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TRANSIENT DIFFERENCE SOLUTIONS OF THE INHOMOGENEOUS WAVE EQUATION:
SIMULATION OF THE GREEN'S FUNCTION

Kenneth J. Baumeister

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135

Abstract

A time-dependent finite difference formulation
to the inhomogeneous wave equation is derived for
plane wave propagation with harmonic noise sources.
The difference equation and boundary coneitions are
developed along with the techniques to simulate the
Dirac delta function associated with a concentrated
noise source. Example calculations are presented
for the Green's function and distributed noise
sources. For the example considered, the desired
Fourier transformed acousitic pressures are deter-
mined from the transient pressures by use of a
ramping function and an integration technique,
both of which eliminates the nonharmonic pressure
associated with the initial transient.

Nomenclature

o*o	 ambient density, kg/m3
o	 (c at/ax)/ce

dimesionless frequency (nw*/f*)
r1	 2•

on	 n2+
w*1	 dimensionless angular frequency,

rad/sec

Superscripts

*	 dimensional quality
k	 time index

Subscripts

i	 space index
n	 harmonic number

Introduction

R
Ln

A*o ar, a, m2
A amplitude
a range of source, eq. 	 (41)
B function of w
b ramping coefficient, eq.	 (33)

c dimensionless speed of sound, c*/L*f*

c* speed of sound, m/sec
F dimensionless force F*/(p*of*c*)

Fx dimensionless component of force in x

direction

IF function

f* frequency, Hz

G time dependent Green function

9 steady-state Green function

H unit step function

I index of last grid point

Icycle total number of time increments per
cycle of base frequency/-I'i

k time index

L* chrracteristic length, m
Lf Fourier transform operator

n harmonic number

i unit outward normal at boundary
P time-dependent dimen ionlrss acoustic

pressure	 P*/o*oc*

p spatially dependent steady-state
acoustic pressure

Q dimensionless mass source, Q*/f*o*o

S dimensionless time dependent acoustic
source, eq.	 (6)

s spatiallyx dependent acoustic source,

eq.	 (9)
T* period,	 sec (1/f*)
t dimensionless time, t*/T*

t* time, sec

At time increment

ats maximum stable time increment, eq. (24)

U acoustic velocity, U*/c*

x space coordinate, x*/L*

xs location of source

Ax space increment

0 (c	 atlax)

a parameter, eq.	 (A3)

a Dirac Delta function

4 exit	 impedance,	 eq.	 (15)

Finite difference and finite element numerical
solutions to the homogeneous wave equation have
been successfully used to predict harmonic radia-
tion from turbofan engine inlets` 1 + z ^ as well as
internal propagation in a wide variety of complex
hard and soft wall ducts, as cited in the summaries
of references 3 and 4. In these solutions, the
noise sources were decoupled from the propagation
problem which reducsed th more ?eppral inhomogen-
eous wave equation`ref ., eq. .ZO) to a simpler
homogeneous form. In the homogeneous form, a known
or estimated pressure profile is used as a boundary
condition at some location, such as the fan face
in a turbofan engine, and the propagation of this
pressure wave is predicted from a solution of the

wave equation or the more general linearized gas

dynamic equations.

Numerical solutions to the inhomogeneous

equations could be useful in studying the coupled
interaction of the noise source and sound field

for a wide class of practical problems. Fr ex-

ample,	 a noise generated by )propellers (61 , fan

blades ( ^, and shear flow ($ • 9 can be modeled

by solutions to the inhomogeneous wave equation
utilizing monopoles, dipoles, and quadrupoles as
the noise sources. As with the numerical approach
to the homogeneous equations, numerical solutions
of the inhomogeneous equations would focus on sound

propagatipi )w I h complex geometries and flow pat-

ternsll 1100 + 11	which would be difficult to handle

with analytical methods.

Some inhomogeneous problems of current in-

terest, such as a turboprop noise field, require
three dimensional solutions to the sound field.

Consequently, the transient finite difference
solution to the wave equation will be employed in

the present paper. Custom ri 	 in the bulk of
the past numerical studies 39 , the pressure
and acoustic velocities were assumed to be simple
harmonic functions of time. In this case, the
time independent wave equations can be used. The

matrices associated with the numerical solutions
to the time independent equation (called steady-
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state solutions herein) must be solved exactly
using such methods as Gauss elimination. As a
result, large arrays of matrix elements must be
stored, which prohibits realistic three dimensional
solutions to the wave equation. In contrast, the
transient analysis begins with a harmonic noise
source radiating into an initially quiesent envi-
ronment. Next, an explicit iteration method calcu-
lates stepwise in real time to obtain the transient
as well as the steady-state solution of the acou-
stic field. Advantageously, this approach has
been chosen because the matrix storage requirements
are completely eliminated in the transient solution.

Maestrello, Bayless, and Turkel( 12 ) have
studied transient finite difference solutions to
the linearized continuity and momentum equations
for a pulse noise source which propagates in a jet
(sheared flow). They found amplification of the
noise source due to shear. Up to the present time,
however, transient finite difference solutions
have not been applied to the harmonic (e- 0 It*)
form of the inhomogeneous wave equation. There
fore, the primary purpose of this paper is to
develop the inhomogeneous tranisent finite differ-
ence equations in one dimension for a harmonic
sound sou^tg with the Sommerfeld radiation boundary
condition 13 ), and to verify the theory with
appropriate examples.

The transient numerical procedures employed
herein are intended to simulate the analytical
Fourier transformed form of the acoustic solutions,
where all the acoustic parameters vary as e-i.*lt*.
The steady-state numerical solutions exactly simu-
late the analytical results. Unfortunately, this
is not the case for the transient solution. Basic-
ally, the analytical and steady-state numerical
theories assume the harmonic forcing function has
begun at time equal to minus infinity. On the
other hand. tnu transient solution abruptly begins
the harmonic oscillation at time equal to zero.
Clearly,

*t*	 _i *t*

L f e	 i Lf [111t*) e	 ]	 (1)

where Lf is the Irourier transform °)perator(ref.
P- 28 ) and H represents the unit step function.
Symbols are defined in the Nomenclature. The sym-
bols with an asterisk represent dimensional quan-
tities. The second purpose of this paper is to
develop the steps necessary to adapt the transient
solution to simulate the Fourier transform form of
the solution.

Finally, analytical predictions for noise
propagation from both steady and unsteady noise
sources, such as a propeller, rely on the integra-
tion of a unit source represented by a free field
Green's function g apd he roductt pf the magni-
tude of the source F*ire . 1t. p. 743 such that

P*. J A, F*g*dA*o
0

Consequently, predictions of the free field Green's
function as well as the effect of a distributed
source are developed herein in two examples for
code verification and assessment of numerical ac-
curacy and stability.

Governing Equations and Boundary Conditions

The governing differential equation and bound-
ary conditions are introduced in this section of
the report. First, the scalar inhomogeneous wave
equation is developed. Next, the Green function
form of the equation is developed and will be used
for code verification. Finally, an expression for
the Sommerfield exit boundary condition is pre-
sented.

Inhomooeneous One Dimensional Wave Equation

In the absence of mean flow, the dimensionless
form of the plrei wiveelininlied gas equations can
be written as

Continuity (isentropic)

aP + c au . Q	 (3)sT	 ax

Momentum

IU 
'C az . Fx	(4)

The parameters used to reduce the pressures and
velocities to their dimensionless form are given
in the Nomenclature. The usual notation for acou-
stic pressure and velocity are used. Here, Q
represents a dimensionless mass source and F.
a dimensionless body force. Differentiating equa-
tion (3) with respect to time and equation (4)
with respect to x, and combining yields the di-
mensionless wave equation

1 a 2	 a2P s S (x,t)	 (5)
c at	 ax

where the acoustic source is

^̂Q	 aF
S(x ' t) - - 

at - c axx	
(6)

^ a^ - a—y - s(x) a i`nt H
(t)	 (2)

c at	 ax

where

% - n2:	 (B)

Only the first harmonic, n . 1, is considered
herein. However, in the numerical data reduction
section, a procedure will be presented to handle a
multiple frequency source problem. Because of the
introduction of complex notation for the noise
source, all the dependent variables are complex.

Green Function Equation

For the purpose of checking the numerical
theory, the simplest form of the source is desired.

(2)

The first term on the right hand side of equation
14, (6) represents the monopole contribution while the

second term represents the dipole contribution.
The sougj will be assumed to be harmonic in nature
( e- inw*l ) such that equation (5) can be writ-
ten as
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Consequently, s(x) is assumed to be of the form

SW . s(xs)a(x - X S )	 (9)

and

s(xs) . 1	 (10)

Thus, equation (7) can be written as

-7 a^ - -7 - a (x - x s ) a iwlt H(t)	 (11)
c at	 ax

This source is analogous to thg•aptlytictl
331

form
treated by Morse and Ingard ( reff 1I , p.	 for

which a closed form analytical solution is pre-
sented.

If the signal e- i1°l t is assumed to be ap-
plied from time minus infinity, the time dependent
pressure in equation (11) represents the Green
function solution for a concentrated source. Thus,
equation (11) can be written as

2	
2G"

i t
-^ —^ - —7 - a (x - xs ) a 1	 (12)
c at	 ax

In this steady-st to case, all the acoustic para-
meters vary as e- W it , that is

G ( x .t) - g(x) e- iWlt	(13)

and the differential equation (8) becomes

locities are taken to be zero. For times greater
than zero, the application of the noise source
(eq. (7)) will drive the pressures.

Difference Equations

Instead of a continuous solution for pressure
in space and time, the finite-difference approxi-
mations will determine the pressure at isolated
grid points in space as shown in Fig. 1 and at a
discrete time steps et. Starting from the known
initial conditions at t - 0 and the boundary con-
ditions, the finite-difference algorithm will
march-out the solution to later times.

The difference equations can be developed by
an integration of the governing wave equation,
equation (7), in the form

ft+at/2^x+ax/2 1 a 2 P a2P
J	 (-7 ---^ - —^1 dxdt

t-et/2 x-ex/2 ` c at
	 ax /

t+at/2 x+ax/2

• f	 J	 s(x) a-i"lt dxdt	 (17)

t-at/2 x-ax/2

The integration procedure is fully documented in
reference 16 and is especially useful in developing
equations at boundaries and for the special case
of the unit impulse function.

Central Cell

Away from the boundaries, in the central cell

32 	 ^
1/ 2

	 of Fig. 1, the integration of the various terms in
c 1 g . -a (x - xs )	 (14)	 equation (17) yields

+ \

ax	
\	 (pk +lex rPk+1 -2P

k+
 Pk-11 

-
st	 - 2Pk+ Pk

Later, numerical solutions of equation (11) 	 CAT` i	 i	 i /l 	 ex 	 i 	 i	 i-1
will be compared to analytical solutions of equa-	 i

tion (14).	 . S(	 e-W1tk etex	 (18)

Sommerfeld Radiation Boundary Condition

The two require6 boundary conditions upstream

and downstream of the noise source can be expressed
in terms of a specific acoustic impedance defined
as

Pc e - nP	 (15)

Substituting equation (15) into equation (4) yields

the following relationship for the exit pressure
gradient

aP	 1 VP	
(16)ax ' - cCe

For the plane wave propagation to be considered

herein, ce - 1 (dimensionally equal to ooc)
which is equivalent to propagation at an exit with-
out acoustic reflections, -ommonly called the Som-
merfeld radiation conditior.

Initial Conditions

In the numerical calculations, for times equal

to or less than zero, the acoustic field is assumed
quiescent, that is, the acoustic pressure and ve-

were i denotes the space index, k the time
index, and ex and at the space and time mesh
spacing, respectively. All the spacings are as-
svmed constant. The time t k is defined as
t - kat.

P^+1 Solving equation (18) for the new pressure
 yields	

r	 l
Pi +1 . 2Pi - Pi

-1
 + aI Pi +l - 2P^ + Pi-1

J
k L

+ S(Xi)e- iWlt c 2at 2	(19)

where a . (cet/ex) 2. As will be discussed
shortly in conjunction with equation (24), the
value of a must be chosen less than or equal to
1 for numerical stability. Equation (19) is an
algorithm which permits marching out solutions
from known values of pressure at times associated
with k and	 k-1. The procedure is explidit
since all the past values of Pk and F* -1
are known as the new values of P k+l are com-
puted. For the special case at t - 0, the dif-
ference equation for the start up is

3

i1_ _.
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10 +	
^
aPI + a / 0	 0 * 0	 determine the effect of the boundary conditions on

P i . P i	At	 0	
P1*1 - 2Pi	 PO 	 stability.

	

s (xi )c2 At2	Numerical Data Reduction

+	 (20)
Z

where PQ and W at( 0 are taken as zero,
and e- i0 t is taken as 1 and H(t) is
assumed unity over the entire et/2 time step.

Exit Boundary Cell

The solution of equttjpn (17) for the exit
cells is fully documented lloll when s(x) 1s zero
(homogeneous solution). In this case, the algo-
rithm for the exit pressure is	

1
PI+1 . (2PI - PI-i + u pi

-1 
-(2a PI - PI-11

+ S(xI)c2et2e iWitk)/ (1 + o)	 (21)

where o equals (cat/a)te). A similar equation
exists at the entrance, in this case, I goes to 1
and I-1 becomes 2.

Green's Function Equation

Assuming s(x) of the form given by equa-
tions (9) and (10) and noting that H(t) is
identical to 1, the integration of the source term
in equation (17) yields

I

t+et/fx+ax/2	 -i,.1t
 s(x)e	 dxdt

t-at/2	 x/2

-iWltk	

s

x+ex/2	
-iWltk

• e	 at	 a(x-x )dz . e	 at

-ex/2	 (22)

Recall, at the start of the numerical calcu-
lation, the acoustic pressures and velocities were
assumed zero throughout the duct and a source be-
gins a harmonic oscillation. The pressures will
vary harmonically at all points in the duct. In
order to conveniently interpret the numerical re-
sults, the time harmonic component of pressure
should be removed so that only the spatial or
Fourier transformed component of pressure remains.

Homogeneous Equation

Conside •• the solution for plane wave propaga-
tion in the absence of noise sources (S(x t) . 0)
and when the pressure at a boundary (x . 01 is
given by

P(O.t) - e- iwlt	— < t < -	 (25)

In this steady-state case, all the acoustic Para-
meters are proportional to e-iWlt and equa-
tion (7) reduces to the Helmholtz equation. The
solution for pressure is (see Appendix A, Problem 1)

P(x,t) - e-i-l(t-x/c) 	 (26)

However, in the numerical simulation to this exam-
ple, the boundary condition given in equation (25)
becomes

P(O,t) - e-iWlt H(t)
	

(27)

In this case, the numerical solution will approxi-
mate (see Appendix A, Problem 2)

P(x, t ) - e-i-l(t-x/c) H(t-x/c)
	

(28)

Although only a specific example has beer. con-
Therefore, by cumparing the results of the inte-	 sidered, in homogeneous problems with forcing bound-
gration in equation (22 to the right hand side of 	 ary conditions, such as equations (25) or (27), the
equation (18). if s(xi; is chosen such that 	 pr ssure P(x,t) will always be proportional to

eWlt provided sufficient time has elapsed
S(xi ) . 1/ex	 (23)	 so that the initial transient has passed (t > x/c).

Therefore, the numerical data can be rseduc dd o a
then equation (19) will simulate the Green's function simple spatial form by dividing by e-iWItf16jt
solution. Of course, s(x) equals zero for all i	 that is
values not associated with the position of the con-
centrated source.	

P(x) . 
PxWt	

t > x/c	 (29)

Stability	 e- 1

In the explicit time marching approach used
here, round-off errors ca % i grow in an unbounded
fashion and destroy the solution if the time in-
crement at is too large or the iteration 	 egch

p
s jr8% operly posed. The von Newman mw!thcd`ref^. 15,

10044)) applied to the homogeneous form of equa-
tion (7) required that

ets < ex/C
	

(24)

This result was first derived by Courant, Fried-
richs, and Levy in 1927 for a related method and,
therefore, is known as the CFL condition. This
criteria proved successful in the solution of
equation (7). Note, for a two dimensional problem
for which nonpropagating modes exist, the exit
impedanc	 pn introduce an instability into the
equatioqn% f.	In this case the eigenvalue ap-
proach` ref 18, p. 263) should be employed to

Inhomogeneous Problems

For many sources. such as a pure monopole,
numerical data reduction for the inhomo eneous
wave equation could employ equation (29) because
the results will b y solely harmonic in time,
similar in form to equation (25) and (28). How-
ever, this will not always be the case as will now
be shown. Zonsequently the data reduction scheme
employed must always be scrutinized.

For the example source considered in this
paper, the analytical solution to the steady
Green's function equation (14) is (see Appendix A,
Problem 3)

i"1 1 x-x l /c
9( x ) - P(x) - P- x^ -	 e 1	

s	
(30)

e

4



while the numerical simulation employing equa-
tion (11) yields (See Appendix A, Problem 4)
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pn(x) .	 P(x.t) e " dt	 (35)

	

is	 -i,rlt i.1 1 x-xsl 
/c is

Dividing by e- iolt according to equation (29)
yields

P-xrl - i

	
e iol i x-xs^ /c- i	 eirit	

(32)

As mentioned in the introduction, it is desirable
that the numerical solutions should approximate
equation (30). Therefore procedures are developed
to eliminate the do component contribution in
the numerical prediction of p. In this example,
two new schemes for data reduction will now be
employed to simulate equation (30).

Ramping Solution

The do component in equation (31) could
result from the sudden onset of the source at time
t - 0. in contrast to the Fourier transform solu-
tion for which the source has been applied from a
time of minus infinity. To reduce the do com-
ponent, an exponential ramp function (1 - e-bt)
has been applied to the source such that

S(x,t) . &(X-xs)(1 - e-bt) t iwlt H(t)	 (33)

In this case, the numerical simulation for the
Green's function solution becomes (see Appendix A,
Problem 5)

	

P x t	 is	 ir1 l x-x s l /c
P(x) - T ' T__1e

i t
e ^	 (34)

Equation (34) will approximate the analytical
Green's function solution provided (b/.l) is
chosen to be small compared to unity.

Integral Solution

For a large class of inhomogeneous problems,
the use of equation (29) presents some additional
dificulties. Consider, for example, a typical
forcing function for the steady or unsteady (cir-
cumferential varibtions of seNy flow) 1DDding
noises on a propeller sourcetre . 4, p. 738),
The propeller source can be conveniently modeled
by stationary sourceswhrel.t14n ^^ andi 19)
(square wave) with time l( 	 1	 tg• 11 19 to

match the passing of the propeller. For this
square wave source function in time, the analytical
expression for pressure will contain all the hpr-
monics (no*) of the blade passing frequency e- n.*t*
The amplitudes of the various Fourier components
are determined by an exponential Fourier stries 11t
ofq.the . knQym (or assumed) forcing function lref•

To reduce numerical data which contain a
spectrum of discrete harmonics resulting from the
Fourier fit of the square wave, the following
orthogonality condition is used.

Besides yielding the individual higher harmonics.
the orthogonal properties of equation (35) will
eliminate the steady offset involved in the numer-
ical example considered herein.

In employing equation (35), for convenience,
the at from equation (28) is adjusted as follows
to obtain an even number of at's in one period:

at -
1.

	

FLORT	 .es

where IFIX converts a floating point number to
an interger. and where

Icycle - IFIX (1./ats) * 1
	

(37)

Consequently, the following algorithm was used
to numerically evaluate equation (35) to calculate
p(x) for n - 1.

j 'k+Iycle j 1^ t j	i^ tj-)

P(x i ) . T_ j
,,	 `P e 1* 	 Pi-1e 1 I(38)

j-k+l

Sample Problems - Comparisons

Two examples are now presented to illustrate
the numerical techniques. Both examples have an-
alytical solutions; therefore, a direct comparison
between the numerical and analytical techniques
can be made. The first example presents a simula-
tion of the Green's function. The second example
presents a solution for a distributed noise source.

Example 1 - Green's Function

As our first example of the difference tech-
nique, consider the numerical solution of the
Green's Function equation, (12). In this case,
the finite difference equations (19) and (20) will
be used in the solution with the source term equal
to 1./ax (eq. (23)) at x S and zero elsewhere.
The exact analytical solution is given by equation
(32). Taking the position of the source xs
equal to zero, considering only positive values
of x in the output, tnd dividing both sides of
equation (32) by e- "l	 equation (32) can be
rewritten as (recall ,.I . 2.)

17C.—i ^T
e	

(C)

P x t	 -sin (2.x1 a i cost2'	 -ei2.t

t > xJx/c	 (39)

For a nondimenslonal speed of so.md of unity
and ax of .00521, the numerical and analytical
results are shown in Fig. 2 for times of 0.75,
1.G, 1.25, and 1.5. At t . 0.75 in Fig. 2a, tha
initial transient has progressed three-quarters of
the way to the termination point of x equal to
unity. At t greater or equal to 1.0 in Figs. 2b,
c. and d, the time dependent oscillatory nature of
the transient form of the solution is shown. As
seen in all the Fig. 2 plots, the analytical and
numerical results are in excellent agreement.

Recall, the steady-state Fourier transform
solution to the Green's function equation is de-

(36)
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sired. In this steady-state solution, the source 	 The results of the integration technique,
has been assumed turned on from time to minus in- 	 equation (38) are shown in Fig. 5. As seen in
finity. The exact analytical solution, eq. (30)	 Fig. 5, the analytical and numerical results are
can be rewritten as	 in exact agreement at the end of four cycles

(t . 4).

P(x) -
	 P x t	

-sin 2•x + i cos 2vx 	 (40)
C - W1^e

Again, the normalized velocity of sound has been

taken as unity.

As discussed in the previous section, the

numerical approximation to this analytical solution
can be obtained by either introducing a ramp func-
tion or usin the integration technique defined by
equation (351.

Figure 3 shows the numerical results for the

exponential ramp with a coefficient of b equal
to 0.5. In this case about seven time periods
(t . 7) were required before the transient solu-
tion associated with the ramp died out and the
steady-state Fourier transformed solution was

obtained. For t greater than 1, the numerical
solution remained unchanged. The analyses,
equation (34), predicted an error of b/Wl of .08
which is the error seen in Fig. 3.

Finally, the results of the integration tech-
nique, equation (38), are shown in Fig. 4. As

seen in Fig. 4, the analytical and numerical re-
sults are in exact agreement at the end of two-
cycles (t . 2).

Example 2 - Distributed Source

For the case of a distributed sound source,
the soluip fir p x) 5a2	 representedrepresented by the
integrallref. 14, q. 4.4.13) of the product of
the source magnitude A(xs) and the Green's
Function as given by equation (30). in the

present example, the source strength A is
assumed constant between -a and +a and zero
outside this range. Thus for x greater than a,

icA 
iW lx/c	 a	 -iWlxs/c

p(x) 	 e	 f	 e	 dxs	 (41)
1	 -a

while for x greater than -a and less than a,

P(x)
icA e

iW 1x/c r x e
-iW1xs/c dx^--	 J	 s

1O1 	 -a

i,,1	 ex/c f a iWlxs/c
+ e	 x	 dxs	 (42)

In the specific example now considered, a is
set at a value of 0.5, the amplitude A is taken
as unity and the dimensionless speed of swnd is
assumed to be 0.5. In this case, performing the
integrations in equations (41) and (42) yields the
following expressions for the normalized pressure

(4.) 2 p(x) . -(1 - cos 4w x)	 x < 0.5	 (43)

p(x) . 0	 x > 0.5	 (44)

The parameters have been chosen so that the noise

sources combine to give complete cancellation in
the region outside the source.

In employing the ramping technique for the

distributed source, it was necessary to reduce b
to 0.1 to keep an eight percent error, as was used

in Fig. 3. The reduced b leads to a solution
time an order of magnitude greater than the inte-
gration technique, which limits the usefulness of
the ramping technique.

Concluding Remarks

The transient difference technique was suc-

cessfully formulated for the one dimensional in-
homogeneous wave equation with a harmonic source.
The Green's function and a distributed noise source
are accurately predicted by the numerical theory.
The desired Fourier transformed acoustic pressures
are determined from the transient pressures by use
of a ramping function and an integration technique
both of which eliminate the nonharmonic pressures
associated with the start-up of the particular
inhomogeneous source function considered herein.
The integration technique is an order of magnitude
faster than the ramping technique; consequently,
future numerical solution should employ this tech-
nique.

Appendix A

Fourier Integral Solutions

To verify the accuracy and applicability of
the numerical techniques, closed form analytical
solutions will now be developed for a variety of
check problems. The complex exponential form of
the Fourier integral representation will be used

to develop the analytical expression.

The Fourier ransform of P(-.,t) is defined
as(ref. 14, p. 281

P( x .w) .	 f P(x,t) e"t dt	 (Al)

The Fourier transform of the wave equation (5)
becomes

2	 2

al+ W 	 . 1 f S(x,t) e
iWt dt
	 (A2)

The Fourier transorms to be considered have

only simple poles and vanish at t. , r -. For
the problems considered herein, the x and t
variables can be incorporatied in a new variable
s - t - x/c and the inverse transform can be
written as

I

P(x,a) • J
	

B(w)e
-iWB

 dw
	 (A3)

1

In this	 se, thh inverse c	 be written directly
as( ref. ^^, p. 11̂, eq. 1.2.15)

a < 0	 P(x,$) - 20 1 (residues above real
W axis)	 (A4)

6



For s(x) - 0, the solution of equation (A2)

in a semi-infinite domain (no reflections) yields

iwx/c
	

(A6)

2	 2	 -a(x - x )i
4+ p.
ox	 C

•^-wl (All)

..,.
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e > 0	 P(x,$) - -2.i j (residues on and below

real w axis)	 (A5)

Problem 1 - Harmonic Pressure All Times, - - < + < -

Problem 4 - Modified Green's Function t > 0

For a source in the form as given in equation

(11), the rmj `e)•h14d pid
Soof eequptjo2(A2) takes

on

The constant C+ (forward waves) is determined by

the transformpti?n id the pFri dary condition,equation (25)`	 _, p. 3 1111

p(O,r)	 a (w - WI) - C+
	

(A7)

The inverse P(x,t) of equation (A6) with C+
as given by equation (A7) can be determined direc-
tly froom1^1 thhee defi3ition of . thp 0irac delta func-
tion ref. 14, p. 1, eq• 1 3 P4 ) to yield

equation (26) in the body of this report.

Problem 2 - Harmonic Pressure t > 0

Again for s(x) - 0, the solution of equation
(A2) in a semi-infinite domain is given by equa-
tion (A6). In this case however, the constant
C+ is determined by the transformation of the
boundary condition equation (27) to give

Using the approach outlined in Problem 3 the

Fourier transformed pressure becomes:

iwlx-x 1/c

D(x.w) - '^v7 	 e	
s	

(Al2)

In taking the inverse of equation (Al2), two resi-

dues are at 0 and wl and both lie on the
real axis. Therefore, the inverse can again be
found directly from equations (0) and (A5) to
yield P(x,t) as given by equation (31) in the
body of this report.

Problem 5 - Ramping Function t > 0

For a source in the form as given in equation
(33) the right hand side of equation (A2) takes on

the form

P(0,w) - T. G 1 wlJ - C+ A8	 I
	 w2	

)I-ri.

	 i	 _	 i	 1

3x	 C
( ) 	-a(x- xs 	 w-w1	 • w-011 +

-4

Considering equations (0) and (A8), the only

residue is al, which lies on the real axis.
Therefore, the inverse can be found directly from
equations (A4) and (A5) to yield P(x,t) as given
by equation (28) in the body of this report.

Problem 3 - Green's Function - - < t < -

For a source in the form as given in equation
(12), the rj( ht hj d sidQ p equation (A2) takes

on the form	 f. 9, p. 321

a 2	w2

4 + ^ P - 
-a(x - x s ) a(w - wl)	 (A9)

The homogeneous solution for nonreflected waves in
thiadrticular example can be written as(ref. 14,
P. ^3P3)

p(x,w) - Ae iw ( x- x s)/c	 x > xs

- Ae- iw(x- x s ) /c 	 x < xs	 (AID)

for a pressure continuous across x equals xs.
There is, of course, a discontinuity in the slope
of p(x,w) at x - xs. The constant A and
therefore the magnitude of the discontinuity takes
on the value x 

'
4 ) to satisfy the right hand

side of equation (A$) at x - xs. Following the
proced re outt fined ]]n reat depth by Morse and
Ingardyref. 1 , p. 133) the constant A is
found to be A - (ic/w) a (w - wl). Aqain, the
inverse can be easily determine fromthe dir t

use 4f the Dirac Delta functionlref. Id, p. 31,
ec

eq. 1.3.2 4) to yield P(x,t) as given by
equation (30) in the body of this report.

(A13)

The solution for the Fourier transformed
pressure becomes

-iw1 x- x 5 1 /c
P( x .w) - ^-T[^-^I e• w w w1

+	
e-

c	 1	
l -iwlx-xs1/c

(A:4)^	
J727. w w - wl

In taking the inverse of equation (A14), three

residues are at 0, wl, and wl-ib and all lie
on or below the real axis. Therefore, the inverse
can again be found directly from equations (A4)
and (A5) to yield

Ix _ x51

P(x,t)	 _ is	 -Aw l t	 c	 )

HIt-Ix_xs1/	

2wle
c

-ic + is	 wl 	 c	 b-^ T 
wl+b	

7 
wl+b

(	
Ix- 

s
x 1	 /	 Ix-x

s

1

_ i c	
ie-t	

c	
wl a bit	

c 

1x - x51 1x	 wl	 + c e-i t-	 c	 / wl
[Wl	 b	 Continued on the next page.
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x - x s i	 9.

_ b \t _ c^
e	 (A15)

10.

For long times, the last two terms in equation
(A15) can be neglected. In addition, if b/"1, 	 11.
is assumed to be small, equation (A15) can be ap-
proximated by equation (34) in the body of this
report.

1.

2.

References

Baumeister, K.	 J.,	 and Horowitz,	 S.	 J.,
"Finite Element-Ingegral Simulation of Static
and Flight Fan Noise Radiation From the JT15D
Turbofan Engine,"	 NASA TM-82936, Aug. 1982.
Astley, R.	 J., "Finite and Infinite Elements
for Acoustical Radiation," Abstract 19th
Annual Meeting of the Society of 	 n	 neerin

12.

13.

c enceInc., Univ. of	 ssour - o	 a, 14.

0o	 a1^11 issouri, Oct. 1982, p. 8.

3. Baumeister, K.	 J., "Numerical Techniques in 15.

Linear Duct Acoustics - A Status Report,"
Journal of Engineering for Industr	 Vol.

4.
+	 o•	 3, Aug.	 1981, PP-	 -

Baumeister, K. J., "Numerical Techniques in

16.

Linear Duct Acoustics - 1980-81 Update," NASA
TM-82730, Nov. 1981.

5. Goldstein, M. E.. Aeroacoustics, McGraw-Hill, 17.

New York, 1976.
6. Gutin, L., "On the Sound Field of a Rotating

Propeller," NASA TM-1195, 1948.
7. Sharland,	 I.	 J., "Sources of Noise in Axial

Flow Fans," Journal of Sound and Vibration, 18.

Vol.	 1,	 No.	 3,	 Jul y 1964,	 p.	 302.
8. Lighthill, M.	 J., "On Sound Generated

Aerodynamically,	 1. General Theory," 19.

Proceedings of the Ro al 	 Society,	 (London),
Vol.o.	 1107,	 1952.	 pp.	 64-587.

Lighthill, M. J., "On Sound Generated
Aerodynamically, II. Turbulence as a Source
of Sound," Proceedings of the Ro al Societ ,
(London), Vol. ??ZA, No. 1148, 19b4, PP. 1-R.

Baumeister, K. J., "Utilization Numerical

Techniques in Turbofan Inlet Acoustic
Suppressor Design," NASA TM-82994, Oct. 1982.

Baumeister, K. J., Everman, W., Astley, R.
J., and White, J. W., "Application of
'Steady' State Finite Element and Transient
Finite Difference Theory to Sound Propagation

in a Variable Duct: A Comparison with
Experiment," AIAA Paper 81-2016, Oct. 1981.

Maestrello, L., Bayliss, A., and Turkel, E.,
"On the Interaction of r Sound Pulse with the
Shear Layer of an Axisymmetric Jet," Journal

of Sound and Vibration, Vol. 74, No. T7"K,
PP• M-301.
Pierce, A. D., Acoustics: An Introduction to

Its Physic al Princi les and	 cat ons,

McGraw-Hill, ew or ,
Morse, P. M., and Ingard, K. U., Theoretical

Acoustics, McGraw-Hill, New York, TIM.—

aT R Pr, and Hansen, K. F., Numerical

Methods of Reactor Analysis, Academ Tc-Tress,

New York,
Baumeister, K. J., 'Time-Dependent Difference

Theory for Noise Propagation in a Two-Dimen-
sional Duct," AIAA Journal, Vol. 18, No. 12,
Dec. 1980, pp. 1470-1476.
Baumeister, K. J., -Influence of Exit Imped-
ance on Finite Difference Solution of Trans-
ient Acoustic Mode Propagation in Ducts,'
Journal of Engineering for Industr , Vol.

o. 1, Feb., pp. 113-lzu.
Richtmyer. R. D. and Morton, K. W., Differ-
ence Methods for Initial-Value Probl, _2nd
ed., o n i ey an	 ons, ew or , ems
Carrier, G. F., Krook, M., and Pearson, C.

E., Functior; of a Com lex Variable,
McGraw- ! , ew or	 .



4,
a

tn o
WO
Sry
a
u

7
(1	 l
L
C

\^,	 rn r
t r

^	 ^	 t

-^	 r

C

n,

I,. M(N	 1 (1W I `.•. (0 1 l al	 ' 10 R J'  I N 1, 11 .

(a) t= 0.15.

41
a

0
Ln O

W,
Q N	 r A- A
C1

r

I	 .^ r	 r	
^

c	 r

r	 ^

s.
	 f

;If

a

e

PPGE t^
r. .,^NAL

S tx, 0
EXIT CELL	 F CENTRAL CELL 	 EXIT CELL

1! -2 -3 '4_	 ' i'1 	 +	 1-2 1-1 1

x

Figure 1. - Finite difference grid.

W
Q
tn
ino
Wo
cr h^

0

lJ
^I

,n
n ^`

r	 ^

r

i
t:

u
r.

o rr	 o. ?o	 01 40	 o. eo	 o. so	 i 00
1 M FN`.IONtFY, AkIAl COO R DINATE. X

(b) t=1.0.

4
Q

4n
{n O
Wo
T
u

0

I C

r F

^	 r

EXACT RNRLTSIS,eq(39)
REAL (P)

— — IMAG(P)
NUMERICAL SOLUTION

} 0	 REAL (P)
"I IMPG (P)

,	 . 4o	
-	

t; r,h	 r^P^,	 or

1"MFN ,, 1% 	 Fs^ AxIOt r cc fln,N01I.	 x

(d) t- 1.5.

nt^' 	 111'!	 Y

(c) t=1.25.

Figure 2. - Nature of Green's function and numerical solutions when source is turned on at time equal to zero.



ORIGINAL PAGE 19
OF POOR QuAL1TY

x
Co No

g 0
cbQ $ X ^+

ll': rn..	 o ..
d	 N	 d

o w
W F-

E 7

LO^
J—

Cz
6l

C.0=2R	 ¢¢¢
Q W L	 M W ti y Lu

cc

U
Q ¢ I	 3: 	 0 0= O C

C) p
\ W I	 =

o O
10 o

V) j

b
J
CL

p X C C^C tu^ Q
^' C c

ui C 7
O

O^
J

o L
y C
i 6

p ° s,
z v a,
w m a,
_

m }
ra

0o a 3
i^

00 'F 00'2 00'I 00'0	 00'i- 00'Z-	 00'E-6
3d:"`SS31^d o i isno3u 663lNO I SN3W I0	 03Z I IdWHON

X C-I
C) N

E,
b

d
= ¢°Vo

n C
."N 7D

g
ID o UJ E

D O (_ fL rn a s CD

EJ 0 C J CD
Z C C

J J lJ
CC C

p ct L t!'^

^EJ C W= U W 1 II

Ll W p 0 Cf a,
El x

W O	 9 uj Z to t) OO

V)
O

F

d , n
E

u, C
U, v

CC u, c ^o^ y C
1

•
n L O

F)
r^ 1

y >
L >

C,

r I
c	 C ,

LZ

00 'E	 00 'Z 00'1 00'0	 00•I ON 'Z OU'!
^!^(15S3H D I isnL)Sii SS^^NOI SN	 iW I U	 0_Ai 1 IHwNHL)h



ORIGINAL Mar 13
OF POOR QUALITY

x 00

S z E•
Q o o C
4t F n Lu

L L

N D m C m

nn a visa
qQ
IZ

m

w r
U a -j0 ,cD —

awz UW T cc C v+
N Q	 I = D 0 ^°O C

I pUG li	 I z
J

N L_

OO Q ^i O

d
o X ^ Co .N
^cr

q
(,n o

-
b. U) :3

O I LLJ J
p J tT„L
p I ^^ n -•^ of ^

J (V C^ ^

of ^le,
'l

3
^^

°u,
p

y
l

cy
Lr 	 N

2 L O V

p r J i^
--	

—-- —r -
00 • e

-- r—
oo • z

r—
00 *1	 00,0	 oo-r oo •z	 co

-3Hf1SS3Hd 3I 1SQ03U	 SSA INC I SN3W i U	 (1AZ I	 1'dWHL)N

MCP


	GeneralDisclaimer.pdf
	0021A02.pdf
	0021A03.pdf
	0021A04.pdf
	0021A05.pdf
	0021A06.pdf
	0021A07.pdf
	0021A08.pdf
	0021A09.pdf
	0021A10.pdf
	0021A11.pdf
	0021A12.pdf
	0021A13.pdf

