured light.
Hethinds for acquiring 3D directly.

Is acanning laser radar the wave of the future?

Planning

Methaods to incorporate planning into robetic systens
utilizing vision.




¥V. Research lzeded

A, General

Heed research inm general purpose systeme capable eof
s

Necd fa understand hunan vision ass it's cur best

eszanple of a genersl purpsscé vision gvsten,

—

O
high performance in 2 wide variety of visusl domain
Need to be able to use generic recognition.

Methods to recduce znftware costs of computer vision and
ireduce processing time.

Image processing techniques fer greater capavility.
Interface standards.
Hethods for visual guildance in cluttered spaces.

Improved understanding of the extent and use of domain
specific information in visual percepbion.

Heed to determinse how to best utilize range
iMtaormation. ' .
f**‘

Need to develop globzal methods (e.g., utilizing
shaeding) either to bypacs or to help guide the current
hiecrarcihiical paradign.

B. Technigues

1.

Low level processing

¢ More reliable and faster edge and region finders
‘ for general scenes.
* Ways to extrazct motion measures from sequences
of Intensity arrays.
g Reliable stereo disparity modules.
. Determination of surface praperties, such as

color, smoothness, coatings, etc.

Middle level processing

. Techniques for analyzing time-varying imagéry.

. Methods to bridge the gap between edges and
regions and 3D objects.

. Improved methods of extracting intrinsic images.
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3. liigh lsvel precessing

* Better understanding of how to use texture.
. Modules that opercte on the surface orientation
map to produce ablect representstions.
. Methods for generic and semantic interpretation.
Representation and Modeling
* Representations for complex and amorphous shapes.
. Techniques for indexing into a large dzta base of
models.
* Mathematical methods to model texture convieﬁtly.
. More precise representations of surface orientation

maps at different levels of resolution.

. Hethods to group properties at each level of resclution
for each representation, so that a hierarchical
structure can be imposed upon the representations.

* Determination of under what conditions is binary
imagery most favorable and under what conditions is
gray-scale to be preferrsd.

. Choosing which features to extract frow a scene.
* - Methods for modeling 3D objects.

System Paradigms and Design

* Need to explorae the extiension of relaxation processes
to multiple levels in the pyramid of description and
interpretation.

* Methods of local parallel processing which can discover

global information through propogation.

* Efficient methods and techniques for maintaining
.concurrently a number of images of a scene in varilous
stages of processing, so that these explicitly
represented images can interact with each other and
with higher and lower 1levels of processing as
processing proceeds. This is especially pertinent to
globally consistent relaxation processing.

. Need investigation of paradigms, other than the
conventional hierarchical paradigms, such as the
“blackboard" and other paradigms being explored in
Artificisl Intelligence areas such as expert systems.
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Faster pre- and post-praoscssing hardvare (c.g., special
digital circuits Lo cvaluaie intansity gradients).

Knowledge Lequinition - Tezehing and Programaing
-3 A T —— L v s S .

Meed better technigucs fer rapid reprogramning of

£
vision systems by ths user.

Inspeection and Asscemdbly vision systemns 3o0ftware
approaches that can easily be modified to adapt to newu
situations. I would be desirable that control
structurcs be incorporated that will spzeify tests to
be performad and possible alternate paths of actions.

Need hiph-level programming languages designed

- egpecially for vision.

Neezd methods for learning and teaching of generic
Lypeas.

Methods for knouwledpge acguisition at all levels.

Sensing

Techniques for rapid 3D sensing -- raunging by lider
(Scanping lascr radarJ), deélocussing, Scereo and
triangulation.

Improved nethods for use of structured light for 3D
cvaluation and shape identification.

‘Methoda for exploiting multiplé'lighh sources.

Higher-resoclution and selective-recsolution transducers.

Planning

Methods for incorporating vicsion into robotic planning.
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XVI,

Future Trends

A8 the field of computer vislion unfelds, uwe expect to sce

the follouing future trecnds?,

A.

~Technigues

Though most industirial vision aystems have used binary
representations, we can expect i case ag of
scales because of their potential for handling scenes
with cluttered backgrounds and unccentrolled lighting.

Recent theoretical work on monoculiar shane
interpretation from images (shape from shading,
texture, cte.) malke it appear promising that gencral
mechanisms for generating spatial observaticns frow
images will be available within the next 2 to 5 ycars
to support general vicion systens.

Successful technigues (such as gterce end motion
parallax) fcr deriving shape and/or motion fron
multiple images should also be availaeble uithin 2 to 5

years.

The mathematics of Image Understanding will continue to
become more sophisticated.

Enlargement will continue of the links now growing
between Image Understanding and Theories of Human
Vision.

Brady (1681B. p. 11) predicts that there will be =a
considerable advances in current vision "...issues over
the next few decades, probably resulting in chaires in
our conception of computing and vision at least a3
large as those which have occurred over the past
decade."

fHardware and Architecture

We are now seeing hardware and software emerging that
enables real-time operation in sinple situations,.
Within the next 3 to 5 years we should see hardware and
software that will enable similar real-time operation
for robotics and other activities requiring
recognition, and position and orientation .infoermation.

*These trends have been largely derived from statements by Brady

(19814,

1981B), Binford (1982), Xruger and Thcmpson (1981), Agina

(1980), Arden (1980), Rosenfeld (1981), Hiatt (1981), and Barrow
and Tenenbaum (1981). :
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: Fast raster=based pipelihec wiveprocessing herduare to
conmpute laowe~lavel fogfurss in lecel reglions of an
entire scene are¢ now bacoming nvailable sacd should find
geaeral uze in comuereial visien ocysteoms in 2 to 4
years.

¢ As at virtually ail viausl lcvels, prcocauin ecms
inherently parallel, pairailel precessing is ¢
the futurc (but _enclire nnawer). Paralle1
3ing research hardwars systems {(such 33 ZH¥OB  wt
the U. of MD, and the MPP for NASA Goddcord) have
alrcady been built, and cpprepriaste algorithms arae
being developed.

: Three possible parallel processing architectures are
array processing, pipeline procassing and nulti-
processing. Multi-processing looks mast promising as
it allows data Trom sevaral data streams of an image to
intceraet with each other te yield 2 highelavel
representation.

y Relexation end constraint analysis techniques are on
the increase and will be increasingly roflected -in
future architectures.

C. A.I. and General Visicn Svstenms

Computer vision will be a key facter in achleving many

artificial intelligence applications. The goal is to nove {rem

special-purpose visual processing to general-purposs conputer

vision. Work to date in model-based systems has made a tentative

beginning. But the long-run goal is to be uble te dcal with

unfanmiliar or unexpected input®, Reasoning in terms of generic

models and reasoning by analogy are two approaches being pursued.
However, it is antlicipated that it will be a decade or more

before substantial progress will be maide,

¥As computer vision syetems move toward this goal, they will
increasingly incorporate Expert System components using multiple
knowledge sources. Gevarter (1982B) provides An Overview of
Expert Systems, in which ACRONYM and VISIONS are considered to be

examples of Expert SystemS$.”
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Barrow and Tane sbaun (1983, p. .528) indicate that no general
vision syshen new exists oy ku

vt most of the Y...piceces have been
experimentally demonstrated. = Thus it would not be unreascnrable
to attempt to construct one within the current gtate-of-the-art.®

D. YModeling and Progsramming

. Now emerging is 3D modeling, arising largely fron
CAD/CAM technology. 3D CAD/CAM data bases will be
integrated with industrial vision systems to
realistically generate synthesized images for matching
with visuval inputs.

. Illumination nodels shading and surface preperty
models will be 1ncreas:.ng’y 1ﬂcorpor ted into visual
systems.

* Volumetric models vwhich allow prediectien and

interpretation 2t the levels of volumes, rather than
images,; will see greater utilization.

. High level vision rocramning languagcs {such
Auﬁomat x's RA1L5 that can be integrated u1 TOLOo an
ifmdustrial manufacturlng languages are now beginning to
appear and will become commonplace within 5 years.

. Generic representations for amorphous objects (such as
trees) have been experimentally utilized and should
becone generally available within 5 years.

E. Knowledre Acquisition
y Strategies for indexing into a large database of modaels

should be available withii the next 2 to & vears.

: "Training by being told" will supplement "training by
example'" a8 computer graphics techniques and vision
programming languages become more commoin.

F. Sensing

. An important area of development is 3D sensing.
Se eral current industrial vision systems are already
€M. 0oying structured lLignt for 3U Sensilg A number of
néW 1innovative techniques in this area are expected to
appear in the next 5 years. .

. More active vision sensors such as lidar are now being
eXxplored, but are unlikely to find substantial
industrial application until the last half aof this
decade.
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Indus

A number of other invcovotive teohaigues in 3D sensing
arc now being developed, Apong these are the use of
muitiple light sources, multiple views, and shape from
noticn., Some of uhcse techniguas may see comnmerclal
apnlication within the nezt two vears.

Kruger and Thempsgn (1981, n, 33) observe that "By
te%ing several vicus f{rom particular positions and
with carerully contiolled 1Jluminacion, i1t 15 possivle
to separzte and independencly beasure che Qilierent
surface prooe‘tle"" Inﬂu"L“lﬁl vigion SysSCCWS [or
imzpoetion Ehat use this technique will probably appear
within the next several years.

It i3 znticipated thet within two years zolid-state
cameras and convolvers will become available that will
malkke stereo machine vision a reality.

£rial Vision Systens

We will see increased use of advanced vision techniques
in industrial vision systemeg, including gray scale
imagery.

We &are ncw cbserving a shortening time lag between
research advancea and thelr applicatisns in industry.
It 13 anticipated that in the {uture this lag may be as
little as one to tuo years

Advanced electrenics hardware at reduced cost is
increasing the capabilities and speced of industrial
vizion, while aimultaneously reduecing costs.

Becruse of iow start-up costs and the importance of

ision to industrial and cther applications, new
companies and crganizations are rapidly entering the
vision field.

It has been estimated that mere than 200 companies are
now playing a role in the vision field. 4 shzleout
appears likely ac the f{ield settles down, but
innovation will continue to encourage new entrants,

It is anticipated that speecial lighting and active
sensing will play an increasing role in industrial
visien.

Better human/macihine interfaces simplifying user
repragramming are now appearing and will becomnme
dominant in sophisticated dppllCdtlnnS within 5 years.

Common programuing languages and improved interface
standards will within the next 3 to 10 years enable
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easier integraticn ei visien to robots and inte the
industrial envircnmant.

- H.  Future Applications

It is anticipated that about eneg quarter of 3all
industrial robots will be equipped with sone form of
vision system by 1950,

Arden (19806, p. U487) observes that "Increasingly, .
computer-vision technigues are being applied to real-
world problems. This is particularly true of device
assembly, circuit board layout, and inspection in the
field of industrial autemation. Although much of the
work is s8till going on, several convinecing
demonstration programs have been written, and it is
expected that computer vision will scoin begin to have a
significant impact in industry. At the same time, the
computer-vision apprcach will increasingly be applied
to the analysis of images by computer, areas which up
to now have been the domain of researchers in pattern
recognition~~for example, the analysis of handwriting,
photomicrographs and radiographs, and satellite
imagery.*

It is likely that in the order of 90% of all industrial
ingpaction activities requiring vision will be done
WwiTh computer vision systems within the next decade.

New vision system applications in a wide variety of
areas, as yet unexplored, will begin to appear within
this decade., An example of such a system might be
visual traffic monitors at intersections that could
perceive cars, pedestrians, etc., in motion, and
control the flow of traffic accordingly.

Computer vision will play a large role in future
military applications. The Defense Mapping Agency
intends to achieve fully automated production for
mapping, charting and geodesy by 1995, utilizing
"expert system"-guided computer vision facilities.
Other future computer vision military applications
include autonomous navigation and guidance for vehicles
and missiles, target detection, the interpretation of
aerial images for general surveilance purposes and for
local battlefield surveilance. Computer vision will
also play a large role in future battlefield robots.

Table X gives Binford's (1982) forecast for computer
vision system applications.
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Exampie Future Asplicaticns for Covpuler Yision Svitems

Short tavm {31-2 vones)

Industrial Vision Systems
Cartography: Semi-Automated steres Yor tervain mapping

Hid tom (2-3 years)

Cartography: Semi-Autcmated stereo mapping of complex cultural sites
Photointerpretaticon — Honitoring of selected objcets in restricted situations

Long term (3-5 vears)

-3D Systems for:

~warehousing

-handling unoriented parts

~inspection of non-laminar parts
Cartography - automatic featura classification

Photointerpretation - Automatic classification of 2 greater variety of
objects with greater detatl

Greater than 5 vears

Robotic operations in hazardous environments
Autonomous navigation

Vehicle Guidance
Medical image analysis
Aids to handicapped

More than a decade

Home robots
General robotic activities

Observations of extra-terresirisl bodies-:]

*Based on Binford {1982)
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I. Conclusien

| In councluszion, the aﬁﬁﬁnt af aetivity ard She many
researchers in the conpuier vision tield suggost Shat within the
next 5 te 10 years, we shouid see game startling advences in

practical computer vision, Sthough the avellability of practical

general vision systeas still remains & long way off.
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APPREHDIN A%
IO LEVEL FEATURES
The acené to be anolyzed is ususlly sensed by a digital
camera or other sinilor device, the output of which iz normally a
'digitized inage having an array of brightness values. For sone
purposes these brightness values can be operated upen directly to
obtain desired information about the gcene, but it is usual to
extract low levél fzatures for further computer precessing. The
following sections describe the lou level features usually
considered for extracticn.
A, Pixels (Picture Eiementsz)
Pixels are the individual elcments in 2 digitized‘array.
They usually represent brightuesa and pecrhaps color in a
projection frem a three dimensicenal scenc, but qgglﬁ_g;gp

represent distance in a range ingge.

r———

B. Texture

Texture is a local variation in pixel valuss that repcats in
a regular or random way acroas a pertion of an image or object.
Texture éan sonetimes be used to ldentify the object being
sensed, or it can be used for approximating range and surface
~orientation in a knrown object. However it can also be a noise
source in processing the image.
c. Regions

A region is a set of connected pixels that show a common
property such as average gray level, ceclor or texture in an

image.

¥This appendix is based largely on Gennery et al. (1981).
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D. Edges and Lines ' :
An edge is a step in pizel values (exceceding some threshold) ;
between two regions of relatively uniform values. A line is ?
—— E
defined as a thin region of roughly uniform pixel values between J
i
two regions of different but roughly caual pixel valuca. Line i
]
. ¥
representations are extracted from edges. 3
E. Corners | ]
A corner is an abrupt change in direcction of a curve. :
Corners are uceful in data compression approaches tn representing ;
straight edges, and as points for feature matching. ;l
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APPENDIX B

EXTRACTING EDGES AND AREAS

A natural firat step In 2nalyzing a scene 1s to convert it

into u sketch, that is, find the adges that geparate regions of

diffaering brigntnesses. Edges correzpond to abrupt changes in
——

P

brightaness. Such changes can be identificed as places where the

first derivative of the brightness is suddenly high or the sccand

dorivative i{s zsro (see Figure 8). There are various achemes for

dgzng this, all 1in some way related to teking brightness
differences between adjacent pointa,
A, Extracting Edges

The basic methods for extracting edge and line elements from
images are®:

1. Linear Matched Filtering:

Successively convolve®® image windows with a template of the
desired feature and seck the maximum value.

2. Hon-linear Filtering:

Convolve windows In the image with a local opersator
(weighting function that approximates first or second derivatives
by first or secend differences). Examples of aperators for doing
this are shown in Table I. In general, each point'in the image

is canvolved with directional operators in as many directions as

¥This section is tased largely on methods described in Resenfeld

(1981, p. 601), Gennery, et al., (1981, pp. 2-8 to 2-14), and
Brady (1981A). Additional material can be found {n Ballard and
Brown (1982), Binford (1981), and Nevatia (1982).

“¥8Convolve means superimposing a nxn operator over a nxn pixel

arca(window) in the image, multiplying corresponding points
together and summing the result.
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negedad. Tho reasultant cutputo at cach point are oaablﬁéqfﬁéfvﬂ

deternins tho gradicnt veotor {(the oricntatien and magnitude of

the intensity changes).
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3. Local Threcholding

Apply local thresholdding znd discard rosponses that do not
lie on borders (betucen upper and lewer threashold regions) and
link respenses thet do.

4, Surface Fitting - The Hueckel Operator

Fit a surface to neighborhood of cach plxel and compute
maxirmun gradient of the surface. Censider as edge pointa those
pixels having surface maxim-m-vgradicnts above a selected
threshold value., This approach was {irst devised by Prewitt
(1970). The Hueckel Operator is a papular method for doing this.
5. Rotationally Incenaitive Operataora:

At -f‘?:-;'

- >
The Laplacian Operator (VX == 3ye !

magnitude of the derivative of the intensity gradient) is

related to the

insensitive to the direction of a linae and ylelds edge elemnents
at pixelvpoints where the Laplacian 18 zero. Thus discrete
approximations to the Laplacian have proved useful in line
finding.

6. Line Following:

Snirai (1975) devised a line following method that used a
pair of parameters that varied accordiné to how continucusly and
smoothly elements were found. These parameters determined
thresholds for accepting a new element according to how close it
was to the linear continuation of the current line being tracked.

7. Global Methods

* Martelli (1976) devised a global hueristic search that
operates directly on the brightness values. A cost function

is optimized depending on the curvature of the candidate

e et e e SR




line and tho degree to wuwhich the candidate line succeeds in
dividing the image into regionz of different brightncases.
Kelly (1871) used & hierarchical refinement approach, first
finding lines in a coerse image and using the results to
guide line finding in & higher resolution image.

Eberlein (1976) utilized a relaxation approach for 1linking
edges found by a local detector, depending on how the cdges
agreed with their local neighbors. This was a parallel
meﬁhod that merged the e¢lements into a continuous line.

The Hough Transform (Dudas and Hart, 1973), is a glaobal

parallel mcthod for finding straight or curved lines. For a
straight line, using results from local edge detectors, the
perpendicular distance (p)} from the line element to the
origin and the angle (€) of the normal to the line |is
determined and mapped into (p,6) space. Peak clusters in
(p, ®) svace are ccnsidered to be straight lines.

Fischler, Tenenbaum and Wolf (1981) describe a new paradignm
for detectingaudprecisely deliniating roads and similar
"line-like" structures appearing in low-resolutien aetial
imagery: The approach combines "local information from
multiple, and possibly incommensurate, sources, including
various line and edge detection operators, map knowiedge
about the likely path of roads through an image, and generic
knowledge about roads {(e.g. connectivity, curvature, and
width constraints). The final interpretation of the scene
is achieved by using either a graph search or dynamic
programming techniques to optimize a global figure of

merit."
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B. Edge Finding Variations

There are nany appreaches which can be considered to be
variztions, ccrbinations and extainsions of the bosie approaches
to edge finding consldered in osetion 4,

For cxanmple, Harr and Hildreth (1979) utilizcd the fact that
different edges cre found depending upen the slzc of the edge
masks, They also observed that bsr nasits gsecr to give mere
reliadble information than edge muchka. They used bar masks of
different panel widths and combinced thelr ocutputs to reduce
effects of noise and to compute the fuzziness of an e¢dge. They
extended this method based on their observations that intensity
changes are localized in space and in (spatial) frequency. They
note that using e Gaussian filter® optimized localization in both
domains simultaneously. They thus zonvolved the original image
with the Laplacian of the Gaussiosn smoothing filter for ecach
spatial frequency used. Edges were considered to cccur where
zero crossings from several spatial frequesncy channels concurred.

Cc. Linking Edge Elements, and Thinning Resultant Lines

Due to inmperfections in edge element finding techniques,
situations where edges are poorly defined and noise in the image,
the primal sketch will usually congsist of discontinuous and
somewhat scattered edge elements. Various schemes (heuristies)

éxist to connect thege edge clenents together to form lines.

*An averaging procedure about a pirel in which the influence of
neighboring . pixels fall off with distence, according to a
Gaussian distribution.
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Long edges or lines czn be found either by using an edge
detector (as discussed 4n the previcus seetion) and linking the
resultant edge olements into & long siooth curve (filling in gaps

and ignoring stray eclements), nr by a procedure which
accomplishes a similar rcsult by operating direetly on the image

data. In either case, if the zlgorithm operates sequentially by
proceeding along the curve as it links edge elementis cor pixels,
it often i3 called a line folliower for tracker), edge follower,
or curve follower. However algorithms have also been devised
that operate on an effectiveiy parallel or gestalt basis.
Eberlein's (1976) relaxation méthod yields a thin line
naturally upon convergence. Nevatia and Babu's (197G) approach

accepts as cdge portions those candidste edge elements found

that have a maximal gradient value compared to adjacent pixels‘

with 2 similar gradient orientation.

When deriving curves from edge data, it i3 often desirable

m—

to thin the¢ resulting contcurs., Thinning methods reduce the

contours to a single~pixel width by discerding redundant edges

while maintaining the continuity cf the contours. Some methods

such as Eberlezin's or Nevatia and Babu's include thinning as an
inherent part of their operation.

D. RemarksAgg Edge Finding

Binford (1981) states that it i= imporitent to distinguish
between detection of an intensity change and its subsequent
localization. Thus, he considers the zero crossing of the second
derivative of the intensity good for localization of feature
points but not for detection; while the maximum of the (irst
derivative is good for detection, but not for localization.

Combining {(he ¢two effects and using linear interpolation,
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MeoVicar-Whelun cnd Binford (1981) raport beiug sble to localize
adges te subeniznel aceuracy.

Gennory, et al., {1981} statzs that for poor quelity imagaes,

the porformance of all the varlous debteators dégrade, but in

diffarent wavs. Hone can ke ccngidered to be the last word in

edge detactors.

E. Extracting Reglons

Many of the edge {inding apprcaches are designed to perform
best when the edges can be approximatcd.rensonably by a series of
linked straight lines. In natural sceines, this approcach can lead
to difficulties.

An alternative approach to edge finding is to ﬁartition an
image inte regicns of approximeately uniform brightnoss
corresponding to asurfaces. Unlike edge 1linking, "region growing"

does not require the assumption that the boundaries are straight.

Region growing can be accomplished by initially partitiening the

image into elementary regions cf constant brightness, and then
successively merging adjJacent regions having sufficiently small
brightness diffcrencea, until only boundaries with strong
contrast remain. The merging can be done somewhat in parallel by
computing merge merits for all pairs of adjacent regions, and
merging all pairs that have mutually highest merit.. Another
advantage of region growing over edge finding 1s that this
technigue generalizes more readily to characteristics other
than brightness, such as texture, color, size and shape, which
are important in natural scenes.

The simblest vision systems use a global threshold to obtain

a binary image -~ an approach commonly used in industrial vision
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systems. Thresholding cau algo be local or even dynamic. When
histograms® of image pixel intensgitites are used, it is usual to
diasect the inage by threshelding at & value in a vallay of the

histograw 8o as to give stroug peaks on elther side of the

threshold value. This regilon splitting approach can be applied
recursively until no more regions can be split., Ohlander et al.
(1978) used this approach, computing histograns in each of nine
colors and thresholding on the parameter that yielded the best
histogram for splitting.

NASA has employed spectral amalysis for segmenting

regions in LANDSAT imagery (c.f., Landgrebe, 1981).

*Frequency counts of the occurrence of each intensity in an
image.
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SEGHENTATION AND IﬁTERFEEfﬁTIﬁH

A. The Computer Vis.on Paradiem

Starting with an image of a acen2, the goal of a computer
vision system i3 to identify the objects 2nd their relationships
in the scene. To accomplish thisz, it is customary for the system
to segment the image into surfaces or edges asaceizted with the
objecets, and then use the resulting information, together with
domain knowledge, to generate the desired scene description., 1In
this appendix we will review techniques used tc do this
segmentation.

B, An Early Bottom-up Systen

A landmark program in machine perception was developed by
Roberts (1965) to recognize various three dimensional polyhedral
object configurations. Roberts enployed an image-dissector
camera to look at blocks-world scenes involving blocks, wWedges,
hexagonal prisms, or objects formed by sticking these together.
His program could determine the location, orientation, and
dimensions of the objects. The program could demonstrate its
"understanding,” by displaying a dravwing of the scene observed
from any desired viewpoint.

Roberts' program first found the places in the images where
brightness or shading changed abruptly, corresponding to points
on the edges of the object. Then by linking these points, it
produced a line drawing of the scene. The line drawing was
interpreted by finding triangles, quadrilaterals, and hexagons,
which suggeéted possible objects (triangles suggest wedges,

etec.) and eventually accounted for all the lines and junctions as
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edgec and corners of objects. From the resuliing appearance of
the object in the image, the nrogram was able to compute 1ts
dimensicns, location, and orientation.

c. Problems with Bottom~Up Svstems

Barrow and Tenenbaum (1981, p. 570) notz that a major
problem with sequential program organization used by Roberts and

‘many of his successors:

.+.is8 the inherent unrelizbility of segmentation.
Some surface boundaries may be missed because the
contrast across them is low, while shadows,
reflections, and markings may introduce extra lines and
regions. The interpretation phase, when presented with
a corrupted segmentation, may be unable to produce an
explanation, and hence cause the entire system to fail.

Partitioning an arbitrary image inte regions
corresponding to objects or object surfaces 1is
fundamentally impossible without exploiting scene
models. First, there is no basis for deciding which
image features are significant at the level of objects
and whizch are not. Second, there is no good pictorial
criterion for filling in missing features. Third, the

- very noticn of an object is ill defined, being largely
determined by convention and expesience.

D. Interpretaticn-Guided Segmentation

Several research teams tried to overcome these problems Uy
integrating the segmentation and interpreﬁation phases. .One
simple approach used was to try to recognize objects from partia.
matches obtained using models and then to try tq verify the
results by attempting to find evidence that supported image
features previously missed. '

Techniques were also developed for reginn-based systems. The

general approach being:

1. For regions with uniform attributes such as intensity,

color or texture, assign sets of possible object
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interpretations based on knouledge of possible object

surfaces and the coataexbtural cortrainis associated with
assignments in adjacent regions, TFor instance, a road
cannot be surrounded by sky.
2. Merge adjacent regions with comparable interprctations.
3. Reevaluate interpretations based on contextual

constraints associated with the new adjacent regions.

4. Continue alternating merging and interpreting until all
adjacent regions have disjoint interpretations
uynviolated by contextusl constraints.

Both line-based and region-based interpretation-guided
segmentation systems have been devised that have performed well
in a variety of complex scene domains. However, the approach is
not suitable for a general-purpese visien system‘as it dépends on
prior knowledge »f expected objects. Unknown objects cannot be
recognized or even described. Thus for uni'nown objects, 1levels
of scene desériptions below the level of complete objects are

needed.

E. Use of General Yorld Knowledge to Guide Segmentation

Marr and Nishira (1978) observe that as the primal sketch is
typically a large and unwieldy collection of data, the next stap
is to decode it--traditiocnally by "...a process called
segmentation whose purpose is to divide a primal sketch, or more
gencrally an image, into regions that are meaningful, perhaps as
physical objects.” It makes sense to use any general knowledge

that might help in the interpretation. An example of such
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knowledge is infermatien on the physical nature of edges of

obiects,

Huffman (1971) and Clowes (19T71) devised an approach to.

enable the interpretation of perfect 1iné drawings of polyhedral
objects without having to rezort to heuristics; They recognized
that each line in the picturec represented either a convex edge,
a concave edge, or an occluding edge in a three~dimensional
scene. Ffom this, they constructed a catalog of possible vertices
with allowable line labellings. A scene could then be analyzed
by starting at one vertex and proceeding through the line drawing
performing a tree search, limiting the number of possible line
labellings at eceach step according to the catalog, until a
consistent labelling for the entire scene is obtained. Waltz
(1975) further extended this technique to include shadows and
cracks. His catalog included several thousand possible vertex
types. He used a relaxation-type procedure to decide on.the
correct labelling for each liﬁe according to the possibilities in
the catalog. The resultant procedure converges rapidly (usually
to a unique interpretation) regardless of the complexity pf the
scene. |

A move toward a more general approach to the problem of
interpreting feature point segments as lines and edges has
recently been made by Binford (1981) and Lowe and Binford (1981).
In their scheme, a segment is interpreted as a space curve, and
constraints are formulated based on coincidence, and those

situations in which a curve corresponds to a true edge or

bounding contour.
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A couprohsnsive approach tn deriving a physical sketeh of a
gcene from one or more images has kgon taeken by Fizchler st al.
(1982). They use a priori knowledge of global and aztended
constraints to gulide the scimentation and interprotetion process.
Their approach involves modeling phyaically measningful infornmation
such as the inaging process; the soene geometry and eloments of
the scene content. They utilize knowledge sbout such factors as
the camera model, vanishing points, gecmetric diszstorticn, ground
plane, geometric horizon, skyline, semantic contaxt (urbaa or

rural scene, e¢tc.) phyvsical surface nodaels end edge

classification.
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APPENDIX D
2-D REPRESENTATION, DESCRIPTION AlD RECCGHITIOHN

This appendix prescnts a nuwmder aof 2«D representations and
descriptiaons useful for furiher precessing and recognition,
A, Pyramids

A pyranid data structure represents an image at several
levels of resolution simulianeously., The base of the pyramid 1s
the original full resalution imasge, usually assumed tobeanxn
square array. The nmext level of the pyranid is typicslly formed
by partioning the image intoc non-overlapping 2 by 2 cells and
mapping (usually by average gray level) the four pixels in each
cell to a single pixel in the next level®, This is repeated,
level by level,untilhthe image is compressed inteo a single pixel
at the tsp level. Thé usefulness of pyramids lies in being able
to extract features at an appropriate level of resolution.
B. Quadtrees

A quadtree representation of a n x n imags is abtained in a
top~-down manrner by recursively splitting the image into
quadrants, the quadrants into subguadrants, ete. The process
continues until all pixels in a quadrant are uniform with respect
to some‘feature (such as gray level). The terminal leaves of a
quadtree are uniform regions of varying sizes, thus being a
useful first phase in segmenting a image into rogions.

C. Statistical Features of a Region

Once an image has been segmented, a description of each

region, or blob, can be generated as a list of statistical

¥0ther partionings and mappings are common.
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features. These features typically include perimetoer, area, c.g.,
first and second erder noments, coler, otc. The individual blob
descriptors are linked to form a2 tree data ztructure which
represents nesting relationships. The parent of any blob in the
tree is the adjacent blod which completely surrounds it.
Recognition is performed by matching the statistical features
with those of stered prototypes. The SRI Vision Module and GM's
COHSIGHTvuse this approach.

D. Boundary Curves

The boundary of a region can be represented by a chain of
straight lines and arcs. The resulting cocmpressed boundary
descriptions are sometime referred to as "chzin codes"™ or
"ecancurves." Gennery et al., (1981, p. 3-2) note that "The main

advantage of the concurve representation is that objects may be

recognized onr the basis of partial views by matching a subset of

the lines and arcs in a model concurve with the image data."

E. Run-Length Encoding

For a binary image, it i.s possible to segment the image into
edges and regions by sequentially scanning the image and
recording the edge points (where pixels change from zero to one
or vica versa). This process of reducing a binary image to a set

of edge points is cailed run-length encoding, and has been

successfully used in the SRI Vision Module and a number of

sophisticated commerical vision systems derived from that module.

F. Skeleton Representations and Generalized Ribbons

In this approach, a planar region 1is represented by a

skeleton which consists of the medial line (locus of points
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equidistant frem the boundariecs of the region) and the
perpendicular distance from the boundaery for cach point on the
medial line, In some caséé, a complex region can be constructed
as the union of these generalized ribbons (the 2~-D version of

generalized cones described in Appendix F).

G. Representation by a Concatenation of Primitive Forms

A region can be built up from a collection of squaraes,
rectangles or other shapes. The "Maximal Block" approach uses a
union of squares of various sizes.

H. Relational Graphs

An image that has been seghented into regions can be
described in terms of a relational graph, whose ncdes represent
regions and whose arcs represent properties (Such as shape and
size) and relations (such as "infront of" and "adjacent toM).
Corresponding views of known objects can be similarly
represented, and recognition can be achieved by matching the
graphs.

I. Recognition

Recognition consists of matching a description derived from
an image to a description of a stored model. Recognition can be
accomplished by coerrelation, which for binary data reduces to
template matching., A morege elaborate approach is statistical
pattern classification using features such as described in
Section C. Relaxation and syntactic analysis appfoaches
(described elsewhere) have also been used. Fischler and Bolles

(1982) suggest "random sample consensus" as a paradigm for

selecting the model that providez the best match to the data and

for computing the best values of the free parameters.
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RECOVERY COF IHTRIKSIC SURFACE CHARACTERIZTICS

A Basic Avproach

A8 indicated esrlier, it 4s helpful ia many casss to aszist
in finding 3-~D surfaces and vaelunes for interprctatien, to go
beyond the 2«D reprosentation of edgas and ragions to a

representation proposed by Herr (1978) of MIT, called the 2.5~D

c————-——- c“"..—-—*——" s
sketch consisting of surface distances and orientations. Such a
m—

sketch can be constructed frem the surface characteristics which

are intrinsic to the scene and are nob dependent upon
idivsyneracies o' vieuwpoint of the senasor.

Barrow and Tenenbaum (1981, pp. 581-582) indicate that these
inﬁiiﬂgig_ﬁhﬁpaﬁ cristics of surfaces are sppropriately
represenéfd as 2 gsoct of arvravs in reglstration with the image

e

array. Cach array corrcapends to a particular intrinsic

ct.aracteristic such as surface reflectance, surface orientation,
e A ——

incident ililumination andfgggggsr Each array contains values for

itgfzatrinéic characteristic at the surface element visible at

the corresponding point in the sensed image. It also explicitly

indicates boundaries due to discentinuties in value or gradient

of the characteristic. Such arrays have been referred to as
intrinsic ihages.

Figure 9 i3 an artist's conception of one possible set of
intrinsic images, corresponding to a monochrome image of a simple
scene. The images are shown as line drawings, but :n fact would
contain values at every point. The solid 1lines repfesent

discontinuities in the scene characteristic; the dashed lines
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raprasent discqntinui%ies in ito derivative. The distonce irege
gives the line of sight rangeifrou tha centaer of praojection to
each visible point in the scene., The reflectance inage glves the
albedo (the ratio of tetal reflected to total incident
{llumination) at each point. The orientation image consists of
vectors representing the direction of the surface normal at every
point. The integreted incident illiumination frem all sources is

given by the i{lluminaticn image.
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Flgurc 9: A eot of dntrinsic duspes dorived fron a single
poroshrena intenslity dasge. :

[TAICTINGE

)

ORIINTAYION (VECTOR) RALMINATION

(d) ' )

surce: Barrow and Tenebaum, 1981, p. 582.




The central probdlcm in recévering the intrinsice

charactericstics from the image is that the desired infornation is

confounded in the sensory data. The chbserved light intensity at

a single point could result from an infinitude of combinations of
illumination, reflectance and orientation. The key to recovery
lies in exploiting ceonstraints derived {rom assumptions about
the nature of the scene and the physics of the imaging process.
For example, as surfaces are continuous except at boundaries, ue
can expect surface characteristics (reflection, orientaticn and
range) to also be continuous. Similarly, incident illuminatien
also varies smoathly over a scene except at shadew boundaries.
Barrow and Tenenbaum (1981, p. 589) propose the following
four~step model for using interacting constraints in a
relaxation type process for sinultanecusly recovering the primary
intrinsic characteristics from a brightness image:
1) find the brightness discontinuities in the input
image;
2) scetermine the physical nature of the
discontinuity;
3) assign boundary values for intrinsic characteris-~
" tics along the edges, based on the physical
interpretation; L
i) propagate from these beundary values intoe the
interiors of regions, wusing continuity
assumptions.
Many different approaches to recover shape from image
characteristics have been zxplorud as represented by the

following sections.

B. Shape from Shading

Barrow and Tenenbaum (1878) describe a low level method of

estimating relative distance and surface orientation from a
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single image. They use houristics based on the rete of change of

brightness'across the imgﬁp.

yo

Ikeuchi and Horn {(1981) have formulated a second order

differential equation which Horn c¢oils the "image irradiance

equaticn.® Thi's equation relates the oricntation of the leocal
surface normal of a visible surface, its surface reflectance
characteristies, and the lighting, to the intenszity value
recorded at the corresponding point in the image.

c. Sterecoscopic Approach

Gennery et al., (1981, pp. 6~1 %o 6-4) describe various

stereoscopic approaches to finding range. They observe that Che

basic sterceo approach uses triangulation betuween two or mare
views from different positions to determine distance. However,
stereo techniques differ in the way in which matehing is done
between pictures, particularly in the kind of entities that are
matched. Th¢ two major approaches are area correlation and
matching lines of maximum intensity changes (edge-based stereo).

They report (p. 6-3) that, "Scenes of man-inade objects often
are nat highly textured but contain sharp brightness edges at
boundariea of objects and at intersections of planar faces. For
such scenes, area correlation deces not work very well. Instead,
it is usually better to detect features in each image and to
match these features.”

D. Photometric Stereo

In this approach, the light source illuminating the scene is
moved to different known locations, and the orientation of the
surfaces deduced from the resulting intensity variations

(Woodham, 1979, 1981).
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E. Shape from Texture

Brady (19814, p. 88} reportz that, "0f the modules which
seem to bridge the gap between the Primal Sketch and the Surface

Orientation Map, none has rceceived quite as much attention froo

Psychologists as the computation of surface oriesntation and depth’

from texture gradients." Various methodc for computing texture
gradients are possible and from this orientation can be deduced.

F. Shape from Contour

Barrow and Tenenbaum {1980] have suggested a method for
interpreting curved line drawings as g¢hree-dimensional surfaces.
To interpret a two-dimensional curve, a thrce-dimensional curve
projecting to it is computed that minimizes a ccmbination of
variation in curvature and departure from planarity. Other
épproaches tc this problem are given by Draper (1981), Kanade
(1981) and Stevens (1981).

G. Shape and Velocity from Kotion

Brady (19814, p. 96) provides a veview of efforts tc recover
shape from motion for the case of rigid bodies. He reportﬁ that
Ullman (1678) was the first to treat this issue. He considered
the problem of estéblishing a correspondence between the Primal
Sketches in two successive inage frames. Ullman also studied the
probleir of computing the structure of a rigid body from the
caorrespondences of a small number of points in a'number of views
and found that remarkably few of each are required to. compute
rigid three-dimensional structure.

Brédy (1981A, p. T0) defines "optical flow" as the

distribution of velocities of apparent movement caused by

111

(Y=



sroothly changing brightness patterns. Horn ard Schuneli £1981)
have proposed a method for computing Yoptical flou® by
differentiating the brightness distritution ir successive images

with respect to time."
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HIGHER LEVELS OF REPRESEHTATION

The bagic form for the higher levels of representation_is
the 3-D model. This iz an object-centered representation that
describes the object in a convenient way, as in the following
examples. |

A. Volunetric Hodels

1. Generalized Cones

Agin and Binford (1973) introduced the concept of
generalized cones (also called generalized cylinders). A
generalized cone is defined by a space curve, called the spine or
axis, and a planar cross section normal to the axis. A "sweeping
rule" describes how the cross section changes along the axis.
Complicated objects can often be represented by a concatenation
of generalized cones.

2. Wire Frame Models

Various investigators have represented 3-D objects by means
of Wwire frame models in which the wires correspond tc edges or
boundaries of cross sections. Stick figure models are a reiated
representation.

3. Polyhedral Models

Wesley et al., (1980) repert on a geometric modeling asystem
developed at IBM to describe complicated mechanical parts. The
object_is represented by polyhedral primitives which are combined
as required by the operations of union, difference and
intersection. In the IBM s3ystem, objects and assemblies are

represented in a graph structure that indicates part-whole
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relationships, attachment, constraint, and assembly. Also
included are physical propertics of objects and positional
relationships between objecta, The systsm can determine the
appearance of an object for an arbltrary vicw. This information
provides the potential for use by a computer vislon recognition
syatem to guide the scarch for features to match an imare ta the
model. )

4, Combining 1D, 2D, and 3D Primitives

Shapiro et al., (1980) describe objects in terms of the
primitives: sticka, plates and bLlobs. Relations are given an héw
the parts connect, their size, and spatial relationships.

5. Planes and Ellipsoids

Gennery (1980) produced a methad for describing 3-D outdor
scencs. The ground surface was approximated by one or muse
planes or paraboleids, and objects lying on the ground were
approximated by ellipsoids.

6. Sets of Prototype Volumes

Efforts in Computer Aided Design and Computer Alded
Manufacturing (CAD/CAM) often represent objects by combining a
small set of prototype volumes such aa spheres, blocks and
triangular prisms.

B. Symbolic Descriptians

The various parts of an object in n scene may be represented
by graphs in which the nodea are the objects and the
arcs are the relations (such as above, to the right of, behind,
surrounded by, part of, larger than, ctec.) and intrinsic
attributes (e.g., small, flat, etc.).

Barrow and Tenenbaum (1981, p. 576) observe that, "Symbolic
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nodels are appropriate for natural objecta (e.g., trees) that are
better defined in terma of generic charazoteristics (e.g., larger,
green, leafy) than their precise shape.”

C. Procedural Models

Rosenfeld (1981, p. 694) defines a procsdural model as any
process that genérates or 1ecognizes images. An important class
of such models are grammatical cr syntactic models. Pratt (1978,
pp. 574=578) discusses such syntatic processeca. He observes that
syntatic methods have been proved feasib}e for simple models, but
notes that it is not clear yet whether or not these techniques

can be extended to general classes of images.

RN,



Barrow and tenenbaum (1981, pp. 591-593) outline how
interpretation might proceed based on intrinsic images. They
observe that intrinsic images provide scene information on a .
point by point basis in a viewer-centered cocrdinate frame.
Higher levels of interpretation, such as object recognition,
require a more global representation in a viewpoint-independent
coordinate frame, Surfaces and volumes are obvious candidates
for representaions following from intrinsic images.

An interpretation-guided segmentation approach based on
structural prototypeé is a possible mechanism forAderiving 3-D
surfaces and volumes from intrinsic images.

Once a scene description has been obtained in terms of
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HIGHER LEVELS OF INTERPRETATION

surface and volume primitives, geometric models can be used to

generate similar primitives, which can then be matched by a

search process to obtain object recognition and location. It is

often convenient to use graph structures for representing scene

As scene descriptions are typically fragmented and

include many objects, some of which may be oaccluded, it is

necessary to match parts of the scene graph with parts of object

such subgraph matching can be combinatorially

much work has been done on algorithms to handle 'such

explosive,

matching in complex scenes.

Barrow and Tenenbaum suggest that perhaps the best way to

defeat the combinatorics of search is to deccmpose object models

hierarchically into components. These components can then be

a4c
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indeopondently matched, and canbined ond ohecked for conslistancy
aftervard. Using this appronch, tha ocomplexity of matching tends

to increase additively rather than expanentially.
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APPENDIY R
TRACKING

ta 5-3) survey the real-time

-

Gennery ot al. (1981, pp. 5-

tracking problem, observing:

The goal of oabject tracking is to process
sequences of images in real time to describe the motion
of one or maore objects in a scene. Often rcal tine
implies pracessing every image from a TV camera
operating at 30 Hez. In other words, an image 1is
digitized, features are extracted from the image, the
object or objects are located in the image, and
pasition and. velocity estimates are updated 30 times &
secand, although in practice slightly slower rates are
soanetimes used. At the present time, the approaches
which achieve real-time operation rely on simplifying
assunmptions about the nature of the scene, track very
few abjects in a given scene, and incorporate varying
levels of special-purpose hardware designed for the
particular tracking algorithmn...

Since successive images are onily 1/30 second apart
in tine, the appearance of the object will change very
1{ttle from image to 1mage. The object can te modelled
auapPtively as it was last scen by the tracker, with the
expectation that a geod match between the atject model
and the features in the current image is available.
turthermore, the location of the object in the image
can be predicted very accurately by using the latest .
available position and velocity estimates coupled with
the sho. t elapsed time between images. As a3 result,
Lite search window need only be large enough te contain
the object up to a few pixels uncertainty. This limits
the required computation to a manageable level and,
mare importantly, greatly reduces the probability of a
false matceh occurring...

Real-time {mplementations typically rely on
features which can be computed directly from the image
without resorting to actual 3-D measurements of object
features,

Table IX summarizes the various approaches surveyed by

Gennery et al. It will be observed that a variety of appreaches

s a5

are passible using either area correlation or feature matching.

However, na final optimum system hags yet been devised.
o
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System Developer

Purpose

Table IX
Visual Tracking Approaéhes

Approach

Cooments

riftin et al.

Object tracking for

Gray level correlation of a window in current

Irzzune to background changes
(1978) closed-loop guidance successive images of an object. Implemented 1f tracking window confined
of JPL breadboard in software. toc target.
Mars-Rover vehicle.
inkney Control of shuttle Uses a single camera to track four man-made
(1973) manipulator for rarkers on object to derive object position
grasping objects and orientation relative to manipulator.
tracked.
— : g
rooks Supervisory control Stereo cameras to track markings cn an 1,%%
(1530) of a teleoperator object. Qs
manipulator. % i
S Wi~
. [t}
[{tzen et al. Track moving objects Use SRI vision module. ?i?%
(1979) for feedback to an s
industrial robot. e L%

‘oacihv & Apparwal

(1979)

Track objects in
"blocks world"

Blocks are located and matched (uasing n

three level scheme) bazed on predictions
from stored internal representations of

blocks discovered in previous images.

Works well in blocks world:

fennema &
Thempson
(1979)

Object tracking

"Gradient Intensity Transform Method”

Time variations in intensity and the spatisl
gradient are determined and recorded for each
pixel in image. A Hough transform moethod is
used on the intensity varilations and gradieatc
to determine object velocity.

Requires zmoothing (znd therefore
accuracy degradatlon) for pro-

cadure to work wall.

[



Table IX (cont.)

Visual Tracking Approaches

System Developer . Purpose Appreach Corments
Tsugava et al, Detect position of road Differentiate analog video signals from two
(1079). features to automatically cameras and stereo-match contrast edges.

guide a car.

Hirzinger & Object tracking Analog video signal processed by special purpose This contcur-based ap-
Suvder hardware to detect significant contrast areas, proach easily fcoled
(1580) inside a programmable tracking window. The in scencs of moderate

position of the object 1is considered to be the complexity.

centroid of the extremes of the contrast points.

Gilbert et al, Real-Time identification Uses four microprocessors as follows: Assigns a confidence
£1931) and tracking of missiles ’ level to each match and
and aircraft. 1. performs histogram analysis of window in relies on prediction
image to classify pixels as (1) belonging " when match is paor.
g to target (@) not belonging to target.

2, Bums target pixelis horizontally and verticaliy
to identify target, ’

3. handles image rotation and camera conciol.

4. evaluates goodness of match at each tracking
iteration and adapts system as needed.

Saund et al. Object tracking Use feature-matching to an internal model adjusted Rejects extrancous feztures
(1981} by a least squares fit. not predicted by wodel.

Source: Derived from Gennery et al. (1981, pp. 5-1 to 5-7).




Real-time tracking iz iaporiaat for manlipulaotien; for
guicaince for applications such as recovering satellites or free-
flying payloads; for grasping moving objects (such a3 parts in an
industrial environment); for ascenbling objects such as
machinery or electricel appliances; and {or bullding apace
structurcs. It is also important for target acguisition and
tracking cor for locking onto a feature in situations such as
planetary flybys and astronomical or earth observations. And, as
to be expected, it is also applicable for vehicle and'missiLe

guidance.
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APFEIDIX I

Additionzl Tables of

Hodoel-2asad Vision Systena




Neveloper: Ballard, Brown and Table III- a
feldman (1978), Univ, of Rochoster

Purpose: Answering Queries about Images Hodel-Based Viston Systems

Ssmpie Domains: Locating ships at docks
' Locating ribs in chest x-rays

Approach Modeling & Representation Remarks
System is stiructured in levels (similar to VISIONS) . Knowledge and model fn terms of semantic Uses a fixed and
networks, consisting of nodes and spatial known viewpoint
-The model constraints
tlser must code an
-Sketchmap relating model to image Templates are usad to descrihbe shape executive mateh
’ procedure for the
-Images at different levels of resolution User models objects in image domain particular task
- (not 30 domain) damain

Query determines level of detail

Spectal purpose

Querias take the form of user-written executive systes

__prograns
N
“Control involves synthesis of a sketch
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Developer: Bolles {1976), SRI

Purpose: Inspection and Visual Control in

Repetitive Manufacturing Tasks
Sampie Domains: Location of a mechanical part in
an automatic assembly work station
Approach

Table III- b

Model-Based Vision Systems

VW (verification
Vision System)

Medeiing & Representation

Remarks

Relies on 3D relationships of observables to locate

a mechanical part accurately-based on slight deviations
from an expected locatfon and orientation

1) ' The user chooses potential operator/feature pairs
2) The system applies the operator to several sample
pictures and gathers statistical information
on their effectiveness
3) System ranks operators and predicts cost of
= accomplishing task
S
4)

System applies operators to task in order of
their cost effoctiveness, until desired
confidence is reached.

Uses a generalized least squares algorithm and maximal

clique* finding to match the model to identified
features

*Maximal cliques are maximal matches of portions of
graphs of image and model descriptions

Limited 3D models made up of surfzce point
features and their locations in 3D space.

Bapends on small
correlation windows
as featuras, Thus
it is restricted

in viewpoint




Developer: Rubin (1978), CHU

Table III- ¢

Purpose: . Identify Objects in Images ¥odel-Based Vision Systenms
Sample Domains: Latelling buildings in a city scene ARGOS

3 .Approach Modeling & Representation Remarks
Hzs 30 knowledge of positions of the buildings trans- Internal model {1s a 3D model of the city. Yiewpoint depeadant

lated into adjacency information to guide the search
for labellings of pixels

ARGOS does not segment — 1t labels. It works with

nixels nr regicns. Huch depands on spectral labeling.

Search is a very local pizel-based “locus® search,
a genaralization of HARPY's (network speech under-
standing) "bean search" to 2D photo interpretation.

61

Modei used to generate all possibie viaus

KHostly relies ou

Stores multiple representations of buiidings, | adjacency velaticns

in terms of such things as location, texture,

color, orientation and gross shapa feztures —f Kot readily cenrzeaiies

all gleaned from training examples 2ble
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Developer: Garvey (1976), SRI

Purpose: locate Kncwn Objects in an Image

Sample Domains: Office environment

Approach

-,

Table 1II- 4

Model-Based Vision Systems

Modeling & Representation

Remarks

- m—

System uses simple local features rather than
structured shape descriptions

§trategy is to:

might beleng to the object
-hypothesize the object from the sample

-validate the hypothesis

921

-erect a boundary around the object

Coarse to fine strategy:

 Top-down approach

e T T it

A

-use windows to acquire image samples which

-large objects found first, reducing search
area for spatially-related smaller objects

Programmed interactively

Ohjects are shown to the system by cutlining
them in an image

Objects are autcmatically characterized by
conjunction of histograms of local surface
attributes such as: hue, orientation,
range and height, and relaticnships between
surfaces

Ferfarmance rests
strongly on having

depth data and surfzce.

crientation derived
from depth

Does not use geneval
shape information




Developer: Barrow and Tenenbaum (1976) ,SRI Table I1I- e

Purpose: Identify known objects in a scene A Model-Based Vision Systeas
Sample Domains: Typical objectsin a room _ HSYS

System also used to drive the IGS

interpretation-quided segmentation system

Approach

Modeling & Representation Remarks

An interpretation-guided segmentation system Models objects in terms of height, Relies on & particular

orientation and 30 spatial relationships viowpoint
Simulated range data is used to determine 3D between objects
locations, orientations of regions and their No shape information
spatial relations _ is used

Matcher uses spatial relationshipsas a strong
constraint in matching data from image to model
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oper: Kanade (1977), CKU Table IIl- f

se: Find objects in a scene

e Domains: Cutdoor scenes with buildinas viewed from eye level

Hodel-Based Yision Systens

Approach Modeling & Representation Remarks
; scene fn either intensity or range Uses a 2-1/2D scene domain image oriented
i to match observed patches against modeled Nbjects are represented as {mage Yiewpsint is cnly
1es regions pseudoc-findependent

Shape and spatial relations describe
the region

Cbjects have multipie representations
from multiple viewpoints, but these
must be expiicitly described by the
user
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veloper: Nagao (1978, 1980), Kyoto U.

rpose:
taken in several spectral bands

mple Domains: Countryside, Suburban

Approach

Label areas and objects in aerial photographs

Table 11I- g

Hodel-Based Vision Systems

Modeling & Representation

Remarhs

First do edge-preserving smoothing

Segment images into regions which are continuous
in spectrai properties

Using histograms and adaptive thresholding in each
spectral band, extract cue reqgions:

-larqe homogenecus areas
-elongated regions

-shadow and shadow-making regions
-vegetation regions

-water regions

-high contrast texture regions

Analyze each cue region by an chject detection
program specific to region type

Feed summary of properties of regfons back
to subsystems

System control tries to resolve conflict labels
and to deal with unlabeled regions. The most
reliable labels are chosen for a regfon. If a
region can't be labelled, system activates a -
split and merge process to correct faulty
segﬂentation

Use shadows to give information about
height

Shadow-making regions are regions adjacent
to shadaws with a long common boundary

Elongated objects include roads,rivers
and rafiroad 1ines

Vegetation areas have small ratios of
red to IR

Water identified by spectral properties

High contrast regions are woods and
residential areas

Residential regions are those with
strong gradients in two orthogonal
directions

Fouses found in candidate resfdential
areas by a sequence of house routines,
starting with rectangular-shaped
shadow-making regions

Well-crafted system
tatlored tec rulti-
spectral aerial
photographs

Segmentaticn primarily
dependent on color

Shadew fdentification
not genecral or reliable

Interpretation not
general

-30 enly frea
shadous

" -weak use of shape
-interpretation
suitable 7or large
areas — not human
scale objects for
which shape is
{mportant
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Developer: ohta (1980), Kyoto U.

Purpose:
of outdoor scenes

Sample Domains:
as viewed from ground Tevel

Approach

Semantic labelling of regions in color images

Table I11- h

Urban scenes with buildings, trees, streets and cars

Modeling & Representation

Hodel-Based Vision Systems

Remarks

0€1

Forms regions by splitting using thresholds from histo-
grams of color parameters., The color paramaters chosen
are 3 algebraic combinations of red, blue and green

[r+g+g, zig' 23-r-b ].

"Textured regiors determined separately based on the
Laplacian exceeding threshold in 3x3 windows.

A plzn is generated by an initial bottom-up coarse
region segnentation.

A symbolic description of the scene is made by a top-
down analysis of the bottom-up {interpretation using a
production system with knowledge of the world
represented as a set of rules.

Decisions made by the top-down precess cause the
bottom-up process to be reactivated to reevaluate
the plan.

The top-down computation proceeds from a cocrse to
fine 2nalysis, fn 2 scene phase and zn object phasc.

Data structure includes regions, boundaries
and vertices.

Regions are represented by: area, irean
intensity of r,b,g, degree of texture,

perimeter lenqth, c.q., numbar of holes, etc.

Road model

-subchjects: cars, shadous
<made of: asphalt, concrete
-properties

horizontally long, b2low horfzon
{car:. horizontally long, dark,
above road)

Sky model

-nat touching Tower edgz of fmage
-shining

-bluc or grey

-touching upper edge

-linear boundary on lower edgn

Tree mcdel
-hesvy texture
-n3de of lesves
fuilding modal
-subcbjects: windows
~=ade of concrete, tile or brick
-zany holes

-many straight Tines
711ncar upper boundary with sky

Rules for the bottom-up plan are unary
progorties of cbjccts and birary relsotions

tetween objocts

Thoe world codel fs & natwork of abjects,
wataricls and concepts (scene schemas).

Systea does well
overall

One of a few oxenplas
of reascnable
performance on scenes
of mcderate complexity
on a set of scaowhat
diffarent scenes

Quality of segmentrtien
is weak

Models arz wesk

Approach §s5 fraffective
in many situations i
which fina dotails
determine ohject labais.
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‘evaloper: Shiraf (1978), ETL, Tokyo

urpose:

sample Domain: feneric desk-top objects

Approach

Recognitinn and location of common objects from
light intensities (gray levels) in an image.

Table 111- {

Hodel-Basad Vision Systems

Mndeling and Representation

Remarks

Jses an edge-finding process which extracts edges of
curved objects.

inalysis of the scene starts from the most obvious

object.

‘op-down approach.

lecoqnizes cbjects using & hierarchy of features.
-Fird the main feature to get clues for the
object.

-Find & secondary feature to verify the main
featyre {and ohj2ct fdentity) and to determine
the ranqgz to the object.

XY

~Determine the range and find the other Tines
of the object.

fnd seccondary small objects after large objects
~2 found

Describes edges by straight 1fnes or elliptic

curves

Objects are wodeled and represented by primar;

and secondary features

Primary

Lazp: Contour of lenp
shade

Bookstand: Tonqg vertical
1ines clustered 4n

2 rectangular region

fhjects: Shapz and
s122 of contonr.
(pipe, pen, etc.)

311

Secondary

pair of vertical Wnes
correspending to
trunk; contour of
Lace

iines connzcted

to m3in feazure

datails of shspe,
and 1ight intensits
changes

tdge finder adeguate
for task

Can't 4221 effectively !
with texture

modals
i5

tUse ¢culy iwoge
5021

not snject =

Mo orcanization of
reiated edges

AIVND ¥0od 20
£1 2ova Wwasn



Jeveloper: Levine (1978), KcGill U., Canada

Purpose:

Develop a Modular Computer Vision System to

Table 111~ j

Experiment with Different Picture Analysis Strategies

Suburban Qutdoor Scenes
Office Scenes

Sample Domains:

Approach

Modeling & Representatfon

fodel-Based Vision Systems

Pemarks

A three level system:

First level segnents pictures into regions without
scene context,

Second level has tws phases:

tocal phase matches all stored image templates
{of feature vectors) with observed regions,
using A* graph search
> Global optimfzation phase uses dynamic pro-
gramming to merge regions and assign labels to
them based on model-driven spatial relationships

Highest level includes management-type relational
data base of image-oriented scenes, and a data-
driven production system of what actions to
take depending on what appears in the image
regresentation  in short term menory (STH).

57K contains 145t of reqions and a confidence-ordered
Tist of their dnterpretations, (It resembles the
blackbnard of BELRSAT.) Implicit actions are {nvoked
when a3 reqion matches an ohject In a scene sodel with
5 confidence irvel ahove threzhold. -

Low level processing s approximately in order
of decreasing sfze using a pyramidal data
structure :

Jses feature vectors throughout

Features are stored in three classes accord-
ing to decreased importance in reducing
search time.

1. Includes minimum hounding rectangle
and its areas,

2. Intrinsic features: {ntensity, hue,
saturation and its area.

3. Includes six moment invarfants es
3 rough measure of shape, and
detatled shape from a set of
Fourier coeffictients for thz
cutline (used only 4n final
tenplate evaluation).

Segmentation weak—
tased on & gradient
operator

System is viewpoint
dependent




Ceveloper:

Purpose:
urban ccene froz images,

Sanple Domains:

Approach

Ferran, ranade and Kuroce (1982), CXU

To incrementally acquire a 3-D model of a complex

Table III- k -
Kodel-Based Vision Systezs

" Near vertical vicews of Federal Buildings area of Wash., D.C.

Modaling & Representation

3-D Mcsaic Frojact

Remarks

Uses sterec analysis tc ceonstruct partial wire frare
zodels from scene vertices and edges (which have teen
previously extracted fron the izages using conven-
ticnal edge polnt finding, thinning, and fitting of
stralght lines).

snatructs a structure-graph to repregent partial
censtraints on 3-D structure.

Froz the wire frane deccriptions, a surface-based
rodel rerresenting an approxization to the scene is

- generated using dozain-specific knowledge of building
shapes - such as flat roofs and vertical sides.

Ucen a relaxation typs process to merge wire frane
models generated froaz differcent stereo pairs.

Fodificaticns, additions or deletions to ths struc~
ture-gxrarh model are made as new inforzaticn is
found,

Constructs wire frane mocdels from images.

Uses a structure-graph rejprezentation to
rodel surfaces in the ccene ags polyhedrz,
Hodec reprecent primitive topologlcal elc~
zcnte (faces, edges, vertlces, objects, and
edge groups) or primitive geozetric elezents
(pl2nes, lines and points). Two types of
links are used - pert-of link (relatlon
between two topological rodes) and ithe geo-
catric constraint link (repreccating the
congtraint relation botucen a gzorctric and
topclogical ncda).

Generates a surface-baged 3-D scenz medel
frea the wire frans deseripticisutilizing
houristlics of bullding shapos,

Domain kncxledge
used is viewpoint
dependent.

Cen geuzrnts 3D
roxseetive visus
of reeenstructiad
buildings fron any
dealired vicupoiat.

Uson touth s
ance procedvras
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leveloper: Faugeras and Price (1980), UsC
urpose:

Semantic Description of Aerial Images
iample Domains:

Search for known objects in an aerfal imaqe

Approach

‘onstruct a network of image seqgments using regfon-
yased image segmentation and linear feature extraction.

Modeling and Representation

Table 111-1
todel-Based Vision Systems

Remarks

jolution is by stochastic matching (relaxation) of the
image network to a portion of the model network.

he approach taxes the form of 2 constrained optimiza-
:fon graph search,

Names are assigned to units with
1atching probabilities above BO%,

vel

Represent image segments by properties:
-average color

-simple textures measure
~position

-orfentation
-3imple shape measures

Relations hetween image segments {nclude zd-
jacency, proximity and relative posftion

Hedel 4s described by a sementic network,

with the nodes being seqments projected into
the image plana.

The arcs are pesitional
relationshins.

Image ic also represented by the same type
of semantic retwork as model.

lises {mage-dependent
mndels restricted in
vicwooint

Segmentation is
relatively weak.
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Commercially Available Industrial Vision Systems Sin |21 2

iable VI. ;: 8 g ::é,

Company System Comments 218 18y 2
g:Ech*e HY Optomation IT1 This is a sophisticated high speed vision system designed primarily for Xpx

4 o Approx. $50K | inspection and measurement. (The system can do measurements along user

defined lines.)

Optcmation uses up te 4 G.E, solid state CID cameras for input. The systenm
is based on a multi-distributed microprocessor architecture partitioned to

1 take maximum advantage of hardware, firmware and softwere rodules to achieve
high speed, flexibility and low cost.

The system first thresholds the image to binary. The thresholded images are
in a 256x256x3 bit high speed dynamic random access memory. normally
operated as four 256x256 2 bit pages. '

The thresholded image is next “windowed" to establish spatfal limits for
data to be further procaessed. The windows are raster-scanned to find cuge-
points (where pixels change from 0 to 1 or vire versa). Using a patented
corner point encoder the system observes where edges cisnge direction -
(45° or greater) and labels these”cornerpofnts.” finly the corner points

are stored, This is all accomplished in a singie pass.

The stored cornier peinte are then correctly assccicted such tat cach ¢dject o
item (closed edge s52t) is reconstructed znd stored in an item file. The ;
feature extracter then analyzes these item files and extracts key features
such as an ares, ceatroid, bounding rectangie, distances, angles, etc.
(similar to the SR module).

Approximately 50,000 corner points per second can be processed. The procsss.
or can sinultaneously operate ond4 scenes, composed of 64 objects with up o
3360 corner pofnts. The systeca can thus handle up to 15 images per secofid
for each of 4 asynchroncus cameras.

Cptomation I1 can be readily programmed by the user in Basic-1ike VPL
{Vision Planning Language).

9¢1




Cozmercially Available Industrial Vislon Systems Si.lel 8
Table VI (continuad) L1 il 2 ;
[$) o~ oo g
. oy (8] = =2 4
L [43] [~ =8 !
- Q. [«3 - f
| 9 [%) [X] o s
Company System Comments 1S |21 2
Machine 75100 This sophisticated systea is based cn the SRI Visicn Module Systen and is r ix 1X
Intelligence Vislon System | easlly programmed using a light-pen controlled menu on TV monitor. Can
Corp. Approx. $35K also be programced in BASIC on a DS-100 Developzent Systen,
Sunnyvale, CA V81C60P, aportable version, is algo available,
vS110 This system 2dds a Programmable Irage Overlay-foature to the VS100, wo that{X {X 1% X
Visicen Systen | by macking, or differencing,a precisely located part can bo incpocted for
flauws or tolerancs verification.
UNIVISION This oysten is basically tho VS100 used as a pattern reccgmition cwoten to [ X | X % (X
rrovide a vislon sensing capebllity for UNIMATE FURA rcbots. It conslsia
of & vislen processor, graphic display monitor, 1light pen, careva(s) and
UNIMATION's VAL softwere and hardware interface. Tho systen is designed
to operate in real time, UNIVISION can be trajdned to rocognizs & maxinuu
of 9 different objects with up to 12 non-occluded rarts In tha ccene 2t ong
tice. For each part, 13 distinguishing features can ba genorated including
= arza, perirzeter, C.G., nunbsr of holes, and rarinun and ninizua Todil.
~J
D5-100 Alious easy visicn program development by engincers with 1ittle coaputexr ; oy
Developzent experience. Shields the user from mcat coxputer-related details while 23
Syoten providing cophisticated dovelopment tools, such as 20 rzgabytec of disk, &
Approxs $95K | a file syotom, sovorzl scrven-cricnted cditors, o couapiler, ond scveral < ﬁ
debugeing aids. Progrors dovslopsd on tho D3-100 can bo execuied in tha i
factory cn & V8-100 or VS-110. Price includses en integral visicn sysios, .70
training, end user-gupport decuzsatation, TS
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Comnercially Avallable Industrianl Visgion Systens
Table VI (continucd)

Company System Commeants

R iy 7

Autoratix, Inc, | Autovision II| This sophisticated system has many of the aspzcta of the SRI Visicn Hedule.
burlington, Mass| Approx, $35K | It can also window images for template ratching or featuro extraction.
Systen has frame buffer storcge and can handle sixteccn gray levels.

Systen 1s user programmable in a customised high level robotics systom
language called RAIL,

The systen is eithor obtainabls ¢3 a stead-2icme, or is avallabisz cu an
option to Autozatix robots for assozbly and are welding (for scoam~tracking
guldance utilizing structurcd light). '
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i Qommercially Available Industrial Visicn Systems
| Table VI (continued)

Company Syétem Comuents

Y USRI

Verification
tanipulation

Inspection
Recognition

Octekx, Inc.|Rcbot Vision This is a sophisticated computer system designed to te interfaced to a DEC
Burlington,|Mcdule 2200 or Data General computer. 50 FORTRAN S/W programs come with it to provide
Mass, the capability of the SRI vision Module. Can inspect up to 5 parts/sec, using
Approx. $9.9K |a modified SRI algorithm and feature vectors (having componants such as area,

] : (without moments, etc.)., Can handle up to 50 objects in a scene at once,
camera or
prirary Systen incorporates a frame-grabber which can handle 4 images at once. System
computer) can also do signal averaging and “"kernal manipulation” (spatial filtering,

template matching or image subtraction).

System can do histograms, measure objects in terms of length, width and angle.
Can also do psuedo color with gray scale.

>

6Ll

20/20 Vision
Develorment
Systen
Approx. $45K

Octek is now supplying a HITACHI 320x240 resolution solid-state miniature

f-bit gray level camera. Octek also supplies CCD and other solid-state
ameras, as well as monochrome and RGB monitors.

l .

rn integrated self-centained package containing a camera, Image Frocessor,
_11/23 computer, B & W monitor, printer and cabinet, plus FORTRAN subroutines
For users to implement their owm applicatlons.
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Company

Commercially Available Industrial Vision Systems

System

Table VI {continued)

Comments

Verification

Inspecticon

Recognition
Mznipulation

T TR g

OB T e

Ohject
Recognition
Systems

I New York, N.Y.

071

System Q
Approx. $20K

ScanSystem 100
Approx. $20K

ScanSystem 240
Approx. $25K

ScanSystem
1000
Approx. $65K

i-bot
Vision System

ApproX. $30K

Computer-based vision systems that uses pattern recognition techniques for
high-speed verification, packeged for industrial uss.

The standard products have "on-the-fiy" hardware (no frame-grabber). Systems
sample and filter with analog signals. WUsing firmware generated windovs,
can zoom in on particular areas. General aporoach is to extract jray scale
samples, then extract features and cempare with stored natterns. Also
available is a picture differencing algorithm (with average ofpevicus frames)
for change detection. Systems enploy gray scale, edze dotection, and tox-
ture informaticn, as aprromiats.

For alpha-numeric legibility verffication. Does edge of characters detectior
(proprietary) on fly. Hatches against stored prototype (constructed of
samples).

Real time vision system for verification and laspection - singlo pattern
litrary - 300 images per ainute.

Real time visiun system Jor verification, inspection and recognition.
160 Fattern libraxy - 300 images por ninute.

Designed for keyboard verificatfon. Train it with a good keyboard under
Joystick control to bring each key into view of an area-type sca- er.

Forms a file of table addresses, windows and associated features.Ca. inspact
keyboards at rate of one/minute. Can also inspect populated
PCB boards for correctness of component placement. Checks for color (via gray
scale) and height and width of characters. Checks for maximum correlatien
and extracts tronsform-coded cdge features and zatches them uzing a patiemn
distance measwro. Also goneratos statictical quality coatrol infermaticn.

Visfon syston deaigned specifically to azsist robots to remove individual
objects from a Juzbled bin of rorts. Hodule can guide ths pickup of Juzbled
cylindrical and apherical shaped objecta fron a bin , using 2 medificaticn
jof the U. of Rhodo Islend pook roflsctlon toclnigus. Dovolopzant io wnder-
vay on bin~-plcking for o grealervaricty of eharcs. A 3~D vislon aysten
using photo-ratric sterce ia 2lso wndor davalogpnont,
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Commercially Available Industrial Vision Systems
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Table VI (continued) sl |85
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Company System Comments S IR P B
SpectraEngr. Inc. Used primarily for dimensional measurement and defect detection and evalua-
?cnver, co tion.
§ Detector based on photo diode arrays. Jses cameras, processors and
b controllers of their own desiqn. Front end optics, light sources and soft-
é ware tend to be application specific. Their strength is in high resolution
; apnlications.
b Have a library of subroutines to draw upon in devising custom applications.
: CE 400/410 Jses a flash source to overcome vibration. Measurements at 30 to 63/sec. X
' !:_ire, Ontical | Runs automatically. Can be customized for process control. oo
3 iber BRI
r Diameter g5
" Measurement 2=
s = Systen L
3 Approx. $i0K O
4 [ iy 24
3 CE 400/41n Looks for print sharpness and uniformity in evaluating photocopiers. X ? ,‘3
y Print Photo- Can also evaluate paperstock. Differences adjacent elements in letters to -"3 o3
; copier obtain a mean square differerce in reflectivity. e
: Scanning
A Hicrodensi-
! tometer
L. Customized First digit=11y correctsdata for distortion, photodfodevariations etc. X iX X
& Dimensional using 256 gray levels. Ulses image reconstruction techniques to enhance
) Measurement resolution. :
1 Systems
: Approx. $20K
to $35K




Cormercially Available Industrial Yision Systems 5 - 5
Table YI (continued) sis s} =%
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apany System Comments 215 1@l 2
rozetrix VPU Converts a video analog TV camera output to a binary 500x400 jmage. Basic X IX
:sworth, CA| (Video capability of Vision Module is programmed in firmware (PROM), enabling
Processor the system to calculate featurer such as c.g., area, edges, diancter,
Unit) etc., in 50 milliseconds. System can operate in a stand-alone mode or

Approx. $15K

Approx. $20K
with camera
and manitor

Vi-2000
Measurement
System

Approx. 370K
for a com-
pletely auto-
mated
measurement
station

interface to a comnuter.

System can window and automatically focus in on a surface point so that it
can measyre to 0.0001” in a 4" cubic regfon. !Ysing a2 40 power micro
scope, measurements to 7 millicnths of an inch are attainabie.
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Sohpany

System

Comaercially Available Industrial Visfon Systems
Table VI (continued)

Comments

Verification

Inspaction

Recognition
Manipulation

rveld
dcs
. Michigan

Opto-Sense
Approx- $40K
and up

llses a multiple windowing technique, setting up subsets of rectangles arcund
nortions of interest such as holes. Sets threshold limits and does area
counts above or below threshold in a window to see {f portion is within
tolerance. Requires part be pronerly oriented.

Can be upgradad tu incorporate SRI Vision Module features

Can be further upgraded with a full-frame grabber (up to 256 levels of
qgray) and customized software added, for more sonhisticated applications.

b

it Vision
itenas
vilie, NY

Primarily
Custom Vistan
Systems for
Military and
Industry

A company strong point is propriatary techniques in the use af structured
light and triangulation to discern the 3D coordinates of an object under
vien. This volumetric vision ("so0lid photography") approach car capture

an enormous amount of data very quickly  (all the data required to define
3 man's head In 0.9 seconds).

They also utilize area type sensors for robot vision.

Have made 3 sensor system for Cumming Diesel to measure very large un-
fixtured engine block castings. The system makes 1250 measurements {n
35 minutes and conpares dimensions with those stored in a computer,

The system is designed to achieve accuracy of 0.0001",

Now builuing 2 robotic welding system for use with a Millicron T3 robot
to weld automobile frames. This is a two part system where firs* the
weld 1ine 1s scanned at 180"/sec. to determine seam locations and width.
Using this information, the seam is thon adaptively welded.

Now making a standard vision system with a 1" or 4" field of view with an
accuracy of 0.001" for inspection applications, but which could also be
configured for welding,
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Commercially Available Industrial Vision System Sl.lsi 8

Table VI (continued) . § 'E - fé

{8 {51 &
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smpany System Comments 21e 18 &2
gnex Dataman System uses a DEC PDP-11-23 and other off-the-shelf hardware such as camerasd X | X 1%

»aton, Mass,

w7

Approx. $25K
for basic OCR
system.

Dataman derived from research NDr. Shillman did at M.1.T. on how humars
recognize patterns. Implemented resulting proprietary algorithms can read
badly degraded alpha-numerics. System can read virtually any alpha-numerics
humans can (will reject unreadables rather than make errors).

Basic system is for optical code reading (font spacific). System can alse be
used for print quality assurance (legibility) and quality control.
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Commercially Available Industrial Vision Systems sl2 ot =
Table VI (continued) 218 1E| 3
Y- | @ o o
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mpany System Comments 218 18 2
Industries} Ham Scan This is a verification and inspection system that operates on an anaiog Xi{X
sdonia, CH 3000 image eitker by template matching or by analog integration.
Ap;jrox. $6K Can do windowing, or measurements on a single prograrmed line. Windcwing,
(without thresholding, line placements, etc. is set using factory customized software
camera and in the integral micro-processor.
monitor)
System can be trained by showing, o by manual use of switches.
Ham Scan Does template matching with adjustable 21lowable deviationsusing gray scale | £ 1 X
1000 and a single window. .
Approx. $HK
Ham Scan Siailar to the 1000, except that it has a double wirdow. XX
2600
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Artificinl Intolligence (A} Apjroseh: An approach dhut oo its emphacia
on cynbolic ymvucgrcasn for yepmisonting and manipulsting lmowledss
in & poblon aclving node.

Baxr Oporators: Coavolutlon macka to doteel cseend devivatives of fmnge
brighinoos in paviicular dircotionn.

Binary Imnges A black ond whito irogo romresanted as coxes ond aosy, in
which cbjecta appenr asz ailhouotiecs.

Blackboard Aprroachs A problon eolving sppracch whorsby tha vorleun
oystcn alonsats ceznunicato with cach othar via a coozon werling
data sterage ealled ths dblackbeoard.

Blob: A connoccted egica An & hinexy imsco,

Blocks Voxrld: GSeenes consinting of throo dirsnpsicnnl polyheodral objast
configurations. A sinple artificial world ussd <o exploxe ceaputar
vinion concepic.

Botton Up (Data Drivsn)t Rafora %20 the gsqusniial proccasing by a
vision sysicn, beginning with the input irage ard tornieating &n oo
intormetaticon.

CAD/CAH: Coaputer-aided design / conputir-aidsd ronufocture.

Chain Cedet A boundary ropresentaticn which otarts with en initial
point and stores a ehain of directions to succszaive points.

Computer Vision {Compuiational or Hachine Visica): Ferception dy a coa-
ruter, bagsd on visual soncory input, in which & concize doeserintien
is developad of a ccone dapioted in an imame, It 1o 2 Imouledgo-
based, expactation-guided pxcozas that usss nedels to intarpret
gengory data. Used sozowhat aynonyemously with imago understavding
and scane anslynis.

. Concurva: A boundary rermrcacntatica censluting of a chain of straight

liras and arcs.

Convelve: Superinpesing a nzn opsrater over & rxn pixel arex (uindow)
in ths irmsge, multiplying corresponding points togother and sumaing
tha rosult.

Cotnar: An atrupt changs in diraectlon of a curve.

Correlationt A correspoadenca between atixidutos in an ieege and o
roference image.

As yet no standard dafinitions exirci, so that the dofinitions lisiad hare

can ba. censidersd to be sopswhat impreciss.
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Denepdptione & pyadolic yorcesastation of Ow malevent nformndicn,
Ceer & ligd of gindlstical feoturos of o roglea.

Digiticed Imagoe A repmoeontuticsn of on fzoge na oo arroy of tright-
neaad valucs.

Doraint Ths sphers of concern. The tasl wwwld.e 4 35t of nlicuablo
inputg.

Rlpe: & changs in pixel =aluss (excsedinz some throchoeld) hotwsen two
regicas of rolatively wmiforn valmiz. Ngeoo ccxsospsnd 9 changen
in trightneas vhich eon ecarrespeud to « discontinuity in curfoes.
orisntation, murface rsilactoncs o Lllwalnzticn,

Rge Oporatorss Templates for finding cdgen In lozges.

Bigo-Eacsd Stercos A astercographic dcehaique tarccd on matehing cdgas
in two cr pore visuz of thy zarm goons taksn fom diffcrond pagitlens,

Features: Sinplo irage date ciiributes such ag pivol anplitudes, cdso
roint locations and itoxtural deseviplosa, or soxsuhat roye elnterate
izape patterns such es boundaries ord reglons.

Feature Voctors A cat of features of an objsst {oush as arca, nusber of
holes, -ote.) that ezn bo used for ds idsatification.

Feature Extraction: Dstermining irsge foalures by applying feoturo
detoctcsa,

Caussian Filterings A convolution procesduxv in vhich the usighting ef
pixels in tho tecplate fall off with distance accoxding to a
Gaussian distributien.

Genexal Rrpose Vizion Systens A visicn myslen thet iz univerzolly
applicabls, A oysten that 13 tesed on peneric rathsr than spseific
knowledge (cf. Fevatin, 1582, p 188). A gyston that cmn dsal with
unfariliar or wnozpoetsd input.

Ganoraliszed Cone (Ganmeraliged Cylirndex): A volumstric eodsl defined dy
a smce curve, called the anpine or oxis, and a plarnay croas rectlen
norzal te tho axis, A “suseping rule” describss how the creocs
section changss along the axis.

Gansraliged Ribben (Sse Skeleton Repwesentatien)s A plansr rogion appoxe
irated by a medial line (axis) and ihe psrpondicular distances to -
the beundary. Tho 2-D veraion of a gensraliged cone,

Global Hethods A rothod based on non-loeul aspacts, e.g., Toglon split-
ting by thresholding tased on an imaze histogran,

Gozl Drivent Top-doun approach.,
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Gredicont Opsess & cecndinate syaion gpn%') a uhish v and g m the
ratan of changu in denih wovndasy A0 o cuzfess of j:c’;
ir, »m geens alely Shu R el :y ﬁ;is. chicas (dho ;.sczuz.us.t.:s in tho
icage plomo)e Thus (p,a.3) has tie divectica of the suciccs :
noreal. !

Gradlent Vooter: The exienfolisn and magnitvds of $hs ruts of change in i
intonsity at o polnt in the issa.

Craph (Algo Rolaticsal Qrarh)s An iroge sopawesniatica in vhich nodes
roprosent regiong and arecs Belussn nodos epvessnt mroperitics of
and Tzinticns bLoatuwoon thoas rozicua.

Gray Ioval:s A qQuzndicod messvxenont of lmeps dvredisrce (brighiueas), or
cthor pivol meopsely

Haterarchical Appreach: 4n imago inforpootoifcn eoairel sicvsture
thich ro prossaoaing stegoe o in solo cozzand, But in thich c..ch
stago can conteol othsr ginges to ite nasds &o reguirzed.

Heurigtieg: “Ruleg of ihuchb,® Imowliedss o cthor itochaisues vosd 20 help
guide a yroblon solution.

Hieraxrchical Approachs An appzonch 20 vislon togsd ea & coriss of
oxrdcrod yrocesaing iovels in which ths deg:ms of ctatrootion in-
croacssd &8 we proccsd frem tlw ivago lovel to the intoypostation
level.

Highaxr levelss Tho intorirototive presscaing otoges such as thoss in-
velving objlact recogniticn and seans description, ca oppozed to the
lousr lovels scrmesponding to the imaso and dosexipiivo atages.

Hictograus Freguency counts of ths cesurrence of eash iotsoaidy (5,?"5’
lsvel) in an izags.

Hough Tronsform: A global mmrmllel mathad for finding atralzht or
curved lings.’in vhich all points en a particuler curve map into
a oinglo location in the txanafora spaca.

Huocksl Operatar:s A zathed for fi..d.ng adges 1n an irage by £itting an
intanoity surfaca to tho nsighborhoed of cach pixel ard eslociing
suricce gradisnts above o chocen threshold valus.

Icamic: Imago-liko.

Imnge: A projaction of a ccene into a planc. Ustally zerressnted aa an
array of Wrightness valu .

Ipags Processing: Transfornation of an jupud 15‘150 into an output i-zge
with nmorxe desircble properties, guch as incrcsesd ehsrymess, lasa
nolce, and reduced goomatric distortion. Sign=l mrocesaing is A
i-D anslog.
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Understanding (IU)s  Foploys ceonotrie rodeling cad the AX
tocimiquan of masuicedne %rwﬂmt shon ard copnitive prosossing
~4c develop zeecon intc“:’mm-n.k Teon fnzgo 6o, I tas dealt
exlennively tﬂi..x. 2D objeais. TV wzeally opawnése not on as
irago but on o zyubelis murmeczatabion of i'i. IU & comsuhat
syncnyaous 'e:i::.!\ ﬂoaputa > wigioen w& scone analynis,

Irtzdizrce: Tho brighinozs of a point In tha oeend.

Isczorphic Reyrocentation: A reprecsniatlca & which thers ic a eno

to ose correspoadance botunen the ocens ond 1fa roprecontation,

- {0ege, o0 4mg0 o & £3D)

Interprotation: Ests 'bllﬁ’\mg o ewregpendence betuzen tho coecnz and &

oot of pcdals. Anniznies cansa to objrota ia ' soans,.

Interpratatica~-Guided Szgmentaticoms U:mw eodals to helyp guide foag

sugrontation, by b prosens of extonding pariizl calohaz.

Intrinsic Characturisticas: Propswxtiss inlorcont to ths gbjsst, cuch

as surfacse reflociones, oxicntaticn, incldent filuminadlcn amd
Yangs.

Intrinsic Iosgoss A g9t of arrays. in rogintwabion with thsy i

exray. [oeh axray corresponds $9 & perticulay inteinoic
charactoristic,

Iaplecizan Oporator: The sun of the gacoad dorivatlves of tha imge

Lino:s

Lina
Lin=e

intensity in thz x and y dircctionz is o2llscd tha Iapiacion.
Tho Iaplacian orarater 4 ucsd to find cdge clemanis by firding
pointce whore the laplzaeisn is coro.

A thin ecconscted pot of roints contyasting wit h neighbors en
both pidesn. Lins repregentations ara exizacted fron cdgens.

Dotoctors: Oriented opsrators for firding linca in an ixogo.

Followerzs Techniques for extonding lines cwurrentily bvolng
tracksd.

Loy lovel Fecturcs: Plxol-bzaed features such as texture, reglons,

edgas, lines, corners, etc.

Hodol-based Vision Systoemt A sysnten that utilices a priori modols .

to doriva o desired descripticn of the origiral pcene from an Imsge.

Hodules:s A procecaing unit in & vislon 5y’stezi.

Keonoculars Pertaining to an image taken froam a single viewpolnt,
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Fattsrn Recezniticns A fostrisvs AUlsd alamaifiss i %
daterninsd categorios veridlly ueina awndioticsl solhsde.

Tercoption: An active procags in vhich brrodthezos avo ferzed ahoud dhe
natwee of 4Lho enviressont, geasury Anfonatisn in nought to

Thotomgtiric Steraos 4An aprreach in whizh the lighd cowrensy iuse
fnating tho otons ig moved o differcat loiwim lozotiens, and tha

criontetion of tho owrfases dedused frem thr resulifng intousily
variaticagn,

Pizel (Ficture Elemsat): Ton iedividual clerants in a diglitlecd
$rRr0 8Ty
¢
Prisal Shotch: A weimitive deaoriptica ef the inlecolibty ehangeg
in on ieoge. IR can bo zoyroozatod by & cet ef chart limo
cogrsnta copmrating Togicas of difforeat ighicasass.

Prranids A hicrexchiezl éain niruclixe ot msgrocente an fxape alb
sovaranl leveln of ronolutica almuliznscualy.

Guzdiren: A ropvccontoticn obfninsd by roourasively eplitiling on
ieago into quadrants, vatil all pizels in o quadrant arc wifern
uith reaspsct Lo goma fentuza {cuch en oy 1 'u’{}l)c

Recogzniticns A match totwesn n Qoseriptica dorived fron on inace and
a degcripticn obiained 202 6 slosed pcdol.

Refloctancs (Albedo)s Thz maidio of totnl vaflesiod to total ineldent
11lunipatica at cach point,

Regiont A eot of connzeted pixels that shew o cozzsa properiy sush
28 averaze gray lewel, colex er toxtuze, in oa imngy.

Reglon Growing: Procoss of initially portiticning an izago inde
olerentery reglons with a conmon jroperiy (sush o3 gray lovel)
and then aucceasively narging adjizcont zreglons having pufficlently
erall differences in ths selectod preparty, witil caly moglens
with large differonces batwscn thoa remain,

Regintrationt Procesaing lmges 0 coxroct geomstxical apd imicnsity
distortions, rolative tranglaticnal and rotatiensl shifts, ard
ragnification differcncas betuoen ons icago and casthor cr
betwoon an image and & rofeoronce map. Yhon rogiciered, thoro i3
a on3 to one corrospondcncs boiwcon a oot ef polnts in thoe isage
and in ths refeorence.

Rslzaxctlion Apmroach: An iterative probien solving approesch in vhich

Initial conditlions aro mropamated utilising congirointe until il
goal conditions aro adegquately aatisifled,
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or
Folaticaal Grash: Sse “graph.®

Romprcazntaticns A aymbolic dsgoripticn or oolal of objssis An tko
irnpa ¢r s2onoe domnin.

b

13

Run-lengih Encedingy A& dals somproscslen Zuchniave in vhich an imngs
is raster-gcansod and coly Lho ic of runa of connocubive
Plxels with 4ho gome yropasty axe atoxel. '

Scener Tha 3-D envircnuent fvon which ths image is gomorcicd.

Scoue Amalysin: The mrocecs of ceeking infexration abound a 3-D
geene fren informmtion derived fron o 2-0) fusge. It Mswlly
involvan ths transfoxration of zicpie faatuzon ints alatroed
degeriptiono,

Sagrontntiony Tho pwoecce of bwooking up an irere iote regisna {ozch
with wmifora attributes) vsually eorcespending Lo swnfecss of
objects er entiticas in tho mcans.

Sanantiec Iniecrmotaticon: Fredusing an arpiicaticon-dopsndont coany
_description from o feature cot {vorrecontation) cozived frea

the $magn.

Ssexntie llotuerks A rorrecentation of objzcts end rolaticanhipa
botucen cbizeis an o groph structiure of nolog end labaled ozen.
Sge “grarh.“"

Skoleton Romresentaticn (Sze "Gemoralicoed Ribbons®)s A mr.-::esantafim
of o 2-D mzion by thy me2dinl line nnd tho perpondiculor diclanco
to ths toundary ot cach point alexg it.

Skotch Haps A rough lins drowing of o scsns.

Sotal COpsratore.A populer eonvolution oparater for detesting edgas.
Sintlar to sthor differencs operztsrs such as tha Foowitt
.Opcr.‘:,tcso

Spectral Anzlysis: Intorpreting image points in terzs of tholr
response to various light frequoncilass (coloxc).

Splinos (B-Splines):s Plocewise continuous polynezizl curves used to
aprroximate o curve.

Sterosccpic Apmroachs Use of triargulation batwsen tuo £z pore vieua,
obtained from difforent pesitions, to deternine range or depth.

Structured Light: Shsetn of light and other projective light con-
figuraticns used to directly deternine chaps and/or rangs froa
ths observed configuration that the rrojected line, cireles,
grid, etc, zakes as it intersects tha objsct.
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Synvolic Dospepipiion: loa-leconie gesrs desaiipbions such 0o gromh
TOTCS nmtiez.a.

Syntactic Amclyniss m,cem*sing lunvies by & *maroing® procass og
baing bulld up of primitive eiecavuis. :

Templates & protedyrne fecais modol that can b uced divcetly &9
oateh Lo irngs chomaetorintics far obloed rocogaition o
inspeeticn,.

Tenplaw Imatching: Corollating an objsct tesplatc with an chszrved
ixago fmld = wually periorrned at ¢he pizel lovels

Toxtwot: A lecal varisticn in pisel walues 4imb ropsats in o roguler
or sonden 1@y &eress o poriien of an jrzno or skjceth.

Thregholding: Soravating moglions of an iznge B2asd ea pizel waluss
above ¢ balcw a chscan (tk::cr;.‘::l:..) vmlm.

Top Do Appmoech (Geal Dirvected)s Am aprreach in which the intere
- retation ctage 1o guidsd in it emalysis by dzisl ox oot
deceripticns of o seons.e Soxstiies roferzcd {0 as “Hyrolbsaise
and 1.5%0" :

Traclkings Procesaing cequaincss of im»-vu = real 400 o Cerive a

doscripticn of ths motiea of ¢ua o poro objsels im o sono,.
Vertex: The point on a polyhsdroa ccznon to $Imgn o mere sldos,
Vicupoint: The position (or du'_ﬁctl:-n) fyon which the seceno 1s oboarved.
Yinions The mocaoss of understerding ths envirvansat tosed oa imago 2ata.

¥iroframe Hodol: A 3-D model, olmilar to = uirefrexa, in which ths
object ic dofinzd 23 torm=s of ciges and verticsa.

Hindew: .A selected porticn (usually oguars o rectangular) ef an ivago.
2-D: Two dimonsional.

2.5-D Skstchs A ecens ropessntation proposed by Marr (19”8), censinting
of surface distancss end oriontaticas.

3-Ds Threo dmdr.ﬁional.

153




L e e e

APPENDIX L

SOME PUBLICATION SOURCES FOR FUTHER INFOIMATICH

154



R I R P LT e O SR

URIGINAL PACE 1Y
OF FOOR QuALITY

TN L

SGiE FUBLICATIOH SGWRGCES FUN FUUTWR INFQEFATICN.

&. Rocent Books

Ballexd, DJHe, ond Brouwa, Oole, Conputsr Viclion, Engleused Cliffas
Prontice Hail, 1632. S

" Brady, M. (IR.) Cozputor Vislem, &nsicxdans Heeth Hellnnd, 1954,

Cohon, P.R., ond Folgoanum, S.be.; “Visica,;*® Tho Iandbesk of Artificisn)
Intollisenea, Veol. III, Ilos Alton, QAs Maufean, 1582, ppe 1285-323.

Haraelick, Re. (24.) Pleture Inta Aselysis,  Berline: Smingee-Verlsg,
1932,

farr, D.C., Visicn, 82n Meanciceo: UHatt., Frescan, 1682,
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Revatin, R., Kaching Forsaption, Enmlowced Cliffo: Prontlce Hall, 1932,

Rexenfold, A., ond Eok, A.C., Dinital Yormo Frocorsing, 2nd Bd.,
Vols. 1 and 2. licw Yorks Aced. Prog 1(,:52.

Favlidir, T., Alzgorithes for Gravhies and Iy Procsesing, Rockville, fH.:
Conputor Scienca Freps, 1632.

Hord, R, M., Digital Imace Procasainz of Roroioly Sonzsd Date, FNaw York:
Acad, Pl"" 198’2
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B, TFerieciie Conference and Yorishes Poosesdingn

DARPA Inuge Understanding Yerkshowe - 8ci. Applicaticns Ine. ;
 Intermaticnnl Cenforercon ex Dattern Fasegnitien - m.%ﬁ};utﬁr Sccieﬁy
Fatlonzl Conferences on Arkificinl Intelligsnce - AMAT : . :
IEEE Workahops on Cozputer Visica - IEZE Coupaior Svolely
Intornational Joint Conferences on Artificial Intelligenco

Intsrnationnl Conforcncesz on Reobot Vimisn - Tho Industrizl Robot Jourmal
end Sonscr Rsviow

Hoxrkshops on Industrinl Applicaticns of Cemputer Visien - IEDE Conputor
Secloty .

SPIE Technical Symposin - Secioty of Fhotc-Opilczl Instrunentation
Erzinzcza ) ' ’
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IISF Herkshors (Apsricdic workshops on varicus topics in osmpater visica).
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C. Ioricdicaln

Computer Graphies and Izzge Presoncing

Artificinl Intollisenes

TEDS Tranczetions on méltorn Annlysis and Kachins Inlslliigence.

Pattezn Hocomnttion
International Jouranl of Eobobice HessuTch

TEEE Tronzacticns on Syatsmz, Wan and Cybsimstics
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D. Seoss Hecent Bibliesrarhles, Svrveys and Svnthaneh

Akuje, H. ond Schacter, B., "Luige kedeln,” AGH Jommabing Surveva,
Yol. 130 Yo, &g Ese, 1?313 PPe 3?3"3'?3.

Barrod, H.G. cd Tononbaua, Je [, “Conputstionad Visien,” Irsc. of ¢hnm
m, VOI. 69. ﬂo. 53 F’ay 1§31' DPG 5?2-5950

Binford, T.0., “Suzvoy of Hedol-Paced Irage Amalysis Systons,® HBobodiex
Rovanzch, Vol. 1, Ho. 1, Spring 1932, pp 16-64.

Brady, H., “Computational Aprreachos to Inoge Undooctardingt Concutsx
Survarys, Vole. 14, No. &, FKarch 1932, opp. 3-71.

Chir, R, T., “Automted Vigual Insrestlen Technicues oxnd Applicotiosss A
Bibliozraphy,® Rattern Reeonsitien, Vol. 5, Hoe e, 1632,
ppe 328-357. '

Gonsry, De, Cunnisgham, R., Sound, B, High, Jo, ord Rouff, Ce;
Conputer Vinion,. JFL 8i-92, JPL, FRacadesn, CA, ove 1, 1532,

uger, R.P. and Thonpzon, W.B., ™A Tochniexl ard Esonssie Ascozonand of
Conputer Vislon for Incpscticn end Robotic Ascambly,® Pres. of ths
D38, Vol. 69, Mo. 12, Doce 1931, pp. 1520-1538.

Rezenfeld, A., Ficture Processinz, U. of Iid. C.S. Ceatcr, Collem
Park, 1d., A yeerly biblicgraphy of computer precesaing of
pletorial inforzatien,

Srihari, S, H. “Ropreasntotien of 3 D Diglinl Iimges,® ACH Ceoputing
_SUI’\'Q."B. VYol. 13, oe & Dsc, 19‘31.9 DD 39’9'&2&0
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