
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



OBSERVABILITY FOR	 -
TWO DIMENSIONAL SYSTEMS

L.R. Hunt and Renjeng Su

ABSTRACT

Sufficient conditions that a 2 dimensional system with output

is locally observable are presented. Known results depend on time

derivatives of the output and the inverse function theorem. In some

cases, no information is provided by these theories, and one must

study observability by other methods. We dualize the observability

problem to the controllability problem, and apply the deep results

of Hermes on local controllability to prove a theorem concerning

local observabi ity.	 -^
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I. Introduction

Suppose we take a nonlinear system

x(t) = f (x(t) )	 (1)

y = h (x)

where f is a real analytic vector field on R2 (or on a 2 dimensional

manifold in general) and h is a real analytic output function on R2.

Given a point x0£ R2 , under what conditions on f and h can we guar-

antee that there is an open neighborhood U of x 0 so that knowledge

of the observed output y of the trajectories of x = f(x) starting at

points in U allow us to distinguish between x 0 and any other point

in U? We also want to distinguish between any two points x  and x2

in U where h (x 1 ) = h (x 2 ) = h (x 0 ) when t = 0.

The known results in the literature (e.g. [1] and [21) give

sufficient conditions which involve the time derivatives of the out-

put (or equivalently, the Lie derivatives of the output function h

with respect to the vector field f) and the inverse function theorem.

The results of Kou, Elliott and Tarn [1] can be applied for n di-

mensional C oo systems with several outputs and those of Hermann and

Krener [2] also involve a system with inputs, whereas in this paper,
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we consider the two dimensional system (1).

Easy examples like the following one are of interest for this

pznblem. Take

3
x 
	 x2

x(t) _	 _	 = f (x(t) )
x 2 	0	

(2)

y=h(x) =x1

Computing the time derivatives of output we find

y = x

Y=X2 3

y = 0

y = 0

Thus the inverse function theory provides an answer only if x 2 ig0.

No information is provided by thismethod at x 2 = 0, and if one is

constructing a state estimator based on the above time derivatives,

then one obtains bad results near x 2 = 0. However, if we draw a

phase plane portrait of the trajectories of x =f(x), we realize that

those trajectories with initial values in a particular level set of

the output function (i.e. ix: h(x) = constant',) and above the line

x 2 =0 move to the right, and those below, to the left. Moreover,

the trajectories starting at any two points in a level set move to

different level sets in a given time t `0. Hence, there should be

some calculation (involving Lie derivatives at a point x 0 where

x2 =0) that should let us know this is occurring, and also imply the

ability to distinguish between x 0 and the other points in some open 	
3
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	neighborhood of x0 in 3R	 In addition, we also want to differentiate

any two points in the level of h through x 0 by watching the output in tim

As emphasized in the paper of Hermann and Krener [2], the duality
f

between controllability and observability is simply that between

vector fields and differential forms. Since the gradient of the out-

put y = h(x) in (2) is nonzero, we can find a nonvanishing vector

field, say g =
[01,
1 	 so that the dual product of dy and g is zero.

Then we consider the control problem

	

x l	 x23	 0

+u	 = f +uci.	 (3)

	

x 2	0	 1

The local controllability along a reference trajectory results

of Hermes [3] present a way to compute the precise Lie brackets in-

volving f and g at a point where x 2 =0 that provide the needed in-
(	 31

formation about the movement of the flow of x =1 0 2
1 

on the level
0

sets of y =x1 in (2). This is true because Hermes studies the

attainable set from a point x 0 at a time t.

If we compute Lie brackets for system (3) at a point x 0 where

x 2 = 0 we find

	

f
0	 0	 0

	

1	 0	 C
1 	(

- 6

g - L	
J, [f,g] 

-J	
J, [g, [f,g> > = [ J, [g. [g, [f rg] ] l - I 	

J•0

The fact that [g,[g,[f,g]] and g are linearly independent at x 0 , and

this is the first.Lie bracket with this property, implies that the
Xl]

trajectories of I x* =[ x2
] perform as previously described along an

2	 0

integral curve of g (i.e. a level set of the output y =h). From this

we can deduce the existence of an open neighborhoods U of x 0 in which
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we can distinguish points in U-1x 0 1 from x 0 , and any two points in

the level set of h through x 0 intersected with U can be distinguished.

The purpose of this paper is to present conditions under which

system (1) has for a given point x 0 such a neighborhood U. One

assumption is that the gradient of h(x) at x 0 is nenvanishing, im-

plying the level set through x 0 is a 1 dimensional manifold. In our

example, f (x) vanishes at a point x 0 where x 2 = 0. We will also provide

a theory concerning observability in the cash that f and g are

linearly independent at x0.

For other resoarch into the problem of nonlinear observability

we refer to 141, [51 , [61, [71 , (81,	 and

[14]. open problems concerning observability are generated by this

paper. Can the assumption that the gradient of y =h(x) at x 0 is non-

vanishing be reduced? What theory Exists in n dimensions, and how

does one handle several outputs and the introduction of inputs?

II. Definitions and Results

First we motivate the notion of observability which is appro-

priate for our theory.

suppose x 0 ER 2 and the gradient of y = 11(%,)  in (1) is nonzero

at \ 0 . Then there is a neighborhood \' of x 0 in I:" so that the level

sets of y =h(x)  form a I parameter family of 1 dimensional manifolds

which folitate V as the parameter varies. Restricting to this set

V, it is clear we can certainly distinguish between 2 points which

are in distinct level sets. The problem is to differentiate between

2 points that shirt in the same level set by watching the movement

under x =f(x) as time advances. If for arLitrarily fixed small

positive tine, all points in the love] scat of h(x) through x 0 are
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carried to distinct level sets of h(x), then we can distinguish be-

tween them.

Let Cx be the level set of h(x) in (1) through x0.
0

Definition. The system (1) is locally level set observable at x„ if
,^,

there is an open neighborhood U of x 0 in R2 and a one-to-one corre-

spondence between the set u n cx and the set of trajectories of the
0

observed out-.put y(t) for arbitrarily small time t '0. Equivalently,

for arbitrary small time t',0 the trajectories of k =f(x(t)) starting

at any two distinct points in C 	 lie in different level. setts of h(x).
0

of course if (1) is locally level set observable at x 0 , it is

easy to distinguish x 0 from all points in U-{ ' x0 I for U sufficiently

small.

Suppose we have C vector fields f and g on R	 The Lie bracket

of f and g is

[f,p] = 21 f	 ` if 9,

where	 anti-'£ are Jacobian matrices. We can then define#x	 Jx

(f, (f,y] 1, [^^, [f,yl 1, [f,i (r:,^tl1) , etc.	 For notation we take

(ad 1 f,g) = [f,gl
(ad 2f , g ) _ [x,[f,9Jl

(ad
%
f,g) _ ( f, (ad

k-1 
f,g) )

and similarly for (ad kg,f).

For h a C" function on R 2 and f a C'" vector field we let

L  (h) = <dh, f>,

,
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with <.,.> denoting the duality between one forms and vector fields,

and we can inductively take L 2 f (h),L 3 f (h), etc.
t

If w is a C' one form on R2

where * denotes transpose. Note that L f (dh) = dL f W. The three

"Lie derivatives" [f,g],Lf(h) and L f (w) are related by the rule

L f<w,g> = <Lf (w) . g > + <w, If g ] >	 (4)

In system (1) we assume as before that the gradient of h is

nonzero at x 0 . Choose a real analytic vector field g such that

<dh,g> = 0 and g is nonvanishing at x0 . Consider the 2 dimensional

control system

x(t) = f 	 +ug(x).	 (5)

Using formula (4) we find

L f<dh,g> = <Lf (dhg> + <dh, [f,g]>.

Since <dh,g> =0, we have <dh, [f,g]> =-<L f (dh) ,g> = -<dLf (h) ,g>. Thus

g and [f,g] are linearly independent at x 0 if and only if dh and

Lf (h) are linearly independent there. Similarly, if g and [f,g] are

dependent at x 0 (or equivalently, dh and dL f (h) are), then by

applying formula (4) again we find that g and (ad 2 f,g) are linearly

independent at x0 if and only if dh and dL2 f (h) are. This process

ca;1 be continued indefinitely (and in some cases like systems (2)

and (3) we obtain no linear independence). On the one hand if there

is some L fk (h) satisfying the condition dh and dL fk (h) are inde-

pendent at x 0 , there is an open neighborhood U of x 0 so system (1)
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is observable on U in the sense of [1] and [2]. Equivalently, if

there is an (ad kf,g) with g and (ad kf,g) independent at xQ , then

the results of Hermes [15] imply local controllability along a ref-

erence trajectory (starting at x 0) at time t (to be defined momen-

tarily). Thus the duality between observability and controllability

is easily realized in this way. However, Hermes [3],[16],[17], [18],

and [19] has results on controllability that are much more general

than those that depend on the vector fields g,[f,g],(ad2f,g),...

being linearly independent.

Let cp (t,x 0 ) be the solution of x = f (x(t) ) in ( .1) or (5) at

time t with ^W ,x0 ) =X 0*  We say that the system (5) is locally

controllable along cp at time t >0 if all points in some 2-dimensional

open neighborhood of 0(t,x 0 ) can be reachad at time t by solutions

of (5) initiating from x0.

Now we define the following sets ( see 1161)

S1 = { g , [ f , g ] , (ad 2 f,g) , (ad 3 f. g ) , ... }

S2 = {g,(ad 2g ,f),[f,(ad2 f, g )],( ad2f ,( ad2f , g )) .... }

S - = {g. (ad 3g,f) , [f, (ad 3 f,g) ] , (ad 2 f, (ad 3 f19)) , ... }

Let dim span S  = the dimension of the span of S  at x06
0

The following result is of interest in our study of 2 dimen-

sional observability. Assume the gradient of h in system (1) is

nonvanishing at x 0 E R2 and let g be defined as in section (5).

Theorem. If either of the following conditions hold, then system (1)

is locally level set observable at x 0 in R2:

1) f and g are linearly independent at x 0 and the smallest
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integer m so that dim span SX = 2 is odd.
0

2) f(x0 ) = 0 and the smallest integer m so that g and (admg,f)

are linearly independent at x 0 is odd.

Remark. The corresponding results in [1] and [2), if dualized as

we have done, consider only the set S l in statement 1) and the Lie

bracket [ f , g ] ,	 [ g , .., ) in statement 2).

Proof. As stated before, since the gradient of h is nonvanishing

at x0 , there is an open neighborhood V of x 0 on which this gradient

is nonzero, and V consists of a 1-parameter foliation of level sets

of h(i.e. integral curves of g).

For x E V, we denote by (exp tf)(x)  (or tp(t,x) ) the integral

curve (or solution curve) of f with initial value x. For fixed

t,(exp tf)(x) also denotes the value of the solution at that time.

For any t >0, let Lt denote the integral curve of g through the

point (exp tf)(xU ). Choose a point x EL 0 close to x0 , travel from

x0 to x instantaneously along L0 (assuming unbounded controls) and

then travel along (exp tf)(x) for t units of time. If f and g are

linearly independent at x0 and the integral curves of g and [f,g]

through x0 cross at x0 , then Hermes shows in [19] that our final

destination is a point in some L i with l #t. If T = t, instantaneous

movement along Lt to x0 contradicts the fact that r <t (or T >t) as

Hermes has indicated. In fact, we have 7 .t for those points x in

L0 close to x0 and on one side of x 0 in L0 and T >t for those x in

L0 on the other side. By continuity arguments, for each x in L0

sufficiently close to x 0 , we arrive in time t at a distinct L T .
X

Thus, by shrinking V to an open set U, if necessary, :.11 points in
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sets of h. Hence, system (1) is locally level set observable at x0.

Hermes proves in (161 that the integral curves of g and (f,g1 cross

at x0 if statement 1) holds. We remark that Hermes' labeling of the

sets S  is different from ours.

If condition 2) holds, then the work of Hermes in 131 applies.

In this case x0 is an equi

we move along the integral

"changes sides" as we pass

in the introduction. Thus

trajectories of x = f(x(t))

Librium point of f. Hermes shows that as

curve of g at xO, the vector field f

through the point xO , as in the example

if V and t >0 are sufficiently small, the

starting at points in the integral curve

of g through x0 (and contained in V) move t^, different integral

curves of g in the time t. Note that if we begin at x 0 we stay there

for all time t. We have the desired observability in an open neigh-

borhood U of x 0 . 0

The example in the introduction has the property that f(x 0 ) =0

if x0 is a point where x2 =0. We now provide an example, similar to

one in [161, where statement 1) of the Theorem applies.

4  + x l x 2Let f(x) = 1 
0

Y = h (x) = x1,

0
and x0 = the origin. In this case g =	

1
.	 [The smallest integer

1
m so that dim span SX =2 is 3, and we have the local level set

0
observability.

The problems of trying to extend the Theorem to n >2 dimensions

are quite interesting. Let us consider the system
)
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(6)

y - h(x)

with f and h being real analytic on Rn . Here h is real-valued and

has a nonvanishing gradient at x0 ERn. The level sets of h are real

analytic (n-1) dimensional submanifolds of Rn near x 0 . Thus the dual

system is

n-1
x(t) = f (x (t) ) + E u i(t)gi(x(t)),	 (7)lsl

where 91' 92"* 
''gn-1 are real analytic vector fields forming an in-

volutive set with integral manifolds being the level sets of h. The

theory of Hermes in [17) can be applied to give conditions under

which we can distinguish between certain points with initial values

in the same level set of the output.

If h is a p-v,, ,;tor valued function in (6), then h =(hl,h2,...,hp)

and we assume their gradients are linearly independent at x0 . In

this case the dual system becomes

n-p
x (t) = f (x (t) ) + Eu i (t) gi (x (t) )l l 

where the set {gl' 92'" ''gn-p} is involutive near x0 . If the results

of Hermes [15] using linearization are not applicable, then the prob-

lems concerning observability of (6) appear to be very difficult.

(8)
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