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Kenneth J. Baumeister

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

Abstract

A time-dependent finite difference formulation
to the inhomogeneous wave equation {s derived for
plane wave propagation with harmonic noise sources.
The difference equation and boundary concitions are
developed along with the techniques to simulate the
Dirac delta function associated with a concentrated
noise source. Example calculations are presented
for the Green's function and distributed noise
sources. For the example considered, the desired
Fourier transformed acousitic pressures are deter-
mined from the transient pressures by use of a
ramping function and an integration technique,
both of which eliminates the nonharmonic pressure
associated with the initial transient.

Nomenclature

A% ar.a, m

A amplitude

a range of source, eq. (41)

B function of o

b ramping coefficient, eq. (33)

c dimensionless speed of sound, c*/L*f*

c* speed of sound, m/sec

F dimensionless force F*/(p*,f*c*)

Fy dimensionless component of force in x
direction

f function

f* frequency, Hz

6 time dependent Green function

g steady-state Green function

H unit step function

1 index of last grid point

Ieycte total number of time increments per
cycle of base frequency

i T

k time index

L* characteristic length, m

Lf Fourier transform operator

n harmonic number

n unit outward normal at boundary

P t ime-dependent dimen;tonless acoustic
pressure P*/p*c*

spatially dependent steady-state

acoustic pressure

Q dimensionless mass source, Q%/f*o*,

S dimensionless time dependent acoustic
source, eq. (6)

s spatially dependent acoustic source,
eq. (9

T+ period, sec (1/f*)

t dimensionless time, t*/Tw

t* time, sec

at time increment

atg maximum stable time increment, eq. (24)

U acoustic velocity, U*/c*

X space coordinate, x*/L*

Xg location of source

Ax space 1nc5ement

o (c at/ax)

) parameter, eq. (A3)

8 Dirac Delta function

4 exit impedance, eq. (15)

o%o ambient density, kg/m3
0 (c at/ax)fke
. dimesionless frequency (nuw®/f*)
”] 2v
on n2e
¥ dimensionless angular frequency,
rad/sec
Superscripts
. dimensional quality
k time index
Subscripts
i space index
n harmonic number
Introduction

Finite difference and finite element numerical
solutions to the homogeneous wave enuation have
been successfully used to predic( ns nic radia-
tion from turbofan engine inlets{1.¢) as well as
internal propagation in a wide variety of complex
hard and soft wall ducts, as cited in the summaries
of references 3 and 4. In these solutions, the
noise sources were decoupled from the propagation
problem which redufed thg more ?egg al inhomogen-
eous wave equationivef. 5, eq. I. f to a simpler
homogeneous form. 1In the homogeneous form, a known
or estimated pressure profile is used as a boundary
condition at some location, such as the fan face
in a turbofan engine, and the propagation of this
pressure wave is predicted from a solution of the
wave equation or the more aeneral linearized gas
dynamic equations.

Numerical solutions to the inhomogeneous
equations could be useful in studying the coupled
interaction of the noise source and sound field
for a wide class of practical problems. Foqr ex-
ample, 926 noise generate? b§ propellers\®/  fan
blades(’), and shear flow(8,9) can be modeled
by solutions to the inhomogeneous wave equation
utilizing monopoles, dipoles, and quadrupoles as
the noise Ssources. As with the numerical approach
to the homogeneous equations, numerical solutions
of the inhomogeneous equations would focus on sound
propa?ib1qn with complex geometries and flow pat-
terns{10.11) which would be difficult to handle
with analytical methods.

Some inhomogeneous problems of current in-
terest, such as a turboprop noise field, require
three dimensional solutions to the sound field.
Consequently, the transient finite difference
solution to the wave equation will be employed in
the present paper. Custom rixx, in the bulk of
the past numerical studies 3, . the pressure
and acoustic velocities were assumed to be simple
harmonic functions of time. In this case, the
time {ndependent wave equations can be used. The
matrices associated with the numerical solutions
to the time independent equation (called steady-

Fp—
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state solutions herein) must be solved exactly
using such methods as Gauss elimination. As a
result, large arrays of matrix elements must be
stored, which prohibits realistic three dimensional
solutions to the wave equation. In contrast, the
transient analysis begins with a harmonic noise
source radiating into an initially quiesent envi-
ronment. Next, an explicit iteration method calcu-
lates stepwise in real time to obtain the transient
as well as the steady-state solution of the acou-
stic field. Advantageously, this approach has

been chosen because the matrix storage requirements
are completely eliminated in the transient solution.

Maestrello, Bayless, and Turkel(12) have
studied transient finite difference solutions to
the linearized continuity and momentum equations
for a pulse noise source which propagates in a jet
(sheared flow). They found amplification of the
noise source due to shear. Up to the present time,
however, transient finite difference solu;igng*
have not been applied to the harmonic (e-1e™11")
form of the inhomogeneous wave equation. There-
fore, the primary purpose of this paper is to
develop the inhomogeneous tranisent finite differ-
ence equations in one dimension for a harmonic
sound sou(fs with the Sommerfeld radiation boundary
condition ), and to verify the theory with
appropriate examples.

The transient numerical procedures employed
herein are intended to simulate the analytical
Fourtier transformed form of the acoustic soluticns,
where all the acoustic parameters vary as e-ie*]t*,
The steady-state numerical solutions exactly simu-
late the analytical results. Unfortunately, this
is not the case for the transient solution. Basic-
ally, the analytical and steady-state numerical
theories assume the harmonic forcing function has
beqgun at time equal to minus infinity. On the
other hand, tnhe transient solution abruptly begins
the harmonic uscillation at time equal to zero.
Clearly,

~iw Tt -fuw, *t*
e o]
whers Lfg s the Fourier transform operator('ef- 14,
P. 28) and H represents the unit step function.
Symbols are defined in the Nomenclature. The sym-
bols with an asterisk represent dimensional quan-
tities. The second purpose of this paper is to
develop the steps necessary to adapt the transient

solution to simulate the Fourier transform form of
the solution.

(1)

Finally, analytical predictions for noise
propagation from both steady and unsteady noise
sources, such as a nropeller, rely on the integra-
tion of a unit source represented by a free field

Green's function g apd the produc the magni-
tude of the source F'Pfe}- 1R- p. ’48{ such that
(2)

Pr o | A Frgedax

Consequently, predictions of the free field Green's
function as well as the effect of a distributed
source are developed herein in two examples for
code verification and assessment of numerical ac-~
curacy and stability,

Governing Equations and Boundary Conditions

The governing differential equation and bound-
ary conditions are introduced in this section of
the report. First, the scalar inhomogeneous wave
equation is developed. Next, the Green function
form of the equation 1s developed and will be used
for code verification. Finally, an expression for
the Sommerfield exit boundary condition is pre-
sented.

Inhomogeneoys One Dimensional Wave Equation

In the absence of mean flow, the dimensionless
form of the plane wave lingacized gas equations can
be "1tten as refv. g' eq.nijls

Continuity (isentropic)

el (3)
Momentum
-,‘-{’-*c-:{.rx ()

The parameters used to reduce the pressures and
velocities to their dimensionless form are given
in the Nomenclature. The usual notation for acou-
stic pressure and velocity are used. Here, Q
represents a dimensionless mass source and Fy

a dimensionless body force. Differentiating equa-
tion (3) with respect to time and equation (4)
with respect to x, and combining yields the di-
mensionless wave equation

2 2
1 °P °P
- S (X,t) (5)
ol ax
where the acoustic source is
of
staut) w Ly B L ©
c

The first term on the right hand side of equation
(6) represents the monopole contribution while the
second term represents the dipole contribution.

The sourgg will be assumed to be harmonic in nature
(e-1ne*1t*) cych that equation (5) can be writ-

2 2 -fu t
P LTS (7)

-2 as(x) e
ax

w, = 2% (8)

Only the first harmonic, n = 1, s considered
herein. However, in the numerical data reduction
section, a procedure will be presented to handle a
multiple frequency source problem. Because of the
introduction of complex notation for the noise
source, all the dependent variables are complex.

Green Function Equation

For the purpose of checking the numerical

theory, the simplest form of the source is desired.
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Consequently, s{x) is assumed to be of the form

s(x) = s(xg)s(x - x¢) (9)
and

Thus, equation (7) can be written as

2 2 ~fuyt
1 P P 1
- a8(x-x)e H(t) (11)

This source is analogous to the apalytical_ form
treated by Morse and Ingard(reg- {3.%. f33{ for
which a closed form analytical solution is pre-
sented.

If the signal e-1w1t is assumed to be ap-
plied from time minus infinity, the time dependent
pressure in equation (11) represents the Green

function solution for a concentrated source. Thus,
equation (11) can be written as
2 2 it
1 %6 26 “
- ag(x-x)e (12)
<l ol s

In this steady—st$te case, all the acoustic para-
meters vary as e-'wit that is

6 (x,t) = g(x) e-fugt (13)
and the differential equation (8) becomes
2
2 w
a9, ( 1)
—] g=-8(x-x) (14)
2\ :

Later, numerical solutions of equation (11)
will be compared to analytical solutions of equa-
tion (14).

Sommerfeld Radiation Boundary Condition

The two requirec boundary conditions upstream
and downstream of the noise source can be expressed
in terms of a specific acoustic impedance defined
as

L, = —

P
€ U

(15)

Substituting equation (15) into equation (4) yields
the following relationship for the exit pressure
gradient

aP 1 P

T -E-(_;?f (16)

For the plane wave propagation to be considered
herein, e = 1 (dimensiunally equal to pec)

which 1s equivalent to prupagation at an exit with-
out acoustic reflections, ~ommonly called the Som-
merfeld radiation conditior.

Initial Conditions

In the numerical calculations, for times equal
to or less than zero, the acoustic field is assumed
quiescent, that is, the zcoustic pressure and ve-

locities are taken to be zero. For times greater
than zero, the application of the noise source
(eq. (7)) will drive the pressures.

Difference Equations

Instead of a continuous solution for pressure
in space and time, the finite-difference approxi-
mations will determine the pressure at isolated
grid points in space as shown in Fig. 1 and at a
discrete time steps at. Starting from the known
inftial conditions at t = 0 and the boundary con-
ditions, the finite-difference algorithm will
march-out the solution to later times.

The difference equations can be developed by
an integration of the governing wave equation,
equation (7), in the form

teat/2 px+ax/2 2 2
f / (%L;-L;)axdt
t-at/2 x-ax/2 \°¢ ? ax

t+at/2 .x+tax/2
- s(x) e 1ol 4 at
t-at/? x-ax/2

(17

The integration procedure is fully documented in
reference 16 and is especially useful in developing
equations at boundaries and for the special case
of the unit impulse function.

Central Cell

Away from the boundaries, in the central cel)
of Fig. 1, the integration of the various terms in
equation (17) yields

ax_ fokel ok, ok-1)  at ok K, ok
aﬁGi R )’IiGh1‘"i*PLJ
k
~tut

= s(x)e atax (18)

where 1 denotes the space index, k the time
index, and Ax and at the space and time mesh
spacing, respectively. A1) the spacings are as-
sgmedkconstant. The time tK is defined as

tX = kat.

Solving equation (18) for the new pressure
PE*l yields

k+1 k k-1 k k k
Pi = ZPi - P1 +ta [P‘+1 - 2P1 + Pi-l]

gt 5,
+ S(*i)e cat (19)

where a = (cat/ax)2. As will be discussed
shortly in conjunction with equation (24), the
value of a must be chosen less than or equal to
1 for numerical stability. Equation (19) {s an
algorithm which permits marching out solutions
from known values of pressure at times associated
with k and k-1. The procedure is explidit
since all the past values of P aqd

are known as the new values of PK*l are com-
puted. For the special case at t = 0, the dif-
ference equation for the start up is
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1 0 P a 0,.0
"1"1"t"£o’7(1+1“2"1"’1 1)
s(x )c2 2
A (20)

where and 3P/at] O are taken as zero,
and e-1u1t {5 taken as 1 and H(t) is
assumed unity over the entire at/2 time step.

Exit Boundary Cell

The solution of equtfg?n (17) for the exit
cells is fully documented when s(x) is zero
(homogeneous solution). In this case, the algo-
rithm for the exit pressure is

I l)

k+l k k-1 k-1
P = (ZPI - PI +ao I (%c 4
A similar equation

1
-4

2,20 1" )/(1*0) (21)

1 goes to 1

+ S(xl)c atte

where o equals (cat/axe).
exists at the entrance, in this case,
and I-1 becomes 2.

Green's Function Equation

Assuming s{x) of the form given by equa-
tions (9) and (10) and noting that H(t) is
identical to 1, the integration of the source term
in equation (17) ylelds

t*atl?/‘xﬂxl?
t-at/2 x-ax/2

-t
s{x)e “ dxdt

-1 t x*ax/2 k
e g Ati,p a(x-xs)dx e el
4

—ax/2 (22)

Therefore, by comparing the results of the inte-
gration in equation (22; to the right hand side of
equation (18), if s{x;) is chosen such that

s(xj) = 1/ax (23)

then equation (19) will simulate the Green's function

solution. Of course, s(x) equals zero for all
values not associated with the position of the con-
centrated source,

Stability

In the explicit time marching approach used
here, round-off errors can grow in an unbounded
fashion and destroy the solution {f the time in-
crement at is too large or the iteration ?chsme
is lﬂssoperly posed. The von Newman methcd!T®

applied to the homogeneous form of equa-
tion (7) required that
sty < ax/C (24)
This result was first derived by Courant, Fried-
richs, and Levy in 1927 for a related method and,
therefore, is known as the CFL condition, This
criteria proved successful in the solution of
equation (7). Note, for a two dimensional problem
for which nonpropagating modes exist, the exit
1mpedanc8 ;fn introduce an instability into the
equati In thii case the eigenvalue ap-
proachiref ) should be employed to

determine the effect of the boundary conditions on
stability.

Numerical Data Reduction

Recall, at the start of the numerical calcu-
lation, the acoustic pressures and velocities were
assumed zero throughout the duct and a source be-
gins a harmonic oscillation., The pressures will
vary harmonically at all points in the duct. In
order to conveniently interpret the numerical re-
sults, the time harmonic component of pressure
should be removed so that only the spatial or
Fourier transformed component of pressure remains.

Homogeneous Equation

Conside the solution for plane wave propaga-
tion in the absence of noise sources (S(x,t) = 0)
and when the pressure at a boundary (x = Os
given by
P(0,t) = e-iut ~~ctce (25)
In this steady-state case, all the acoustic para-
neters are proportional to e-i¥1t and equa-
tion (7) reduces to the Helmholtz equation. The
solution for pressure is (see Appendix A, Problem 1)

P(x,t) = e~tu(t-x/c) (26)

However, in the numerical simulation to this exam-
ple, the boundary condition given in equation (25)
becomes
P(0,t) = e-iw1t H(t) (27)
In this case, the numerical solution will approxi-
mate (see Appendix A, Problem 2)
P(x,t) = e-fu1{t-x/c) H(t-x/c) (28)
Although only a specific example has beer con-
s tdered, in homogeneous problems with forcing bound-
ary conditions, such as equations (25) or (27), the
pr ssure P(x, t) will always be proportional to
-tw1t provided sufficient time has elapsed
so that the initial transient has passed (t > x/c).
Therefore, the numerical data can be r dquf }o a
simple spatial form by dividing by e~
that is

p(x) = 2

e

t > x/c (29)

Inhomogeneous Problems

For many sources, such as a pure monopole,
numerical data reduction for the inhomogeneous
wave equation could employ equation (29) because
the results will b= solely harmonic in time,
similar in form to equation (25) and (28). How-
ever, this will not always be the case as wil) now
be shown. Consequently the data reduction scheme
employed must always be scrutinized,

For the example source considered in this
paper, the analytical solution to the steady
Green's function equation (14) is (see Appendix A,
Problem 3)

fogt x=x_1/
o) = olx) - Hpt] . Je-e 1

= (30)
e 1



while the numerical simulation employing equa-
tion (11) yields (See Appendix A, Problem 4)

~fuqt twgtx=x_1/c
P(x.t)--;-sl-e s -;f_— t > x/c (31)

Dividing by e-1wit according to equation (29)

yields
P(x,t) _ ic ei'l""s'fc_ ic ei"lt
fate %

(32)

As mentioned in the introduction, it is desirable
that the numerical solutions should approximate
equation (30). Therefore procedures are developed
to eliminate the dc component contribution in
the numerical prediction of p. In this example,
two new schemes for data reduction will now be
employed to simulate equation (30).

Ramping Solution

The dc component in equation (31) could
result from the sudden onset of the source at time
t « 0, in contrast to the Fourier transform solu-
tion for which the source has been applied from a
time of minus infinity. To reduce the dc com-
ponent, an exponential ramp function (1 - e-bt)
has been applied to the source such that
S(x,t) = 8(x-xg)(1 - edt)e-fwit H(t) (33)
In this case, the numerical simulation for the
Green's function solution becomes (see Appendix A,
Problem 5)

jug 1 x-x_! /C
p(x) - :-!X;t! ’_;%e l S

_c (g_) Rt
Zup\#

Equation (34) will approximate the analytical
Green's function solution provided (b/w)) is
chosen to be small compared to unity.

(34)

Integral Solution

For a large class of {nhomogeneous problems,
the use of equation (29) presents some additional
dificulties. Consider, for example, 2 typical
forcing function for the steady or unsteady (cir-
cumferential varistions of s ea?y Tow) l9gg1ng
noises on a propeller sourcelref. 14, p. ),
The propeller source can be conveniently modeled
by stationary sources which tyrn ang .o
(square wave) with time '9?- {a pq9- Tl-ig) to
match the passing of the propeller. For this
square wave source function in time, the analytical
expression for pressure will contain all the hfr-
monics (nw*) of the blade passing frequency e~
The amplitudes of the various Fourier components
are determined by an exponential Fourier series {xt
of t?i 5"%’" (or assumed) forcing functioniTer. 14,
eq. 11.3.3),

To reduce numerical data which contain a
spectrum of discrete harmonics resulting from the
Fourier fit of the square wave, the following
orthogonality condition is used.

ne*t*
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t+] 1'0‘

P(x,t) e dt

Pplx) = (35)

Besides yielding the individual higher harmonics,
the orthogonal properties of equation (35) will
eliminate the steady offset involved in the numer-
ical example considered herein,

In employing equation (35), for convenience,

the at from equation (28) is adjusted as follows
to obtain an even number of at's in one period:

1.
8t = FLORT TIFIX(L.T2t,] + 17 (36)

where IFIX converts a floating point number to
an interger, and where

Ieycle = IFIX (1./atg) *+ 1
Consequently, the following algorithm was used

to numerically evaluate equation (35) to calculate
p(x) for n = 1.

(37)

Joktlore [ | vt fuyt3-T
=kt

Sample Problems - Comparisons

Two examples are now presented to illustrate
the numerical techniques. Both examples have an-
alytical solutions; therefore, a direct comparison
between the numerical and analytical techniques
can be made. The first example presents a simula-
tion of the Green's function., The second example
presents a solution for a distributed noise source.

Example 1 - Green's Function

As our first example of the difference tech-
nique, consider the numerical solution of the
Green's Function equation, (12). In this case,
the finite difference equatfons (19) and (20) wil)
be used in the solution with the source term equal
to 1./ax (eq. (23)) at x¢ and zero elsewhere.
The exact analytical solutfon is given by equation
(32). Taking the position of the source x¢
equal to zero, considering only positive values
of x 1in the outpu}, gnd dividing both sides of
equation (32) by e~'»1t, equation (32) can be
rewritten as (recall wj = 2v)

Pix f = =sin (2%5) + 4 cos(ggl) el
c
o e
[ “ t > x/c (39)

For a nondimensional speed of sound of unity
and ax of .00521, the numerical and analytical
results are shown in Fig. 2 for times of C.75,
1.6, 1.25, and 1.5. At t = 0.75 in Fig. 2a, %he
initfal transient has progressed three-quarters of
the way to the termination point of x equal to
unity., At t greater or equal to 1.0 in Figs. 2b,
¢, and d, the time dependent oscillatory nature of
the transient form of the solution is shown, As
seen in all the Fig. 2 plots, the analytical and
numerical results are in excellent agreement.

Recall, the steady-state Fourier transform
solution to the Green's function equation is de-
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sired. In this steady-state solution, the source
has been assumed turned on from time to minus in-

finity. The exact anmaiytical solution, eq. (30)
can be rewritten as
P(x,t
p(x) = e -sin 2ex * § cos 2sx (40)
c -
7:; e

Again, the normalized velocity of sound has been
taken as unity.

As discussed in the previous section, the
numerical aporoximation to this analytical solution
can be obtained by either introducing a ramp func-
tion or using the integration technique defined by
equation (353.

Figure 3 shows the numerical results for tke
exponential ramp with a coefficient of b equal
to 0.5. 1In this case about seven time periods
(t = 7) were required before the transient solu-
tion associated with the ramp died out and the
steady-state Fourier transformed solution was
obtained. For t greater than 7, the numerical
solution remained unchanged. The analyses,
equation (34), predicted an error of b/w) of .08
which is the error seen fn Fig. 3.

Finally, the results of the integration tech-
nique, equation (38), are shown in Fig. 4. As
seen in Fig. 4, the analytical and numerical re-
sults are in exact agreement at the end of two-
cycles (t = 2).

Example 2 - Distributed Source

For the case of a distributed sound source,
the solution for p(x) ca represented by the
integrali'e ?4' gq- 5.2.?5) of the produgt of
the source magnitude A(x;) and the Green's
Function as given by equation (30). In the
present example, the source strength A is
assumed constant between -a and +a and zero
outside this range. Thus for x greater than a,

a  -imyx /C
d/F e 1’s dxS

-a

fwyx/c

p(x) = 52 e (a1)

while for x greater than -a

fwyx/C £x ~lwgx_/cC
p(x) = 1::[ 1 f e 1%s dx

-4

. a fuyx /c
. e—\ulx/c f e “1”s dxs]

X

and less than a,

S

(42)

In the specific example now considered, a {s
set at a value of 0.5, the ampiitude A f{s taken
as unity and the dimensionless speed of sound is
assumed to be 0.5. In this case, performing the
integrations in equations (41) and (42) yields the
following expressions for the normalized pressure

(89)2 (43)
(84)

p(x) = (1 - cos 4x x) x <0.5

p(x) « 0 x >0.5
The parameters have been chosen so that the noise
sources combine to give complete cancellation in
the region outside the source.

The results of the integration technique,
equation (38) are shown in Fig. 5. As seen in
Fig. 5, the analytical and numerical results are
zn exa;t agreement at the end of four cycles

t =4).

In employing the ramping technique for the
distributed source, 1t was necessary to reduce b
to 0.1 to keep an eight percent error, as was used
in Fig. 3. The reduced b leads to a solution
time an order of magnitude greater than the inte-
gration technique, which limits the usefulness of
the ramping technique.

Concluding Remarks

The transient difference technique was suc-
cessfully formulated for the one dimensional in-
homogeneous wave equation with a harmonic source.
The Green's function and a distributed noise source
are accurately predicted by the numerical theory.
The desired Fourier transformed acoustic pressures
are determined from the transient pressures by use
of a ramping function and an integration technique
both of which eliminate the nonharmonic pressures
associated with the start-up of the particular
inhomogeneous source function considered herein.
The integration technique is an order of magnitude
faster than the ramping technique; consequently,
future aumerical solution should employ this tech-
nigue.

Appendix A

Fourier Integral Solutions

To verify the accuracy and applicability of
the numerical techniques, closed form analytical
solutions will now be developed for a variety of
check problems. The complex exponential form of
the Fourier integral representation will be used
to develop the analytical expression.

The Fourier transform of P(x,t) is defined
as(ref. 14, p. 283 )

1 f" fut
p(x,u) =7, J P(X,t) e (Al)
The Fourier transform of the wave equation (5)
becomes
2 ? -
? w -1 f jwt
" + ;}'D -7 J S(x,t) e (A2)

The Fourier transorms to be considered have
only simple poles and vanish at 1wt » =, For
the problems considered herein, the x and t
variables can be incorporatied in a new variable
8=t - x/c and the inverse transform can be
written as
|

P(x,8) = f B(»)e-h“B du (A3)

-

:: ;gis fgse tr; 1nverfe Lfg be written directly

8<0 P{x,8) = 2xi ] (residues above real

w axis) (A8)
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8>0 P(x,8) = -2w% [ (residues on and below

real « axis) (AS5)
Problem 1 - Harmonic Pressure All Times, - = ¢ + ¢ =

For s(x) = 0, the soclution of equation {A2)
in a semi-infinite domain (no retlections) yields

{ex/c

D(X,u) - C+e (AG)

The constant C. (forward waves) {s determined by
the transformation the dary condition
equat fon_ (25)(ref- 1 P4, the B3tY ’
p(0,0) = & (w - w1) = Cs (A7)
The inverse P{x,t) of equation (A6) with C+

as given by equation (A7) can be determined direc~
t1 t defi tion of the Dirac delta func-
tizn{rgp TE 1, eq. f.§.§ ? to yield

equation (26) 1n the body of this report.

Problem 2 - Harmonic Pressure t > 0

Again for s(x) = O, the solution of equation
(A2) in a semi-infinite domain is given by equa-
tion (A6). In this case however, the constant
C+ 1is determined by the transformation of the
boundary condition equation (27) to give

9(0.0) ] %T(w 1 “1) = C*

Considering equations (A6) and (A8), the only
residue is w], which lies on the real axis.
Therefore, the inverse can be found directly from
equatfons (A4) and (A5) to yield P{x,t) as given
by equation (28) in the body of this report.

(A8)

Problem 3 - Green's Function - = ¢t <=

For a source in the form as given in equation
(12), the right hand sid equation (A2) takes
on tﬂe form}g ?3 5 ?;

2 2

3 + ?{ p=-8(x - xs) 8w - ”j)

ax

(A9)

The homogeneous solution for nonreflected waves_ in
Bhiiagsrticular example can be written as({ref. 14,

pix,u) = Aefuwlx-xg) ¢

X > XS
- Ae-hn(x-xs)/c X < Xg (AlO)
for a pressure continuous across x equals xq.

There is, of course, a discontinuity in the slope
of p(x,w) at x = xg. The constant A and
therefore the magnitude of the discontinuity takes
on the value x = xc to satisfy the right hand
side of equation (AB) x = xg. Following the
proced re ouil1n 3reat depth by Morse and
Ingard the constant A s
found to be A = (ic/w) & (w - w)).
inverse can be easily determine from
use Tf ths Dirac Delta functionl’
) to yield P(x,t) as given by
equatwon {30) in the body of this report.

Aqain, the
he dirict

OF POOR QUALITY

Problem 4 - Modified Green's Function t > 0

For a source in the form as given in equation

g:lzﬁet::r;z?2$ hfgd sid of equrf;?gzsAz) takes

32 u2 -&(x - xs)i (A1)
+ -
ax 27 P TA- “)

Using the approach outlined in Problem 3 the
Fourier transformed pressure becomes:

- 1 iulx—xsilc
D(x,u) = m [m] e (Al?)

In taking the inverse of equation (A12), two resi-
dues are at 0 and w] and both lie on the

real axis. Therefore, the inversc can again be
found directly from equations (A4) and (A5) to
yield P(x,t) as given by equation (31) in the
body of this report.

Problem & - Ramping Funciion t > 0

For a source in the form as given in equation
(33) the right hand side of equation (A2) takes on
the form

32 1

1 i
= 8(x - xs)[?; To = “17 T Talw - w * 1b)]

+

n'\ig ~o

X
(A13)

The solution for the Fourier transformed
pressure becomes

- 1 -iulx-xs‘/c
ot = gyt

c 1 -futx xsl/c
+ e [ iy

In taking the inverse of equation (Al4), three
residues are at 0, wj, and w]-ib and all lie

on or below the real axis, Therefore, the inverse
can again be found directly from equations (A4)
and (AS) to yield

lx-xsl
P(x,t) _1(:_e'i“’1(t'__c'_)
H( ] X - xsl) .?ul
c
-ic, dc c b
Bl d e eery

x - x ! Ix - x!
-1(; - ) -bit - )
e e

C
_1.2.

Continued on the next page.
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X - x|
Al
e ¢ [ ] (A15)
“1

+ b

For long times, the last two terms in equation
(A15) can be neg]ected. In addition, if blej,
is assumed to be small, equation (Al5) can be ap—

proximated by equation (34) in the body of this
report.
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Figure 1. - Finite difference grid.
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