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NOMENCLATURE

A nuclear mass number

B(e) average slope parameter of nucleon-nucleon scattering amplitude,fm

c Woods-Saxon surface diffuseness, fm

e two-nucleon kinetic energy in their center of mass frame, GeV

J defined in Eq. (21)

m nucleon mass, kg

R Woods-Saxon half-density radius, fm
.

r position vector, fm

r u radius of equivalent uniform distribution, fm

t average two-nucleon transition amplitude, MeV

t o defined in Eq. (3)

Vo defined in Eq. (16)

Vopt optical potential (defined in Eq. (15)), MeV

x relative position vector of projectile, fm

y two-nucleon relative position vector, fm

z position vector of projectile in beam direction, fm

_(e) average ratio of real part to imaginary part of nucleon-nucleon
scattering amplitude

B defined in Eq. (6)

6(_) Dirac delta function

p nuclear density,fm-3

Po normalizationconstant in Eq. (20), fm"3

_(e) averagenucleon-nucleontotal cross section,mb
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Subscripts :

P projectile

T target
; Arrows over symbols indicate vectors.
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ANALYTICDETERMINATIONSOF SINGLE-FOLDINGOPTICAL POTENTIALS
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and
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SUMMARY

A simple analytic method for calculating nucleon-nucleus optical
potentialsusing a single-foldingof a Gaussian two-body interactionwith
an arbitrary nuclear distribution is presented. When applied to
proton-leadelastic scattering,the predictedreal part of the Woods-Saxon
potential is in substantialagreement with the experimentally-determined
phenomenologicalpotential, although there are no adjustable parameters.
In addition, the volume integrals of both real potentials are nearly
identical.



INTRODUCTION

In order to properly assess the optimum shield requirements for future
manned space efforts, especially missions of long duration, accurate
methods for predicting the interactions of cosmic rays with spacecraft
materials and inhabitants are required. Although theories capable of
accurately predicting high-energy nucleon-nucleus and nucleus-nucleus cross
sections exist (refs. 1 through 6), disagreements between theory and
experiment are evident at low energies. These are probably due, in large
part, to the inapplicability of the eikonal approximation at low energies
(refs. i and 2). In a recent work (ref. 7), substantial improvement in the
agreement, at low energies, for light and medium nuclei was noted when
partial wave analyses, utilizing complex WKB (Wentzel-Kramers-Brillouin)
phase shifts, were performed. The method outlined in reference 7, however,
appears to be suitable only for collisions involving light and medium
nuclei whose matter densities are Gaussian or harmonic well distributions,
since their nuclear optical potentials can be analytically determined
(ref. 8). For heavier nuclei whose density distributions are neither
Gaussian or harmonic well shapes, their optical potentials are not readily
reduced to analytic forms (ref. i). In this work, a method is presented
for obtaining an approximate analytic expression for the nucleon-nucleus
optical potential, involving the single-folding of an arbitrary target
density distribution with a Gaussian two-nucleon interaction. As such it
represents an initial effort toward discovery of approximate analytic
methods for eventual use in evaluating double-folding optical potentials
involving arbitrary nuclear density distributions. When applied to i GeV
proton-lead collisions, this method yields a predicted real part of the
nuclear potential which is in excellent agreement with the available
phenomenological results obtained from elastic scattering experiments
(ref. 9).



THEORETICALANALYSIS

In previous work (ref. 2) it was shown that the optical potential
approximation to the exact nucleus-nucleus multiple-scattering series is

V(_) = ApAT I d3_ PT(_) I d3_ Pp(_ + _ + _) t(e,_) (1)

where the two-body transition amplitude, averaged over constituent types
(ref. 1) is

t(e,_) = to exp[-y2/2B(e)] (2)

with

1 3

to = -(e/m)_ a(e)[a(e)+ i] [2_B(e)]-_ (3)

and PT and pp are the target and projectile single-particle number
(matter densities). In equation (3), e is the two-nucleonkineticenergy
in their center of mass frame, and _(e), e(e), and B(e) are the usual
nucleon-nucleonscatteringparameters(refs. 1 and 2).

For nucleon-nucleus scattering involving a target nucleus of mass
number AT, the projectilesingle-particledensity is

pp(_ + _ + _) : a(_ + _ + _) (4)

with Ap = 1. Equation (1) then reduces, for nucleon-nucleusscattering,
to

Vopt(_) = AT f d3_ pT(_) t(e, _ + _) (5)

Insertingequation (2) into (5) and letting

B2 = [2B(e)]-i (6)

, yields

• Vopt(_): 2_toAT f_z2dz pT(_) exp[-B2 (x2 + z2)]
o

(7)
_o exp[-2xz B2 cos G] sin GdO



The angularintegrationis of the form

_exp(-q cos e) sin Ode : [exp(q) - exp(-q)]/q (8)
0

which, upon collectingexponents,yields

Vopt(_) = (_toAT/{32x) [=zdz pT(Z) {exp[-82(z - x)2]
0

(9)
-exp[-8 2 (z + x)2]}

Evaluatingthe integralsin equation(9) gives

f=zdz pT(z)exp[-8 2 (z - x) 2] =
o

(io1

8-I [= (x + 8-1 S)PT(X+ (3-1 s)exp(-s2)ds
-8x

and

_=zdz pT(z)exp[-82(x + z)2] :
o

(ii)

8-1 _ (8-1 s - x) pT(8-1 s - x)exp(-s2)ds
8x

Incorporatingthe results from equations (10) and (11) into (9), and
assuming that the density distributionis sphericallysymmetric yields,
after some algebra,

Vopt(_)= _toATB-3 {(8 x)-I _=sds exp(-s2) [PT(X+ 8-I s)
0

- PT(X - 8-1 s)] (12)

+ f= ds exp(-s2) PT(X + 8-1 s)}

The integrals in equation (12) are of the same form as those in
equation (86) of reference 1, where a similar method was utilized to
extractmatter densitiesfrom nuclearcharge densities.



The first integral, is generally smaller than the second since it
contributesonly when x is near the nuclearedge. For the extremecase,
where PT is a finite uniform distribution, the ratio of the first
integralto the second,at the uniformradius,ru, is

: 1

Ratio = ru'l[2B(e)/_] (13)

Noting that this ratio is a maximum for large B(e) and small ru, which is
the situationfor light target nuclei and high energies,an estimateof the
ratio is made. Choosing ru - 3 fm (a nominalvalue for a lithiumnucleus
from reference 10) and B = [5 fm2 (ref. 11) gives a maximum ratio of 19
percent. It is expectedthat the error resultingfrom neglectof the first
integral, for realistic densities, will be substantiallyless than this
value.

Neglecting the first term in equation (12) yields an approximate
nuclearoptical potential

Vopt(X) = _toAT_-3 f_ ds exp(-s2) PT(X + B-I s) (14)

For an arbitrarydensitydistribution,the integralcan be approximatedby
a two-pointGauss-Hermitequadratureformula (ref. 12) to yield an analytic
nuclearoptical potential

Vopt(_) = (VoAT/2)[PT(X+ vrB)+ PT(X - V_B)] (15)

with

1

Vo : -(e/m) -Z _(e)[a(e) + i] (16)

Should the need arise to includethe first integral in equation (12), it
can be similarly approximated by changing variables such that

I_sds exp(-s2)[PT(X+ B-I s) - PT(X - B"1 s)]
o

i

= _if_dp exp(-p)[PT(X+ (p/B2)- _) (17)
• 0

i

_ PT(X _ (p/B2)--Z)]

This allowsthe integralto be easily approximatedby a Laguerrequadrature
formula (ref. 12).
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RESULTSFORPROTON-LEADELASTIC SCATTERING

To illustrate the application of equation (15), the real part of the
nuclear optical potential for proton-lead elastic scattering at an incident
kinetic energy of 1.04 GeV is calculated. Thus, taking the real part of
equation (15) gives

i

Vopt(_) = -[(e/m) _ _(e) _(e) aT/2][PT(X + _FB) + PT(X _ vrB)] (18)

which, for 1.04 GeV protons colliding with lead yields

Vopt(_) : 9041.5 [PT(X + .49) + PT(X - .49)] (19)

For PT given in fm-3 (normalized to unity) . ", Vopt(x ) In equation (19) is
given in MeV. Choosing PT of lead to be a Woods-Saxon charge density
using the methods in references 1 and 2 yields.

pT(_) = Po{1 + exp[(r - R)/c]} -I (20)

where R = 6.624 fln, c = 0.860 fm, and p(o2 i 7.059 x 10-4 fm-3. Theresults obtained from equations (19) and (] are plotted in figure i.
Also plotted in figure 1 are the phenomenological Woods-Saxon potential
results obtained from elastic scattering experiments (ref. 9). The
agreement between theory and experiment is impressive particularly since
there are no arbitrarily adjustable parameters in the theory. In addition,
the volume integrals, J , of both real potentials

J = 4_ I _ r 2 V(r) dr (21)
0

agree te within 0.02 ,percent.

Finally, we note from equation (13) that the maximum expected error
due to the neglect of the first integral in equation (12) is less than 6
percent. The actual error, for the density used in the calculations
(eq. (20)), was found by numerical methods to be less than 5 percent

_ (typically 2-3 percent) for values of x up to 12 fm.



CONCLUDINGREMARKS

In this work a simple analytic method for approximating nuclear
optical potential integrals involving the single-foldingfor a Gaussian
interactionwith arbitrarynuclear distributionswas presented. Applying
the method to 1.04 GeV proton-lead collisions, the real part of the
predictedpotentialwas found to be in remarkablygood agreementwith the
phenomenologicalresultsobtainedfrom elastic scatteringexperiments. The
resulting Woods-Saxon radial shape, for the potential, obtained when a
Woods-Saxontarget density was utilized also suggests that there may be
some credibilityin the usual assumptionthat the spatialdependenceof the
nuclear potential should follow that of the associated nuclear density
distribution. It is anticipatedthat the analyticmethodsdescribedherein
will be useful for determining complex WKB solutions to low energy
scattering problems and for other nuclear potential calculations where
purely numericalmethodsmay not be appropriate.
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Figure1. -Real part of the proton -lead opticalpotentialat 1.04GeVincident

kinetic energy.
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